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ABSTRACT

We introduce a new class of robust estimators for generalized linear models which

is an extension of the class of projection estimators for linear regression. These

projection estimators are defined using an initial robust estimator for a general-

ized linear model with only one unknown parameter. We found a bound for the

maximum asymptotic bias of the projection estimator caused by a fraction ε of

outlier contamination. For small ε, this bias is approximately twice the maximum

bias of the initial estimator independently of the number of regressors. Since these

projection estimators are not asymptotically normal, we define one-step weighted

M-estimators starting at the projection estimators. These estimators have the same

asymptotic normal distribution as the M-estimator and a degree of robustness close

to the one of the projection estimator. We perform a Monte Carlo simulation for

the case of binomial and Poisson regression with canonical links. This study shows

that the proposed estimators compare favorably with respect to other robust esti-

mators. Supplemental Material containing the proofs and the numerical algorithm

used to compute the P-estimator is available on line.

KEY WORDS: logistic regression, robust estimators, maximum bias, one-step es-

timators.

1. INTRODUCTION

Let us consider a generalized linear model (GLM) where we observe a response

y ∈ R and a vector x= (x1, . . . , xp)
′ of explanatory variables. It is assumed that

y|x ∼Fθ, (1)
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where Fθ is a discrete or continuous exponential family of distributions in R, θ ∈
Θ ⊂ R with densities of the form

f(y, θ) = exp[m(θ)y − J(θ)− t(y)]ID(y), (2)

where D is the support of y, IA denotes the indicator function of A and

g(θ) = β′0x, (3)

where β0∈Rp is unknown and g : R → R is a known link function. We will

assume that m(θ) and g(θ) are both continuous and strictly increasing. The link

g(θ) = m(θ) is called canonical. The support D is an open interval (whose extremes

may be −∞ or ∞) of the set of real numbers in the continuous case or of the non-

negative integers in the discrete case.

One important case of GLM is binomial regression where y takes the values 0

and 1, θ = P (y = 1) and the link function g is generally a symmetric distribution

function. The most popular binomial regression model is the logistic model with

link function

g(θ) = log

(
θ

1− θ

)
. (4)

If the model is perfectly observed, an efficient estimator for GLM is the maxi-

mum likelihood estimator (MLE). However, for some models, like in the case that

Fθ is the normal or Poisson family, a few outliers can make the MLE tend to in-

finity. Instead, in the case of binomial regression, Croux, Flandre and Haesbroeck

(2002) showed that if the model has an intercept, not more than 2(p − 1) badly

classified leverage points can make that the MLE of all the coefficients different

from the intercept tend to zero and not to infinity.

Robust estimators have the property that they are not much affected by a

small fraction of outliers. Several robust estimators have been proposed for GLM.
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Künsch, Stefanski and Carroll (1989) derived optimal conditional unbiased bounded

influence estimators. However, Maronna, Bustos and Yohai (1979) have shown that

in the case of a linear model, the breakdown point of these estimators tends to 0

when p tends to infinity. Cantoni and Ronchetti (2001) defined robust estimators for

GLM which can be considered a robustification of the quasi-likelihood estimators

introduced by Wedderburn (1974). For binomial regression several other estima-

tors have been proposed. Among them we can cite Pregibon (1981), Copas (1988),

Carroll and Pederson (1993), Christmann (1994), Bianco and Yohai (1996), Ko-

rdzakhia, Mishra and Reiersølmoen (2001), Croux and Haesbroeck (2003), Müller

and Neykov (2003), Bondell (2005), Gervini (2005) and Č́ıžek (2008).

One way to measure the robustness of an estimator is using the concept of

maximum asymptotic bias (MAB). A class of estimators that have very good MAB

properties is the class of projection estimators. Maronna and Yohai (1993) intro-

duced this class of estimators for linear regression; Maronna, Stahel and Yohai

(1992) and Tyler (1994) employed them for estimating multivariate scatter and

location, respectively. All these estimators are based on an initial robust estimator

for a one–parameter model and the robustness of the initial estimator is inherited

by the projection estimators of the parameters of the more complex model.

In this paper we extend the class of P-estimators for GLM and show that they

have similar properties as the P-estimators for the linear model. We study with

special detail the case of binomial and Poisson regression and a Monte Carlo study

shows that they compare favorably to other robust proposals. One shortcoming

of P-estimators is that they are not asymptotically normal, and as a consequence

there is not a simple way to implement inference procedures based on them. To

overcome this drawback we propose one–step weighted M-estimators based on the

scoring algorithm starting from the P-estimators. These one-step estimators have
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the same normal asymptotic distribution as weighted M-estimators and keep the

breakdown point of the initial estimators. Moreover, a Monte Carlo study shows

that their behavior under outlier contamination remains very close to that of P-

estimators.

In Section 2 we introduce P-estimators for GLM and prove their Fisher–consistency.

In Section 3 we give a bound for the maximum bias of P-estimators. When the

fraction of contamination is small this bound is approximately twice the maximum

bias of the initial estimator. In Section 4 we study the order of consistency of

the P-estimators. In Section 5 we introduce a class of initial estimators for the

auxiliary model. In Section 6 we study the breakdown point of the P-estimators

when the initial estimator is as in Section 5. In Section 7 we present one–step es-

timators weighted M-estimators that use a P-estimator as initial value. In Section

8 we show the results of a Monte Carlo study where we compare our P-estimators

with other robust estimators for logistic and Poisson regression. In Section 9 we

analyze a real dataset. Section 10 contains some conclusions. All the proofs and a

description of the numerical algorithm to compute the P-estimators can be found

in the Supplemental Material available on line.

