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Foreword to the 
Second Edition 

Much has changed in the world of fractals, computer graphics and modem mathemat

ics since the first edition of Fractals Everywhere appeared. The company Iterated 

Systems, Inc., founded by Michael Bamsley and Alan Sloan, is now competing in the 

image compression field with both hardware and software products that use fractal 

geometry to compress images. Indeed, there is now a plethora of texts on subjects like 

fractals and chaos, and these terms are rapidly becoming "household words." 

The fundamental approach to fractal geometry through iterated function systems 

remains sound as an introduction to the subject. This edition of Fractals Everywhere 

leaves this approach largely as it stands. One still needs a grounding in concepts in 

metric space theory and eventually (see Chapter IX) measure theory to get a working 

understanding of the subject. However, there have been several additions to help ease 

and broaden the reader's development. 

Primary to these is the addition of answers to the mathematical problems. These 

were done largely by starting at one end of the book writing the answers until the other 

cover was reached. Most of the answers found in the key have been worked over at 

least twice, in hopes improving the accuracy of the key. Every effort has been make 

to rely solely on the material presented ahead of each problem, although in a few of 

the harder problems some concepts have been introduced in the answers themselves. 

These are not considered necessary to the development of the main thread of the text; 

however, if the reader finds some areas of mathematics touched on in looking at the 

presented solutions which extend the feeling for the subject, the key has served its 

purpose. 
In addition the the answer key, there have been some other changes as well. In 

Chapter III, section 11, the main theorem has been qualified. The reader with more 
i 

mathematical backgrc)und will recognize that the additional Lipshitz condition 

satisfies the need for equicontinuity in Theorem 11.1. This is not the only way to 

satisfy it, just the clearest in terms of the presumed mathematical background. 

XI 



XII Foreword to the Second Edition 

There have been problems added to several chapters to develop the idea of 
Cartesian products of code spaces. This was done because it helps bridge the gap 
between IFS theory and the reversible systems found in physical chaos, and because 
it presents an interesting way of looking the the Random Iteration Algorithm in 
Chapter IX. The thread of these problems begins in Chapter II, leads up to the baker's 
transformation in Chapter IV, and is completed as an example in Chapter IX. 
Additional problems were added in Chapter III to develop some basic properties of 
eigenvalues and eigenvectors, which can be useful in examining dynamics both from 
the point of view described in the text, and elsewhere. It is hoped that with these 
additional tools those readers whose goals are application-oriented will come away 
with more at their disposal, while the text itself will retain its readable style. 

I would like to thank Lyman Hurd for many useful discussions about the 
topological nature of nonempty compact sets, and John Elton for his patience while 
I ran many of my new examples and problems past him to check them and to check 
the "excitement level" of the additional material. 

Hawley Rising 

It seems now that deterministic fractal geometry is racing ahead into the serious 
engineering phase. Commercial applications have emerged in the areas of image 
compression, video compression, computer graphics, and education. This is good 
because it authenticates once again the importance of the work of mathematicians. 
However, sometimes mathematicians lose interest in wonderful areas once scientists 
and engineers seem to have the subject under control. But there is so much more 
mathematics to be done. What is a useful metric for studying the contractivity of the 
vector recurrent IFS of affine maps in ~2? What is the information content of a 
picture? Measures, pictures, dreams, chaos, flowers and information theory-the 
hours of the days keep rushing by: do not let the beauty of all these things pass us by too. 

Michael Fielding Bamsley 
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Chapter I 

Introduction 

Fractal geometry will make you see everything differently. There is danger in read

ing further. You risk the loss of your childhood vision of clouds, forests, galaxies, 

leaves, feathers, flowers, rocks, mountains, torrents of water, carpets, bricks, and 

much else besides. Never again will your interpretation of these things be quite the 

same. 
The observation by Mandelbrot [Mandelbrot 1982] of the existence of a "Geom

etry of Nature" has led us to think in a new scientific way about the edges of clouds, 

the profiles of the tops of forests on the horizon, and the intricate moving arrange

ment of the feathers on the wings of a bird as it flies. Geometry is concerned with 

making our spatial intuitions objective. Classical geometry provides a first approx

imation to the structure of physical objects; it is the language that we use to com

municate the designs of technological products and, very approximately, the forms 

of natural creations. Fractal geometry is an extension of classical geometry. It can 

be used to make precise models of physical structures from ferns to galaxies. Fractal 

geometry is a new language. Once you can speak it, you· can describe the shape of a 

cloud as precisely as an architect can describe a house. 

This book is based on a course called "Fractal Geometry," which has been taught 

in the School of Mathematics at the Georgia Institute of Technology for two years. 

The course is open to all students who have completed two years of calculus. It 

attracts both undergraduate and graduate students from many disciplines, includ

ing mathematics, biology, chemistry, physics, psychology, mechanical engineering, 

electrical engineering, aerospace engineering, computer science, and geophysical 

science. The delight of the students with the course is reflected in the fact there is 

now a second course, entitled "Fractal Measure Theory." The courses provide a com

pelling vehicle for teaching beautiful mathematics to a wide range of students. 

Here is how the course in Fractal Geometry is taught. The core is Chapter II, 

Chapter III, sections)-5 of Chapter IV, and sections 1-3 of Chapter V. This is 

followed by a collection of delightful special topics, chosen from Chapters VI, VII, 

and VIII. The course is taught in 30 one-hour lectures. 



2 Chapter I Introduction 

~ 
Chapter II introduces the basic topological ideas that are needed to describe sub-

sets to spaces such as ~ 2 . The framework is that of metric spaces; this is adopted 
because metric spaces are both rigorously and intuitively accessible, yet full of 
suprises. They provide a suitable setting for fractal geometry. The concepts intro
duced include openness, closedness, compactness, convergence, completeness, con
nectedness, and equivalence of metric spaces. An important theme concerns proper
ties that are preserved under equivalent metrics. Chapter II concludes by presenting 
the most exciting idea: a metric space, denoted 1i, whose elements are the nonempty 
compact subsets of a metric space. Under the right conditions this space is complete, 
sequences converge, and fractals can be found! 

Chapter III deals with transformations on metric spaces. First, the goal is to de
velop intuition and practical experience with the actions of elementary transforma
tions on subsets of spaces. Particular attention is devoted to affine transformations 
and Mobius transformations in ~2 . Then the contraction mapping principle is re
vealed, followed by the construction of contraction mappings on 1i. Fractals are 
discovered as the fixed points of certain set maps. We learn how fractals are gener
ated by the application of "simple" transformations on "simple" spaces, and yet they 
are geometrically complicated. We explain what an iterated function system (IFS) 
is, and how it can define a fractal. Iterated function systems provide a convenient 
framework for the description, classification, and communication. of fractals. Two 
algorithms, the "Chaos Game" and the Deterministic Algorithm, for computing pic
tures of fractals are presented. Attention is then turned to the inverse problem: given 
a compact subset of ~ 2, fractal, how do you go about finding a fractal approximation 
to it? Part of the answer is provided by the Collage Theorem. Finally, the thought of 
the wind blowing through a fractal tree leads to discovery of conditions under which 
fractals depend continuously on the parameters that define them. 

