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1 Introduction

These notes, written for the CIMPA School on “Systems of polynomial equations” (Argentina,
2003), have two goals: to present the underlying ideas and tools for computing primary decom-
positions of ideals, and to apply these techniques to a recent interesting class of ideals related to
statistics.

Primary decompositions are an important notion both in algebraic geometry and for appli-
cations. There are several algorithms available (the two closest to what we present are [GTZ88]
and [SY96]). A good overview of the state of the art is the paper [DGP99]. Primary decomposi-
tions, and related computations, such as finding minimal and associated primes, the radical of an
ideal, and the equidimensional decomposition of an ideal, are all implemented in most specialized
computer algebra systems, such as CoCoa ([CNR00]), Macaulay 2 ([GS]), and Singular ([GPS01]).
Several years ago, these algorithms and their implementations could handle only very small ex-
amples. Now, with improved implementations, and more efficient computers, larger ideals can be
handled.

However, if the number of indeterminates is large, the implemented algorithms often are unable
to find a primary decomposition, or even to find the minimal primes. This is the case for many of
the ideals associated to Bayesian networks that we consider here.

Our first goal in these lectures is to describe some basic methods for manipulating components
of an ideal. We put these together into an algorithm for primary decomposition, but, we hope
that some of the students will have ideas about novel ways to combine these techniques to a more
efficient algorithm!

Our second goal is to define some interesting ideals, called Markov ideals, associated to a
Bayesian network. In applications, Bayesian networks have been used in many ways, e.g. in
machine learning, in vision and speech recognition, in attempting to reconstruct gene regulatory
networks, and in the analysis of DNA micro-array data. These Markov ideals provide a striking
link between multivariate statistics and algebra and geometry. In these lectures, we do little more
than provide a glimpse into this very interesting and potentially powerful relationship. Here is
one short glimpse: hidden variables in some Markov models correspond to secant loci of Segre
embeddings of products of projective spaces (see [GSS] for details). Although this relationship is
not yet in these notes, if there is time, we will discuss it at CIMPA, as it is related to some of the
computational tools we will cover.
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These Markov ideals often have many components, and can have relatively complicated primary
decompositions. We apply the techniques that we have learned to compute some of these primary
decompositions. Instead of giving canned algorithms for computing primary decompositions, we
will describe several tools that can be used on a given ideal, to help find the primary decomposition
“by hand” (although with the help of a computer algebra system!). It is likely that superior
algorithms exist. Our hope is that one of our students will find one!

In the first lecture, we will set up the situation, and describe the first two tools of computing
primary decompositions: ideal quotients, and splitting principles. As an example, we will find
fixed points of some finite dynamical systems.

In the second lecture, we describe this striking new link between algebra/geometry and statis-
tics. Given a Bayesian network, we can associate an ideal, whose primary decomposition is hard
to compute, yet very likely carries interesting information. In this lecture, we define Bayesian
networks, and give examples of some of their primary decompositions.

In the third lecture, we describe several more tools for computing primary decompositions. We
ask several questions: (1) How do we find zero divisors to use in our splitting principles? (2) How
do we detect if an ideal is prime, or primary? The tools we develop include birational maps, and
the flattener: a polynomial obtained by analyzing the fibers of a projection map. Both of these
techniques rely heavily on a Gröbner basis using product orders. A final technique that we address
is removing redundancy in the computation as soon as possible.

In the final lecture, we use the tools that we have described to compute “by hand” (but using
Macaulay 2!) some of the more interesting primary decompositions of ideals associated to Bayesian
networks. We will also present some open problems related to the primary decompositions of the
Markov ideals.

Some good reading to get ready for these lectures include: the first chapter of the forthcoming
book by Hal Schenck (see [Sch03]), the book [CLO97], and the paper [DGP99]. For delving more
deeply into the Bayesian network material, try reading [GSS], and the references contained in
there.

In these preliminary notes, proofs are not included for most of the results. It is a good exercise
to try to prove them yourself! During the lectures, we will spend more time using these results
than proving them, although we will include some proofs.

Example computer sessions are included for Macaulay 2. This is a system that Dan Grayson
and I have been working on for almost ten years now. The system is freely available, and easy to
install on most computers. The web page is located at http://www.math.uiuc.edu/Macaulay2

2 Lecture #1: Algebraic varieties and components

An excellent place to gain the small amount of background necessary for these lectures is the first
chapter of the forthcoming book by Hal Schenck [Sch03] which is available on-line. This is a very
nice place to see the basics about primary decomposition, with simple examples. In fact, the first
part of the CIMPA lecture will cover some of this material.

Throughout these lectures, let k be a field, and let R = k[x1, . . . , xn]. If J = (f1, . . . , fr) ⊂ R
is an ideal, we let

V (J) = {p ∈ k
n | f1(p) = . . . fr(p) = 0},

where k is the algebraic closure of k. There is a beautiful dictionary which relates the geometry
of X = V (J) to algebraic properties of the ideal J . We refer the reader to Schenck([Sch03]) or
Cox-Little-O’Shea [CLO97] for the details.



For example, if J ⊂ R is a prime ideal (that is, fg ∈ J implies f ∈ J or g ∈ J), then V (J) is
irreducible (that is, cannot be written as the intersection V (I1)∩V (I2) of zero sets which properly
contain V (J)).

Every ideal J in R has a primary decomposition, that is, a decomposition

J = Q1 ∩ . . . ∩Qs,

where each Qi is primary (i.e. if fg ∈ Qi, then f ∈ Qi or gN ∈ Qi, for some integer N .) The
radical

P =
√

Q = {g ∈ R | gN ∈ Q, for some N}
is a prime ideal, and Q is called P -primary.

The primary decomposition is called irredundant if each Pi :=
√

Qi is distinct, and if removing
any one term Qi breaks the equality. Every primary decomposition can be pruned to obtain an
irredundant primary decomposition.