2. PROJECTION ESTIMATES FOR GLM

Let H be the set of distribution functions on Rp+1. Let T : H → Rp be an

estimating functional for β0 in a GLM satisfying (1)-(3). Then given a sample

(y1,x1), . . . , (yn,xn) we can define an estimator of β0 by βn = T(Hn), where Hn

is the empirical distribution. Since by the Glivenko-Cantelli Theorem Hn → H

uniformly, if the functional T is continuous we have limn→∞ βn = limn→∞T(Hn) =

T(H). The estimating functional T is Fisher consistent for the GLM model if given
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a distribution H0 of (y,x) satisfying (1)-(3) we have

T(H0) = β0. (5)

We now introduce an auxiliary uniparametric model, where three random vari-

ables (y, w, z) are observed, such that

y|(z, w)∼Fθ (6)

and

g(θ) = α0w + z. (7)

Then this auxiliary model is a GLM with one regular explanatory variable and one

offset variable.

As we will see below, we will use this auxiliary model taking z =β′x where β

is a candidate for estimating β0 and w =λ′x, where ||λ|| = 1. The vector λ gives

a tentative direction for modifying β and α0 (that will depend on λ) is the size of

the correction. The value β is a good candidate for estimating β0 if the size of the

correction α0 is small for all λ. In general, it is easier to find robust estimators for

this uniparametric model than for the original model with p parameters. We will

understand that an estimator for the auxiliary model is robust if a small change

on the distribution of (y, w, z) has a small influence on the estimator

Let T0(H
∗) be a robust and Fisher consistent estimating functional of α0, where

H∗ is the distribution of (y, w, z). The Fisher consistency condition requires that

for any H∗
0 satisfying (6)-(7) we have

T0(H
∗
0 ) = α0. (8)

Examples of robust estimating functionals T0 for the auxiliary model are given in

Section 5.
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We introduce the following notation. Let v be a random vector in Rq, hi : Rq →
R, 1 ≤ i ≤ m, then L((h1(v), ..., hm(v)),F ) is the distribution of (h1(v), ..., hj(v))

when v has distribution F. We will assume that T0 satisfies the following equivari-

ance properties

T0(L((y, γw, z), H∗) =
1

γ
T0(L((y, w, z), H∗)) for all γ ∈ R (9)

and

T0(L((y, w, z + γw), H∗)) = T0(L((y, w, z), H∗))− γ for all γ ∈ R (10)

for any distribution H∗ of (y, w, z).

Based on T0 we define an estimating functional T(H) of β0 for the p−dimensional

GLM model (1)-(3). Note that if (y,x) satisfies (1) and (3), then, for all λ∈Rp, (y,λ′x,β′0x)

satisfies (6) and (7) with α0 = 0. Therefore according to (8), if H0 is the distribu-

tion of (y,x) satisfying (1)-(3), we have

T0(L((y, λ′x, β′0x), H0)) = 0 for all λ ∈ Rp. (11)

Then, given a distribution H of (y,x) (not necessarily satisfying model (1)-

(3)), it is natural to define the estimator β= T(H) so that for any λ the value of

T0(L((y,λ′x,β′0x), H)) be as close to 0 as possible. Then the projection estimating

functional of β0 is defined as follows:

Let S be a scale functional, i.e., S is defined on all distributions F on R and

satisfies S(F ) ≥ 0 for all F and if u is a random variable we have S(L(γu, F )) =

|γ|S(F ). For example S may be the MAD scale functional defined by

S(F ) =
1

0.6745
median(L(|u|, F )). (12)

Another possibility is to use as S an M-estimating functional of scale. See for

example Maronna, Martin and Yohai (2006, Section 2.5.). Define for any β and
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any distribution H on Rp+1

A(β,H)= max
||λ||=1

S (L(λ′x, H)) |T0 (L((y, λ′x, β′x), H))| . (13)

Then the projection estimating functional for the p-dimensional GLM is defined

by

T(H) = arg min
β∈Rp

A(β,H). (14)

The estimator associated to this functional, i.e., the functional applied to the

empirical distribution, will be called projection estimator (P-estimator). The factor

S(L(λ′x, H)) is necessary for the affine equivariance of T. Moreover, note that

without this factor we would have A(β,H) = ∞. Note also that the maximum in

(13) can be taken for λ∈Rp instead that for ||λ|| =1.

Theorem 1. Let C be a p × p non-singular matrix and H a distribution on

Rp+1, then T(L((y,Cx), H)) = C′−1T(H).

The following Theorem proves the Fisher consistency of the P-estimating func-

tionals.

Theorem 2. Assume that H0 is the distribution of (y,x) satisfying model (1)-

(3) and G0 the corresponding marginal distribution of x. Suppose that T0 satisfies

(8) and that for all λ∈ Rp, S(L(λ′x, G0)) > 0. Then the P-estimating functional

T is Fisher consistent for β0.

3. A BOUND FOR THE MAXIMUM BIAS OF
P-ESTIMATES

Let H0 be the distribution of (y,x) under model (1)-(3) and let G0 be the

marginal distribution of x. Note that H0 is determined by G0 and β0. To study the

robustness of an estimating functional T, we start by defining for any 0 < ε < 1
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the contamination neighborhood of H0 of size ε as

V(H0, ε) = {H : H = (1− ε)H0 + εH̃, H̃ arbitrary}.

Then a measure of the robustness of an estimating functional T of β0 is the

maximum asymptotic bias (MAB) B(T,β0,H0, ε), defined by

B(T, β0,G0, ε) = sup
H∈V(H0,ε)

[(T(H)− β0)
′V (G0)(T(H)− β0)]

1/2,

where V is an affine equivariant scatter estimating functional of a distribution H

in Rp. The reason why we standardize the bias using V (G0) is to make the MAB

affine invariant. Note that this definition of MAB is similar the one given for linear

models, see e.g., Martin, Yohai and Zamar (1989). By extension, we will call MAB

of an estimator to the MAB of the corresponding estimating functional.