Chapter IV is devoted to dynamics on fractals. The idea of addresses of points on 
certain fractals is developed. In particular, the reader learns about the metric space to 
which addresses belong. Nearby addresses correspond to nearby points on the frac
tal. This observation is made precise by the construction of a continuous transforma
tion from the space of addresses to the fractal. Then dynamical systems on metric 
spaces are introduced. The ideas of orbits, repulsive cycles, tmd equivalent dynam
ical systems are described. The concept of the shift dynamical system associated 
with an IFS is introduced and explored. This is a visual and simple idea in which the 
author and the reader are led to wonder about the complexity and beauty of the avail
able orbits. The equivalence of this dynamical system with a corresponding system 
on the space of addresses is established. This equivalence takes no account of the ge
ometrical complexity of the dance of the orbit on the fractal. The chapter then moves 
towards its conclusion, the definition of a chaotic dynamical system and the realiza
tion that "most" orbits of the shift dynamical system on a fractal are chaotic. To this 
end, two simple and delightful ideas are shown to the reader. The Shadow Theorem 



illustrates how apparently random orbits may actually be the "shadows" of determin

istic motions in higher-dimensional spaces. The Shadowing Theorem demonstrates 

how a rottenly inaccurate orbit may be trailed by a precise orbit, which clings like a 

secret agent. These ideas are used to make an explanation of why the "Chaos Game" 

computes fractals. 
Chapter V introduces the concept of fractal dimension. The fractal dimension of 

a set is a number that tells how densely the set occupies the metric space in which it 

lies. It is invariant under various stretchings and squeezings of the underlying space. 

This makes the fractal dimension meaningful as an experimental observable; it pos

sesses a certain robustness and is independent of the measurement units. Various 

theoretical properties of the fractal dimension, including some explicit formulas, 

are developed. Then the reader is shown how to calculate the fractal dimension of 

real-world data, and an application to a turbulent jet exhaust is described. Lastly the 

Hausdorff-Besicovitch dimension is introduced. This is another number that can be 

associated with a set. It is more robust and less practical than the fractal dimension. 

Some mathematicians love it; most experimentalists hate it; and we are intrigued. 

Chapter VI is devoted to fractal interpolation. The aim of the chapter is to teach 

the student practical skill in using a new technology for making complicated curves 

and fitting experimental data. It is shown how geometrically complex graphs of con

tinuous functions can be constructed to pass through specified data points. The func

tions are represented by succinct formulas. The main existence theorems and com

putational algorithms are provided. The functions are known as fractal interpolation 

functions. It is explained how they can be readily computed, stored, manipulated 

and communicated. "Hidden variable" fractal interpolation functions are introduced 

and illustrated; they are defined by the shadows of the graphs of three-dimensional 

fractal paths. These geometrical ideas are extended to introduce space-filling curves. 

Chapter VII gives an introduction to Julia sets, which are deterministic fractals 

that arise from the iteration of analytic functions. The objective is to show the reader 

how to understand these fractals, using the ideas of Chapters III and IV. In so do

ing we have the pleasure of explaining and illustrating the Escape Time Algorithm. 

This algorithm is a means for computergraphical experimentation on dynamical sys

tems that act on two-dimensional spaces. It provides illumination and coloration, a 

seachlight to probe dynamical systems for fractal structures and regions of chaos. 

The algorithm relies on the existence of "repelling sets" for continuous transforma

tions which map open sets to open sets. The applications of Julia sets to biological 

modelling and to understanding Newton's method are considered. 

Chapter VIII is concerned with how to make maps of certain spaces, known 

as parameter spaces, where every point in the space corresponds to a fractal. The 

fractals depend "smoothly" on the location in the parameter space. How can one 

make a picture that provides useful information about what kinds of fractals are 

located where? If botH the space in which the fractals lie and the parameter space 
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4 Chapter I Introduction 

are two-dimensional, the parameter space can sometimes be "painted" to reveal an 

associated Mandelbrot set. Mandelbrot sets are defined, and three different examples 

are explored, including the one discovered by Mandelbrot. A computergraphical 

technique for producing images of these sets is described. Some basic theorems are 

proved. 
Chapter IX is an introduction to measures on fractals and to measures in general. 

The chapter is an outline that can be used by a professor as the basis of a course in 

fractal measure theory. It can also be used in a standard measure theory course as 

a source of applications and examples. One goal is to demonstrate that measure the

ory is a workaday tool in science and engineering. Models for real-world images can 

be made using measures. The variations in color and brightness, and the complex 

textures in a color picture, can be successfully modelled by measures that can be 

written down explicitly in terms of succinct "formulas." These measures are desir

able for image engineering applications, and have a number of advantages over non

negative "density" functions. Section 1 provides an intuitive description of measures 

and motivates the rest of the chapter. The context is that of Borel measures on com

pact metric spaces. Fields, sigma-fields, and measures are defined. Caratheodory's 

extension theorem is introduced and used to explain what a Borel measure is. Then 

the integral of a continuous real-valued function, with respect to a measure, is de

fined. The reader learns to evaluate some integrals. Next the space P of normalized 

Borel measures on a compact metric space is defined. With an appropriate metric, 

P becomes a compact metric space. Succintly defined contraction mappings on this 

space lead to measures that live on fractals. Integrals with respect to these measures 

can be evaluated with the aid of Elton's ergodic theorem. The book ends with a de

scription of the application of these measures to computer graphics. 

This book teaches the tools, methods, and theory of deterministic geometry. It 

is useful for describing specific objects and structures. Models are represented by 

succinct "formulas." Once the formula is known the model can be reproduced. We 

do not consider statistical geometry. The latter aims at discovering general statistical 

laws that govern families of similar-looking structures, such as all cumulus clouds, 

all maple leaves, or all mountains. 

In deterministic geometry, structures are defined, communicated, and analyzed, 

with the aid of elementary transformations such as affine transformations, scalings, 

rotations, and congruences. A fractal set generally contains infinitely many points 

whose organization is so complicated that it is not possible to describe the set by 

specifying directly where each point in it lies. Instead, the set may be defined by 

"the relations between the pieces." It is rather like describing the solar system by 

quoting the law of gravitation and stating the initial conditions. Everything follows 

from that. It appears always to be better to describe in terms of relationships. 



Chapter II 

Metric Spaces; 
Equivalent Spaces; 
Classification of Subsets; 
and the Space of Fractals 

1 Spaces 

In fractal geometry we are concerned with the structure of subsets of various very 

simple "geometrical" spaces. Such a space is denoted by X. It is the space on which 

we think of drawing our fractals; it is the place where fractals live. What is a fractal? 

For us, for now, it is just a subset of a space. Whereas the space is simple, the fractal 

subset may be geometrically complicated. 

Definition 1.1 A space X is a set. The points of the space are the elements of 

the set. 

Although this definition does not say it, the nomenclature "space" implies that 

there is some structure to the set, some sense of which points are close to which. We 

give some examples to show the sort of thing this may mean. Throughout this text ~ 

denotes the set of real numbers, and "E" means "belongs to." 

Examples 

1. 1 . X = ~. Each "point" x E X is a real number, or a dot on a line. 

1.2. X= C[O, 1], thr set of continuous functions that take the real closed interval 

[0, 1] = {x E ~: 0.:::: x .:::: 1} into the real line ~. A "point" f EX is a function 

f: [0, 1] ~ ~. f may be represented by its graph. 

