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Abstract

This paper introduces a new class of robust estimates for ARMA mod-
els. They are M-estimates, but the residuals are computed so that the
e¤ect of one outlier is is limited to the period where it occurs. These
estimates are closely related to those based on a robust �lter, but they
have two important advantages: they are consistent and the asymptotic
theory is tractable. We perform a Monte Carlo where we show that these
estimates compare favorable with respect to standard M-estimates and to
estimates based on a diagnostic procedure.

1 Introduction

There are two main approaches to deal with outliers when estimating ARMA
models. The �rst approach is to start estimating the model parameters using
maximum likelihood and then analyzing the residuals with a diagnostic pro-
cedure to detect outliers. Among others, diagnostic procedures for detecting
outliers were proposed by Fox [10], Chang, Tiao and Chen [5], Tsay [24], Peña
[23], and Chen and Liu [6]. However diagnostic procedures su¤er from the
masking problem: when there are several outliers which have similar e¤ects, the
outliers may not be detected.
A second approach is to use robust estimates, that is, estimates which are

not much in�uenced by outlying observations. A detailed review of robust pro-
cedures for ARMA models can be found in Chapter 8 of Maronna, Martin and
Yohai [17]. In this Chapter it is shown that in the case of an AR(p) model,
one outlier at observation t can a¤ect the residuals corresponding to periods t0;
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t � t0 � t+ p; and in the case of an ARMA(p; q) model with q > 0 it can a¤ect
all residuals corresponding to periods t0 � t. For this reason estimates based on
regular residuals (for example M- or S-estimates) are not very robust. One way
to improve the robustness of the estimates is to compute the residuals using
the robust �lter introduced by Masreliez [21]. This robust �lter approximates
the one step predictor in ARMA models with additive outliers. Several authors
have proposed estimates that use residuals computed with the Masreliez �lter.
For instance, Martin, Samarov and Vandaele [20] proposed �ltered M-estimates,
Martin and Yohai [19] �ltered S-estimates and Bianco, Garcia Ben, Martinez,
and Yohai [1] �ltered �� estimates. However, we can mention two shortcom-
ings of the estimates based on �ltered residuals. The �rst one is that these
estimates are asymptotically biased. The second one is that there is not an
asymptotic theory for these estimators, and therefore inference procedures like
tests or con�dence regions are not available.
In this paper we propose a new approach to avoid the propagation of the

e¤ect of one outlier when computing the innovation residuals of the ARMA
model: we de�ne these residuals using an auxiliary model. For this purpose we
introduce the bounded innovation propagation ARMA (BIP-ARMA) models.
With the help of these models, we are able to de�ne estimates for the ARMA
model which are highly robust when the series contains outliers.
We show that the mechanisms of the proposed estimates to avoid the prop-

agation of the outliers are similar to those based on robust �lters. However, the
advantage of these estimates over those based on the robust �lters is that they
are consistent and asymptotically normal under a perfectly observed ARMA
model.
The proposed estimates can be considered as a generalization of the MM-

estimates introduced by Yohai [26] for regression. In the �rst step we de�ne
a highly robust residuals scale and in the second step we use a redescending
M-estimate which uses this scale.
For brevity sake we have omitted in this paper some of the proofs. All the

proofs can be found in Muler, Peña and Yohai [22].
The paper is organized as follows. In Section 2 we introduce the new family of

models and show that the corresponding residuals are similar to those obtained
with a robust �lter. In Section 3 we introduce the proposed estimates. In
Section 4 we establish the main asymptotic results: consistency and asymptotic
normality. In Section 5 we discuss the computation of the proposed estimates.
In Section 6 we discuss robustness properties of the proposed estimates. In
Section 7 we present the results of a Monte Carlo study. In Section 8 we show
the performance of the di¤erent estimates for �tting a monthly real series. In
Section 9 we make some concluding remarks. Section 10 is an Appendix with
the main proofs of the asymptotic results.

2



2 A New Class of Bounded Nonlinear ARMA
models

2.1 BIP-ARMA models

We are going to consider a stationary and invertible ARMA model that can be
represented by

�(B)(xt � �) = �(B)at (1)

where at are i.i.d. random variables with symmetric distribution and where
�(B) and �(B) are polynomial operators given by �(B) = 1 �

Pp
i=1 �iB

i and
�(B) = 1�

Pq
i=1 �iB

i with roots outside the unit circle.
If at has �rst moment we have that E(xt) = �: Let �(B) = ��1(B)�(B) =

1 +
P1

i=1 �iB
i and consider the MA(1) representation of the ARMA process

xt = �+ at +
1X
i=1

�iat�i: (2)

We can model contaminated ARMA processes with a fraction " of outliers
by

z"t = (1� �"t )xt + �"twt (3)

where yt is the ARMA model, wt is an arbitrary process and �
"
t is a process

taking values 0 and 1 such that limn!1 1=n(
Pn

i=1 �
"
t ) = ": For example �"t

may be a stationary process such that E(�"t ) = " : The case of additive out-
liers corresponds to wt = xt + �t, where xt and vt are independent processes.
Replacement outliers correspond to the case that the processes xt and wt are
independent. According to the dependence structure of the process �"t we can
have additive outliers or patchy outliers. For detail, see Martin and Yohai [18].
Robustness is related with the possibility of accurately estimating the parameter
of the central model xt when we observe the contaminated process z"t .
Another type of outliers are innovation outliers. An ARMA process with

innovation outliers occurs when we observe an ARMA process satisfying (1) but
the innovations at have a heavy-tailed distribution. Regular M-estimates can
cope with this type of outliers. See for example Maronna et al. [17].
We will use the following family of auxiliary models

yt = �+ at +
1X
i=1

�i��
�at�i

�

�
; (4)

where the at�s are i.i.d. random variables with symmetric distribution and � is
a robust M-scale of at which coincides with the standard deviation in the case
that the at �s are normal, the �i �s are the coe¢ cients of �

�1(B)�(B) and �(x)
is an odd and bounded function. An M-scale of at is de�ned as the solution
of the equation E (� (at=�)) = b:. We call this model, the bounded innovation
propagation autoregressive moving average model (BIP-ARMA).
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To obtain robust and e¢ cient estimates we will choose � bounded and such
that there exists k with �(x) = x for jxj � k: More details on how to choose �
and b and � are given in Sections 3.1 and 6. Note that in this model the lag
e¤ect of a large innovation in period t has a bounded e¤ect on yt+j for any j � 0
and since �j ! 0 exponentially when j ! 1, this e¤ect will almost disappear
in a few periods.
Note that (4) can also be written as

yt = �+ at � ��
�at
�

�
+ ���1(B)�(B)�

�at
�

�
and multiplying both sides by �(B) we get

�(B)yt = �(1�
pX
i=1

�i) + �(B)at � ��(B)�
�at
�

�
+ � �(B)�

�at
�

�
which is equivalent to

yt = at + �+

pX
i=1

�i(yt�i � �) �
rX
i=1

�
�iat�i + (�i � �i)��

�at�i
�

��
; (5)

where r = max(p; q): If r > p, �p+1 = � � � = �r = 0 and if r > q; �q+1 = � � �
= �r = 0.

2.2 Robust �lters and BIP-ARMA models

Let us analyze the relationship of the BIP-ARMA model and an ARMA model
with additive outliers. The BIP-ARMA model can be also be written as yt =
(1� �"t )xt+ �"t (xt+ �t); where xt = yt� at+ a�t is an ARMA model satisfying
�(B)(xt � �) = �(B)a�t , a

�
t = ��(at=�); �t = at � a�t ; �"t = I(jatj � k)

and " = P ((jatj � k): However, in the BIP-ARMA model �"t and �t are not
independent and they are also not independent of xt:
We will show that the one-step forecast in the BIP-ARMA model is similar

to the forecast obtained by using the robust �lter for ARMA models introduced
by Masreliez [21]. The Masreliez �lter was proposed as an approximation to
one-step predictor for additive models of the form (3), where xt is a Gaussian
ARMA model, �"t are i.i.d. Bernoulli variables with P (�

"
t = 1) = " and �t are

i.i.d. normal random variables.
Suppose that we have an ARMA series y1; :::; yn and that we suspect that it is

contaminated with additive outliers. Assume �rst that we know the parameters
�;�; � and � of the ARMA model. The robust �lter computes a �clean�series
y�t , and �ltered innovations residuals bat that are obtained by the following
recursive procedure. Suppose that the cleaned series y�1 ; :::; y

�
t�1; and the �l-

tered innovation residuals ba1; :::;bat�1 previous to time t are computed. Since
yt = ��

P1
i=1 �i(yt�i � �) + at; where �(B) = �(B)�1�(B) = 1 +

P1
i=1 �iB

i,
the one-step ahead robust forecast of yt; is obtained by replacing the yt�i�s by
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the cleaned values y�t�i �s, i.e., the one-step robust forecast of yt is obtained by

by�t = ��
1X
i=1

�i(y
�
t�i � �) = �� (�(B)�1�(B)� 1)(y�t � �); (6)

where y�t = � for t � 0: The �ltered innovation residual for period t is computed
by ba�t = yt � by�t and the cleaned value y�t by

y�t = by�t + st���ba�tst
�
= yt � ba�t + st���ba�tst

�
; (7)

where st is an estimate of the one-step prediction error scale and where �� has
the same properties as those stated for �, in particular for some k > 0 it holds
that ��(u) = u for juj � k: Observe that if jba�t j � k; then st�� (ba�t =st) = ba�t and
y�t = yt: Recursive formulae for st can be found in Martin et al. [20].
We can easily derive from (6) and (7) that

by�t = �+

pX
i=1

�i(y
�
t�i � �)�

qX
i=1

�ist�
�
�ba�t�i

st

�
: (8)

Now, from (5), the one step forecast for yt in the BIP-ARMA model is given by

byt = �+

pX
i=1

�i

�
yt�i � �� at�i + ��

�at�i
�

��
�

qX
i=1

�i��
�at�i

�

�
; (9)

which is similar to (8) taking as the cleaned series

y�t = yt � at + �� (at=� ) : (10)

The main di¤erence is that here st is taken is taken constant and equal to �:
Thus, the �ltered residuals used by Martin et al. [20] and Bianco et al. [1] are
very similar to those of a BIP-ARMA model. In the next Section we will use
the model (4) to de�ne robust estimates of the parameters of an ARMA model
that may contain additive outliers.

3 Bounded MM-estimates for ARMA models

Assume that y1; :::; yn are observations corresponding to a BIP-ARMA model
and that the density of at is f(u): The conditional log likelihood function of
yp+1; :::; yn given y1; :::; yp and the values abp�r+1(�;�) = 0; :::; abp(�;�) = 0,
where r = max(p; q), can be written as

Lc(�;�) =
nX

t=p+1

log f
�
abt(�;�)

�
; (11)
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where from (5), the functions abt(�;�) are de�ned recursively for t � p+ 1 by

abt(�;�) = yt���
pX
i=1

�i(yt�i��)+
rX
i=1

 
�ia

b
t�i (�;�)+ (�i � �i)��

 
abt�i (�;�)

�

!!
:

(12)
In the case of a pure ARMA model, i.e., where �(u) = u; (12) reduces to

at(�) = yt � ��
pX
i=1

�i(yt�i � �) +
qX
i=1

�iat�i(�): (13)

Since ML-estimates are not robust , we will consider M-estimates which mini-
mizes

M b
n(�) =

1

n� p

nX
t=p+1

�

�
abt(�;b�)b�

�
; (14)

where � is a bounded function, and b� is an estimate of �.
We observe that the M-estimates de�ned in (14), require to have an estimateb� of �: This lead us to de�ne in Section 3.2 a two step procedure for estimating

� that we call MM-estimates.