In this Section we derive a bound for the MAB similar to the one found in

Maronna and Yohai (1993) of linear regression. Let

c+(G0, ε, λ) = sup
G∈V(G0,ε)

S(L(λ′x, G)), d+(G0, ε) = sup
||λ||=1

c+(G0, ε, λ) (15)

and

c−(G0, ε, λ) = inf
G∈V(G0,ε}

S(L(λ′x, G)), d−(G0, ε) = inf
||λ||=1

c−(G0, ε, λ). (16)

We have already seen that for any λ∈Rp, (y,λ′x,β′0x) satisfies model (6)–(7) with

α0 = 0. For any λ∈Rp, let Mλ,β0
be the distribution of (y,λ′x,β′0x) when (y,x) has

distribution H0. Then we define the maximum bias of T0 at Mλ,β0
by

B(T0, λ, β0,G0, ε) = sup
M∈V(Mλ,β0

,ε)

|T0(M))|
(λ′V −1(G0)λ)1/2

. (17)
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Theorem 3. Suppose that (y,x) satisfies model (1)-(3) and let G0 be the

marginal distribution of x. Then we have

B(T, ε, β0, G0) ≤
(
1+

d+(G0, ε)

d−(G0, ε)

)
sup
||λ||=1

B(T0, λ, β0,G0, ε). (18)

Remark. Note that sup||λ||=1 B(T0, λ,β0,G0, ε) depends only on the distribu-

tions of bidimensional projections of x and d+(G0, ε) and d−(G0, ε) on the distri-

bution of one–dimensional projections. Then, in the case that G0 is multivariate

normal with covariance matrix equal to the identity, the bound given in Theorem

3 for the maximum bias of the projection estimating functionals depends only on

||β0|| and not on p.

Remark. Since

lim
ε→0

d+(G0, ε)

d−(G0, ε)
= 1,

the bound for the maximum bias of T is for small ε approximately 2 sup||λ||=1 B(T0,λ,β0,G0, ε).

In Table 1 we show d+(G0, ε)/d
−(G0, ε) when G0 is N(0, I) and S is the MAD given

by (12).

TABLE 1 ABOUT HERE

In Section 6 we will use the bound given by (18) to obtain a lower bound for

the asymptotic breakdown point of the P-estimating functionals.

4. CONSISTENCY ORDER OF P-ESTIMATES

In this Section we prove that if the order of convergence of the estimator derived

from T0 is n−1/2, then the order of convergence of the corresponding P-estimator

is also n−1/2.
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Theorem 4. Let (y1,x1), . . . , (yn,xn) be a random sample of model (1)-(3) and

let Hn be its empirical distribution. Assume that the initial estimating functional

T0 verifies

n1/2 sup
||λ||=1

|T0(L((y, λ′x, β′0x), Hn))|=Op(1). (19)

We also assume that the scale functional S satisfies

limsupn→∞ sup
||λ||=1

S(L(λ′x, Gn)) < ∞ a.s. (20)

and

liminfn→∞ inf
||λ||=1

S(L(λ′x, Gn)) > 0 a.s., (21)

where Gn is the empirical distribution of the xi’s. Let T be the corresponding

P-estimating functional, then

n1/2||T(Hn)− β0|| = Op(1)

too.

In the next Section we propose a family of initial estimating functionals satis-

fying (19). Assume that PG0(λ
′x = 0) < 0.5 for all λ, then is easy to prove that

the MAD scale given by (12) and the M-scales with breakdown 0.5 satisfy (20) and

(21).

We have not been able to find the asymptotic distribution of the projection

estimators proposed in this paper. However Zuo (2003) shows that projection

estimators for multivariate location have a non–normal asymptotic distribution.

The fact that these estimators are analogous to the ones defined here, allows us to

conjecture that our projection estimators have also non–normal limit distributions.

This makes it difficult to use these estimators for statistical inference. However, in

Section 7 we present one way to overcome this problem.
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5. INITIAL ESTIMATES

Consider the auxiliary model (6)-(7) and let L be a possible distribution of

(y, w, z). We shall define robust initial estimating functionals T0 of the form

EL

[
η(y − δ(g−1(T0(L)w + z)))κ

(
w

S(L)

)]
= 0, (22)

where the function δ is defined by

Eθ [η(y − δ(θ))] = 0, (23)

η and κ are odd and bounded functions and S is a scale functional. We will assume

to simplify the presentation that the functional S is the same as the one used in

the definition of the P-estimators, but this is not necessary.

If we use a canonical link function, i.e., g(θ) = m(θ), the functional TMV
0

corresponding to the maximum likelihood estimating functional is of the form (22)-

(23). In fact TMV
0 is defined by

EL

[
(y − δ(g−1(TMV

0 (L)w + z)))w
]

= 0,

where δ(θ) = Eθ[y]. However the projection estimators obtained using initial

robust estimators of the form (22)-(23) have good robustness properties even if

g(θ) is not the canonical link.

It is immediate to show that (23) implies the Fisher consistency of these es-

timators. It is also easy to verify that the equivariance conditions (9) and (10)

hold.

Suppose that g(θ) = m(θ) and that the median of Fθ is well defined. Then it

may be shown that the estimator with η(u) =sign(u), κ(w) =sign(w) has minimum

12



gross error sensitivity (GES) in a broad class of estimators: the class of condition-

ally unbiased general M-estimators (CUGM-estimators). We call this estimator

conditional unbiased minimum GES (CUMGES) estimator. It is immediate to see

that in this case δ(θ) =medianθ(y). The concept of conditionally unbiased estima-

tors was introduced in Künsch et al. (1989).

Assume now that g(θ) = m(θ) and that the support D of Fθ is the set of

non-negative integers. Then, in this case the CUMGES estimator is given by

η(u) = ηH
0.5(u), where ηH

k is the Huber family

ηH
k (u) = sign(u) min(|u|, k) (24)

and κ(w) =sign(w). It can be also proved that if 0 < k < 0.5, all the estimators of

the form (22) with η = ηH
k and 0 < k ≤ 0.5 coincide. The definition of the class of

CUGM-estimators for the auxiliary model and an heuristic derivation of the two

CUMGES estimators can be found in Section 10 of the Supplemental Material.

When Fθ is Bernoulli with logistic link function and parameter θ = Pθ(y = 1),

it can be shown that

ηH
0.5(y − δ(m(θ))) =

y − θ

2 max(θ, 1− θ)
. (25)

We will assume the following properties

P1. η(y) is odd, bounded, non-decreasing and continuously differentiable. In

the continuous case we assume that η/(u) > 0 in a neighborhood of 0 and in the

case where the support D is the set of non-negative integers, η′(u) > 0 in the

interval [−0.5, 0.5].