5 



6 Chapter II Metric Spaces; Equivalent Spaces 

Figure 11.1. A point x 
in IR1.. 

Figure 11.2. A point f 
in the space of continuous 
functions on [0, 1]. 

X IR 

Notice that here f EX is not a point on the x-axis; it is the whole function. 
A continuous function on an interval is characterized by the fact that its graph is 
unbroken; as a picture it contains no rips or tears; it can be drawn without removing 
the pencil from the paper. 

1.3. X= ~2, the Euclidean plane, the coordinate plane of calculus. Any pair of real 
numbers x 1, x 2 E ~determines a single point in ~2 • A point x EX is represented in 
several equivalent ways: 

x = (x1, x2) = ( ~~) = a ;x>int in a figure such as Figure II.3. 

The spaces in examples 1.1, 1.2, and 1.3 are each linear spaces: there is an 
obviously defined way, in each case, of adding two points in the space to obtain a 
new one in the same space. In 1.1 if x and y E ~. then x + y is also in ~; in 1.2 we 
define (f + g)(x) = f(x) + g(x); and in 1.3 we define 



X + y = ( ~:) + ( ~: ) = ( :: : ~: ) . 
Similarly, in each of the above examples, we can multiply members of X by a scalar, 

that is, by a real number a E ~.For example, in 1.2 (af)(x) = af(x) for any a E ~. 

and af E C[O, 1] whenever f E C[O, 1]. Example 1.1 is a one-dimensional linear 

space; 1.2 is an oo-dimensional linear space (can you think why the dimension is 

infinite?); and 1.3 is a two-dimensional linear space. A linear space is also called a 

vector space. The scalars may be complex numbers instead of real numbers. 

1.4. The complex plane, X = C, where any point x E X is represented 

where i = -J=l, 

for some pair of real numbers XI, x 2 E ~. Any pair of numbers XI, x 2 E ~ determines 

a point of C. It is obvious that Cis essentially the same as ~2 • but there is an implied 

distinction. In C we can multiply two points x, y and obtain a new point in C. 

Specifically, we define 

X · Y =(XI+ ix2)(yi + iy2) = (XIYI - X2Y2) + i (X2Yl + X1Y2) 

1.5. X= C, the Riemann sphere. Formally, C = C U { oo }; that is, all the points of 

( together with the "point at infinity." Here is a way of constructing and thinking 

about C. Place a sphere on the plane C, with the South Pole on the origin, and the 

North Pole N vertically above it. 

To a given point x E C we associate a point x' on the sphere by constructing 

the straight line from N to x and marking where this line intersects the sphere. 

This associates a unique point x' = h(x) with each point x E C. The transformation 

h : C --+ sphere is clearly continuous in the sense that nearby points go to nearby 

points. Points farther and farther away from 0 in the plane C end up closer and 

closer to N. C consists of the completion of the range of h by including N on the 

sphere: The "point at infinity ( oo)" can be thought of as a giant circle, infinitely far 

out in C, whose image under h is N. It is easier to think of C being the whole of the 

sphere, rather than as the plane together with oo. It is of interest that h : C--+ sphere 

Figure 11.3. A point x 
in the space ~ 2• 

Spaces 7 



8 Chapter II Metric Spaces; Equivalent Spaces 

Figure 11.4. Construc
tion of a geometrical rep
resentation for the Rie
mann sphere. N is the 
North Pole and corre
sponds to the "point at 
infinity." 

/ 

is conformal: it preserves angles. The image under h of a triangle in the plane is a 

curvaceous triangle on the sphere. 

Although the sides of the triangle on the sphere are curvaceous they meet in 

well-defined angles, as one can visualize by imagining the globe to be magnified 

enormously. The angles of the curvaceous triangle are the same as the corresponding 

angles of the triangle in the plane. 

Examples & Exercises 
1.6. X = ~, the code space on N ·symbols. Usually the symbols are the integers 

{0, 1, 2, ... , N- 1}. A typical point in X is a semi-infinite word such as 

x = 2 17 0 0 1 21 15 (N - 1) 3 0 .... 

There are infinitely many symbols in this sequence. In general, for a given element 

x E X, we can write 

Figure 11.5. A triangle 
in the plane corresponds 
to a curvaceous triangle 
on the sphere. 

N 



where each xi E {0, 1, 2, ... , N- 1}. 

There are many names attached to this space because of its importance in a variety 

of branches of mathematics and physics. When each symbol is intended to represent 

a random choice from N possibilities, each point in this space represents a particular 

sequence of events, from a set of N possible events. In this case, the space is some

times called the space of Bernoulli trials. When there are several code spaces being 

referred to, it is customary to write the code space on N symbols as I: N. 

1. 7. A few other favorite spaces are defined as follows. 

(a) A disk in the plane with center at the origin and with finite radius R > 0: 

• = {x E li2 : X~+ xiS R2}. 

(b) A "filled" square: 

(c) An interval: 

[a, b] = {x Eli: as x s b}, where a and bare real numbers with a< b. 

(d) Body space: 1t = {x E 1Rt3 : coordinate points implied by a cadaver frozen in 1Rt3}. 

(e) Sierpinski space 

A = {x E !i2 : x is a point on a certain fixed Sierpinski triangle}. 

Sierpinski triangles occur often in this text. See, for example, Figure IV.94. 

1.8. Show that the examples in 1.5, 1.6, and 1.7 are not vector spaces, at least if 

addition and multiplication by reals are defined in the usual way. 

1.9. The notation A c X means A is a subset of X; that is, if x E A then x EX, or 

x E A implies x E X. The symbol 0 means the empty set. It is defined to be the set 

such that the statement "x E 0" is always false. We use the notation {x} to denote the 

set consisting of a single point x E X. Show that if x E X, then {x} is a subset of X. 

1. 1 0. Any set of points makes a space, if we care to define it as such. The points are 

what we choose them to be. Why, do you think, have the spaces defined above been 

picked out as important? Describe other spaces that are equally important. 

1. 11. Let X1 and X2 be spaces. These can be used to make a new space denoted 

X1 x X2, called the Cartesian product of X1 and X2. A point in X 1 x X2 is repre

sented by the ordered pair (x1, x 2), where x 1 E X1 and x 2 E X2. For example, li2 is 

the Cartesian product of li and li. 

1. 12. As another exalnple of a Cartesian product let 

X = { (x, y) : x, y E I:} = I: x I:, 

Spaces 9 
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2 Metric Spaces 

where :E is the code space on N symbols. This has an interpretation in terms of 

the random choices mentioned in exercise 1.6. We call y the past and x the future. 

Then each element of the space represents a sequence of "coin tosses" (the coins are 

really more like N -sided dice); y represents the tosses that have already happened, 

beginning with the latest one, and x represents the tosses to come (beginning with 

the next one). If we rewrite the point (x, y) with a dot marking the "present," 

••• Y3Y2YI • XtX2X3 ••• 

then the act of moving the dot to the right moves one future coin toss to a past coin 

toss; the obvious interpretation is that it represents flipping the coin. Moving the dot 

is called a shift, and the space is called the space of shifts on N symbols. It is also 

denoted :E, whether it is this space or code space that is being referred to is usually 

clear from context. In this book :E will always be code space unless specifically 

mentioned. 