If the primary decomposition is irredundant, then the P1, . . . , Ps are called the associated primes
of J . This set is independent of the particular (irredundant) primary decomposition. The minimal
elements of this set of primes (with respect to inclusion) are called the minimal primes of J . The
radical of J is the intersection of these minimal primes. If P is a minimal prime, the corresponding
primary ideal is unique (i.e. doesn’t depend on the specific irredundant primary decomposition).
If P is an associated prime, but not minima, then P is called an embedded prime. The primary
ideal of an embedded prime is not unique.

Example 2.1. Let J = (x2, xy) ⊂ k[x, y]. For each N ≥ 1, we obtain a different primary
decomposition of J :

J = (x) ∩ (x2, y) = (x) ∩ (x2, xy, yN ).

The associated primes are P1 = (x) and P2 = (x, y), where P1 is the only minimal prime, and P2

is embedded. The primary ideal Q1 = (x) is the same no matter which primary decomposition we
use, but the primary ideal Q2 of P2 depends on the decomposition. Geometrically, V (J) is simply
the line x = 0. Thinking algebraically (or, using schemes), the zero set should really be considered
as the union of this line, and a “fat” embedded point at the origin.

In these lectures, what computations concern us? Given J , we would like to be able to compute
(in roughly increasing order of difficulty):

• The radical of J .

• The set of minimal primes of J .

• The set of associated primes of J .

• An irredundant primary decomposition of J .

Finding the P -primary component Q of J , where P is a minimal prime, is another useful
computation.

Our plan in these lectures is to present techniques to enable us to compute these.



2.1 Tool #1: Ideal quotients

Ideal quotients form one of the most important constructions in ideal theory.

Definition 2.2 (Ideal quotient and saturation). If I ⊂ R is an ideal, and f ∈ R, then define
the ideal quotient

(I : f) := {g ∈ R | gf ∈ I},
and the saturation of I by f :

(I : f∞) := {g ∈ R | gfN ∈ I, for some N},

This somewhat opaque definition gives little clue of their importance.

Lemma 2.3. Let Q be a P -primary ideal, and let f ∈ R. Then
(a) If f 6∈ P , then (Q : f) = Q.
(b) If f ∈ P , but f 6∈ Q, then (Q : f) is P -primary.
(c) If f ∈ Q, then (Q : f) = (1).

An elementary fact, which follows directly from the definition, is that

(J1 ∩ J2 ∩ · · · ∩ Jr) : f = (J1 : f) ∩ · · · ∩ (Jr : f).

Lemma 2.4. If J = Q1 ∩ · · · ∩ Qr is an irredundant primary decomposition of J , where Qi is
Pi-primary, and if f ∈ Qj only if j ≥ s + 1, then

J : f = (Q1 : f) ∩ · · · ∩ (Qs : f)

is an irredundant primary decomposition of J : f .

Saturations have even simpler behavior.

Lemma 2.5. Let Q be a P -primary ideal, and let f ∈ R. Then
(a) If f 6∈ P , then (Q : f∞) = Q.
(b) If f ∈ P , then (Q : f∞) = (1).

Lemma 2.6. If J = Q1 ∩ · · · ∩ Qr is an irredundant primary decomposition of J , where Qi is
Pi-primary, and if f ∈ Pj only if j ≥ s + 1, then

J : f∞ = Q1 ∩ · · · ∩Qs

is an irredundant primary decomposition of (J : f∞).

This says that, geometrically, the components of V (J : f∞) are precisely the components of
V (J) which do not lie on the hypersurface f = 0.

What makes ideal quotients so useful is that they may be computed using Gröbner bases.

Proposition 2.7. Let J ⊂ R = k[x1, . . . , xn] be an ideal, where k is a ring (e.g. a field, or a
PID), and let f ∈ R. If L = J + (tf − 1) ⊂ k[t, x1, . . . , xn], then

(J : f∞) = L ∩ k[x1, . . . , xn].



This is not always the most efficient method to compute saturations. It also doesn’t allow one
to compute ideal quotients easily. There are (at least) two further ways to compute ideal quotients
which are often used: the reverse lexicographic order, and syzygies. We’ll describe the method
using the reverse lexicographic order, but we’ll leave out the syzygy method.

If f = xn is a variable, and if J is homogeneous, then (J : xn) and (J : x∞n ) may be computed
using a single reverse lexicographic Gröbner basis. The key insight is that if > is the term order
in the following proposition, then xn|g if and only if xn|in(g).

Proposition 2.8 (Bayer). Let J ⊂ k[x1, . . . , xn] be a homogeneous ideal, and let > be the graded
reverse lexicographic order (GrevLex) with x1 > . . . > xn. If the Gröbner basis of J is

{g1, . . . , gr, hr+1, . . . , hs},

where gi = xai
n hi, each ai > 1, and xn does not divide the hi, then

(a) {xa1−1
n h1, . . . , x

ar−1
n hr, hr+1, . . . , hs is a Gröbner basis of (I : xn), and

(b) {h1, . . . , hs} is a Gröbner basis of J : f∞.

Exercise 2.9. This idea can be used to compute J : f and J : f∞ when f is not a variable.
(a) Show that if J is homogeneous, and f is homogeneous of degree d, then Bayer’s method

applied to the homogeneous ideal J +(f − z), where z is a new variable having degree d can be used
to compute J : f and J : f∞.

(b) Show how to compute the homogenization of an ideal by using saturation.
(c) Show how to use homogenization and the trick in (a), to compute J : f and J : f∞ when J

and f are not necessarily homogeneous.

Example 2.10. Consider the ideal J = (c2 − bd, bc − ad) ⊂ Q[a, b, c, d]. Notice that the plane
c = d = 0 is contained in the zero set of J . Let’s look at this ideal in Macaulay 2.

i1 : R = QQ[a..d];

i2 : J = ideal(c^2-b*d, b*c-a*d)

2
o2 = ideal (c - b*d, b*c - a*d)

o2 : Ideal of R

First, here is the primary decomposition of J :
i3 : primaryDecomposition J

-- used 0.02 seconds
-- used 0. seconds
-- used 0.09 seconds

2 2
o3 = {ideal (d, c), ideal (c - b*d, b*c - a*d, b - a*c)}

o3 : List

The reverse lexicographic order is the default in Macaulay 2:
i4 : gens gb J

o4 = | c2-bd bc-ad b2d-acd |

1 3
o4 : Matrix R <--- R



i5 : J : d

2 2
o5 = ideal (c - b*d, b*c - a*d, b - a*c)

o5 : Ideal of R

i6 : saturate(J,d)

2 2
o6 = ideal (c - b*d, b*c - a*d, b - a*c)

o6 : Ideal of R

i7 : J == intersect(ideal(c,d),J:d)

o7 = true

2.2 Tool #2: Splitting principles

The key technique on which almost all algorithms for primary decomposition are based is the
following very simple lemma.