P2. κ is odd, continuous, bounded, non-decreasing and κ(u) > 0 for u > 0.

P3. There is an sphere U ⊂ Rp such that all x ∈ U has a positive density.
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P4. The link function g(θ) and m(θ) in (2) are continuously differentiable and

strictly increasing. Note that this assumption implies that f(x,θ) is continuously

differentiable in θ too.

The next Theorem shows that under assumptions P1-P4, the family of esti-

mators of the form (22) satisfy condition (19) and therefore the corresponding

P-estimators have order of consistency n−1/2. Note that the functions η and κ

corresponding to the CUMGES estimator do not satisfy the smoothness condi-

tions required in P1 and P2 respectively. However they can be approximated by

functions satisfying these assumptions.

Theorem 5. Let (y,x) be a random vector in Rp+1 satisfying that y|x has

distribution Fθ. Assume P1-P4, (20) and (21). Then the estimating functional T0

given by (22) satisfies (19).

The following Theorem gives a bound for B(T0,λ,β0,G0, ε) when T0 is of the

form (22). Consider the function

Q(α, λ,s) = EH0

[
η(y − δ∗(αλ′x + β′0x))κ

(
λ′x
s

)]
,

where δ∗ = δ(g−1) The function Q(α, λ,s) is continuous and monotone non-increasing

in α. Let e(ε) = c1c2ε/(1− ε) where

c1 = sup η, c2 = sup κ (26)

and define

α1(ε, λ) = inf{α : Q(α, λ,c+(G0, ε, λ)) ≤ e(ε)},
α2(ε, λ) = sup{α : Q(α, λ,c+(G0, ε, λ)) ≥ −e(ε)},

14



where c+(G0, ε, λ) is defined in (15).

Theorem 6. Suppose that (y,x) satisfies a GLM and let T0 be an estimating

functional for the auxiliary model of the form.(22). Assume P1-P4, then

B(T0, λ, β0,G0, ε) ≤ max

(
− α1(ε, λ)

(λ′V −1(G0)λ)1/2
,

α2(ε, λ)

(λ′V −1(G0)λ)1/2

)
.

6. BREAKDOWN POINT OF PROJECTION
ESTIMATES

The asymptotic breakdown point to infinity (ABDP∞) of an estimating func-

tional T for a GLM at H0 is defined by

ε∗(T, H0) = inf{ε : M(T, H0, ε) = ∞},

where

M(T, H0, ε) = sup{||T(H)|| : H ∈ V(H0, ε)}

and H0 is the distribution of (y,x). determined by β0 and G0. By extension, we call

ABDP∞ of an estimator to the ABDP∞ of the corresponding estimating functional.

For the case that Fθ is the family of Bernoulli distributions, Croux et al. (2002)

showed that the effect of large outliers is to take the estimators of β0 to 0 instead

to ∞. Then in this case a meaningful robustness measure is the BDP to zero which

is similarly defined. However this BDP depends on β0 and decreases to 0 when

||β0|| tends to 0. For this reason this measure is very difficult to compute and it

will not be studied here.

In this Section we show that for some GLM models we can find P-estimating

functionals with initial estimator T0 of the form (22) with ABDP∞ close to 0.5.
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We will study the breakdown point of the projection estimating functionals in two

cases where

inf
θ

m(θ) = inf
θ

g(θ)−∞, sup
θ

m(θ) = sup
θ

g(θ) = ∞ (27)

hold.

Case A. Suppose that Fθ is a family of continuous distributions with support

R and satisfying (27). This is the case for example when Fθ is N(θ, σ2
0) where σ0

is known and link function g(θ) = θ. Then (27) is satisfied.

Case B. Suppose that under Fθ the support of y is the the set of non-negative

integers and (27) is satisfied. This is the case for example when Fθ is the Poisson

family of distributions with probability density f(x, θ) = exp(θ)θx/x! and g(θ) =

log(θ). Clearly (27) is satisfied for the Poisson family.

General lower bounds for the breakdown point of P-estimators with initial es-

timating functional of the form (22) can be obtained. However, since they are

quite involved, they are not given here. In Theorem 7 we show that for these

two cases we can found initial estimating functionals of the form (22) so that the

corresponding projection estimating functionals have high breakdown point.

Let ε+∗(S, G0) and ε−∗(S,G0) be defined by

ε+∗(S, G0) = inf{ε : d+(G0, ε) = ∞},
ε−∗(S, G0) = inf{ε : d−(G0, ε) = 0},

where d+(S, G0) and d−(G0, ε) are defined in (15) and (16). Denote by

ξ1(G0) = inf
||λ||=1

PG0(λ
′x 6=0), ξ2(H0) = inf

||λ||=1
PH0(λ

′x 6=0, y 6=0), (28)

and

ϑ1(G0) =
ξ1(G0)

1 + ξ1(G0)
, ϑ2(H0) =

ξ2(H0)

1 + ξ2(H0)
,
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ε01(G0) = min(ε+∗(S,G0), ε
−∗(S, G0), ϑ1(G0)),

ε02(H0) = min(ε+∗(S,G0), ε
−∗(S, G0), ϑ2(H0)).

Theorem 7. Consider a GLM model where (27) is satisfied and let T be a

P-estimating functional with initial estimating functional T0 as defined in (22).

Then

(i) Suppose that Fθ is as in case A, η satisfies P1 and P4 and assume κ(x) =sign(x).

Then ε∗∞(T, H0) ≥ ε01(G0).

(ii) Suppose that Fθ is as in case B, η satisfies P1 and P4. Assume also

η(y) = c1 for y ≥ 1 and κ(x) =sign(x). Then ε∗∞(T, H0) ≥ ε02(H0).