We use the notation "V" to mean "for all." We also introduce the notation A \ B to 

mean the set A "take away" the set B. That is, A\ B = {x E A: x ¢ B}. We use"=>" 

to mean "implies." 

Definition 2.1 A metric space (X, d) is a space X together with a real-valued 

function d : X x X ~ Ill, which measures the distance between pairs of points x and 

y in X. We require that d obeys the following axioms: 

(1) d(x, y) = d(y, x) Vx, y EX 

(2) 0 < d(x, y) < oo Vx, y EX, x ¥= y 

(3) d(x, x) = 0 Vx EX 
(4) d(x, y):::: d(x, z) + d(z, y) Vx, y, z EX. 

Such a function d is called a metric. 

The concept of shortest paths between points in a space, geodesics, is depen

dent on the metric. The metric may determine a geodesic structure of the space. 

Geodesics on a sphere are great circles; in the plane with the Euclidean metric they 

are straight lines. 

Examples & Exercises 

2. 1. Show that the following are all metrics in the space X = Ill: 

(a) d(x, y) = lx- yl (Euclidean metric) 

(b) d(x, y) = 2 · lx- Yl 
(c) d(x, y) = lx3 - y 31 
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Figure 11.6. , (The angle 

0 

X 8, and the distances r1, r2 

used to construct a metric 
on the punctured plane.) 
Acute angle subtended by 
two straight lines. 

2.2. Show that the following are metrics in the space X= ~2 : 

(a) d(x, y) = J<x1 - YI)2 + (x2- Y2) 2 (Euclidean metric) 

(b) d(x, y) = lx1- yd + lx2- Y2l (Manhattan metric) 

Why is the name "Manhattan" used in connection with (b)? 

2.3. Show that d(x, y) = lxyl does not define a metric in IRL 

2.4. Let ~2 \ { 0} denote the punctured plane. Define d(x, y) as follows: 

d(x, y) = lr1- r2l + IBI, 

where r1 = Euclidean distance from x to 0, r2 = Euclidean distance from y to 

0, 0 is the origin, and e is the smallest angle subtended by the two straight lines 

connecting x andy to the origin. Show that dis a metric. 

2.5. On the code space ~ define 

~ lxi- Yil 
d(x, y) = d(x1x2x3 ... , YIY2Y3 .. . ) = L...., · 

i=l (N + 1)1 

Show that every pair of points in ~ is a finite distance apart. That is, d is indeed 

a function that takes ~ x ~ into ~. Verify that (~,d) is a metric space. Try to 

envisage a possible geometry for ~. (Do not confuse the possible meanings of the 

symbol~; from its context it should be clear when it refers to code space and when 

it refers to summation.) 

*2.6. Define X= {(x, y): x, y E ~},the space of shifts on N symbols as in exer

cise 1.12. We can define a Euclidean distance by treating each coordinate as a base 

N + 1 number between 0 and 1. That is, we make the distance between (x, y) and 

(u, v) equal to 

(t, (~ ~ ~~~) 2 + (t, (~ ~ ~;,) 2 
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Show that this is indeed a metric space. 

2.7. In X define d (x, y) to be the Euclidean length of the shortest path lying 

entirely within X which connects x andy. Show that this is a metric. Discuss the 
utility of this metric in anatomy. The distance from a toenail to a fingertip does not 
depend much on the configuration of the body, whereas the usual spatial distance 
would. 

2.8. Invent a function d : • x • ~ IR{ which is not a metric. Define a metric for 

the space o, namely an annulus, which makes it seem like the curved wall of a 

cylinder: 

* 2. 9. Show that a metric on X = C is defined by shortest great circle distances on 
the sphere. Compare the distances from 0, and from 1 + i, to oo. 

Definition 2.2 Two metrics d1 and d2 on a space X are equivalent if there exist 
constants 0 < c1 < c2 < oo such that 

V(x,y)EXxX. 

Examples & Exercises 
2. 10. Definition 2.2 looks unsymmetrical; it does not appear to make the same 
requirements on d1 as it does on d2• Show that this is an illusion by establishing 
that if the definition holds then there are constants 0 < e1 < e2 < oo so that 

V(x, y) EX x X. 

2.11. Are the Manhattan and Euclidean metrics equivalent on • c IR{2? What about 
on IR{2? 

2. 12. Show that the metric in exercise 2.4 is not equivalent to the Euclidean metric 
on ~\{0}. 

One notion underlying the concept of equivalent metrics is that any pair of equiv
alent metrics gives the same notion of which points are close together and which 
are far apart. It is as though there were a standard way for boundedly deforming the 
space, whereby distances are determined both before and after deformation. 

For example, consider a pair of points x and y in • c IR{ 2 • Let the Euclidean dis
tance between these points be d 1(x, y). Think of a thin rubber sheet lying over •· 
This sheet is stretched in some repeatable fashion, carrying copies of the points x 

and y to new locations, as illustrated in Figure II. 7. The Euclidean distance between 
these moved points is called d2 (x, y). The condition of equivalence is the require
ment that there is no extreme (infinite) stretching or compression of the space. 

This leads us to the idea of equivalent metric spaces: 

Definition 2.3 Two metric spaces (X1, d1) and (X2, d2) are equivalent if there 
is a function h: xl ~ x2 that is one-to-one and onto (i.e., it is invertible), such that 
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X. v. 

Point at the corner is missing. 

X. 

S T R E T C H -t 

The point which is not 
at the corner is pulled 
to infinity. 

xl and x2 are homeomorphic : they have the same topology. 

But they are not equivalent : their geometries are deeply different. 

the metric {h on X 1 defined by 

d1 (x, y) = d2(h(x), h(y)), 'Vx, y E X1 

is equivalent to d 1. 

.1 

One can think of Definition 2.3 as requiring that X1 and X2 are related to one 

another by a bounded deformation, and nowhere is there an arbitrarily large com

pression or stretching; also, there is no overlapping, folding, or ripping. 

Figure 11.7. A thin rub
ber sheet lies over the • in 
the plane and is stretched. 
The Euclidean distances 
between points are de
termined before and af
ter deformation, yielding 
two metrics. These met
rics may be equivalent if 
the deformation leads to 
no rips, tears, or infinite 
stretching. 

Figure 11.8. This pic
ture suggests two metric 
spaces X1 and X2 that have 
the same topology, but that 
are not metrically equiv
alent: their "geometries" 
are deeply different. 
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Definition 2.4 A function f : X1 --+ X2 from a metric space (XI, d1) into a 

metric space (X2, d2 ) is continuous if, for each E > 0 and x E X1, there is a 8 > 0 

so that 

Iff is also one-to-one and onto, and thus invertible, and if also the inverse f- 1 off 

is continuous, then we say that f is a homeomorphism between X 1 and X2. In such 

a case we say that X 1 and X2 are homeomorphic. 

The assertion that two spaces are equivalent metrically is much stronger than the 

statement that they are homeomorphic: to be equivalent there must be a bounded re

lationship between E and 8 independent of x. Homeomorphism is the equivalence re

lationship for topological properties; two spaces that are homeomorphic are identical 

topological spaces. Two metrics di and d2 on a given space X are identical topolog

ically (define the same topological space) if the identity map t : (X, d1) --+ (X, d2 ) 

given by t (x) = x is a homeomorphism. 