3.1 M-estimates of scale

Huber [13] introduced the M-estimates of scale. Given a sample u = (u1; :::; un);
ui 2 R, an M-estimate of scale Sn(u) is de�ned by any value s 2 (0;1) satisfying

1

n

nX
i=1

�
�ui
s

�
= b; (15)

where � is a function satisfying the following property P1 given below.
P1: �(0) = 0; �(x) = �(�x); �(x) is continuous, non-constant and non-

decreasing in jxj.
We can de�ne two asymptotic breakdown points of an M-estimate of scale:

the minimum fraction of outliers which are required to make the estimate in�n-
ity, ��1; and the minimum fraction of inliers that may take the estimate to zero,
��0. Huber [14] shows that �

�
1 = b=a and ��0 = 1� b=a where a = max �. Then,

the global breakdown point of these estimates is �� = min(��1; 1 � ��1) and so
taking b = a=2 we get a maximum breakdown point of 0:5. To make the M-
scale estimate consistent for the standard deviation when the data are normal,
we require that E�(�(x)) = b where � is the standard normal distribution:

3.2 MM-Estimates

The MM-estimates for regression were introduced by Yohai [26] to combine high
breakdown point with high e¢ ciency under normal errors. The key idea of the
MM-estimates is to compute in the �rst step a highly robust estimate of the
error scale, and in the second step this scale estimate is used to compute an
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M-estimate of the regression parameters. For time series models these two steps
are not enough to guarantee robustness. This is due to the fact that an a outlier
in one period, does not only a¤ect the residual corresponding to this period, but
it may also a¤ect all the subsequent residuals. To avoid this propagation we
de�ne MM-estimates for the ARMA model, where the residuals are computed
as in the BIP-ARMA model instead as in the regular ARMA model. Then, the
procedure for computing MM-estimates is as follows.
Step 1. In this step we obtain an estimate of �: For this purpose we consider

two estimates of �; one using an ARMA model and another using a BIP-ARMA
model and choose the smallest one.
Let �1 be a bounded function satisfying P1 and such that if b = E(�1(u));

then b=max �1(u) = 0:5: This guarantees that for a normal random sample the
M-scale estimator s based on �1 converges to the standard deviation and that
the breakdown point of s is 0:5. Put

B0;� =
�
(�;�) 2Rp+q: jzj � 1 + � holds for all the roots z of �(B) and �(B)

	
:

(16)
Let us call B0 = B0;� for some small � > 0 and B = B0;� � R. Then, we de�ne
an estimate of � b�S = argmin

�2B
Sn(an(�)) (17)

and the corresponding estimate of �

sn = Sn(an(b�S)); (18)

where an(�) = (ap+1(�); :::;an(�)) and Sn is the M-estimate of scale based on
�1 and b:
Let us describe now the estimate corresponding to the BIP-ARMA model.

De�ne b�bS = (b�bS ;b�bS ; b�bs) by the minimization of Sn(abn(�;b�(�;�))) over B: The
value b�(�;�) is an estimate of � computed as if (�;�) were the true parameters
and the at�s were normal. Then since in this case the M-scale � coincides with
the standard deviation of at, from (4) we have

�2 =
�2y�

1 + �2
1P
i=1

�2i (�;�)

� ;
where �2 =var(�(at=�)) and �2y =var(yt): Let b�2y be a robust estimate of �2y and
�2 =var(�(z)) where z has N(0,1) distribution. Then, we de�ne

b�2(�;�) = b�2y�
1 + �2

1P
i=1

�2i (�;�)

� : (19)

The scale estimate sbn corresponding to the BIP-ARMA model is de�ned by

b�bS = (b�bS ;b�bS ; b�bs) = argmin
�2B

Sn(a
b
n(�;b�(�;�))) (20)
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and
sbn = Sn

�
abn

�b�bS ; b�(b�bS ;b�bS)�� ; (21)

where abn(�; �) = (a
b
p+1(�; �); :::;a

b
n(�; �)). Our estimate of � is

s�n = min(sn; s
b
n): (22)

As we will see in the next section, if the sample is taken from an ARMA model
without outliers, asymptotically we obtain sn < sbn: We should point out that
despite the fact that � was computed as if the at�s were normal, the asymptotic
properties of the estimators are not going to depend on this assumption.
Step 2. Consider a bounded function �2 such that satis�es P1 and �2 � �1:

This function is chosen so that the corresponding M-estimate is highly e¢ cient
under normal innovations. Let

Mn(�) =
1

n� p

nX
t=p+1

�2

�
at(�)

s�n

�
(23)

and

M b
n(�) =

1

n� p

nX
t=p+1

�2

�
abt(�;s

�
n)

s�n

�
: (24)

We de�ne the estimates b�M and b�bM by the minimization over B of Mn(�)

andM b
n(�) respectively. Then, the MM-estimate b��M is equal to b�M ifMn(b�M ) �M b

n(
b�bM )

and is equal to b�bM if Mn(b�M ) >M b
n(
b�bM ):

For instance we can take �2 (x) = �1 (�x) with 0 < � < 1. If �002(0) > 0; �2
will be close to a quadratic function when � tends to 0.
Remark 1. One important problem that will be only brie�y mentioned

here is that of the robust model selection. One possibility to explore is to adapt
to ARMA models the robust �nite prediction error (RFPE) selection criterion
given in Section 5.12 of Maronna et al. [17] for regression .
In the next section we will show that when the sample is taken from an

ARMA model without outliers, for large n the estimate will choose b��M = b�M
; and in our Monte Carlo study of Section 7 we observe that if the sample has

enough additive outliers we may have b��M = b�bM . This implies that b��M andb�bM have the same asymptotic distribution for any �. However, the e¢ ciency

of b�bM for �nite sample size depends of �: If the interval where � coincides with

the identity increases, the e¢ ciency for �nite sample size of b�bM will increase
too, but the propagation of the outliers e¤ect will gain importance and so the
estimate will lose robustness.

4 Asymptotic results

The main results of this Section, stated in Theorems 4 and 6, are the consistency
and asymptotic normality of the BMM-estimators for ARMA models. These
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theorems require to prove �rst the consistency of S- and the consistency and
asymptotic normality of MM-estimators. We stated these results in Theorems
1, 3 and 5 respectively. The link that relates the properties of S- and MM- to
those of BMM-estimates are Theorems 2 and 4.
Consider the following assumptions:
P2. The process yt is a stationary and invertible ARMA (p; q) process

with parameter �0= (�0;�0;�0) 2 B and E(log+ jatj) < 1, where log+ a =
max(log a; 0). The polynomials �0(B) and �0(B) do not have common roots.
P3. The innovation at has an absolutely continuous distribution with a

symmetric and strictly unimodal density.
P4. P (at 2 C) < 1 for any compact C.
P5. The function � is continuous, even and bounded.
The following Theorem establishes the consistency of the S-estimates based

on ARMA models.
Theorem 1. Assume that yt satis�es P2 with innovations at satisfying

P3. Assume also that �1 is bounded and satis�es P1 with sup �1 > b, and that
 1 = �01 is bounded and continuous. Then, (i) The estimate b�S de�ned in (17)
is strongly consistent for �0. (ii)
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Let sn be the scale estimate de�ned in (18). Then sn �! s0 a:s: where s0 is
de�ned by E (�1 (at=s0)) = b:

The next Theorem establishes that under a regular ARMA model b�S andb�bS are asymptotically equivalent.
Theorem 2. Assume that yt satis�es condition P2, with innovations at

satisfying P3 and P4. Assume also that �1 is bounded and satis�es P1 with
sup �1 > b, that  1 = �01 is bounded, continuous and that � satis�es P5. Then

if yt is not white noise, with probability 1 there exists n0 such that b�bS = b�S for
all n � n0 and then s�n de�ned in (22) veri�es s

�
n �! s0 a.s..

The reason why the above theorem requires that yt is not white noise is that
in that case both models: the regular ARMA and the BIP-ARMA with any
function �; coincides. Therefore, in this case it does not matter which of the
two model is chosen.
The following Theorems shows the consistency of the MM-estimate.
Theorem 3. Assume that yt satis�es condition P2, with innovations at

satisfying P3. Assume also that �i , i=1,2, are bounded and satisfy P1,  i = �0i;

i=1,2 are bounded and continuous and that sup �1 > b: Then b�M �! �0 a.s..
The next Theorem shows that asymptotically under a regular ARMA modelb�M and b�bM are equivalent.
Theorem 4. Suppose that the assumptions of Theorem 3 , P4 and P5

hold : Then if yt is not white noise, with probability 1 there exists n0 such thatb�bM = b�M for all n � n0 and then b��M ! �0 a.s..
The following Theorem shows the asymptotic normality of the MM-estimates.
Theorem 5. Suppose that the assumptions of Theorem 3 hold :Moreover as-

sume that  02 and  
00
2 are continuous and bounded functions and �

2
a = E(a2t ) <

1: Then we have

(n� p)1=2(b�M � �0) !D N(0; D);

where

D =
s20EF0

�
 22 (at=s0)

�
E2F0( 

0
2 (at=s0))

�
��2a C�1 0

0 ��20

�
; (25)

�0 = �
1�

pX
i=1

�0i

1�
qX
i=1

�0i

and C = (cij) is the (p+ q + 1)� (p+ q + 1) matrix given by

ci;j =
1X
k=0

�k�k+j�i if i � j � p

cp+i;p+j =
1X
k=0

$k$k+j�i if i � j � q;
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ci;p+j = �
1X
k=0

$k�k+j�i if i � p; j � q; i � j

ci;p+j = �
1X
k=0

�k$k+i�j if i � p; j � q; j � i ;

where ��10 (B) = 1 +
P1

i=1 �iB
i and ��10 (B) = 1 +

P1
i=1$iB

i: Observe that
when the at�s are normal, �2 = �2a:

Remark 2. When �2(u) = u2; b�M is the conditional maximum likelihood
estimate corresponding to normal errors. Let F0 be the distribution of at; then,
in this case s20EF0

�
 22 (at=s0)

�
=E2F0( 

0
2 (at=s0)) = �2a Therefore the asymptotic

e¢ ciency of the MM-estimate with respect to the normal conditional maximum
likelihood estimate when the innovations have distribution F0 is

EFF ( 2; F0) =
�2aE

2
F0
( 02 (at=s0))

s20EF0
�
 22 (at=s0)

� : (26)

Choosing  2 conveniently we can make this e¢ ciency as close to one as desired
for the case that F0 is normal.
Remark 3. The relative e¢ ciency of the MM- and BMM- estimates given

by (26) is the same than the one of the M-estimates of location with respect to
the mean. This implies the well-know fact that M-estimates are robust for in-
novation outliers, that is when yt; 1 � t � n; correspond to a perfectly observed
ARMA model, but the distribution F0 of at is heavy tailed.

Remark 4. When E(a2t ) =1, the rate of convergence of M-estimates of �
and � may be larger than n�1=2, and the asymptotic distribution non-normal.
This case was studied by several authors. See for example Davis, Knight and
Liu [8] and Davis [9].