Remark. Note that according to Theorem 7 in the case A if ε+∗(S, G0) =

ε−∗(S, G0) = 0.5 and ξ1(G0) = 0, we can obtain P-estimating functionals with

breakdown point 0.5. In the case B, under the same conditions plus the condition

that PH0(y = 0) is small, we can find estimators with breakdown point close to 0.5

too. It can also be proved that if sign(x) is approximated by a smooth function κ(x)

satisfying P2, the bounds for ε∗∞(T, H0) given in Theorem 7 are still approximately

correct. We also observe that in case B the breakdown point lower bound ε02 tends

to 0 when PH0(y = 0) tends to 1. This may be explained by the the fact that in

this case zero is an extreme value of the response y.

7. ONE–STEP WEIGHTED M–ESTIMATORS

7.1. Definition and asymptotic normality

We consider the class of weighted M-estimators β̂M
n of β0 for the GLM defined

by
n∑

i=1

w(d(xi, µ̂n, Σ̂n))ψ(yi, β
′xi, s

∗
n)xi = 0,
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where ψ : R3 → R satisfies the Fisher consistency condition

Eθ [ψ(yi, g(θ), s)] = 0 for all θ and for all s,

d(x,µ,Σ) is the square Mahalanobis distance

d(x, µ,Σ) = (x− µ)′Σ−1(x− µ), (29)

µ̂n and Σ̂n are robust estimators of multivariate location and scatter of x con-

verging a.s. to values µ0 and Σ0, w : R≥0 → R≥0 (R≥0 is the set of non-negative

real numbers) is a non-increasing weight function that penalizes high leverage ob-

servations and s∗n is an adaptive tuning constant. Most often s∗n will be a robust

scale estimator of the errors yi − q(g−1(β′0xi)), 1 ≤ i ≤ n, where q(θ) = Eθ[y]. In

some cases, as when Fθ is Bernoulli, s∗n may not be necessary. In general denote

by Np(µ,Σ) the multivariate normal distribution of dimension p with mean µ and

covariance matrix Σ and by →D convergence in distribution. Note that the maxi-

mum likelihood estimator is of this form with ψ(y, φ, s) = y−q(g−1(φ)) and w = 1.

Suppose that s∗n → s∗0, then using general Theorems for the asymptotic normality

of M-estimators (see for example Theorem 10.11 of Maronna et al. (2006)) it can

be proved that under general conditions

n1/2(β̂M
n − β0) →D N(0, V0),

where

V0 = A−1
0 C0A

−1′
0 , (30)

C0 = E
[
w(d(xi, µ0,Σ0))

2ψ2(y, β′0xi, s
∗
0)xix

′
i

]

and

A0=E [w(d(x, µ0,Σ0))ψ2(y, β′0x,s∗0)xix
′
i] , (31)
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where ψ2(y, φ, s) = ∂ψ(y, φ, s)/∂φ.

If we have an initial estimator β̂0n of β0, the one-step weighted M-estimator is

defined by

β̂1n = β̂0n − Â−1
n

1

n

n∑
i=1

w(d(xi, µ̂n, Σ̂n))ψ(yi, β̂
′
0nxi, s

∗
n)xi,

where Ân is a consistent estimator of A0. We consider two choices for Ân : Newton-

Raphson, where

Ân =
1

n

n∑
i=1

w(d(xi, µ̂n, Σ̂n))ψ2(y, β̂′0nxi, s
∗
n)xix

′
i, (32)

and scoring, where

Ân =
1

n

n∑
i=1

w(d(xi, µ̂n, Σ̂n))τ(g−1(β̂′0nxi), s
∗
n))xix

′
i (33)

and

τ(θ, s) = Eθ [ψ2(y, g(θ), s)] .

As s∗n we can take a robust scale estimator, e.g., the MAD scale or an M-scale

estimator of yi − q(g−1(β̂′0xi)).

The idea of using one-step estimators to combine two different properties was

used by Simpson et al. (1992). They obtained one-step estimators for the linear

model that combine high breakdown point and bounded influence. In the Theorem

8 below we prove that for GLM models, under general conditions, the one–step

estimator β̂1n is also asymptotically normal with covariance matrix given by (30).

If β̂0 is more robust than β̂M
n , we can also expect that β̂1n be more robust than

β̂M
n too. Then, one way to obtain a highly robust estimator for a generalized

linear model which is asymptotically normal is to compute a one-step weighted

M-estimator β̂1n taking as β̂0n the projection M-estimator. We have verified by
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simulation that –at least for the logistic and Poisson models– the one–step scoring

estimator behaves more robustly than the one–step Newton-Raphson estimator.

One possible explanation is that y outliers have influence on Ân when this matrix

is defined by (32), but Ân it is not affected when we use (33).

The following assumptions are required to prove the asymptotic normality of

the one-step weighted M-estimators.

A1. ψ(y, φ, s) is bounded and continuous as a function of (y, φ, s) and continu-

ously differentiable in φ. Moreover ψ2(y, φ, s) is bounded when s is bounded away

from 0.

A2. Eθ[ψ(y, g(θ), s)] = 0 for all θ and s.

A3. w(z) is continuous, non-increasing and bounded. We also assume that

zw(z) is bounded.

A4. n1/2(β̂0n−β0) = Op(1).

A5. Ân →p A0.

A6. n1/2(Σ̂n−Σ0) = Op(1), n1/2(µ̂n−µ0) = Op(1) and n1/2(s∗n − s∗0) = Op(1).

A7. The matrix A0 is not singular

Theorem 8. Let (y1,x1), ..., (yn,xn) be i.i.d. observations satisfying a GLM

given by (1), (2)and (3). Assume that A1-A7 and P4 hold, then n1/2(β̂1n−β0) →D

N(0, V0).

The asymptotic covariance matrix V0 of β̂1n can be estimated by V̂ = Â−1
n ĈnÂ

−1′
n ,

where Ân is given by (32) or (33) and

Ĉn =
1

n

n∑
i=1

w2(d(xi, µ̂n, Σ̂n))ψ2(yi, β̂
′
0nxi, s

∗
n)xix

′
i.