Proposition 2.11. If (J : f∞) = (J : f `), then

J = (J : f∞) ∩ (J, f `).

Proof. Suppose that g ∈ (J : f∞) and also that g ∈ (J, f `). We want to show that g ∈ J . So
g = a + bf `, for some a ∈ J and b ∈ R. However, gf ` ∈ J , so bf2` ∈ J . Therefore b ∈ (J : f∞) =
(J : f `), and so g ∈ J .

If we are only interested in finding all of the minimal primes, we may take the radicals of both
sides to obtain: for any f ∈ R, √

J =
√

J : f∞ ∩
√

J, f.

Another useful splitting formula is: if f1f2 . . . fr ∈ J , then
√

J =
√

J, f1 ∩ . . . ∩
√

J, fr.

If we have a way of finding, given an ideal J , a zero divisor f mod J (so that J : f 6= J), then
we may build a recursive algorithm to compute a decomposition of J .

2.3 An example: Finite dynamical systems

As an example, let’s consider finite dynamical systems: given a prime number p, let Fp be the
finite field with p elements, let R = Fp[x1, . . . , xn], and let F : Fn

p −→ Fn
p be defined by

a = (a1, . . . , an) 7→ (f1(a), . . . , fn(a)),

where fi ∈ R.
By iterating F , we obtain a directed graph whose vertices are the pn points of Fn

p , and there
are directed edges from a to F (a).

In this example, we are interested in finding the fixed points of F , or more generally, of F r

(apply F r times) for some integer r. The fixed points of F are the zeros of the ideal J =
(x1−f1, . . . , xn−fn) which have all coordinates in Fp. The problem is that there may be solutions



over an extension field of Fp and we are not particularly interested in these solutions. Notice that
all of the elements x of Fp satisfy xp − x = 0. So, if we include these polynomials, then our zero
set will only contain elements of the field we are interested in.

As an added bonus, the resulting ideal is radical, and so we don’t have to worry about embedded
components or primary components:

Lemma 2.12. Let J = (g1, . . . , gs, x
p
1 − x1, . . . , x

p
n − xn) ⊂ k[x1, . . . , xn]. For any choice of gi’s,

J =
√

J .

We may use any of these splitting principles to compute the minimal primes (and therefore the
primary decomposition) of J , since we have many zero-divisors around: each xi is (potentially) a
zero-divisor!

Example 2.13. Let R = k[x1, . . . , x4], where k = F2. Let F : k4 −→ k4.
The associated directed graph has 24 = 16 nodes. Let’s find the fixed points of one such finite

dynamical system, with the aid of Macaulay 2. In such a small example, we can compute the fixed
points by hand. For larger examples, e.g. p = 5, n = 20, this is not so easy!

i8 : R = ZZ/2[x_1 .. x_4];

i9 : L = ideal(x_1^2 + x_1, x_2^2 + x_2, x_3^2 + x_3, x_4^2 + x_4);

o9 : Ideal of R

Our sample finite dynamical system:
i10 : F = matrix {{x_1*x_2*x_4+x_1+x_4,

x_1*x_3*x_4+x_2*x_4+x_2,
x_1*x_3+x_3*x_4+x_3,
x_1*x_3*x_4+x_1+x_4}}

o10 = | x_1x_2x_4+x_1+x_4 x_1x_3x_4+x_2x_4+x_2 x_1x_3+x_3x_4+x_3 x_1x_ · · ·
1 4

o10 : Matrix R <--- R

Fixed points of F are precisely the zeros of the following ideal.
i11 : J = L + ideal (vars R - F);

o11 : Ideal of R

i12 : transpose gens gb J

o12 = {-1} | x_1+x_4 |
{-2} | x_4^2+x_4 |
{-2} | x_3x_4+x_1 |
{-2} | x_2x_4+x_3x_4 |
{-2} | x_3^2+x_3 |
{-2} | x_2^2+x_2 |

6 1
o12 : Matrix R <--- R

Although we could solve these equations by hand, we instead blindly follow the recursion using
indeterminates as (potential) zero divisors. We start with x1.

i13 : J1 = J : x_1

o13 = ideal (x + 1, x + 1, x + 1, x + 1)
4 3 2 1

o13 : Ideal of R



i14 : J2 = ideal gens gb(J + ideal(x_1))

2 2
o14 = ideal (x , x , x + x , x + x )

4 1 3 3 2 2

o14 : Ideal of R

The intersection of these ideals is J .
i15 : J == intersect(J1,J2)

o15 = true

The first ideal is already linear, so its zero set is a point. From the description of J2 we could write
down the rest of the solutions, but let’s continue. Split using x3:

i16 : J21 = J2 : x_3

2
o16 = ideal (x , x + 1, x , x + x )

4 3 1 2 2

o16 : Ideal of R

i17 : J22 = ideal gens gb(J2 + ideal(x_3))

2
o17 = ideal (x , x , x , x + x )

4 3 1 2 2

o17 : Ideal of R

Now we can split each of these using x2, obtaining 5 solutions total. Already, one can imagine ways
to improve the efficiency of even this small example. For larger problems, these improvements can
make the difference between obtaining an answer and waiting forever!