Remark 5. Theorems 1-5 use P3 only to guarantee that for all �; the
function g(�)= E(�((at � �)=�) has a unique minimum at � = 0: If g(�) has a
unique minimum at � 6= 0; then the estimates of � and � are still consistent,
but the estimate of � will converge to �0 + �.
Finally from Theorems 4 and 5 we derive the following Theorem.
Theorem 6. Suppose that the assumptions of Theorem 5, P4 and P5 hold.

Then (n� p)1=2(b��M � �0) converges in distribution to a N(0; D) distribution,
where D is de�ned in (25):
Note that the assumptions of Theorems 2 and 4 include condition P4. How-

ever this condition is not strictly necessary and is included only to simplify the
proofs.
All the asymptotic theorems of this Section assume that the process is an

ARMA model. We conjecture that similar results, consistency and asymptotic
normality hold when the observations follows a BIP-ARMA model. The main
di¢ culty to prove these results is to show that the distribution of abt(�; �) is
asymptotically stationary.
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5 Computation

We will discuss here how to compute the MM-estimate. We start computing the

estimates of step 1, b�S and b�bS : According to (15) we can write S2n(an(�) ) =Pn
t=p+1 r

2
t (�); where

rt(�) =
Sn(an(�) )

(n� p)1=2 b1=2
�
1=2
1

�
at(�)

Sn(an(�))

�
:

Then to compute b�S we can use any non-linear least squares algorithm, for
example a Marquard algorithm. Similarly we can transform the minimization of
Sn(a

b
n(�;b� (�;�) )) in a non-linear least squares problem. Note that non-linear

least squares algorithms require a good starting point. Since the functions we
are minimizing are non-convex and they may have several local minima, the
choice of the starting point is crucial.
If the model has few parameters ( e.g., p + q � 3), one way to obtain the

starting point is to generate a grid of values of the parameter and choose as
initial estimate the one minimizing the objective function. Note that the case
of p + q � 3 is very frequent in the case of ARMA applications, where the use
of parsimonious models is recommended. Bianco et al. [1] gave an algorithm to
compute a highly robust starting point when there are more parameters.

In the second step, to compute b�M and b�bM we can use Marquard algorithm
using a similar idea and taking as initial estimate the best estimate computed
in step 1.
In our simulations the estimates were de�ned taking

�2 (x) =

8<: 0:5x2 if jxj � 2
0:002x8 � 0:052x6 + 0:432x4 � 0:972x2 + 1:792 if 2 < jxj � 3
3:25 if jxj > 3;

�1 (x) = �2 (x=0:405) and � = �02:Note that �1 and �2 are smooth functions
which are quadratic in the intervals (�0:81; 0:81) and (�2; 2) respectively. The
function �1 was chosen so that if we take b = max �1=2 then the scale is consis-
tent to the standard deviation for normal samples Note that � is a redescending
function.
For �tting an ARMA(1,1) model to 1000 observations using a MATLAB

program, with an initial solution computed with a grid of 20 values in each
parameter, the computing time of a BMM-estimate with the choices of �i; i =
1; 2 and � given above is approximately 10 seconds in a PC computer with an
AMD Athlon 1.8 GHz processor. For �tting an AR(3) model under the same
conditions, the computing time is 1 minute 20 seconds.

6 Robustness properties

Several robustness measures can be used for estimates of time series parameters.
Hampel [12] introduced the in�uence curve to measure the robustness of an

12



estimate under an in�nitesimal outlier contamination in the framework of i.i.d.
observations. Künsch [15], Martin and Yohai [18] and Mancini, Ronchetti and
Trojani [16] give generalizations of the in�uence curve for estimating time series
parameters. However, because of its in�nitesimal character, the in�uence curve
may not be a good measure of the robustness when there is a positive fraction
of outlier contamination. For example, it can be proved that for a very small
amount of contamination the MM- and BMM-estimates asymptotically coincide
and therefore their in�uence curves also coincide. However, we will see below in
this Section and in Section 7 that the BMM-estimate is more robust than the
MM-estimate. In�uence functions for the M-estimates of ARMA models can be
found in Martin and Yohai [18].
A more reliable measure of the robustness of an estimate to cope with a

positive fraction " of contamination is the asymptotic maximum bias. Consider
a family of "�contaminated process

z"kt = (1� �"t )xt + �"twkt (27)

as in (3) where k 2 K and (xt; �
"
t ; w

k
t ) is stationary. Suppose also that the

distribution of the uncontaminated process yt depends on a parameter  2 � �
Rj . As example we can consider the family of additive outliers models which is
obtained taking wkt = xt + k, with k 2 R
Suppose that for each sample size n we have an estimate bn of  and letb1(L) = (b11(L); :::; b1j(L)) be the almost sure limit of bn when applied to

a process with distribution L: The bias of the i-th component b1when applied
to z"kt as de�ned in (27) is

B(b1i; ;"; k) = jb1i(L(z"kt )) � ij;

where L(z"kt ) denotes de distribution of the process z"kt : The maximum asymp-
totic bias of the i-th component is de�ned by

MB(b1i; ;") = sup
k2K

B(b1i; ;"; k):

We have approximately computed the maximum bias curves of the MM- and
BMM-estimates for Gaussian AR(1) and MA(1) models with additive outliers
(wkt = xt + k) and where the �"t are i.i.d. Bernoulli variables. To simplify the
computation we eliminate the intercept from these models by assuming it to be
known and null. The asymptotic value of the estimate is approximated using
samples of size 10000. We found that for samples size larger than 10000 the
changes in the estimate are negligible.
In Figure 1 we show the bias curves of the MM- and BMM-estimates for the

AR(1) model with � = 0:5 and " = 0:1. In Figure 2 we show the maximum
biases curves for the MM- and BMM-estimates under the same model In Figure
3 we show the maximum bias curve for the BMM-estimate under a MA(1) model
with parameter � = �0:5.
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Figure 1: Bias curve for the AR(1) model with � = :5 and 10% of additive
outliers where k is the outlier size
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Figure 2: Maximum Bias for the AR(1) model with � = :5
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Figure 3: Maximum Bias of the BMM for the MA(1) model with � = �:5

In both cases we observe that the BMM-estimate has a smaller maximum
bias than the MM-estimate. We also observe that the behavior of the MM-
is di¤erent from the BMM-estimate. After the contamination is larger than
some value "� the maximum bias of the MM-estimate is constantly equal to
the value of the estimated parameter. This means that the asymptotic value
of the estimate becomes 0 independently of the true value of the parameter.
This value "� correspond to the breakdown point notion proposed by Genton
and Lucas [11]. For the AR(1) model the value "� depends on �. For the
MA(1) model "� = 0: Instead , the behavior of the BMM-estimate is di¤erent
and apparently the estimate does not break down. A surprising feature of its
maximum bias curve is that for very large " the maximum bias starts decreasing.
This can be explained as follows: when " is large, the probability of obtaining
a patch of two or more outliers increases. The e¤ect of a patch of outliers is
to increase the correlation of the series and therefore, in the case of the AR(1)
model with � positive and MA(1) with � negative it prevents that the parameter
further approximates to zero for outliers with �xed size k.We also computed the
maximum biases curves for other values of parameters � and � and the results
were similar.
We conjecture that the robust behavior of the BMM-estimate under additive

outlier contamination also holds when we observed any contaminated process
z"t as given in (3). The reason is that since the BIP-ARMA model includes
a built-in �ltering to compute the residuals, a small fraction of outliers will
a¤ect only a small fraction of residuals. Therefore, since the loss function of
the BMM-estimate is bounded, the estimate will not be largely a¤ected by a
small fraction of large residuals. We compute maximum bias curves for the case
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Estimate AR(1) MA(1)
� � = 0:5 � � = �0:5

MLE 0:017 0:0036 0:010 0:0042
MM 0:018 0:0045 0:012 0:0046
BMM 0:018 0:0042 0:012 0:0052
CTCB 0:017 0:0036 0:011 0:0042
CTC3 0:017 0:0036 0:011 0:0044
FTAU 0:019 0:0054 0:012 0:0065

Table 1: MSE of the AR(1) and MA(1) models without outliers

of replacement outliers (wkt = k) obtaining similar results that for the case of
additive outliers.

7 A Monte Carlo Study

We have performed a Monte Carlo study to compare several estimates for ARMA
models. We have simulated three Gaussian stationary ARMA models consid-
ering the case that the series do not contain outliers and the case that the series
have 10% of equally spaced in time additive outliers. The sample size in the
simulations is 200 and the Monte Carlo study was done with 500 replications.
The estimates considered in this study are (i) the normal conditional max-

imum likelihood estimate (MLE), (ii) an MM-estimate where the residuals are
computed as in a regular ARMA model (MM), (iii) an MM-estimate where the
residuals are compared with the ones of a BIP-ARMAmodel (BMM), (iv) an es-
timate based on the diagnostic procedure proposed by Chang, Tiao and Chen [5]
and which is further described in Chen and Liu [6]. The cuto¤ point for outlier
rejection is chosen by the Bonferroni inequality as c = ��1(1� (0:05=n)); where
� is the N(0; 1) distribution function. We denote this estimate by (CTCB). (v)
The same as in (iv) but the cuto¤ point is c = 3 (CTC3). (vi) The tau �ltered
estimate proposed by Bianco et al. [1]. We denote this estimate by (FTAU).
The estimates MM and BMM are based on the functions �1 and �2 and �

described in Section 5
In Table 1 we show the MSE for the six estimates when the observations

come from an AR(1) and a MA(1) model without outliers. Table 2 show the
MSE of the same estimates for an ARMA(1,1) model without outliers. The
relative e¢ ciency with respect to the MLE varies from 80% to 90% for the
estimate BMM in the case of � and �, from 80 % to 94% for the estimate MM
, is practically 100% for the CTC estimates and varies from 65% to 84% for the
FTAU. The e¢ ciency of all the estimates of � is very high.

In Tables 3 and 4 we show the Mean Square Error of estimation (MSE) of
the six estimates and the three models with 10% of additive outliers of size
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Estimate � � = 0:5 � = �0:5
MLE 0:045 0:0062 0:0061
MM 0:050 0:0073 0:0075
BMM 0:051 0:0069 0:0075
CTCB 0:045 0:0062 0:0061
CTC3 0:047 0:0061 0:0064
FTAU 0:054 0:0074 0:0082

Table 2: MSE for the ARMA(1,1) models without outliers

AR(1) MA(1)
Estimate � � = 0:5 � � = �0:5
MLE 0:189 0:103 0:178 0:128
MM 0:024 0:085 0:0152 0:115
BMM 0:021 0:014 0:0156 0:025
CTCB 0:185 0:103 0:174 0:130
CTC3 0:148 0:096 0:136 0:125
FTAU 0:032 0:011 0:020 0:031

Table 3: MSE of the AR(1) and MA(1) models with 10 percent of equally spaced
additive outliers of size 4

4 and in Tables 5 and 6 we show the MSE of the six estimates and the three
models with 10% of additive outliers of size 6. We observe that for all models
the estimate BMM of � and � behaves much better than those corresponding to
the estimates MM, CTCB and CTC3. The performance of the estimates FTAU
and BMM are comparable.
The errors of the MSEs shown on these tables are smaller than 15% with

probability 0.95. However since the all the estimate were computed with the
same samples, the errors of the di¤erences between the MSE of any two esti-
mates are much smaller making comparisons possible .