In the Monte Carlo study of Section 8 we include a one–step M-estimator of

scoring type for the logistic and Poisson regression models starting from a projec-

tion estimator. The simulation results show that the degree of robustness of these
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estimators remains very close to the one of the projection estimator.

We can take as ψ a function of the form

ψ(y, φ, s) = η

(
y − δ(g−1(φ), s)

s

)
, (34)

where δ(θ, s) is chosen so that Eθ [η ((y − δ(θ, s)) /s] = 0 for all θ and s. Another

possible family of ψ functions, when Fθ is the Bernoulli family, is given in Bianco

and Yohai (1996) and in Croux et al. (2002).

7.2 Asymptotic breakdown point

The estimating functional T1(H) associated with the scores one-step weighted

M-estimator can be written as

T1(H) = T0(H)−TA(H)−1EH [w(d(x,Tµ(H),TΣ(H)))ψ(y,T0(H)′x,TS∗(H))x] ,

where T0,Tµ,TΣ, TA and TS∗ are the functionals associated to the estimators

β̂0n, µ̂n, Σ̂n, Ân and s∗n. The functional TA corresponding to the scores version of

the one-step estimator is

TA(H) = EH

[
w(d(x,Tµ(H),TΣ(H)))τ(g−1(T0(H)′x), TS∗(H))xx′

]
.

Given a symmetric matrix Ω, we denote by γ1(Ω) ≤ γ2(Ω) ≤ .... ≤ γp(Ω) the

eigenvalues of Ω. Consider an estimating functional TΩ(H) of a p × p symmetric

matrix Ω0, then we define the following asymptotic breakdown points of TΩ at H0

as follows:

ε−∗(TΩ, H0) = inf

{
ε : inf

H∈V(H0,ε)
inf

1≤i≤p
|γi(TA(H))| = 0

}
,

ε+∗(TΩ, H0) = inf

{
ε : sup

H∈V(H0,ε)

sup
1≤i≤p

|γi(TA(H))| = ∞
}
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and

ε∗(TΩ, H0) = min(ε−∗(TΩ, H0), ε
+∗(TΩ, H0)).

We also define the following asymptotic breakdown points of TS∗ at H0

ε−∗(TS∗ , H0) = inf

{
ε : inf

H∈V(H0,ε)
TS∗(H) = 0

}
,

ε+∗(TS∗ , H0) = inf

{
ε : sup

H∈V(H0,ε)

TS∗(H) = ∞
}

and

ε∗(TS∗ , H0) = min(ε−∗(TS∗ , H0), ε
+∗(TS∗ , H0)).

Finally let ε∗(T0, H0), ε∗(T1, H0) and ε∗(Tµ, H0) be the ABDP∞ s of T0, T1 and

Tµ. We need the following additional assumptions:.

A8. The functional TΣ is standardized, so that medianH(d(x,Tµ(H),TΣ(H))) =

F−1
χ2

p
(0.5), where Fχ2

p
is the chi-squared distribution function with p degrees of free-

dom.

A9. w0 = w(F−1
χ2

p
(0.5)) > 0.

A10. For all θ and s we have τ(θ, s) < 0.

Note that any scatter functional TΣ can be standardized so that A8 is satisfied,

and therefore this assumption is not restrictive. The assumption A10 is satisfied if

ψ(y, θ, s) is monotone non-increasing in θ, for example if ψ(y, θ, s) is given by (34)

with η monotone.

Theorem 9. (a) Assume P4, A1, A2, A3 and A5. Then

ε∗(T1, H0) ≥ min(ε∗(T0, H0), ε
∗(Tµ, H0), ε

∗(TΣ, H0), ε
−∗(TA, H0)).

(b) Assume also A8, A9, A10 and ξ1(G0) ≥ 0, 5, where ξ1(G0) is defined in (28).

Then

ε−∗(TA, H0) ≥ min

(
ε∗(T0, H0), ε∗(TS∗ , H0),

ξ1(G0)− 0.5

ξ1(G0)

)
.
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Note that Theorem 9 implies that if we take TΣ,Tµ and TS∗ with asymptotic

breakdown point 0.5, ψ(y, φ, s) monotone non-increasing in φ and ζ1(G0) = 1 we

obtain that ε∗1(T1, H0) ≥ ε∗0(T0, H0).

8. MONTE CARLO STUDY

To study the efficiency and robustness of the P-estimators we performed a

Monte Carlo study for logistic and Poisson regression.

8.1 Logistic regression

We consider the logistic model where xi= (1, xi1, xi2)
′ and xi1 and xi2 are inde-

pendent with distribution N1(0,1) and g(P (yi = 1|xi)) = β′xi, where g(θ) is given

in (4) and β= (β1, β2, β3)
′ = (0, 1,−1)′. This model was used to compare several

estimators in the Monte Carlo study in Č́ıžek (2008). We consider the following

estimators.

(i) Maximum likelihood (ML), which is the solution of

n∑
i=1

(
yi − exp(β′xi)

1 + exp(β′xi)

)
xi = 0.

(ii) Weighted maximum likelihood (WML) estimator, defined by

n∑
i=1

w(d(x∗i , µ̂, Σ̂))

(
yi − exp(β′xi)

1 + exp(β′xi)

)
xi = 0,

where x∗i = (xi1, xi2)
′, d(x, µ,Σ) is defined in (29), w(t) = I(t2 ≤ χ2

2, 0.975),

χ2
p,α is the quantile α of a χ2− distribution with p degrees of freedom and µ̂

and Σ̂ are the location and scatter MCD estimators of the x∗′i s (Rousseeuw

and Leroy, 1987, page 262) using 75% of the observations.
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(iii) The weighted M-estimators (WM) proposed by Croux and Haesbroeck (2003)

(also called weighted Bianco-Yohai estimators). These estimators where com-

puted using the ρ-function with derivative

ρ′(t) =





exp(−
√

d) if t ≤ d

exp(−√t) if t > d.
(35)

We took d = 0.5. The weights are the same as those used in the WML

estimator. These estimators were computed using the program by Croux

and Haesbroeck WBYlogreg downloaded from

http://www.econ.kuleuven.be/public/NDBAE06/programs.