We could have computed this directly in Macaulay 2. The decompose routine provides the
list of minimal primes. The primaryDecomposition routine provides an irredundant primary
decomposition.

i18 : C = decompose J;

Display these ideals:
i19 : C/(I -> (<< toString I << endl));
ideal(x_2,x_3,x_4,x_1)
ideal(x_2+1,x_3,x_4,x_1)
ideal(x_2+1,x_3+1,x_4,x_1)
ideal(x_2,x_3+1,x_4,x_1)
ideal(x_2+1,x_3+1,x_4+1,x_1+1)

3 Lecture #2: Bayesian networks and Markov ideals

The emerging field of algebraic statistics [GPW01] advocates polynomial algebra as a tool in the
statistical analysis of experiments and discrete data. Statistics textbooks define a statistical model
as a family of probability distributions, and a closer look reveals that these families are often
algebraic varieties: they are the zeros of some polynomials in the probability simplex [GHKM01],
[SS00].

We begin by reviewing the general algebraic framework for independence models presented
in [Stu02, §8]. Let X1, . . . , Xn be discrete random variables where Xi takes values in the finite
set [di] = {1, 2, . . . , di}. We write D = [d1] × [d2] × · · · × [dn] so that CD denotes the complex



vector space of n-dimensional tables of format d1 × · · · × dn. We introduce an indeterminate
pu1u2···un which represents the probability of the event X1 = u1, X2 = u2, . . . , Xn = un. These
indeterminates generate the ring C[D] of polynomial functions on the space of tables CD.

A conditional independence statement has the form

A is independent of B given C ( in symbols: A ⊥⊥ B | C) (1)

where A,B and C are pairwise disjoint subsets of {X1, . . . , Xn}. If C is empty then (1) means
that A is independent of B. By [Stu02, Proposition 8.1], the statement (1) translates into a set
of homogeneous quadratic polynomials in C[D], and we write IA⊥⊥B|C for the ideal generated by
these polynomials.

The following example gives the basic idea and method for finding these ideals.

Example 3.1. Let X1, X2, X3 be three random variables, with d1 = d3 = 2 and d2 = 3. Let’s
write down the ideal in k[pu1u2u3 ] (12 variables) which defines the set of probability distributions
which satisfy X1 ⊥⊥ X2 | X3.

A probability distribution satisfies this independence condition if

Pr(X1 = u1, X2 = u2 | X3 = u3) = Pr(X1 = u1 | X3 = u3)Pr(X2 = u2 | X3 = u3),

for all choices of ui ∈ [di]. By removing the conditional probabilities, and multiplying by Pr(X3 =
u3), we obtain

p++u3pu1u2u3 = pu1+u3p+u2u3 ,

where we have replaced Pr by p, and a “+” means sum over all possible values in that variable
(i.e. marginalize over that variable). For example,

p1+2 = p112 + p122 + p132.

It is a simple exercise in determinants to show that the ideal generated by

{p++u3pu1u2u3 − pu1+u3p+u2u3 | all u1, u2, u3},

is the same as the ideal generated by the six 2 by 2 minors of the matrices M1 and M2, where

Mi =
(

p11i p12i p13i

p21i p22i p23i

)

Note that all 12 indeterminates appear, and each matrix has 6 of them.

The general case goes the same way: The ideal IA⊥⊥B|C is generated by the 2 by 2 minors of
matrices Mi, for i = 1..c, where c is the number of possible values of C. Each matrix is obtained
by making an a × b matrix where the j, kth entry is the linear polynomial in the pu1...un which
represents Pr(A = j, B = k, C = i).

Proposition 3.2. For any choice of A,B, and C, the ideal IA⊥⊥B|C is prime.

The interesting part begins when we have more than one independence statement.

Definition 3.3. If M = {A1, A2, . . . , Ar} is a set of independence statements, define

IM = IA1 + · · ·+ IAr .



Example 3.4 (The contraction lemma). In statistics, there is a lemma that says that any
probability distribution which satisfies the two independence statements X1 ⊥⊥ X2 | X3, and
X2 ⊥⊥ X3, also satisfies X2 ⊥⊥ {X1, X3}.

In this example, we investigate the algebraic analog of this statement. Let M = {X1 ⊥⊥ X2 |
X3, {X2 ⊥⊥ X3}. Let’s suppose for now that d1 = d2 = d3 = 2, i.e. we have three binary random
variables. The first independence statement translates into two quadratics:

φ1 = det
(

p111 p121

p211 p221

)
, φ2 = det

(
p112 p122

p212 p222.

)

The second statement translates into a single determinant:

φ = det
(

p+11 p+12

p+21 p+22

)
,

where for example p+11 = p111 + p211.
So IM = (φ1, φ2, φ).
If we change coordinates in C[D] by replacing each unknown p1jk by p+jk =

∑i=d1
i=1 p1jk, this

ideal IM transforms to a binomial ideal in C[D], i.e. generated by polynomials which are differences
of two monomials. Binomial ideals enjoy many nice properties. For instance, all of their reduced
Gröbner bases consist of binomials, and they have primary decompositions where each associated
prime and primary ideal is binomial. For more details, see [ES96].

The algebraic analog of the contraction lemma is the primary decomposition of this ideal. The
ideal IM has 3 components in its primary decomposition (all prime).

IM = P1 ∩ P2 ∩ IX2⊥⊥{X1,X3},

where P1 = (p+11, p+21, φ2), and P2 = (p+12, p+22, φ1). This implies that any probability distri-
bution which satisfies the two independence statements M also satisfies the statement: X2 ⊥⊥
{X1, X3}. The algebraic picture is more complicated: outside of the probability simplex, these two
zero sets differ.

As a warmup for computing primary decompositions later, try

Exercise 3.5. (a) Prove that this is a primary decomposition of IM.
(b) Consider the same M, but now suppose that d1 = d2 = 2 and d3 = 3. Write down the ideal

IM and find a primary decomposition for IM. Is this ideal radical? What if d3 ≥ 4?

3.1 Bayesian networks and associated ideals

A Bayesian network is an acyclic directed graph G with vertices X1, . . . , Xn.
For a given node Xi, let pa(Xi) denote the set of parents of vertex Xi in G, and let nd(Xi) be

the set of non-descendents of Xi, excluding the parents of Xi. (A non-descendent of Xi is a vertex
Xj such that there is no directed path from Xi to Xj .).