Estimate � � = 0:5 � = �0:5
MLE 0:204 0:023 0:299
MM 0:093 0:021 0:3835
BMM 0:088 0:017 0:060
CTCB 0:203 0:023 0:300
CTC3 0:183 0:022 0:313
FTAU 0:082 0:018 0:040

Table 4: MSE of the ARMA(1,1) models with 10 percent of equally spaced
additive outliers of size 4
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AR(1) MA(1)
Estimate � � = 0:5 � � = �0:5
MLE 0:394 0:189 0:380 0:215
MM 0:028 0:132 0:016 0:159
BMM 0:019 0:0048 0:012 0:0065
CTCB 0:364 0:189 0:345 0:218
CTC3 0:057 0:047 0:042 0:064
FTAU 0:028 0:0076 0:017 0:021

Table 5: MSE of the AR(1) and MA(1) models with 10 percent of equally spaced
additive outliers of size 6

Estimate � � = 0:5 � = �0:5
MLE 0:402 0:070 0:374
MM 0:257 0:034 0:585
BMM 0:065 0:011 0:012
CTCB 0:393 0:069 0:378
CTC3 0:182 0:042 0:334
FTAU 0:093 0:013 0:025

Table 6: MSE of the ARMA(1,1) models with 10 percent of equally spaced
additive outliers of size 6

8 An example

This example deals with a monthly series of inward movement of residential
telephone extensions in a �xed geographic area from January 1966 to May 1973
(RESEX). The series was analyzed by Brubacher [3] and by Martin, Samarov
and Vandaele [20] , who identi�ed an AR(2) model for the di¤erenced series
yt = xt � xt�12; where xt is the observed series.
Table 7 displays the value of the estimates MLE, MM, BMM, CTC3 and

the FTAU together with the MAD-scale of the residuals. We can see that the
estimated values of the parameters of the MLE and the CTC3 are quite di¤erent
from the robust estimates MM, BMM and FTAU. The estimate CTCB gives
the same result as CTC3 (it detects the same outliers) and it is omitted from
the table.

Figure 4 shows the data yt obtained di¤erentiating the observed data as
yt = xt � xt�12 and the cleaned values as in (10) , which are seen to be almost
coincident except at outlier locations.
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Estimates � �1 �2 MAD
MLE 2:69 0:48 �0:17 1:70
MM 1:18 0:34 0:31 1:43
BMM 1:74 0:42 0:36 1:24
CTC3 3:44 1:14 �0:74 1:86
FTAU 1:71 0:27 0:49 1:10

Table 7: Estimates of the parameters of the RESX series
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Figure 4: Di¤erenced RESEX Series: Observed (solid line) and Filtered
(circles) values

9 Concluding remarks

We have presented two families of estimates for ARMA models: MM-estimates
and BMM-estimates. The BMM-estimates uses a mechanism that avoids the
propagation of the full e¤ect of the outliers to the subsequent residual inno-
vations. To make this mechanism compatible with consistency when the true
model is ARMA, we consider two estimates: one is obtained �tting a regular
ARMA model and the other �tting a BIP-ARMA model, where the propagation
of the e¤ect of outliers is bounded. Then, the estimate which �ts better to the
data is selected. We have shown in Sections 6 and 7 that, at least for addi-
tive outliers, the BMM-estimates are much more robust than the MM-estimates
and quite comparable with the FTAU-estimates. The main advantage of the
BMM-estimates over the FTAU-estimates is that an asymptotic theory is now
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available and this makes inference with BMM-estimates possible. The Monte
Carlo results of Section 7 also show that the BMM-estimate compares favorably
with the estimate based on the Chen and Liu [6] diagnostic procedure.

10 Appendix

Suppose that we have the in�nite sequence of observations

Yt = (:::; yt�k; ::::; yt�1; yt)

generated by a stationary and invertible ARMA(p; q) process up to time t with
parameter �0. Given any � = (�;�;�) such that the polynomials �(B) and
�(B) have all the roots outside the unit circle, let us de�ne

aet (�) = ��1(B)�(B)(yt � �): (28)

Then aet (�0) = at and aet (�)�s satisfy the following recursive relationship

aet (�) = yt � ��
pX
i=1

�i(yt�i � �) +
qX
i=1

�ia
e
t�i(�):

In the case that at has �nite �rst moment, we have that aet (�) = yt �
E(ytjYt�1), where the conditional expectation is taken assuming that the true
value of the parameter vector is �:
It is straightforward to derive the following formulas for the for the �rst and

second derivatives of aet (�)

@aet (�)

@�i
= ���1(B)(yt�i � �); 1 � i � p; (29)

@aet (�)

@�j
= ��1(B)aet�j(�) (30)

= ��2(B)�(B)(yt�j � �), 1 � j � q;

@aet (�)

@�
= �

1�
pX
i=1

�i

1�
pX
i=1

�i

; (31)

@2aet (�)

@�i@�j
= 0; 1 � i � p; 1 � j � p; (32)

@2aet (�)

@�i@�j
= ���2(B)(yt�j�i � �), 1 � i � p; 1 � j � q; (33)
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@2aet (�)

@�i@�j
= 2��3(B)�(B)(yt�i�j � �) , 1 � i � q; 1 � j � q; (34)

@2aet (�)

@�i@�
=

1

1�
Pq

i=1 �i
; 1 � i � p; (35)

@2aet (�)

@�i@�
= �

1�
pX
i=1

�i

(1�
pX
i=1

�i)2

; 1 � i � q; (36)

@2aet (�)

@�2
= 0: (37)

We will use the following notation. Given a function g(u) : Rk ! R;we
de�ne rg(u) as the column vector of dimension k whose i-th element is
rig(u) =@g(u)=@ui and r2g(u) is the k � k matrix whose (i; j) element is
r2ijg(u) = @2g(u)=@ui@uj :

We start proving the following Lemma.
Lemma 1 Assume yt satis�es P2. Then for any d > 0 we have:
(i) There exists a stationary process W0t such that sup�2B0�[�d;d] ja

e
t (�)j �

W0t and if E(jytj2) <1; then E(jW0tj2) <1:
(ii) There exists a stationary process W1t such that sup�2B0�[�d;d] kra

e
t (�)k �

W1t and if E(jytj2) <1; then E(jW1tj2) <1:
(iii) There exists a stationary process W2t such that sup�2B0�[�d;d]

r2aet (�) �
W2t;where jjAjj denotes the l2 norm of matrix A:If E(jytj2) <1; then E(jW2tj2) <
1:
Proof.
Since � 2 B0 � [�d; d]; using (28), it is easy to show that there are positive

constants k0, k1 and 0 < � < 1;such that

sup
�2B0�[�d;d]

jaet (�)j �k0 + k1
1X
i=0

�i jyt�ij :

De�neW0t = k0+k1
P1

i=0 �
i jyt�ij : Then by Lemma 1 of Yohai and Maronna

[27], W0t is �nite.
To prove that if E(jytj2) <1 then E(W 2

0t) <1; it is enough to show that

E

 1X
i=0

�i jyt�ij
!2

<1;
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and this follows from

E

 1X
i=0

�i jyt�ij
!2

�
1X
i2=0

1X
i1=0

�i1+i2E(jyt�i1yt�i2 j)

�
1X
i2=0

1X
i1=0

�i1+i2E1=2(jyt�i1 j2)E1=2(jyt�i2 j2)

= E(jytj2)
1X
i2=0

1X
i1=0

�i1+i2 = E(jytj2)
 1X
i=0

�i

!2
:

Therefore (i) follows.
From (29)-(31) and (32)-(37) we can prove (ii) and (iii) respectively using

the same arguments as in the proof of (i).
In the next Lemma we prove the Fisher Consistency of the S-estimate when

we have all the past observations.
Lemma 2 Assume that yt satis�es condition P2 with innovations satisfying

P3. Assume that �1 is a bounded function satisfying condition P1, de�ne s(�)
by

E

�
�1

�
aet (�)

s(�)

��
= b: (38)

Then if � 2 B and � 6= �0 we have s0 = s(�0) < s(�).
Proof.
Let � = (�;�;�) 6= �0 = (�0;�0;�0):We have

aet (�) = ��1(B)�(B)(yt � �)
= ��1(B)�(B)(yt � �0) + ��1(B)�(B)(�0 � �)
= !(B)at + c(�0 � �); (39)

where

!(B) = ��1(B)�0(B)�
�1
0 (B)�(B)

= 1 +
1X
i=1

!iB
i

and

c =
1�

Pp
i=1 �i

1�
Pq

i=1 �i
6= 0:

Put

�t(�) =
1X
i=1

!iat�i + c(�0 � �): (40)
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Then, from (39) we obtain

E

�
�1

�
aet (�)

s0

��
=E

�
�1

�
1

s0
(at +�t(�))

��
:

Let S(p; q)

S(p; q) = E

�
�1

�
at + p

q

��
;

and observe that S(p; q) is decreasing in q: Lemma 3.1 of Yohai [25], showed
that if P1 and P3 hold then for all p 6= 0 and q 6= 0

S(0; q) < S(p; q): (41)

Then, since at and �t(�) are independent we have

E

�
�1

�
aet (�)

s0

��
= E(S(�t(�); s0))

� E(S(0; s0))

= E

�
�1

�
at
s0

��
= b

and the equality holds if and only if�t(�) = 0 a.s.. Because of the identi�ability
of the ARMA model, this occurs if and only if � = �0: Then � 6= �0 implies

E

�
�1

�
aet (�)

s0

��
= E(S(�t(�); s0)) > b

and therefore we have s(�) > s0 = s(�0):
The next two Lemmas are very well known properties of di¤erence equation.