(iv) A Projection estimator where the initial estimator T0 is of the form (22 )

(PR). We took η(y) as in (25) and κ in the Huber family given in (24) with

k = 0.8. The scale S is the MAD scale given by (12).

(v) The scores one–step version described in Section 7 of the WM estimator (PR-

WM). The starting estimator was PR and the WM estimator has function ρ

with derivative

ρ′(t) =





1 if t ≤ d

exp(−a(t0.25 − d0.25)2) if t > d.

We took a = 6 and d = 0.5. The weight function is w(d) = ρB((d −
Qχ2(0.99, 5))/0.2), where Qχ2(α, p) is the quantile α of the chi-squared dis-

tribution with p degrees of freedom and ρB is the bisquare loss function

ρB(u) = (1− (1− u2)3)I(|u| < 1) + I(|u| ≥ 1.)

Note that w(d) is a continuously differentiable function that takes value one

if d < Qχ2(0.99, 5) − 0.2 and zero if d > Qχ2(0.99, 5). The results with the
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PR-WM that uses the function ρ′ in (35) are quite similar but slightly less

robust under outlier contamination.

(vi) The adaptive maximum symmetrically trimmed likelihood estimator intro-

duced by Č́ıžek (2008) (AMSTLE). This estimator was computed with an

R-code provided by P. Č́ıžek.

We consider samples of size 100, 200 and 400 and we perform for each situation

500 replications. We study the behavior of the estimators under two situations:

• (i) No outliers.

• (ii) Approximately 5% of outliers. For this purpose we added 6 outliers to the

samples of size 100, 11 to those of size 200 and 22 to those of size 400. The

outliers are of the form y = 0, x = (1,x1, x2)
′ where x1 and x2 are independent

with distribution N(z, 0.2) and N(−z, 0.2) The value of z varies between 0.5

and 4.5 with steps of 0.1. As proved by Croux et al. (2002) this type of

outliers make the MLE of β1 and β2 tend to 0 when z →∞.

For each estimator β̂ and each model we estimate the mean squared error MSE=

E
[
||β̂−β0||2

]
by M̂SE = 1

N

∑N
i=1

∥∥∥β̂i − β0

∥∥∥
2

, where β̂i is the estimate obtained

with the i-th sample.

In Table 2 we show the MSE of ML and the MSE efficiencies of the other

estimators with respect to ML when there is no contamination. These efficiencies

are defined as the ratio between the MSEs of ML and that of the corresponding

estimator, times 100. In Table 3 we report the maximum value of M̂SE under

outlier contamination when z varies between 0.5 and 5. In Figure 1 we plot the

M̂SE of the robust estimators under 5% of contamination for z between 0.5 and 2.

All the estimators except ML take the maximum MSE in this range of values.
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TABLE 2 ABOUT HERE

TABLE 3 ABOUT HERE

FIGURE 1 ABOUT HERE

Under the logistic model without outliers the MSE efficiencies of the PR-WM

are about 86% which may be considered quite high for a highly robust estimator.

We also observe that the efficiencies of the AMSTLE become close to 100% when

the sample size increases. These high efficiencies are consistent with the fact that

its asymptotic efficiency is 100%. Instead, under outlier contamination, the PR

and PR-WM estimators have smaller maximum M̂SE than the other estimators

and therefore they may be considered the most robust ones. Figure 1 show that

for small values of z (smaller than 0.9), the AMSTLE is slightly better than the

PR and PR-WM, for intermediate values of z (0.9 < z < 1.5), the PR and PR-

WM are better than the AMSTLE and for large values of z (z larger than 1.5),

the AMSTLE is again better. Although the maximum bias of the PR estimator is

slightly smaller than the one of the PR-WM, the PR-WM has the advantage, as

we have seen in Section 7, of being asymptotically normal.

8.2 Poisson regression

Let Fθ be the Poisson family of distributions. Consider the GLM with link

function g(θ) = m(θ) = log(θ). The vector of covariables is x =(1,x∗)′, where x∗ =

(x1, ...., x5)
′ has distribution N5(0, I) and y|x has distribution Fθ with log(θ) = β′0x

and β0 = (0, c, c, c, c, c)′ with c = 0.4. We will consider the following estimators:

(i) The maximum likelihood estimator (ML).
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(ii) An estimator of the family of optimal conditionally unbiased bounded-influence

estimators (CUBI) proposed in Künsch et al. (1989). We compute this es-

timator with the function qlmRob of the robust library of SPLUS and the

default parameters.

(iii) A robust quasi likelihood estimator (RQL) proposed by Cantoni and Ronchetti

(2001). We compute this estimator with the function qlmrob of the robust-

base package of R. We used the option weights.on.x="RobCov".

(iv) A projection estimator where the initial estimator T0 for the auxiliary model

is of the form (22 ) (PR). We took as η(y) an odd and continuously differ-

entiable function which is constant for |y| ≥ 1. For u ≥ 0, the function η is

defined by

η(u) =





u if 0 ≤ u ≤ 0, 5

−u2 + 2u− 0.25 if 0.5 < u ≤ 1

0.75 if u > 1

and as κ we took the Huber function ηH
0.8 given in (24). As S we use the

MAD scale given by (12). The number of subsamples was N = 500 and

h = 6.

(v) The scores one–step version described in Section 7 of the WM estimator start-

ing from PR (WM-PR). We took ψ(y, φ, s) = η((y − δ(exp(φ), s))/s) where

δ(θ, s) is chosen so that Eθ [η((y − δ(θ, s))/s)] = 0 and η(u) = tanh(u/1.5),

where tanh stands for hyperbolic tangent. We used the same weight function

w as for the estimator PR-WM for the logistic model.

We consider samples of size 100, 200 and 400 and we perform for each situation

500 replications using the same samples for all the estimators. We study the

behavior of the estimators under two situations:
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• (i) Samples without outliers.