Examples & Exercises 
2.13. Let XI= [1, 2] and x2 = [0, 1]. Let di denote the Euclidean and let d2(X, y) 

= 2 · lx- yl in X2. Show that (XI, di) and (X2, d2) are equivalent metric spaces. 

2. 14. Show that (•, Euclidean) and (•, Manhattan) are equivalent metric spaces. 

2.15. Show that (C, Euclidean) and (~2 • Manhattan) are equivalent metric spaces. 

2.16. Define two different metrics on the space X= (0, 1] = {x E ~: 0 < x:::; 1} 

by 

1 1 
and d2(X, y) = 1-- -1. 

X y 

Show th~t (X, di) and (X, d2 ) are not equivalent metric spaces. 

2.17. Figure 11.9 suggests a subset (black) of (•, Euclidean). It also shows the space 

and set deformed by a metric equivalence. Discuss the properties of the image that 

would be invariant under (a) any metric equivalence, and (b) any homeomorphism. 

To what extent might one be able to "see" these invariances? Think about how much 

deformation an image can withstand while remaining recognizably the same image. 

Look at reflections of sets and images in the back of a shiny spoon. 

2. 18. Show that if two metric spaces are metrically equivalent then there is a home

omorphism between them. 

* 2. 19. We can define metrics on :E, out code space, by 
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where k > 1. The most important choices for k are N + 1 and N, but other choices 

(mostly real numbers between these two) are useful. Show that the functions dk : 

~ x :E ---+ ~ are metrics, and that these metrics are identical topologically. 

3 Cauchy Sequences, Limit Points, Closed Sets, Perfect Sets, and Complete 
Metric Spaces 

Fractal geometry is concerned with the description, classification, analysis and ob

servation of subsets of metric spaces (X, d). The metric spaces are usually, but not 

always, of an inherently "simple" geometrical character; the subsets are typically 

geometrically "complicated." There are a number of general properties of subsets of 

metric spaces, which occur over and over again, which are very basic, and which 

form part of the vocabulary for describing fractal sets and other subsets of metric 

spaces. Some of these properties, such as openness and closedness, which we are 

going to introduce, are of a topological character. That is to say, they are invariant 

under homeomorphism. 

Figure II. 9. What fea
tures of the set (black) are 
invariant under a metric 
equivalence transforma
tion? Two sets that are 
metrically equivalent to 
(a) are shown in (b) and 
(c). 

(a) 
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Figure 11.9. (b) 

Figure 11.9. (c) 

Fo, us what is important, however, is that there is another class of properties that 

are invariant under metric space equivalence. These include openness, closedness, 

boundedness, completeness, compactness, and perfection; these properties are intro

duced in this and the next section. Later we will discover another such property, the 

fractal dimension of a set. If a subset of a metric space has one of these properties, 

and the space is deformed with bounded distortion, then the corresponding subsets 

in the deformed space still have that same property. 

We are also about another business in this section. In our search for fractals we 

are always going to look in a certain type of metric space known as "complete." We 

need to understand this concept. 

Definition 3.1 A sequence {xn}~ 1 of points in a metric space (X, d) is called a 

Cauchy sequence zf, for any given number E > 0, there is an integer N > 0 so that 

for all n, m > N. 

In other words, the further along the sequence one goes, the closer together be

come the points in the sequence. Mentally one pictures something like the image in 

Figure 11.10. 
However, just because a sequence of points moves closer together as one goes 
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x2. 
x6. 

Xs· . · •. 
Xg• 

Infinite sequence of 
points in X 

Figure 11.10. Image 
representing succes-
sive magnifications on 
a Cauchy sequence, an 
infinite sequence of points 
in X. Just because the 
points are getting closer 
and closer together as one 
looks in at higher mag
nification does not mean 
that there is a point x to 
which the sequence is 
converging! 

along the sequence, we must not infer that they are approaching a point. Perhaps 
they are trying to approach a point that is not there? 

Definition 3.2 A sequenc~ {xn}~ 1 of points in a metric space (X, d) is said to 
converge to a point x EX if, for any given number E > 0, there is an integer N > 0 
so that 

for all n > N. 

In this case the point x EX, to which the sequence converges, is called the limit of 
the sequence, and we use the notation 

X= lim Xn. 
n-+oo 

The limit x of a convergent sequence {xn}~ 1 has this property: let 

B(x, E)= {y EX: d(x, y) ~ E} 

denote a closed ball of radius E > 0 centered at x, as illustrated in Figure 11.11. 
Any such ball centered at x contains all of the points Xn after some index N, 

where N typically becomes larger and larger as E becomes smaller and smaller. See 
Figure 11.12. 

Theorem 3.1 If a sequence of points {xn}~ 1 in a metric space (X, d) converges 
to a point x EX, then {xn}~ 1 is a Cauchy sequence. 

X • +-(-+ 

(a) (b) (c) (d) 

Figure 11.11. Uncele
brated small ball B(x, E) 
with its center at x and 
radius E. Beware! Balls 
do not usually look like 
balls. It depends on the 
metric and on the space. 
Balls (a)-(c) represent 
balls (marked in black) in 
spaces X that are subsets 
of lR 2, with the Euclidean 
metric. In (a) X has a 
ragged boundary, viewed 
as a subset of lR 2• In (b) the 
point x E X is isolated. In 
(c) X is a curvaceous Sier
pinski triangle. The ball 
depicted in (d) is in lR 2, 

but the metric is d (x, y) = 
max{lxi - yJi, lx2- Y21l· 
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Figure 11.12. Magni
fying glass looking at a 
magnifying glass near a 
limit point. 

...... FOREVER 

zoom 

Definition 3.3 A metric space (X, d) is complete zf every Cauchy sequence 

{xn}~ 1 in X has a limit x EX. 

In other words, there actually exists, in the space, a point x to which the Cauchy 

sequence is converging. This point xis of course the limit of the sequence. If {xn}~ 1 
is a Cauchy sequence of points in X and if X is complete, then there is a point x E X 

such that, for each E > 0, B (x, E) contains Xn for infinitely many integers n. 

We will sometimes use the notation {xn} in place of {xn}~ 1 and lim in place of 

limn-+oo when it is clear from the context what the domain of the index is. 

Examples & Exercises 

3.1. Prove that if {xn}~ 1 is a Cauchy sequence of points in X and if X is complete, 

then there is a point x EX such that, for each E > 0, B(x, E) contains Xn for infinitely 

many integers n. 

* 3.2. Show that ( IR, Euclidean metric) is a complete metric space. 

3.3. Show that (IR2, Euclidean metric) is a complete metric space. 

3.4. Show that (•, Euclidean metric) is a complete metric space. 

3.5. Show that (t., metric on sphere) is a complete metric space. 

3.6. Show that CE, code space) is a complete metric space. 

3.7. (C[O, 1], D) is a complete metric space, where the metric Dis defined by 

D(f, g)= max{lf(s)- g(s)l : s E [0, 1]}. 

3.8. Let (X1, d1) and (X2, d2) be equivalent metric spaces. Suppose (X1, d 1) is com

plete. Show that (X2, d2) is complete. 