They are proved for sake of completeness.
Lemma 3. Consider the di¤erence equation

zt =
kX
i=1

�izt�i + d (42)

and assume that
Pk

i=1 �i 6= 1: Let zt; t � t0 + 1 be a solution of (42) corre-
sponding to given initial values zt0 ; zt0�1 ; � � � zt0�k. Then it holds

jzt � z�j �
A(�)t�t0 (jzt0 � z�j2 + :::+ jzt0�k+1 � z�j2)1=2; (43)

where z� = d=(1�
Pk

i=1 �i),

A(�) =

0BBBB@
�1 �2 �3 ::: �k�1 �k
1 0 0 ::: 0 0
0 1 0 ::: 0 0
::: ::: ::: ::: ::: :::
0 0 0 ::: 1 0

1CCCCA (44)
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and jjAjj denotes the l2 norm of the matrix A.
Proof.
It is enough to show the Lemma for t = t0 + 1: Call

zt = (zt; zt�1; :::zt�k+1)
0; z� = (z�; :::; z�)0;d = (d; 0:::0)0:

Then it is easy to check that

zt = A(�)zt�1 + d; z
� = A(�)z� + d

and then
zt � z� = A(�)(zt�1 � z�):

Therefore we have that

jjzt � z�jj � kA(�)k jjzt�1 � z�jj

and then (43) holds for t = t0 + 1. This proves the Lemma.
Given � = (�1; :::; �k)2Rk; let �(x) be the polynomial

�(x) = 1�
kX
i=1

�ix
i:

Lemma 4 Given " > 0; let C" be the set of all � = (�1; :::; �k) such that
the polynomial �(B) = 1��1B� :::��kBK has all its roots have modulus larger
or equal than 1 + " and let A(�) be the matrix as de�ned in (44). Then, there
exists 0 < � < 1 and a positive constant C such that

sup
�2C"

A(�)t � C�t: (45)

Proof.
Using the Jordan canonical form we can write

A(�) = B�1(�)(D(�) +N(�))B(�);

where D(�) is a diagonal matrix that has the eigenvalues of A(�) in the
diagonal, and N(�) is a nilpotent matrix of 00s and 10s satisfying that N(�)k is
the null matrix. and such that jjN(�)jj � 1:MoreoverN(�) and D(�) commute.
Put C(�) = D(�) +N(�); then

A(�)t = B�t(�)Ct(�)Bt(�): (46)

Since N(�) and D(�) commute and N(�) k is the null matrix, we get

sup
�2C"

Ct(�) � sup
�2C"

k�1X
j=0

�
t

j

�
kN(�)kj kD(�)kt�j (47)
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Let �i(�); 1 � i � k; be the roots of �(B):Since the eigenvalues of A(�) are
1=�i(�); 1 � i � k; from (47) we obtain

sup
�2C"

Ct(�) � sup
�2C"

k�1X
j=0

�
t

j

� �
1

1 + "

�t�j
(48)

�
�

1

1 + "

�t�k+1
�

�
1

1 + "

��k+1�
1

1 + "

�t
: (49)

For 0 � t � k � 1, we can write

sup
�2C"

Ct(�) � sup
�2C"

tX
j=0

�
t

j

�
kN(�)kj kD(�)kt�j

�
tX

j=0

�
t

j

�
1

(1 + ")t�j
� 2t�1: (50)

Then from (49) and (50) it is easy to prove that there exists C1 such that

sup
�2C"

Ct(�) � C1�
t; : (51)

where � = 1=(1 + ") . Put C2 = sup�2C" kB(�)k and C3 = sup�2C"
B�1(�)

and C = C1C2C3: Then, from (46) and (51) we get (45).
Lemma 5 Under the assumptions of Theorem 1, for any d > 0 we have,

lim
n!1

sup
�2B0�[�d;d]

jSn(an(�) )� s(�)j = 0 a.s..

Proof.
It is easy to show that s(�) is continuous and positive. Let

h1 = inf
�2B0�[�d;d]

s(�) , h2 = sup
�2B0�[�d;d]

s(�):

Then h1 > 0 and h2 <1: From Lemma 2 of Muler and Yohai [22] we have that

lim
n!1

sup
�2B0�[�d;d] ;c2[h1=2;2h2]

�����
nX

t=p+1

�1 (a
e
t (�)=c)

n� p � E
�
�1

�
aet (�)

c

�������
= 0 a.s.. (52)

Since  1 is bounded and continuous, there exists C > 0 such that for
t � p+ 1,
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sup
�2B0�[�d;d] ;c2[h1=2;2h2]

nX
t=p+1

�����1�at(�)c

�
� �1

�
aet (�)

c

�����
� C

nX
t=p+1

sup
�2B0�[�d;d]

jat(�)� aet (�)j : (53)

Put gt(�) =aet (�)�at(�); it is easy to verify that for t � p+ 1;

gt(�) =

qX
i=1

�igt�i(�)

with gq+1�i(�) = aeq+1�i(�); 1 � i � q: Then by the de�nition of B0 and
Lemmas 3 and 4 there exists 0 < � < 1 and a positive constant C1 such that
for t � p+ 1;

sup
�2B0�[�d;d]

jgt(�)j � C1�
t sup
�2B0�[�d;d]

(

qX
i=1

ae2q+1�i(�))
1=2
;

and by Lemma 1 (i) we get for t � p+ 1;

sup
�2B0�[�d;d]

jat(�)�aet (�)j � C1�
t(

qX
i=1

W 2
0;q+1�i)

1=2

� �tZ; (54)

where Z is the random variable C1(
qX
i=1

W 2
0;q+1�i)

1=2
:

Therefore from (52), (53) and (54) we have

lim
n!1

sup
�2B0�[�d;d] ;c2[h1=2;2h2]

�����
nX

t=p+1

�1 (at(�)=c)

n� p � E
�
�1

�
aet (�)

c

������� = 0 a.s..
(55)

Let 0 � " � h1=2 and de�ne

g1(�) = E

�
�1

�
aet (�)

s(�) + "

��
; g2(�) = E

�
�1

�
aet (�)

s(�)� "

��
:

By (38) we have that g1(�) < b and g2(�) > b: Since B0 is a compact set and
g1 and g2 are continuous, we have

�1 = sup
�2B0�[�d;d]

g1(�) < b; �2 = inf
�2B0�[�d;d]

g2(�) > b:
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Let � = min (b� �1; �2 � b) : From (55) there exists n0 such that for all
n � n0;

sup
�2B0�[�d;d] ;c2[h1=2;2h2]

����� 1

n� p

nX
t=p+1

�1

�
at(�)

c

�
� E

�
�1

�
aet (�)

c

������� � �

2
:

Therefore, for all n � n0 we get,

inf
�2B0�[�d;d]

1

n� p

nX
t=p+1

�1

�
at(�)

s(�)� "

�
� �2 �

�

2
� b+

�

2
:

Similarly we have,

sup
�2B0�[�d;d]

1

n� p

nX
t=p+1

�1

�
at(�)

s(�) + "

�
� �1 +

�

2
� b� �

2
;

and hence from the monotonicity of �1(juj) we get,

sup
�2B0�[�d;d]

jSn (an(�))� s(�)j � ":

This proves the Lemma.
Lemma 6. Under the assumptions of Theorem 1, there exists d > 0

satisfying
lim inf

n!1
inf

j�j>d;(�;�)2B0
Sn(an(�)) > s0 + 1 a.s..

Proof.
Given � = (�;�;�) with (�;�) 2B0, let us call #t(�) = at(�)�at(�;�;0).

From (13), it is easy to show that #t(�) satisfy for t � p + 1 the di¤erence
equation,

#t(�)=

qX
i=1

�i#t�i(�) + �

 
1�

pX
i=1

�i

!
(56)

with initial conditions #p+1�i(�) = 0; 1 � i � q. Moreover, it is easy to verify
that

#t(�) = �#t(�;�;1):

Using the de�nition of B0; there exists � > 0 and K1 > 0 such that for all
(�;�) 2B0,

� �
1�

qP
i=1

�i

1�
qP
i=1

�i

� K1: (57)
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Then, by Lemmas 3 and 4 there exists 0 < � < 1 and K2 > 0 such that for
t � p+ 1;

sup
(�;�)2B0

��������#t(�;�;1)�
1�

qP
i=1

�i

1�
qP
i=1

�i

�������� � �tK2;

and so there exists t0 such that for t � t0; we have

sup
(�;�)2B0

��������#t(�;�;1)�
1�

qP
i=1

�i

1�
qP
i=1

�i

�������� �
�

2
: (58)

Then, from (57) and (58) we get,

inf
(�;�)2B0

j#t (�)j �
�

2
j�j : (59)

From (54) there exists a random variable Z, and 0 < � < 1 such that for all
t � p+ 1 it holds

sup
(�;�)2B0

jaet (�;�;0)� at(�;�;0)j � �tZ (60)

and by Lemma 1 (i) we obtain

sup
(�;�)2B0

jaet (�;�; 0)j �W0;t; (61)

where W0;t is a stationary process.
Since sup �1 > b and limx!1 �1(jxj) = sup �1, there exist k0 > 0 and � > 1

such that for all x satisfying jxj � k0 it holds

�1(x) � �b: (62)

Let m be such that

P (W0;t < m=2 ) >
1

�
; (63)

k = max

�
m

s0 + 1
; k0

�
(64)

and d � 4(s0 + 1)k=�: Then using (59) we get for all t � t0

inf
j�j>d;(�;�)2B0

j#t(�)j � 2(s0 + 1)k: (65)

Since �1 satis�es property P1, it holds
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inf
j�j>d;(�;�)2B0

1

n� p

nX
t=p+1

�1

�
at(�)

s0 + 1

�

� 1

n� p

nX
t=p+1

�1

�
inf

j�j>d;(�;�)2B0

���� at(�)s0 + 1

����� I(At)I(Bt); (66)

where At = fW0t < m=2g and Bt = f�tZ < m=2g:
From (60) and (61) we can write,

jat(�)j � j#t(�)j � (W0;t + �
tZ):

Then, from (64) and (65) we obtain for all t � t0 that

�
inf

j�j>d;(�;�)2B0
jat(�)j > k(s0 + 1)

�
�

�
W0;t + C�

tZ < k(s0 + 1)
	
� At \Bt: (67)

Since �1 � 0; and �1(juj) is non decreasing, from (66) and (67), we get

1

n� p

nX
t=p+1

�1

�
inf

j�j>d;(�;�)2B0

���� at(�)s0 + 1

�����

� 1

n� p

nX
t=t0

�1 (k) I(At)I(Bt): (68)

With probability 1, there exists t1 � t0 such that I(Bt) = 1 for all t �
t1:Then

�1 (k)

n� p

nX
t=t0

I(At)I(Bt) � �1 (k)

n� p

nX
t=t1+1

I(At)

� �1(k)

n� p

nX
t=p+1

I(At)�
t1 � p
n� p �1(k): (69)

Since W0t is an ergodic and stationary process, from (63) we have

lim
n!1

1

n� p

nX
t=p+1

I(At) = P (At) >
1

�
:

Then, from (62), (64), (66), (68) and (69) we get

lim inf
n!1

inf
j�j>d;(�;�)2B0

1

n� p

nX
t=p+1

�1

�
at(�)

s0 + 1

�
� �1(k)

�
� b
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and the Lemma follows.

Proof of Theorem 1.
Take " > 0 arbitrarily small and let d be as in Lemma 6. By the dominated

convergence theorem it is easy to show that s(�) is continuous. Then by Lemma
2, there exists 0 <  < 1 such that

min
�2B0�[�d;d];jj���9jj�"

s(�) �s0 + :

Therefore by Lemma 5, there exist n1 such that for n � n1

min
�2B0�[�d;d];jj���0jj�"

Sn(�) �s0 + =2

and
Sn(�0) �s0 + =4:

Moreover by Lemma 6, there exists n2 such that for n � n2

inf
j�j>d;(�;�)2B0

Sn(an(�) > s0 +  a.s..