• (ii) Samples which contain 10% of outliers. For this purpose we replace 10

observations of each sample of size 100 for identical outliers. The outliers are

of the form (x0,y0), where x0 = (1,2.5, 0, 0, 0, 0). The values of y0 are 0, 1, 2,

3, 4, 5, 10, 15 and 20. The expected value of y when x = x0 and β = β0 is

2.718.

In Table 4 we show the MSE of ML and the MSE efficiencies of the robust

estimators with respect to ML when there is no contamination. In Figure 2 we

plot the MSE of the four robust estimators as a function of y0 when the fraction of

outliers is 10%. The efficiency of the PR estimators is around 60 % which may be

considered rather low, while the efficiencies of the other estimators are between 70

and 80%. Figure 2 shows that in this case the PR and the PR-WM are clearly more

robust than the other estimators. The PR-WM which has a good behavior under

the model and under outlier contamination, appears as the best option among the

five estimators studied for this model.

TABLE 4 ABOUT HERE

FIGURE 2 ABOUT HERE

9. EXAMPLE: FOOD STAMPS DATA

The following example was used by Stefanski, Carroll and Ruppert (1986) and

by Künsch et al. (1989). The response variable is participation on the Food Stamp

Program, i.e., y = 1 denotes participation. The covariates include log(monthly in-

come + 1) (LMI) and two dichotomous variables: tenancy (TEN) and supplemental

income (SI). The model has also an intercept. The data consist of 150 observations.
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The robust procedures considered are the same that were used in the Monte Carlo

study for the logistic model. The only difference is that the weights used for the

WML, WM and PR-WM estimators were computed using only the variable LMI.

The reason is that any high breakdown covariance estimator of the set of variables

that includes a dichotomous variable is singular. Table 5 shows the coefficients and

standard errors of the estimators. We observe that the values of the robust esti-

mates WML, WM, PR, AMSTLE and PR-WM are quite close and are far from

the value of the ML estimator. The comparison between the fitted probabilities

using the PR estimator and the observed y’s, reveals that observations 5 and 66 are

outliers. In fact, their y values are 0 and 1 and the corresponding fitted values of

P (y = 1) are 0.997 and 0.0187 respectively. In Figure 3 we show the Q-Q plots be-

tween theoretical deviance quantiles and observed deviances quantiles introduced

by Garćıa Ben and Yohai (2004). Since the Q-Q plots of the WM, WML and AM-

STLE are very similar, we omit the last two. We note that observation 5 sticks out

more clearly as an outlier in the plot corresponding to the robust estimator and

observation 66 appears as an outlier only in the plots corresponding to the robust

estimators. We observe a cluster of 2 or 3 observations in the middle of the Q-Q

plots that seems to behave differently. One possible explanation of this apparent

misfit is the discontinuity of the theoretical distribution function of the deviances

at 0. The reason of this discontinuity is the lack of observations(y,x) such that

P (y|x) is close to one.

TABLE 5 ABOUT HERE

FIGURE 3 ABOUT HERE

10. CONCLUSIONS
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We have introduced the class of P-estimators for GLM which are based on

projections. These estimators have order of consistency n1/2 and high breakdown

point. One shortcoming of these estimators is that they are not asymptotically

normal and as consequence inference based on these estimators is difficult to imple-

ment. To overcome this problem, we propose one-step scores weighted M-estimators

that use a P-estimator as starting point. These estimators are asymptotically nor-

mal and inherit most of the robust properties of the P-estimators. A Monte Carlo

simulation for the logistic and Poisson model confirm, that at least for this models

the one step estimators, have a combination of efficiency and robustness that com-

pares favorably to other estimators. Therefore we consider that they are a very

good option for fitting GLM.

11. SUPPLEMENTAL MATERIAL

The Supplemental Material available on line contains all the proofs and a nu-

merical algorithm for computing P-estimators.
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TABLES

Table 1. Ratio between maximum and minimum value of S in V(Mλ,β0
, ε).

ε 0.05 0.10 0.20 0.30

d+/d− 1.13 1.29 1.81 2.91

Table 2. Efficiencies Without Outliers for the logistic model

Sample Size MSE Efficiencies with respect to ML

ML WML WM PR AMSTLE PR-WM

100 0.25 93.0 89.2 85.6 83.6 87.3

200 0.11 93.0 89.5 85.1 96.5 88.7

400 0.056 95.2 90.6 81.8 99.8 86.8

Table 3. Maximum Mean Squared Errors with 5% of Outliers for logistic

regression
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Sample Size Estimates

ML WML WM PR AMSTLE PR-WM

100 1.93 0.68 0.54 0.35 0.59 0.39

200 1.84 0.61 0.48 0.27 0.43 0.32

400 1.82 0.60 0.46 0.22 0.42 0.28

Table 4. Efficiencies Without Outliers for Poisson Regression

Sample Size MSE Efficiencies with respect to ML

ML CUBI RQL PR PR-WM

100 0.051 74.2 80.0 64.3 81.4

200 0.024 70.6 81.1 59.1 80.8

400 0.012 71.6 80.0 60.1 82.9

Table 5. Estimated Coefficients for the Food Stamp Data

Estimate INT TEN SI LMI

ML 0.93 (1.63) −1.85 (0.53) 0.90 (0.50) −0.33 (0.27)

WML 5.27 (2.63) −1.82 (0.53) 0.68 (0.52) −1.05 (0.45)

WM 5.42 (1.48) −1.88 (0.27) 0.70 (0.27) −1.08 (0.26)

PR 5.79 −1.84 0.53 −1.12

PR-WM 5.67 (1.06) −1.83 (0.19) 0.60 (0.23) −1.11 (0.17)

AMSTLE 5.49 −1.82 0.67 −1.09
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Figure 1: Mean Squared Errors Under Contamination for Logistic Regression.

Solid Line : AMSTLE, Dashed Line: WM, Bold Solid Line: WM-PR and Bold

Dashed Line: PR.
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Figure 2: Mean Squared Errors Under Contamination for Poisson Regression

Dashed Line: RQL, Bold Dashed line: CUBI, Solid Line: PR and Bold Solid

Line: WM-PR.
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Figure 3: Q-Q Plots of Food Stamp Data
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