3.9. Show that there are many different "shortest paths" between most pairs of 

points in (•. Manhattan). 

3. 10. Prove Theorem 3.1. 

3. 11. Prove that any sequence in a metric space can have at most one limit. 



4 Compact Sets, Bounded Sets, Open Sets, and Boundaries 19 

Definition 3.4 Let S c X be a subset of a metric space (X, d). A point x E X is 
called a limit point of S if there is a sequence {xn}~ 1 of points Xn E S \ {x} such that 
limn~oo Xn =X. 

Definition 3.5 LetS c X be a subset of a metric space (X, d). The closure of S, 
denoted S, is defined to be S = S U {Limit points of S}. Sis closed if it contains all 
of its limit points, that is, S = S. S is perfect if it is equal to the set of all its limit 
points. 

Exercises & Examples 

3.12. Show that 0 is a limit of the sequence {xn = ~ }~ 1 in the metric space ([0, 1], 
Euclidean) but not in the metric space ((0, 1], Euclidean). 

3.13. A metric space (X, d) consists of a single point X= {a}, together with a 
metric defined by d(a, a)= 0. Show that X contains a Cauchy sequence and the 
limit of the Cauchy sequence, but that it possesses no limit points. Hence show that 
X is closed and complete but not perfect. 

3.14. Show that the sequence {xn = n}~ 1 has no limit in (IR{, Euclidean), but that it 

does when the points are treated as belonging to (C, spherical). 

3.15. Show that if h : X1 --+ X2 makes the metric spaces (X1, d1) and (Xz, dz) 
metrically equivalent, then the statements "x E X1 is a limit point of S c X1" and 
"h(x) E X2 is a limit point of h(S) c X2" are equivalent. Here we use the notation 
h(S) = {h(s): s E S}. 

3.16. Find all of the limit points of the set {xn = (~ + ( -l)n, ~ + ( -1)2n) : n = 
1, 2, 3, ... } in the metric space (•, Euclidean). 

3.17. Show that the subsetS= {x = ~: n = 1, 2, 3, ... } is closed i.1 ((0, 1], Eu
clidean) . 

3.18. Show that S = [0, 1] is a perfect subset of (IR{, Euclidean). 

3.19. Show that S = { l : n = 1, 2, 3, ... } U {0} is not a perfect subset of (IR{, Eu-
n 

clidean), but that S = S. 

3.20. Show that S = ~ is a perfect subset of CE, code space metric). 

3.21. LetS be a subset of a complete metric space (X, d). Then (S, d) is a metric 
space. Show that (S, d) is complete if, and only if, Sis closed in X. 

4 Compact Sets, Bounded Sets, Open Sets, and Boundaries 

We continue the descriJ;>tion of basic properties that are to be used to describe sets 
and subsets of metric spaces. Where are the fractals? What are they? They are ev
erywhere and soon you will be able to see them. Not just the pictures, which are 
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~ 

shadows of fractals, but in your mind's eye you will find what and where they really 

are. 

Definition 4.1 LetS c X be a subset of a metric space (X, d). Sis compact if 
every infinite sequence {xn}~ 1 inS contains a subsequence having a limit inS. 

Definition 4.2 LetS c X be a subset of a metric space (X, d). Sis bounded if 
there is a point a E X and a number R > 0 so that 

d(a, x) < RVx EX. 

Definition 4.3 Let S c X be a subset of a metric space (X, d). S is totally 

bounded if, for each E > 0, there is a finite set of points {Yt. Y2 .... , Yn} c S such 

that whenever x EX, d(x, y;) < E for some y; E {yt, Y2, ... , Ynl· This set of points 

{yt, Y2· ... , Ynl is called an E-net. 

Theorem 4. 1 Let (X, d) be a complete metric space. Let S c X. Then S is 

compact if and only if it is closed and totally bounded. 

Proof Suppose that S is closed and totally bounded. Let {x; E S} be an infinite 

sequence of points in S. Since S is totally bounded we can find a finite collection of 

closed balls of radius 1 such that S is contained in the union of these balls. By the 

Pigeon-Hole Principle (a huge number of pigeons laying eggs in two letter boxes =} 

at least one letter box contains a huge number of angry pigeons), one of the balls, say 

B1, contains infinitely many of the points Xn. Choose Nt so that XN1 E B1. It is easy to 

see that B 1 n S is totally bounded. So we can cover B 1 n S by a finite set of balls of 

radius 1/2. By the Pigeon-Hole Principle, one of the balls, say B2 , contains infinitely 

many of the points Xn. Choose N2 so that XN2 E B2 and N2 > N1. We continue in this 

fashion to construct a nested sequence of balls, 

B1 ::J B2 ::J B3 ::J B4 ::J Bs ::J B6 ::J B1 ::J Bs ::J B9 ::J · · · ::J Bn ::J · · · 

where Bn has radius 2}_ 1 and a sequence of integers {Nn}~ 1 such that XNn E Bn. It 

is easy to see that {xNJ~l' which is a subsequence of the original sequence {xn}, is 

a Cauchy sequence in S. Since Sis closed, and X is a complete metric space, Sis 

complete as well; see exercise 4.2. So {xn} converges to a point x inS. (Notice that 

X is exactly n~l Bn.) Thus, sis compact. 
Conversely, suppose that S is compact. Let E > 0. Suppose that there does not 

exist an E-net for S. Then there is an infinite sequence of points {xn E S} with 

d (x;, x j) ::: E for all i =j:. j. But this sequence must possess a convergent subsequence 

{xN;}. By Theorem 3.1 this sequence is a Cauchy sequence, and so we can find a pair 

of integers N; and Nj with N; =j:. Nj so that d(xNp XNj) <E. But d(xNi' xN)::: E, so 

we have a contradiction. Thus there does exist an E -net. This completes the proof. 

Definition 4.4 LetS c X be a subset of a metric space (X, d). Sis open if for 

each xES there is an E > 0 such that B(x, E)= {y EX: d(x, y) :=: E} C S. 
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x2 ' ~.,. 
~;~~~f( 

CLOSED 

Examples & Exercises 

Figure 11.13. A trans
formation () between two 
metric spaces, establish
ing the equivalence of the 
spaces and carrying the 
closed set S onto a closed 
set ()(S). 

4. 1. Show that if (X, d) is a metric space then X is closed. Give an example of a 
metric space that is closed but not complete. 

4.2. LetS be a closed subset of a complete metric space (X, d). Show that (S, d) 
is a complete metric space. 

4.3. Let (X 1, d1) and (X2 , d2) be equivalent metric spaces, and let a transformation 
() : X 1 --+ X2 provide this equivalence. Let S c X 1 be closed. Show that B ( S) = 
{ () (s) : s E S} is closed. This idea is illustrated in Figure 11.13. 

4.4. If (X, d) is a metric space, then X is open. 

Proof Let x EX. Clearly B(x, 1) c X. 

4.5. If (X, d) is a metric space, then "S c X is open" is the same as "X \ S is 
closed." 

Proof Suppose "S c X is open." Suppose {xn} is a sequence in X\ S with a limit 
x EX. We must show that x EX\ S. Assume that xES. Then every ball B(x, E) 

with E > 0 contains a point Xn E X \ S, which means that S is not open. This is 
a contradiction. The assumption is false. Therefore x E X \ S. Therefore "X \ S is 
closed." 