Therefore, for n � max(n1; n2) it holds that jjb�S��0jj < " and this proves the
Theorem.
The next three Lemmas will be used to prove Theorem 2.
Lemma 7. Assume that yt satis�es condition P2. Given d > 0 and e� > 0,

there exist constants C > 0 and 0 < � < 1 such that

sup
�2B0�[�d;d]

sup
0<��e�

��abt(�;�)� yt�� � C

 e� + �t pX
i=1

jyij
!
; t � p+ 1:

Proof. Given � 2 B0 � [�d; d] and � � e�, let us de�ne for t � p+ 1,

�t(�;�) = abt(�;�)� yt, Dt(�;�) = �
rX
i=1

(�i � �i) �
�
abt�i(�;�)=�

�
(70)

and �t(�;�) = �yt for 1 � t � p. From (12), �t(�;�) satisfy for t � p + 1 the
recursive equation,

�t(�;�) =

pX
i=1

�i�t�i(�;�) +Dt(�;�)� �(1�
pX
i=1

�i); t � p+ 1: (71)

De�ne

�t(�;�) = (�t(�;�); �t�1(�;�); :::; �t�p+1(�;�))
0;

Dt(�;�) = (Dt(�;�)� �(1�
pX
i=1

�i); 0:::0)
0
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and A(�) as de�ned in (44). Then,

�t(�;�) = A(�)�t�1(�;�) +Dt(�;�)

and it is easy to show inductively that for t � p+ 1;

�t(�;�) = A(�)t�p�p +

t�p�1X
i=0

Ai(�)Dt�i(�;�): (72)

Since B0 is compact ; � is bounded, and j�j � d it follows that there exists
a constant D such that for t � p+ 1;

sup
�2B0�[�d;d]

sup
0<��e� kDt(�;�)k

� sup
�2B0�[�d;d]

sup
0<��e� jDt(�;�)j+ (1�

pX
i=1

�i) j�j � De� + d: (73)

Then, from (16), (72), Lemmas 3 and 4 we have that there exists positive
constants C1, and 0 < � < 1 such that for t � p+ 1;

sup
�2B0�[�d;d]

sup
0<��e� k�t(�;�)k � C1�

t k�pk+
C1
1� � (De� + d) : (74)

This proves the Lemma.
Lemma 8. Under the assumptions of Theorem 2, given d > 0; there exists

� > 0 such that

lim inf
n!1

inf
�2B0�[�d;d]

Sn
�
abn (�; b�(�;�))� > s0 + � a.s..

Proof. Since by (19), b�(�;�) � b�y, using Lemma 7 we can �nd a constant
C > 0 and 0 < � < 1 such that

sup
�2B0�[�d;d]

��abt(�;b�(�;�))� yt�� � C

 b�y + �t pX
i=1

jyij
!
:

Since limn!1 b�y = �y a.s., with probability one there exists t0 large enough
such that for all t � t0;

b�y + �t pX
i=1

jyij � 2�y a.s.. (75)

Then, calling D = 2C�y we have for all t � t0;

sup
�2B0�[�d;d]

��abt(�;b�(�;�))� yt�� � D: (76)
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We can write yt = �0 + at + vt�1; where vt�1 is an stationary process that
depends on at0 ; t0 < t: Since yt is not white noise and the distribution of at is
unbounded, we have that vt has an unbounded distribution too. Put

ut�1(�; �) = �0 + vt�1 + (a
b
t(�;�)� yt): (77)

Then, from (12), ut�1(�; �) also depends on at0 ; t0 < t: We can write

abt(�;�) = yt + (a
b
t(�;�)� yt) = at + ut�1(�; �); (78)

and observe that (76) and (77) imply that for t � t0 we have�
inf

�2B0�[�d;d]
jut�1(�; �)j � 1

�
� fjvt�1j > D + j�0j+ 1g: (79)

Since vt has an unbounded distribution, we have that

 = P (jvtj � D + j�0j+ 1) > 0:

According to de�nition of s0 in Theorem 1, we have that E (�1 (at=s0)) = b and
in Lemma 3.1 of Yohai [25] it is shown that

E (�1 ((at + u)=s0 ) ) > b

for all u 6= 0. This implies that

inf
juj�1

E (�1 ((at + u)=s0 ) ) > b:

Then, since

(1� )E
�
�1

�
at
s0

��
+  inf

juj�1
E

�
�1

�
at + u

s0

� �
> b;

we can �nd � > 0 such that

(1� )E
�
�1

�
at

s0 + �

��
+  inf

juj�1
E

�
�1

�
at + u

s0 + �

� �
� b+ �: (80)

Put

h(u) = E

�
�1

�
at + u

s0 + �

� �
and de�ne

Rt(�; �) = �1

�
abt(�;�)

s0 + �

�
� h(ut�1(�; �))

= �1

�
at + ut�1(�; �)

s0 + �

�
� h(ut�1(�; �))
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It is easy to verify that Rt(�; �) is a bounded martingale di¤erence sequence.
Then, by the law of large numbers for martingale di¤erences, see for instance
Theorem 20.10 of Davidson [7], we get that

1

n� p

nX
t=p+1

Rt(�; �) = 0 a.s.. (81)

Using a compactness argument for all " > 0 we can �nd (�i; �i; �i); 1 � i �
m0;with �i 2 B0 � [�d; d]; �i � 2�y, such that if we de�ne

Vi = f(�; �) : jj� � �ijj+ j� � �ij � �ig;
we have that [m0

i=1Vi � B0 � [�d; d]� [0; 2�y] and

sup
(�;�)2Vi

����� 1

n� p

nX
t=p+1

(Rt(�; �)�Rt(�i; �i))
����� � "

This last inequality and (81) imply that

lim sup
n!1

sup
�2B0�[�d;d]; ��2�y

����� 1

n� p

nX
t=p+1

Rt(�; �)

����� � " a.s.,

and since this hold for all " > 0; we get

lim sup
n!1

sup
�2B0�[�d;d]; ��2�y

����� 1

n� p

nX
t=p+1

Rt(�; �)

����� = 0 a.s.. (82)

Put

n =
1

n� p

nX
t=p+1

I(jvt�1j � D + j�0j+ 1):

Then, we get

sup
�2B0�[�d;d];��2�y

1

n� p

nX
t=p+1

h(ut�1(�; �)) � (1� n)h(0) + n inf
juj�1

h(u);

and therefore since n ! ;a.s. by (80) we have

lim
n!1

inf sup
�2B0�[�d;d];��2�y

1

n� p

nX
t=p+1

h(ut�1(�; �)) � (1� )h(0) +  inf
juj�1

h(u)

� b+ � a.s.

and then from (82) we have

lim
n!1

inf sup
�2B0�[�d;d];��2�y

nX
t=p+1

�1

�
abt(�;�)

s0 + �

�
� b+ �:
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Then, since b�(�;�) � b�y by (75), the Lemma follows.
Lemma 9. Under the assumptions of Theorem 2, there exists d > 0 such

that,
lim inf

n!1
inf

j�j>d;(�;�)2B0
Sn(a

b
n(�;b�(�;�)) ) > s0 + 1 a.s..

Proof.
Denote by Ak

i (�) and A
k
i;j(�) the i-th raw and (i; j) element of the matrix

Ak(�) respectively, where A(�) is de�ned in (44). Then, according to (72) we
have

abt(�;b�(�;�))� yt
= At�p

1 (�)�p +

t�p�1X
i=0

Ai1;1(�)

 
Dt�i(�; b�(�;�))��(1� pX

i=1

�i)

!
;

where �p and Dt(�; b�(�;�)) are de�ned in (70). Then,
��abt(�;b�(�;�))��

� �
��At�p

1 (�)�p
��� �����

t�p�1X
i=0

Ai1;1(�)Dt�i(�; b�(�;�)
�����

+

�����
t�p�1X
i=0

Ai1;1(�)(1�
pX
i=1

�i)�

������ jytj
� �

At�p(�) k�pk � t�p�1X
i=0

Ai(�) jDt�i(�;b�(�;�))j
+

�����
t�p�1X
i=0

Ai1;1(�)(1�
pX
i=1

�i)�

������ jytj : (83)

From Lemma 4 there exists a positive constant C1 and 0 < � < 1 such that
for t � p+ 1

A(�)t�p k�pk+ t�p�1X
i=0

Ai(�) jDt�i(�;b�(�;�))j
� C1

 
�t k�pk+

t�p�1X
i=0

�i jDt�i(�;b�(�;�))j! :
Since B0 is compact, � is bounded, and according to (19), 0 < b�(�;�) � b�y; we
have that there exists a positive constant C2 such that for t � p+ 1;

sup
�2B0�[�d;d]

jDt(�;�)j � C2b�y
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and then there exists a positive constant C such that

sup
�2B

A(�)t�t0 k�pk+ t�p�1X
i=0

Ai(�) jDt�i(�;b�(�;�))j
� C

 b�y + �t pX
t=1

jytj
!
: (84)

De�ne for t � p+ 1;

�t(�;�) =

pX
i=1

�i�t�i(�;�) + (1�
pX
i=1

�i)�

with �p = 0; �p�1 = 0; � � � ; �1 = 0. It is easy to show that

�t(�;�) = (1�
pX
i=1

�i)�

t�p�1X
i=0

Ai1;1(�):

Then, from Lemma 3 and using an argument similar to the one used to
prove (59) in Lemma 6, there exists " > 0 and t0 such that for all t � t0;

inf
(�;�)2B0

j�t(�;�)j �
"

2
j�j : (85)

Then, from (83), (84) and (85), for all t � t0;

inf
(�;�)2B0

��abt(�;b�(�;�)�� � "

2
j�j � jytj � C

 b�y + �t pX
t=1

jytj
!
: (86)

Since sup �1 > b and limx!1 �1(jxj) = sup �1, there exists k0 and � > 1
such that for all jxj � k0;

�1(x) � �b: (87)

Since limn!1 b�y = �y a.s. and limt!1 �t
Pp

i=1 jyij = 0 a.s., with probability
one there exists t1 � t0 such that for all t � t1; b�y + �t

Pp
i=1 jyij � 2�y: Take

k1 such that the set
Rt = fjytj � k1 � 2C�yg (88)

satis�es P (Rt) � 1=�:Take k = max(k1= (s0 + 1) ; k0) and d such that d >
4k(s0 + 1)=": Then, from the de�nition of k, (86) and (88) in Rt; for all t � t1

inf
j�j>d;(�;�)2B0

��abt(�;b�(�;�))�� > k(s0 + 1): (89)

Since �1satis�es property P1, we have,
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inf
j�j>d;(�;�)2B0

1

n� p

nX
t=p+1

�1

�
abt(�;b�(�;�))

s0 + 1

�

� 1

n� p

nX
t=t1+1

�1

�
inf

j�j>d;(�;�)2B0

����abt(�;b�(�;�))s0 + 1

����� IRt
: (90)

From (87) and (89) and since Rt is stationary and ergodic with P (Rt) � 1=�
we get

lim inf
n!1

1

n� p

nX
t=t1+1

�1

�
inf

j�j>d;(�;�)2B0

����abt(�;b�(�;�))s0 + 1

����� IRt

� lim inf
n!1

�1 (k)

n� p

nX
t=t1+1

IRt

= lim inf
n!1

�1 (k)

n� p

nX
t=p+1

IRt
� lim
n!1

�1 (k)

n� p (t1 � p) � b a.s.

and then from (90) we have,

lim inf
n!1

inf
j�j>d;(�;�)2B0

1

n� p

nX
t=p+1

�1

�
abt(�;b�(�;�))

s0 + 1

�
� b a.s..

This proves the Lemma.
Proof of Theorem 2.
From Lemmas 8 and 9 we have that there exists � > 0 such that

lim inf
n!1

inf
�2B

Sn(a
b
n(�;b�(�;�) ) > s0 + � a.s..

But, by Theorem 1-(ii) we have that b�S satisfy
lim
n!1

Sn(an(b�S)) = s0 a.s..

This proves the Theorem.
The following four Lemmas will be used to prove Theorem 3.
Lemma 10 Assume that yt satis�es condition P2 with innovations satis-

fying P3 and assume that �2 satisfy condition P1 with �2 bounded. Let us call
m(�) = E(�2(a

e
t (�)=s0));then

�0=argmin
�2B

m(�).