The local Markov property on G is the set of independence statements

local(G) = {Xi ⊥⊥ nd(Xi) | pa(Xi) : i = 1, 2, . . . , n},
The global Markov property, global(G), is the set of independence statements A ⊥⊥ B | C, for

any triple A,B, C of subsets of pairwise disjoint vertices of G such that A and B are d-separated
by C.



4

3 2

1

Figure 1: A Bayesian network on 4 vertices

The notion of d − separated (“directed separated”) is a bit technical. Since we don’t really
need the definition for these lectures, we refer to [GSS] or to [Lau96] for the definition.

For any Bayesian network G, we have local(G) ⊂ global(G). Therefore we have inclusions
Ilocal(G) ⊂ Iglobal(G), and Vglobal(G) ⊂ Vlocal(G).

Example 3.6. Let G be the network on four binary random variables shown in 1.
We (Luis Garcia, Bernd Sturmfels and myself) have written code in Macaulay 2 and in Singular

for computing these independence conditions, and the resulting ideals. These files will be available
for your use.

i20 : load "markov.m2"

A graph is input as a list of parents of each node. The above graph is represented as the following
list.

i21 : G = {{},{1},{1},{2,3}};

The Markov conditions come as a list of triples of sets of integers. Each triple represents a single
independence statement.

i22 : LM = localMarkovConditions G;

i23 : LM/print;
{Set {1}, Set {4}, Set {2, 3}}
{Set {3}, Set {2}, Set {4}}

i24 : GM = globalMarkovConditions G;

i25 : GM/print;
{Set {1}, Set {4}, Set {2, 3}}
{Set {3}, Set {2}, Set {4}}

Note that for this example, local(G) and global(G) are both the same set:

{1 ⊥⊥ 4 | {2, 3}, 2 ⊥⊥ 3 | 4}.

i26 : R = probring(2,2,2,2);

i27 : numgens R

o27 = 16



i28 : gens R

o28 = {p , p , p , p , p , p , p · · ·
1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2 1,2,1,1 1,2,1,2 1, · · ·

o28 : List

i29 : C = indepMatrices((2,2,2,2),set{1},set{4},set{2,3});

i30 : C2 = indepMatrices((2,2,2,2),set{2},set{3},set{4});

i31 : C = join(C,C2);

i32 : C/(m -> (<< m << endl << endl));
| p_(1,1,1,1) p_(1,1,1,2) |
| p_(2,1,1,1) p_(2,1,1,2) |

| p_(1,1,2,1) p_(1,1,2,2) |
| p_(2,1,2,1) p_(2,1,2,2) |

| p_(1,2,1,1) p_(1,2,1,2) |
| p_(2,2,1,1) p_(2,2,1,2) |

| p_(1,2,2,1) p_(1,2,2,2) |
| p_(2,2,2,1) p_(2,2,2,2) |

| p_(1,1,1,1)+p_(2,1,1,1) p_(1,1,2,1)+p_(2,1,2,1) |
| p_(1,2,1,1)+p_(2,2,1,1) p_(1,2,2,1)+p_(2,2,2,1) |

| p_(1,1,1,2)+p_(2,1,1,2) p_(1,1,2,2)+p_(2,1,2,2) |
| p_(1,2,1,2)+p_(2,2,1,2) p_(1,2,2,2)+p_(2,2,2,2) |

The ideal, after making the change of coordinates discussed above (so that p1111 refers to p+111,
and p2111 still refers to p2111):

i33 : J = trim localIdeal G;

o33 : Ideal of R

i34 : transpose generators J

o34 = {-2} | p_(1,2,2,2)p_(2,2,2,1)-p_(1,2,2,1)p_(2,2,2,2) |
{-2} | p_(1,2,1,2)p_(2,2,1,1)-p_(1,2,1,1)p_(2,2,1,2) |
{-2} | p_(1,1,2,2)p_(2,1,2,1)-p_(1,1,2,1)p_(2,1,2,2) |
{-2} | p_(1,1,1,2)p_(2,1,1,1)-p_(1,1,1,1)p_(2,1,1,2) |
{-2} | p_(1,1,2,2)p_(1,2,1,2)-p_(1,1,1,2)p_(1,2,2,2) |
{-2} | p_(1,1,2,1)p_(1,2,1,1)-p_(1,1,1,1)p_(1,2,2,1) |

6 1
o34 : Matrix R <--- R

The ideal J is minimally generated by 6 binomial quadrics.

One of the most useful aspects of Bayesian networks is that they provide a useful factorization
of the joint probability distribution of the n random variables. In this example, note that

Pr(X1 = u1, . . . , X4 = u4) =
Pr(X4 = u4)× Pr(X3 = u3 | X4 = u4)× Pr(X2 = u2 | X3 = u3, X4 = u4)
×Pr(X1 = u1 | X2 = u2, X3 = u3, X4 = u4)

= Pr(X4 = u4)× Pr(X3 = u3 | X4 = u4)× Pr(X2 = u2 | X4 = u4)
×Pr(X1 = u1 | X2 = u2, X3 = u3)

If we set Pr(X4 = 1) := a and Pr(X4 = 2) := 1 − a, and similarly let Pr(X3 = 1 | X4 =
k) := bk, let Pr(X2 = 1 | X4 = k) := ck, and Pr(X1 = 1 | X2 = j, X3 = k) := djk, then the joint



probabilities factor. For example, p1111 = ab1c1d11, p1112 = (1− a)b2c2d11, p1121 = a(1− b1)c1d12,
and so on. Instead of requiring 15 parameters, such a probability distribution may be specified
using 10 numbers. This is a small example; when the number of vertices is large, and the graph is
sparse, the savings is dramatic.

If we denote C[E] := C[a, b1, b2, c1, c2, d11, . . . , d22], we may define a ring map

Φ : C[D] −→ C[E].

In what follows we shall assume that every edge (i, j) of the Bayesian network G satisfies i > j.
In particular, the node 1 is always a sink and the node n is always a source.

For any integer r ∈ [n] and ui ∈ [di] as before, we abbreviate the marginalization over the first
r random variables as follows:

p++···+ur+1···un
:=

d1∑

i1=1

d2∑

i2=1

· · ·
dr∑

ir=1

pi1i2···irur+1···un .