Suppose "X \ S is closed." Let x E S. We want to show there is a ball B (x, E) c S. 
Assume there is no ball B(x, E) c S. Then for every integer n = 1, 2, 3, ... , we can 
find a point Xn E B(x, ~) n (X\ S). Clearly {xn} is a sequence in X\ S, with limit 
x E X. Since X \ S is closed we conclude that x E X \ S. This contradicts x E S. 
The assumption that there is no ball B (x, E) c S is false. Therefore there is a ball 
B(x, E) c S. Therefore "Sis open." 

4.6. Every bounded subset S of (~2 , Euclidean) has the Bolzano-Weierstrass prop
erty: "Every infinite sequence {xn}~ 1 of points of S contains a subsequence which 
is a Cauchy sequence." The proof is suggested by the picture in Figure 11.14. 

We deduce that every closed bounded subset of (~2 , Euclidean) is compact. In 
particular, every metric space of the form (closed bounded subset of ~2 , Euclidean) 
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Figure 11.14. Demon
stration of the Bolzano
Weierstrass Theorem. 
(Government warning: 
This is not a proof.) 

. . . . .. . . . ... . . . . 
. . ... .. . . . . . . . . . .. . . . . 
• x9.tt70.28.5 •• 

CONTAINS 
INFINITELY 
MANY XN'S 
SO ONE 
OF THE 

is a complete metric space. Show that we can make a rigorous proof by using Theo

rem 4.1. Begin by proving that any bounded subset of ~n is totally bounded. 

4. 7. Let (X, d) be a metric space. Let f : X -+ X be continuous. Let A be a compact 

nonempty subset of X. Show that f(A) is a compact nonempty subset of X. (This 

result is proved later as Lemma 7.2 of Chapter Ill.) 

4.8. Let S c (XI, di) be open, and let (X2, d2) be a metric space equivalent to 

(XI, di), the equivalence being provided by a function h: X1-+ X2. Show that h(S) 

is an open subset of x2. 
4.9. Let (X, d) be a metric space. Let CCX be a compact subset of X. Let {Cn: 

n = 1, 2, 3, ... } be a set of open subsets of X such that "x E C" implies "x E Cn 

for some n ." { C n} is called a countable open cover of C. Show that there is a finite 

integer N so that "x E C" implies "x E Cn for some integer n < N ." 

Proof Assume that an integer N does not exist such that "x E C" implies "x E Cn 

for some n < N ." Then for each N we can find 
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n=l 

Since {xN}~=I is inC it possesses a subsequence with a limit y E C. Clearly y does 

not belong to any of the subsets Cn. Hence "y E C" does not imply "y E Cn for some 

integer n." We have a contradiction. This completes the proof. 

The following even stronger statement is true. Let (X, d) be a metric space. Let 

C c X be compact. Let { C; : i E I} denote any collection of open sets such that 

whenever x E C, it is true that x E C; for some index i E I. Then there is a finite sub

collection, say { c I' c 2' ... ' c n} such that c c u;:, I ci. The point is that the original 

collection of open sets need not even be countably infinite. A good discussion of 

compactness in metric spaces can be found in [Mendelson 1963], Chapter V. 

4.1 0. Let X = (0, 1) U {2}. That is, X consists of an open interval in ~. together 

with an "isolated" point. Show that the subsets (0, 1) and {2} of (X, Euclidean) are 

open. Show that (0, 1) is closed in X. Show that {2} is closed in X. Show that {2} is 

compact in X but (0, 1) is not compact in X. 

Definition 4.5 LetS c X be a subset of a metric space (X, d). A point x EX is 

a boundary point of S iffor every number E > 0, B(x, E) contains a point in X\ S 

and a point inS. The set of all boundary points of Sis called the boundary of Sand 

is denoted as. 
Definition 4.6 Let S c X be a subset of a metric space (X, d). A point x E S is 

called an interior point of S (/'there is a number E > 0 such that B (x, E) c S. The set 

of interior points ll Sis called the interior of Sand is denoted S0 . 

Examples & Exercises 

4.11. LetS be a subset of a metric space (X, d). Show that as= a(X \ S). Deduce 

that ax= 0. 

4.12. Show that the property of being a boundary of a set is invariant under metric 

equivalence. 

4.13. Let (X, d) be the real line with the Euclidean metric. LetS denote the set of 

all rational points in X (i.e., real numbers that can be written E where p and q are 
q 

integers with q i= 0). Show that as= X. 

4.14. Find the boundary of ([viewed as a subset of (C, spherical metric). 

4. 15. Let S be a closed subset of a metric space. Show that aS c S. 

4.16. LetS be an open subset of a metric space. Show that as n S = 0. 

4.17. Let S be an open subset of a metric space. Show that S0 = S. Conversely, 

show that if S0 = S therl S is open. 

4.18. LetS be a closed subset of a metric space. Show that S = S0 U as. 
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Figure II. 15. How well 
can topological concepts 
such as open, boundary, 
etc., be used to model 
land, sea, and coastlines? 

The coastline is 
the boundary of 
the set called LAND 
and the set called 
SEA 

The land is the interio 
of the island. 

The wet stu f is the interior of the sea. 

4. 19. Show that the property of being the interior of a set is invariant under metric 
equivalence. 

4.20. Show that the boundary of a set S in a metric space always divides the space 
into two disjoint open sets whose union, with the boundary as, is the whole space. 
Illustrate this result in the following cases, in the metric space (~2 , Euclidean): (a) 
S = {(x, y) E ~2 : x 2 + y 2 < 1}; (b) S = ~2 . 

4.21. Show that the boundary of a set is closed. 

* 4.22. Let S be a subset of a compact metric space. Show that aS is compact. 

4.23. Figure 11.15 shows how we think of boundaries and interiors. What features 
of the picture are misleading? 

4.24. To what extent does Mercator's projection provide a metric equivalence to a 
Cartesian map of the world? 

4.25. Locate the boundary of the set of points marked in black in Figure 11.16. 

4.26. Prove the assertion made in the caption to Figure 11.17. 

5 Connected Sets, Disconnected Sets, and Pathwise-Connected Sets 

Definition 5. 1 A metric space (X, d) is connected if the only two subsets of X 
that are simultaneously open and closed are X and 0. A subset S C X is connected 

if the metric space (S, d) is connected. S is disconnected if it is not connected. S 

is totally disconnected provided that the only nonempty connected subsets of S are 

subsets consisting of single points. 

Definition 5.2 Let S c X be a subset of a metric space (X, d). Then S is 

path wise-connected if, for each pair of points x and y in S, there is a continuous 

function f : [0, 1] ---* S, from the metric space ([0, 1], Euclidean) into the metric 

space (S, d), such that f(O) = x and f(l) = y. Such a function f is called a path 
from x to y in S. S is path wise-disconnected if it is not pathwise-connected. 
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Figure II. 16. Should 
the black part be called 
open ~d the white part 
closed? Locate the bound
ary of the set of points 
marked in black. 