Proof. Similar to Lemma 2.
Lemma 11 Assume that yt satis�es condition P2 and �2 condition P1.

De�ne
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Me
n(�) =

1

n� p

nX
t=p+1

�2

�
aet (�)

s�n

�
: (91)

Then, we have;

lim
n!1

sup
�2B0�[�d;d]

����Me
n(�)� E

�
�2

�
aet (�)

s0

������ = 0 a.s.
for all d > 0:
Proof.
By the dominated convergence theorem, it is easy to show that

M(�; v) = E

�
�2

�
aet (�)

v

��
is continuous. Then, given � > 0; there exists � with 0 < � < s0 such that

sup
�2B0�[�d;d];�2[s0��;s0+�]

����E ��2�aet (�)v

��
� E

�
�2

�
aet (�)

s0

������ < �

2
: (92)

Since aet (�) is stationary and �2 continuous and bounded, by Lemma 3 of
Muler and Yohai [22] we have

lim
n!1

sup
(�;v)2C0

����� 1

n� p

nX
t=p+1

�2

�
aet (�)

�

�
� E

�
�2

�
aet (�)

�

� ������
= 0 a.s., (93)

where
C0 = f(�;v) : � 2 B0 � [�d; d]; � 2 [s0��;s0 + �]g

By Theorem 2, limn!1 s�n = s0 a.s.. Then, with probability one there exists
n0 such that for all n � n0 we have s�n 2 [s0��;s0 + �] and

sup
�2B0�[�d;d];�2[s0��;s0+�]

����� 1

n� p

nX
t=p+1

�2

�
aet (�)

�

�
� E

�
�2

�
aet (�)

�

������� < �

2
:

(94)
Hence, from (92) and (94) we have that for n � n0;

sup
�2B0�[�d;d]

����� 1

n� p

nX
t=p+1

�2

�
aet (�)

s�n

�
� E

�
�2

�
aet (�)

s0

������� �

sup
�2B0�[�d;d];�2[s0��;s0+�]

����� 1

n� p

nX
t=p+1

�2

�
aet (�)

�

�
� E

�
�2

�
aet (�)

�

�������
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+ sup
�2B0�[�d;d];�2[s0��;s0+�]

����E ��2�aet (��
��

� E
�
�2

�
aet (�

s0

������ < ":

This proves the Lemma.
Lemma 12. Under the assumptions of Theorem 3, we have

lim
n!1

sup
�2B0�[�d;d]

jMn(�)�Me
n(�)j = 0 a.s..

Proof.
We have

Mn(�)�Me
n(�) =

1

n� p

nX
t=p+1

�
�2

�
at(�)

s�n

�
��2

�
aet (�)

s�n

��
:

From (54), since �02 is bounded and limn!1 s�n = s0 > 0 a.s. there exists
k > 0 , 0 < � < 1 , a random variable Z and n0 such that for all n � n0�����2�at(�)s�n

�
��2

�
aet (�)

s�n

����� � k jat(�)� aet (�)j � k�tZ. (95)

Then,

lim
n!1

sup
�2B0�[�d;d]

1

n� p

�����
nX

t=p+1

�2

�
at(�)

s�n

�
��2

�
aet (�)

s�n

������
� lim

n!1

kZ

n� p

nX
t=p+1

�t � lim
n!1

kZ

(n� p)(1� �) = 0. (96)

This proves the Lemma.
Lemma 13. Under the assumptions of Theorem 3, there exists d > 0 and

� > 0 such that

lim inf
n!1

inf
j�j>d;(�;�)2B0

Mn(�) � m(�0) + � a.s.,

where m(�0) is de�ned in Lemma 10.
Proof.
Since the innovation at satisfy P3, then m(�0) = E (�2 (at=s0)) < sup �2.

Since limx!1 �2(jxj) = sup �2; using similar arguments to those used in Lemma
6, we have that there exists d > 0 and � > 1 such that

lim inf
n!1

inf
j�j>d;(�;�)2B0

1

n� p

nX
t=p+1

�2

�
at(�)

s�n

�
> �m(�0) a.s.: (97)

and so the Lemma follows.
Proof of Theorem 3. Follows from Lemmas 10-13 using similar arguments

as those used in the proof of Theorem 1.
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The next two Lemmas will be used to prove Theorem 4.
Lemma 14. Under the assumptions of Theorem 3, for all d > 0 there exists

� > 0 such that

lim inf
n!1

inf
�2B0�[�d;d]

M b
n(�) � m(�0) + � a.s.,

where m(�0) is de�ned in Lemma 10.
Proof. It is similar to the proof of Lemma 8.
Lemma 15. Under the assumptions of Theorem 3 , there exists d > 0 and

� > 0 such that

lim inf
n!1

inf
j�j>d;(�;�)2B0

M b
n(�) � m(�0) + � a.s.,

where m(�0) is de�ned as in Lemma 10.
Proof.
Since the innovations at satisfy P3, thenm(�0) = E (�2 (at=s0)) < sup �2:Since

limx!1 �2(jxj) = sup �2; using similar arguments to those used in Lemma 9
we have that there exists d > 0 and � > 1;

lim inf
n!1

inf
j�j>d;(�;�)2B0

M b
n(�) > �m(�0) a.s.. (98)

and so the Lemma follows.
Proof of Theorem 4
From Lemmas 14 and 15 we have that there exists � > 0 such that

lim inf
n!1

inf
�2B

M b
n(�) � m(�0) + �:

Theorem 3 implies that limn!1Mn(b�M ) = m(�0) a.s.. This proves the Theo-
rem.
The next �ve Lemmas will be used to prove Theorem 5.
Lemma 16. Under the assumptions of Theorem 5, we have

1

(n� p)1=2
nX

t=p+1

r�2
�
aet (�0)

s0

�
!D N (0; V0) ;

where

V0 = E

 
r�2

�
aet (�0)

s0

�
r�2

�
aet (�0)

s0

�0!
: (99)

Proof.
We can write

r�2
�
aet (�0)

s0

�
=
 2(at=s0)

s0
raet (�0): (100)

Since  2 is odd and the distribution of at is symmetric,
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E

�
 2

�
at
s0

��
= 0: (101)

From Lemma 1 (ii) and the fact that E(y2t ) <1 we get

V0 = E(raet (�0)raet (�0)
0
) <1:

Therefore, from (100) and (101) and since raet (�) depends only on

Yt�1 =(yt�1; yt�2; :::)

for any column vector c 6= 0 in Rp+q+1 we have that

c0r�2
�
aet (�0)

s0

�
= c0r�

�
aet (�0)

s0

�
is a stationary martingale di¤erence sequence. Then, applying the Central Limit
Theorem for Martingales (see Theorem 24.3, Davidson [7]) we have that

1

(n� p)1=2
nX

t=p+1

c0r�2
�
aet (�0)

s0

�
!D N(0; c0V0c):

This implies that

1

(n� p)1=2
nX

t=p+1

r�2
�
aet (�0)

s0

�
!D N(0; V0)

proving the Lemma.
Lemma 17. Under the assumptions of Theorem 5 we have

lim
n!1

1

(n� p)1=2


nX

t=p+1

�
r�2

�
aet (�0)

s�n

�
�r�2

�
aet (�0)

s0

�� = 0
in probability.
Proof.
The proof is similar to the one of Lemma 5.1 in Yohai [25] for MM-estimates

in the case of regression. We can write,

1

(n� p)1=2
nX

t=p+1

�
r�2

�
aet (�0)

s�n

�
�r�2

�
aet (�0)

s0

��
(102)

=
1

(n� p)1=2
nX

t=p+1

�
 2(a

e
t=s

�
n)

s�n
� 2(a

e
t=s0)

s0

�
raet (�0):

De�ne for 0 � v � 1; 1 � j � p+ q + 1;
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An;j(v) =
1

(n� p)1=2
nX

t=p+1

 2

�
at

(0:5 + v) s0

�
rjaet (�0):

Since from Theorem 2 limn!1 s�n = s0 a.s. in order to prove the Lemma is
enough to show that An;j(v) 1 � j � p+ q + 1, are tight. Using Theorem 12.3
of Billingsley [2] it will be enough to show the following two conditions,
(i) An;j(0) is tight.
(ii)For any 0 � v1 � v2 and any � > 0 we have that there exists a constant

k1 such that

P (jAn;j(v2)�An;j(v1)j � �) � k1

�2
(v2 � v1)2:

(i) follows from Lemma 16.
Let us prove now (ii). We can write for 1 � j � p+ q + 1,
Put

G(a; v) =  2

�
a

(0:5 + v) s0

�
:

Then

E
�
(An;j(v2)�An;j(v1))2

�
=

1

n� pE

0@ nX
t=p+1

(G(at; v2)�G(at; v1))rjaet (�0)
!21A

=
1

n� p

nX
t=p+1

nX
r=p+1

E(BrCrBtCt); (103)

where

Bt =  2

�
at

(0:5 + v2) s0

�
� 2

�
at

(0:5 + v1) s0

�
(104)

and
Ct = rjaet (�0): (105)

Since raet (�0) depends on Yt�1 =(yt�1; yt�2; :::), we have that Bt is inde-
pendent of Cr for all r � t: Moreover all Bt �s are independent. Then if r < t,
using that E(BtjYt�1) = E(Bt) = 0; we obtain

E(BrBtCrCt) = E(E(BrBtCrCtjYt�1))

= E(E(BtjYt�1)CtCrBr)
= 0: (106)

Moreover
E(B2tC

2
t ) = E(B2t )E(C

2
t ): (107)

From (103), (104), (105), (106) and (107) we obtain
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E
�
(An;j(v2)�An;j(v1))2

�
= E

�
 2

�
at

(0:5 + v2) s0

�
� 2

�
at

(0:5 + v1) s0

��2
E(rjaet (�0))2:(108)

Let v1 < v < v2:Then, using the Mean Value Theorem we get

E

�
 2

�
at

(0:5 + v2) s0

�
� 2

�
at

(0:5 + v1) s0

��2
=

(v2 � v1)2

s20 (0:5 + v)
4E

 �
at 

0
2

�
at

(0:5 + v) s0

��2!
:

Then, since  02 is bounded; at has second moment and s0 > 0 we can conclude
that there exists k0 > 0 such that

E

�
 2

�
at

(0:5 + v2) s0

�
� 2

�
at

(0:5 + v1) s0

��2
� k0 (v2 � v1)2 : (109)

Then since E(y2t ) < 1; by Lemma 1 (ii) we have that E
�
(rjaet (�0))

2
�
< 1:

Then from (108) and (109) there exists k1 > 0 such that

E
�
(An;j(v2)�An;j(v1))2

�
� k1 (v2 � v1)2 :

Hence, (ii) follows from the Chebyshev�s inequality.
Lemma 18. Under the assumptions of Theorem 5, we have

lim
n!1

1

(n� p)1=2


nX

t=p+1

�
r�2

�
at(�0)

s�n

�
�r�2

�
aet (�0)

s�n

�� = 0 a.s..
Proof.
We can write

r�2
�
at(�0)

s�n

�
�r�2

�
aet (�0)

s�n

�
=

1

s�n

�
 2

�
at(�0)

s�n

�
rat(�0)�  2

�
at
s�n

�
raet (�0)

�
=

1

s�n
 2

�
at(�0)

s�n

�
(rat(�0)�raet (�0))

+
1

s�n

�
 2

�
at(�0)

s�n

�
�  2

�
at
s�n

��
raet (�0): (110)
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By Lemma 1 (ii), (29), (30) and (31), using similar arguments to those
leading to the proof of (54) in Lemma 5, we can prove that there exists 0 < � < 1
and a random variable W such that

krat(�0)�raet (�0)k � �tW (111)

and therefore

lim
n!1

1

(n� p)1=2
nX

t=p+1

krat(�0)�raet (�0)k = 0 a.s..