This is a linear form in our polynomial ring C[D]. We denote by p the product of all of these linear
forms.

As in the example, given a Bayesian network G, we obtain a factorization map:

Φ : C[D] −→ C[E].

The main theorem, which is the algebraic analog of the factorization for the joint probabilities for
a Bayesian network is the following:

Theorem 3.7. The prime ideal ker(Φ) is a minimal primary component of both of the ideals
Ilocal(G) and Iglobal(G). More precisely,

(
Ilocal(G) : p∞

)
=

(
Iglobal(G) : p∞

)
= ker(Φ). (2)

For a proof, see [GSS].
This result suggests many questions, most of them unsolved. For example:

Problem 3.8. Find conditions on G so that Iglobal(G) is a prime ideal (and therefore equal to
kerΦ).

Problem 3.9. Find the primary decomposition of Ilocal(G) or of Iglobal(G).

In the remainder of these lectures, we will develop the tools needed to answer these questions
computationally, for small networks G.

4 Lecture #3: Tools for computing primary decompositions

In order to use the techniques we have already considered to make an algorithm for computing a
primary decomposition, we must answer these questions three.

• Question #1: How do we find zero divisors to use with one of our splitting principles?

• Question #2: How can we detect that an ideal is prime or primary?



• Question #3: Practice shows that the splitting tree is highly redundant. How should we
fight this problem?

We will provide answers to these questions. But: keep your mind open. You might find better
methods yourself!

Example 4.1. As a running example throughout this lecture, let’s consider the simple example
which occured in the contraction lemma in the second lecture. This is an ideal generated by 3
quadrics, in 8 unknowns. Let’s rename the unknowns so that we can avoid indices.

i35 : R = QQ[a..h];

i36 : J = ideal(a*d-b*c, e*h-f*g, a*f-b*e);

o36 : Ideal of R

Just so we know the answer ahead of time, here is the primary decomposition:
i37 : (primaryDecomposition J)/print;

-- used 0.02 seconds
-- used 0.01 seconds
-- used 0.22 seconds

ideal (b, a, f*g - e*h)
ideal (f, e, b*c - a*d)
ideal (f*g - e*h, d*g - c*h, b*g - a*h, d*e - c*f, b*e - a*f, b*c - a*d)

There are three primary components. In many ways, this is too simple of an example: all of the
components have the same dimension (5), and all of the primary components are prime, so this is
a radical ideal. The example still provides a good picture of the different tools and also some of
the problems which occur.

4.1 Finding zero divisors

Given an ideal J = (f1, . . . , fr) ⊂ k[x1, . . . , xn], how can we find a zero divisor g mod J (i.e. an
element g for which J : g 6= J)? One method that often works is to examine the generators fi and
see if they factor. If so, use a factor as the zero divisor g. Often no fi will factor. In this case,
one may start computing a Gröbner basis, and examine each new Gröbner basis element gi. If gi

factors, use this factorization to split the ideal (This is the basic description of what is known as
the factoring Gröbner basis algorithm). The exact details of how best to use this are not clear,
and vary with the problem domain. There is definitely room for improvement here in existing
algorithms!

Suppose that you cannot find a factor with one of these methods, or, perhaps, are unwilling or
unable to look there for zero divisors? What then? Our answer is obtained by analyzing projection
maps.

4.2 Projections and elimination of variables

Let R = k[x] = k[x1, . . . , xn], where k is a field. Choose a subset of variables

t = {t1, . . . , td} ⊂ x = {x1, . . . , xn},

and let u = x \ t. The inclusion k[t] ⊂ k[u, t] = k[x] corresponds geometrically to the projection
map kn −→ kd defined by sending a point (u, t) = (u1, . . . , un−d, t1, . . . , td) to t ∈ kd. The map of
rings φ : k[t] −→ k[u, t]/J corresponds to the projection map π : V (J) ⊂ kn −→ kd, and the map of
rings k[t]/J1 ↪→ k[u, t]/J corresponds to the projection map π : V (J) −→ V (J1) = π(V (J)), where



J1 = ker(φ). If J is not a radical ideal, or k is not an algebraically closed field such as C, then
this correspondence between the algebra and geometry needs to be defined more carefully: this is
where schemes enter the algebraic geometry picture. For us though, we will think geometrically,
but work algebraically, and so we won’t be concerned with these subtleties.

Recall that we can compute L = ker(φ) by using Gröbner bases. A term order on k[x, t] is
called an elimination order (eliminating x) if in(f) ∈ k[t] implies that f ∈ k[t].

Proposition 4.2. If > is an elimination order eliminating u, and J ⊂ k[u, t] is an ideal, with
Gröbner basis {f1, . . . , fr, h1, . . . , hs}, where hi ∈ k[t], but each fi 6∈ k[t], then {h1, . . . , hs} is a
Gröbner basis (and therefore a generating set) of J1 = J ∩ k[t].

For the purpose of analyzing projection maps, the product order u >> t is a good choice (this
is sometimes called a block order): uatb > uctd if ua >grevlex uc, or ua = uc and tb >grevlex td.

Example 4.3. Continuing Example 4.1, suppose that t = {a, b, c, d} and u = {e, f, g, h}.
i38 : R1 = QQ[e,f,g,h,a,b,c,d, MonomialOrder=>ProductOrder{4,4}];

i39 : L = substitute(J,R1)

o39 = ideal (- b*c + a*d, - f*g + e*h, - e*b + f*a)

o39 : Ideal of R1

i40 : transpose gens gb L

o40 = {-2} | bc-ad |
{-2} | eb-fa |
{-2} | fg-eh |
{-3} | ead-fac |

4 1
o40 : Matrix R1 <--- R1

So J ∩ k[a, b, c, d] = (ad− bc).

4.3 Tool: Birational projections

Suppose that J contains an element f which is linear in a variable, say, x1. Write f = gx1+h, where
g, h don’t involve x1. If g is a non-zero divisor on J , then the projection map k[t]/J1 −→ k[t, x1]/J
is called birational (where t = {x2, . . . xn} and J1 = ker(k[t] −→ k[x1, t]/J). Geometrically, this
means that for almost all points p of V (J1) ⊂ kn−1, there is a unique point (p1, p) ∈ V (J) which
maps to it. If g(p) 6= 0, then this value is p1 = −h(p)

g(p) .
Birational maps are well-behaved with respect to primary decompositions:

Proposition 4.4. Let J ⊂ k[x1, . . . , xn] be an ideal, containing a polynomial f = gx1 + h, with
g, h not involving x1, and g a non-zero divisor modulo J . Let J1 = J ∩ k[x2, . . . , xn] be the
elimination ideal. Then

(a) J =
(〈J1, gx1 + h〉 : g∞

)
,

(b) J is prime if and only if J1 is prime.
(c) J is primary if and only if J1 is primary.
(d) Any irredundant primary decomposition of J1 lifts to an irredundant primary decomposition

of J .

This tool may often be used to prove that an ideal is prime (if it is!), and can sometimes simplify
the work to look for zero divisors. However, caution is required: the resulting ideal J1, although
it is an ideal in one fewer variable, can often be much more complicated than J .



Example 4.5. Continuing Example 4.1, all variables occur linearly, and so we may choose any
one we wish, e.g. a. The corresponding coefficient is d.

i41 : use R;

In this example, d is not a zero divisor:
i42 : J : d == J

o42 = true

We use the Macaulay2 “eliminate” package for eliminating variables.
i43 : load "eliminate.m2"

i44 : I1 = eliminate(J,a)

o44 = ideal (f*g - e*h, b*d*e - b*c*f)

o44 : Ideal of R

The variable f occurs linearly, with coefficient g. It so happens that g is also a non-zero-divisor:
i45 : I1 : g == I1

o45 = true

So I1 is birational to
i46 : I2 = eliminate(I1,f)

o46 = ideal(b*d*e*g - b*c*e*h)

o46 : Ideal of R

This single element has three factors:
i47 : factor I2_0

o47 = (b)(- d*g + c*h)(e)(-1)

o47 : Product

The original ideal J is birational to I2. Therefore, the original ideal has three components, all
prime. We could use this factorization to produce the three primary components. Exercise: how?

4.4 Tool: The flattener of a projection

Let J ⊂ k[x1, . . . , xn] be an ideal. A set of variables t = {xi1 , . . . , xid
} is called a maximal

independent set if J ∩ k[t] = (0) and t has maximal cardinality over all such subsets with this
property.

Proposition 4.6. Let in(J) be the initial monomial ideal of J ⊂ k[x] with respect to some arbitrary
term order. Then every maximal independent set of in(J) is also a maximal independent set of J .

The cardinality d of a maximal independent set of J is called the dimension of J .
Geometrically, if J ∩ k[t] = (0), the map V (J) −→ kd is dominant, i.e. the closure of the image

is all of kd. In this case, every component of J which also maps dominantly to kd must have
the same dimension d as J . A component of J which maps into a subvariety of kd (algebraically:
a primary ideal Q of J for which Q ∩ k[t] 6= (0)) can either have dimension d, or have smaller
dimension.

Suppose that t ⊂ x is a maximal independent set for in(J) and therefore for J , let u = x \ t,
and let > be the product order u >> t defined above. Let {g1, . . . , gr} be a reduced Gröbner basis
for the ideal J , where

gi = αi(t)uAi + lower terms in u variables.



Since J ∩ k[t] = (0), each of the monomials uAi 6= 1. Define inu(J) = (uA1 , . . . , uAr ) ⊂ k[u].
Let h ∈ k[t] be any non-zero element such that for each minimal generator uA of the mononmial

ideal inu(J), there is a Gröbner basis element gi of J , such that uAi = uA, and αi(t)|h(t). For
example, we could take h = lcm{α1, . . . , αr} ∈ k[t]. Any such element h is called a flattener of the
inclusion k[t] ⊂ k[u, t]/J .

(The reason that h is called a flattener, comes from commutative algebra. One can prove that
the inclusion of localized rings k[t]h ⊂ k[u, t]h/J is a flat extension. Caution though: our element
h enjoys more properties than an arbitrary element that satisfies this flatness).

Proposition 4.7. If h ∈ k[t] is a flattener for the inclusion k[t] ↪→ k[u, t]/J defined above, and if
J = Q1 ∩ . . .∩Qm is an irredundant primary decomposition such that Qi ∩k[t] = (0), iff 1 ≤ i ≤ `,
then

(J : h∞) = Q1 ∩ . . . ∩Q`

is an irredundant primary decomposition of the saturation J : h∞.
Furthermore, if d = dim k[x, t]/J , then every component Q1, . . . , Q` dominates kd, and has

dimension d.

Algebraically, h allows us to compute the “generic fiber”:

Proposition 4.8. If h ∈ k[t] is a flattener as defined above, then

(J : h∞) = Jk(t)[u] ∩ k[u, t].

This is great! It allows us to use the results from David Cox’s lectures on computing the
primary decomposition of zero dimensional ideals, since the extended ideal Jk(t)[u] is a zero di-
mensional ideal in k(t)[u]. Given a primary decomposition of this extended ideal, we get a primary
decomposition of (J : h∞):

Proposition 4.9. If Jk(t)[u]∩ k[u, t] = J , and if Q̃1 ∩ · · · ∩ Q̃s is an irredundant primary decom-
position of Jk(t)[u], then if Qi = Q̃i ∩ k[u, t], then J = Q1 ∩ · · · ∩ Qs is an irredundant primary
decomposition of J .

Applying this proposition to J : h∞ (instead of to J) gives a primary decomposition of J : h∞,
if h is the flattener defined above.