Then, since  2 is bounded and by Theorem 2 (ii) we have limn!1 s�n = s0 > 0
a.s.,

lim
n!1

1

(n� p)1=2s�n


nX

t=p+1

 2

�
at(�0)

s�n

�
(rat(�0)�raet (�0))

 = 0 a.s.. (112)
Using that  02 is bounded and the Mean Value Theorem we can found a

constant k1 > 0 such that

1

(n� p)1=2s�n

nX
t=p+1

� 2�at(�0)s�n

�
�  2

�
at
s�n

��
raet (�0)


� k1

(n� p)1=2s�n

nX
t=p+1

jat(�0)�aet (�0)j kraet (�0)k (113)

From (54), there exists 0 < � < 1 and a random variable Z such that

nX
t=p+1

jat(�0)�aet (�0)j kraet (�0)k � Z
nX

t=p+1

�t (kraet (�0)k) : (114)

From (29)-(31) we have that W1 =
nP

t=p+1
�t (kraet (�0) k) is well de�ned.

Then, from (113), (114) and the fact that limn!1 s�n = s0 a.s., we obtain

lim
n!1

1

(n� p)1=2s�n

nX
t=p+1

� 2�at(�0)s�n

�
�  2

�
at
s�n

��
raet (�0)


� lim

n!1

k1ZW1

(n� p)1=2s�n
= 0 a.s.. (115)

Then the Lemma follows from (110), (112) and (115).
Lemma 19. Under the assumptions of Theorem 5 we have for all d > 0,
(i)

lim
n!1

sup
�2B0�[�d;d]

 1

n� p

nX
t=p+1

r2�2
�
aet (�)

s�n

�
�E

�
r2�2

�
aet (�)

s0

�� = 0 a.s.,
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where jjAjj denotes the l2 norm of the matrix A.
(ii)

E

�
r2�2

�
aet (�0)

s0

��
=
1

s20
E

�
 02

�
at
s0

�
E
�
raet (�0)raet (�0)

0��
and this matrix is non-singular.
Proof.
The proof of (i) is similar to the one of Lemma 11.
We now prove (ii). Using that E( 2(at=s0)) = 0 and that, according to (29)-

(37), both raet (�) and r2aet (�) depend on Yt�1 =(yt�1; yt�2; :::), we obtain

E

�
r2�2

�
aet (�0)

s0

� �
=
1

s20
E

�
 02

�
at
s0

��
E
�
raet (�0)raet (�0)

0�
:

Since E( 02(at=s0)) > 0 and E
�
raet (�0)raet (�0)

0� is a non-singular matrix
(see Bustos and Yohai [4]) we obtain (ii).
Lemma 20. Under the assumptions of Theorem 5, we have,

lim
n!1

sup
�2B0�[�d;d]

1

n� p


nX

t=p+1

�
r2�2

�
at(�)

s�n

�
�r2�2

�
aet (�)

s�n

�� = 0 a.s.
for all d > 0:
Proof.
Put

V (�) =raet (�)raet (�)
0
:

Di¤erentiating r� (aet (�)=s�n) we obtain

r2�2
�
aet (�)

s�n

�
=
 2(a

e
t (�)=s

�
n)

s�n
r2aet (�)+

 02(a
e
t (�)=s

�
n)

(s�n)
2 V (�): (116)

Let us de�ne

Gt(�) =
1

(s�n)
2

�
 02

�
at(�)

s�n

�
rat(�)rat(�)0� 02

�
aet (�)

s�n

�
raet (�)raet (�)

0
�

and

Ht(�) =
1

s�n

�
 2

�
at(�)

s�n

�
r2at(�)� 2

�
aet (�)

s�n

�
r2aet (�)

�
;

and then

r2�
�
at(�)

s�n

�
�r2�

�
aet (�)

s�n

�
= Gt(�) +Ht(�): (117)
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We can write

Gt(�) =
1

(s�n)
2 

0
2

�
at(�)

s�n

��
rat(�)rat(�)0�raet (�)raet (�)

0�
+

1

(s�n)
2

�
 02

�
at(�)

s�n

�
�  02

�
aet (�)

s�n

��
raet (�)raet (�)

0
:

We also have

sup
�2B0�[�d;d]

rat(�)rat(�)0�raet (�)raet (�)0
� sup

�2B0�[�d;d]
(krat(�) +raet (�)k) (krat(�)�raet (�)k) :

Then from Lemma 1 (ii) ,(29)-(31) , using similar arguments to those leading
(54) in Lemma 5 , we can prove that there exist 0 < � < 1 and a random
variable W such that for t � p+ 1

sup
�2B0�[�d;d]

krat(�)�raet (�)k � �tW; sup
�2B0�[�d;d]

kraet (�)k �W:

Then, putting V = 3W 2 we have for t � p+ 1;

sup
�2B0�[�d;d]

rat(�)rat(�)0�raet (�)raet (�)0 � sup
�2B0�[�d;d]

�tV

and then

lim
n!1

1

n� p sup
�2B0�[�d;d]

nX
t=p+1

rat(�)rat(�)0�raet (�)raet (�)0 = 0
a.s.:
Hence, since  02 is bounded and limn!1 s�n = s0 > 0 a.s. we have

lim
n!1

sup
�2B0�[�d;d]

nX
t=p+1

 02 (at(�)=s�n)(s�n)
2
(n� p)

�
rat(�)rat(�)0�raet (�)raet (�)

0�
= 0 a.s.. (118)

Since  002 is bounded , there exists a constant k1 > 0 such that���� 02�at(�)s�n

�
�  02

�
aet (�)

s�n

����� � k1
s�n
jat(�)� aet (�)j :

Therefore, from (54), we have that there exists 0 < � < 1 and a random variable
Z such that for all t � p+ 1;
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sup
�2B0�[�d;d]

nX
t=p+1

� 02�at(�)s�n

�
�  02

�
aet (�)

s�n

��
V (�)


� k1Z

s�n

nX
t=p+1

�t sup
�2B0�[�d;d]

kV (�) k (119)

and since by Lemma 1-(ii), E(y2t ) <1 we have

sup
�2B0�[�d;d]

E (kV (�)k) <1

and then

lim
n!1

1

n� p

nX
t=p+1

�t sup
�2B0�[�d;d]

kV (�) k = 0 a.s.. (120)

Using that limn!1 s�n = s0 a.s.; from (119) and (120) we obtain

lim
n!1

sup
�2B0�[�d;d]

nX
t=p+1


 
 02 (at(�)=s

�
n)�  02 (aet (�)=s�n)

(s�n)
2
(n� p)

!
V (�)


= 0 a.s.. (121)

Therefore, from (118), (121) we have that

lim
n!1

sup
�2B0�[�d;d]

1

n� p

nX
t=p+1

kGt(�)k = 0 a.s.. (122)

Similarly, using (32)-(37) and Lemma 1 (iii) we can prove

lim
n!1

sup
�2B0�[�d;d]

1

n� p

nX
t=p+1

kHt(�)k = 0 a.s.. (123)

Then the Lemma follows from (117), (122) and (123).
Proof of Theorem 5.
The estimate b�M satis�es

nX
t=p+1

r�2

 
at(b�M )
s�n

!
= 0:

Then, using the Mean Value Theorem we have

nX
t=p+1

r�2
�
at(�0)

s�n

�
+

 
nX

t=p+1

r2�2
�
at(�

�)

s�n

�!
(b�M � �0) = 0; (124)

where �� is an intermediate point between b�M and �0:
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From Theorem 3 we have that b�M ! �0 a.s.. Take d > 0 so that d > j�0j;
then, with probability one there exists n0 such that b�M 2 B0 � [�d; d] for all
n � n0: From Lemmas 19 (i) and 20 we get

lim
n!1

sup
�2B0�[�d;d]

 1

n� p

nX
t=p+1

�
r2�2

�
at(�)

s�n

�
�E

�
r2�2

�
aet (�)

s0

���
= 0 a.s.. (125)

Put

An =
1

n� p

nX
t=p+1

r2�2
�
at(�

�)

s�n

�
: (126)

Then, since �� ! �0 a.s. and E
�
r2�2 (aet (�)=s0 )

�
is continuous in � we

have that

lim
n!1

An = E

�
r2�2

�
aet (�0)

s0

��
a.s.. (127)

Therefore from Lemma 19 (ii), for n large enough An is non singular. Then,
from (124) we get for n large enough

(n� p)1=2(b�M � �0) = A�1n cn; (128)

where

cn =
1

(n� p)1=2
nX

t=p+1

r�2
�
at(�0)

s�n

�
:

From Lemmas 16, 17 and 18 we have

cn !D N (0; V0) : (129)

Then from (127), (128) and (129) we get.

(n� p)1=2(b�M � �0)!D N
�
0; V �11 V0V

�1
1

�
;

where

V1 = E

�
r2�2

�
aet (�0)

s0

��
:

From (29), (30) and (31) we have

@aet (�0)

@�i
=���10 (B)(yt�i � �0) = ���10 at�i; 1 � i � p;

@aet (�0)

@�i
=��20 (B)�0(B)(yt�i � �) = ��10 at�i, 1 � i � q;

@aet (�0)

@�
= �

1�
pX
j=1

�0j

1�
pX
j=1

�0j

;
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and so we can write

r�2
�
aet (�0)

s0

�
=
 2 (at=s0)

s0
vt; (130)

where vt is the stationary process vector of dimension (p+ q + 1) de�ned by

vtj =

8<: ���10 at�j if 1 � j � p

��10 at�j�p if p+ 1 � j � p+ q
�0 if j = p+ q + 1

where �0 = �1�
Pp

j=1 �0j=(1�
pP
j=1

�0j). Then

E

 
r�2

�
aet (�0)

s0

�
r�2

�
aet (�0)

s0

�0!
=
E( 22 (at=s0))

s20
E(vtv

0
t): (131)

Di¤erentiating r� (aet (�)=s0) we obtain

r2�2
�
aet (�0)

s0

�
=
1

s20
 02

�
at
s0

�
vtv

0
t +

1

s0
 2

�
at
s0

�
r2aet (�0): (132)

Since r2aet (�0) is independent of at we have

E

�
 2

�
at
s0

�
r2aet (�0)

�
= E

�
 2

�
at
s0

��
E
�
r2aet (�0)

�
= 0

and then from (132), since at and vt are independent we get

E

�
r2�2

�
at(�0)

s0

��
=
1

s20
E

�
 02

�
at
s0

��
E(vtv

0
t): (133)

Hence, from (131) and (133) we obtain

V �11 V0V
�1
1 = s20

E( 22 (at=s0))

E( 02 (at=s0))
2
E (vtv

0
t)
�1
:

Finally is straightforward, see for example Bustos and Yohai [4], to show that

E(vtv
0
t) =

�
�2aC 0

0 �20

�
;

where C is de�ned in the statement of Theorem 5 and �2a = E(a2t ) .
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