Example 4.10. Let’s use the flattener method to compute the primary decomposition of the
ideal of Example 4.1. Even though this is a simple example, it highlights several possible efficiency
problems. First, we find a maximal independent set of J .

i48 : independentSets J

o48 = {a*b*d*f*h, a*c*d*f*h, a*c*e*f*h, c*d*e*f*h, a*b*d*g*h, a*c*d*g* · · ·
o48 : List

This finds 8 such sets, each monomial represents one independent set. For example, the first set
found is t = {a, b, d, f, h}.

i49 : R1 = QQ[c,e,g,a,b,d,f,h,MonomialOrder=>ProductOrder{3,5}];

i50 : L = substitute(J,R1)

o50 = ideal (- c*b + a*d, e*h - g*f, - e*b + a*f)

o50 : Ideal of R1



i51 : gens gb L

o51 = | eh-gf eb-af cb-ad gbf-afh caf-ead |

1 5
o51 : Matrix R1 <--- R1

By examining the lead terms and coefficients, we see that inu(J) = (c, e, g), and that the αi

corresponding to c is a, to e are b and h, and to g is bf . Therefore abf is a flattener. Let F = abf .
i52 : use R

o52 = R

o52 : PolynomialRing

i53 : J1 = saturate(J,a*b*f)

o53 = ideal (f*g - e*h, d*g - c*h, b*g - a*h, d*e - c*f, b*e - a*f, b* · · ·
o53 : Ideal of R

i54 : J1 == J : (a*b*f)

o54 = true

So J = J1 ∩ J2, where
i55 : J2 = trim(J + ideal(a*b*f))

o55 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, a*b*f)

o55 : Ideal of R

i56 : J == intersect(J1,J2)

o56 = true

As it turns out, J1 is a prime ideal. How can we see this? Since the initial ideal inu(J1) = (c, e, g),
this means that the projection map is birational, and therefore the ideal J1 is prime and even
more, is rational.

i57 : Q1 = J1;

o57 : Ideal of R

Now let’s decompose J2.
i58 : independentSets J2

o58 = {c*d*e*f*h, a*b*d*g*h, a*c*d*g*h, c*d*e*g*h}

o58 : List

We’ll use the first one.
i59 : R1 = QQ[a,b,g, c,d,e,f,h,MonomialOrder=>ProductOrder{3,5}];

i60 : L = substitute(J2,R1)

o60 = ideal (g*f - e*h, - a*f + b*e, - a*d + b*c, a*b*f)

o60 : Ideal of R1

i61 : gens gb L

o61 = | gf-eh af-be ad-bc bde-bcf bge-aeh b2e b2cf abeh a2eh2 |

1 9
o61 : Matrix R1 <--- R1



In this case inu(J2) = (a, b, g) (So the saturation will again be rational and prime, as before). One
choice for a flattener is f(ce− df).

i62 : use R

o62 = R

o62 : PolynomialRing

i63 : Q2 = saturate(J2,f*(c*e-d*f))

2
o63 = ideal (f*g - e*h, b*g - a*h, b*e - a*f, b*c - a*d, a*b, a )

o63 : Ideal of R

i64 : J3 = trim(J2 + ideal(f*(c*e-d*f)))

2
o64 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, c*e*f - d*f , a*b*f)

o64 : Ideal of R

i65 : J == intersect(Q1,Q2,J3)

o65 = true

One more time. Let’s decompose J3.
i66 : independentSets J3

o66 = {a*b*d*g*h, a*c*d*g*h}

o66 : List

i67 : R1 = QQ[c,e,f, a,b,d,g,h, MonomialOrder=>ProductOrder{3,5}]

o67 = R1

o67 : PolynomialRing

i68 : L = substitute(J3,R1)

2
o68 = ideal (- e*h + f*g, e*b - f*a, c*b - a*d, c*e*f - f d, f*a*b)

o68 : Ideal of R1

i69 : transpose gens gb L

o69 = {-2} | eh-fg |
{-2} | eb-fa |
{-2} | cb-ad |
{-3} | fbg-fah |
{-3} | cfa-ead |
{-3} | fab |
{-3} | cef-f2d |
{-4} | fa2h |
{-4} | f2a2 |
{-4} | fa2d |
{-4} | cf2g-f2dh |
{-4} | efad-f2bd |
{-4} | e2ad-f2ad |
{-5} | f2adg-f2bdh |
{-5} | f2b2d |
{-5} | ea2d2 |

16 1
o69 : Matrix R1 <--- R1



This time, inu(J3) = (c, e, f), and so once again the saturation will be a prime rational ideal. A
flattener that works this time is ab.

i70 : use R

o70 = R

o70 : PolynomialRing

i71 : Q3 = saturate(J3,a*b)

o71 = ideal (f, e, b*c - a*d)

o71 : Ideal of R

i72 : Q3 == J3 : (a*b)

o72 = false

i73 : Q3 == J3 : (a*b)^2

o73 = true

This time,
i74 : J4 = trim(J3 + ideal(a^2*b^2))

2 2 2
o74 = ideal (f*g - e*h, b*e - a*f, b*c - a*d, c*e*f - d*f , a*b*f, a b )

o74 : Ideal of R

But notice that
i75 : J == intersect(Q1,Q2,Q3)

o75 = true

Therefore, we may avoid the primary decomposition of J4, since it will only consist of redundant
terms. You should check, but the primary decomposition of J4 has 7 terms, and J4 is not a radical
ideal.

Exercise 4.11. Apply this technique to other Bayesian network examples, such as the example
from the contraction lemma.

How can we tell if an ideal J is prime or primary? One way that always works (if the compu-
tation finishes, that is) is the zero dimensional decomposition combined with the flattener.

As in the last example, if the projection is birational to an obviously prime ideal (e.g. the zero
ideal!), then then ideal is prime. This method works very well for the Markov ideals.

5 Lecture #4: Putting it all together

In the lectures, and final lecture notes, we will include algorithms based on these ideas. However,
better than presenting an algorithm right away, write down your own algorithm, perhaps based
on the flattener approach and example above. Try to improve the approach taken in the above
example. Maybe you will find better optimizations than we will present!

The questions you should consider are: (1) how to consider and compute with as few redundant
components as possible? (2) The precise element which one splits the ideal by has a dramatic effect
on the complexity of the computation. Is there any way to control this?

We will also apply these (improved) algorithms to see some interesting behavior of the primary
decompositions of Markov ideals.
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