Figure 11.17. The in
terior of the "land" set is 
an open set in the met
ric space ( Y = c:::::J , 

Euclidean). The smaller 
filled rectangle denotes a 
subset Z = • of Y. The 
intersection of the inte
rior of the land with Z is 
an open set in the met
ric space (Z, Euclidean), 
despite the fact that it in
cludes some points of the 
"border" of •· 
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One can also define simply connected and multiply conne~ted. Let S be path wise
connected. A pair of points x, y E S is simply connected in S if, given any two paths 
fo and !I connecting x, y in S, we can continuously deform fo to f 1 without leaving 
the subsetS. What does this mean? 

Let there be the two points x, y E S and the two paths fo, f 1 connecting x, y in 
S. In other words, f 0 , f 1 are two continuous functions mapping the unit interval 
[0, 1] into S so that fo(O) = ft(O) = x and fo(l) =!tO)= y. By a continuous 
deformation of fo into f 1 within S we mean a function g continuously mapping the 
Cartesian product [0, 1] x [0, 1] into S, so that 

(a) g(s, 0) = fo(s)(O :S s :S 1) 

(b) g(s, 1) = ft(s)(O :S s :S 1) 

(c) g(O, t) = x(O :S t :S 1) 

(d) g(l, t) = y(O :S t s 1) 

Thus, we say that two points x, y in S are simply connected in S if, given any two 
paths f 0 , fi going from x to y in S, there exists a function g as just described. This 
idea is illustrated in Figure 11.18. 

If x, y are not simply connected in S, then we say that x, y are multiply connected 

in S. S itself is called simply connected if every pair of points x, y in S is simply 
connected ~n S. Otherwise, S is called multiply connected. In the latter case we can 
imagine that S contains a "hole," as illustrated in Figure II.19. 

Examples & Exercises 
* 5. 1. Show that the properties of being (path wise) connected, disconnected, sim
ply connected, and multiply connected are invariant under metric equivalence. 

5.2. Show that the metric space (•, Euclidean) is simply connected. 

Figure II. 18. A path fo 
which connects the points 
x and y is continuously 
deformed, while remain
ing "attached" to x and 
y, to become a second 
path f 1• 

X=g(O,t) 

t0(s)=g(s,O) 

I 

\g(s, t0)_,/ 
... _ ....... , 

Y=g(l,t) 
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5.3. Show that the metric space (X= (0, 1) U {2}, Euclidean) is disconnected. 

5.4. Show that the metric space (1:, code space metric) is totally disconnected. 

* 5.5. Show that the metric space (o, Manhattan) is multiply connected. 

5.6. Suppose S1 ::) S2 ::) · · • ::) Sn ::) · · · is a nested sequence of nonempty connected 

subsets. Is n~1 Sn necessarily connected? 

5.7. Identify pathwise connected subsets of the metric space suggested in Fig

ure 11.20. 

5.8. Is ( ?'r· Euclidean) simply or multiply connected? 

5.9. Discuss which set-theoretic properties (open, closed, connected, compact, 

bounded, etc.) would be best suited for a model of a cloud, treated as a subset of 

~3. 

5.10. The property that {xn}~ 1 is a Cauchy sequence in the metric space (X, d) 

is not invariant under homeomorphism but is invariant under metric equivalence, as 

illustrated in Figure 11.21. 

6 The Metric Space (H(X), h): The Space Where Fractals Live 

We come to the ideal space in which to study fractal geometry. To start with, and 

always at the deepest level, we work in some complete metric space such as (~2 , 

Euclidean) or ((C, spherical), which we denote by (X, d). But then, when we wish to 

discuss pictures, drawings, "black-on-white" subsets of the space, it becomes natural 

to introduce the space 1-l. 

Definition 6.1 Let (X, d) be a complete metric space. Then 1-i(X) denotes the 

space whose points are the compact subsets of X, other than the empty set. 

Examples & Exercises 

6.1. Show that if x andy E 1-l(X) then xU y is in 1-i(X). Show that x n y need not 

be in 1-i (X). A picture of this situation is given in Figure 11.22. 

6.2. What is the difference between a subset of 1-i(X) and a compact nonempty 

subset of X? 

Definition 6.2 Let (X, d) be a complete metric space, x EX, and BE 1-i(X). 

Define 

1 d(x, B)= min{d(x, y): y E B}. 

d(x, B) is called the distance from the point x to the set B. 
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Figure 11.19. In a mul
tiply connected space 
there exist paths that 
cannot be continuously 
deformed from one to an
other. There is some kind 
of "hole" in the space. 

Figure 11.20. Locate 
the largest connected 
subsets of this subset 
of ~2 • 

• • 
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(X,d) contains a 
Cauchy Sequence 
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(X,d) Cauchy Sequence 
destroyed ! 

Figure 11.21. A Cauchy 
sequence being preserved 
by a metric equivalence 
and destroyed by a certain 
homeomorphism. 

l __ ~ (X, d) Cauchy Sequence 
survived ! 

How do we know that the set of real numbers { d (x, y) : y E B} contains a min

imum value, as claimed in the definition? This follows from the compactness and 

nonemptyness of the set B E 1i (X). Consider the function f : B -+ ~ defined by 

f(y) = d(x, y) for ally E B. 

From the definition of the metric it follows that f is continuous, viewed as a trans

formation from the metric space (B, d) to the metric space (~. Euclidean). Let 

P = inf{f(y): y E B}, where "inf" is defined in exercise 6.19, and also in Defi

nition 6.2 in Chapter III. Since f (y) ~ 0 for all y E B, it follows that P is finite. We 

claim there is a point y E B such that d (x, y) = P. We can find an infinite sequence 

of points {Yn: n = 1, 2, 3, ... } C B such that f(Yn)- P < ~ for each positive in

teger n. Using the compactness of B, we find that {Yn: n = 1, 2, 3 ... } has a limit 

y E B. Using the continuity of f we discover that f <.Y) = P, which is what we 

needed to show. 
Color Plate 2 shows a picture of the metric. space (•, Manhattan). It has been 

colored as follows. Let :F denote a certain subset of • whose "geometry" is that of a 

piece of a fern. Then the color of each point a E • is fixed by the value of d(a, :F). 

Definition 6.3 Let (X, d) be a complete metric space. Let A, BE 1-l(X). Define 

d(A, B)= max{d(x, B): x E A}. 

d(A, B) is called the distance from the set A E 1-l(X) to the set BE 1-l(X). 

Just as above, using the compactness of A and B, we can prove that this definition 

is meaningful. In particular, there are points .X E A andy E B such that d(A, B)= 

d(x, 5·). 
.1 

Examples & Exercises 

6.3. Show that B, C E 1-l(X), with B c C, implies d(x, C):::::: d(x, B). 
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~ 

6.4. Calculate d(x, B) if (X, d) is the space (~2 , Euclidean), x E ~2 is the point 

(1, 1), and B is a closed disk of radius ~- centered at the point (!, 0). 

6.5. Same as 6.4 above, but use the Manhattan metric. 

6.6. Calculate d(x, B) if (X, d) is(~, Euclidean), x =!,and 

n n 
B = {xn = 3 + (-1) n2 + 

1 
: n = 1, 2, 3, ... } U {3}. 

6.7. Let A, B E H(X), where (X, d) is a metric space. Show that, in general, 

d(A, B) i= d(B, A). Conclude that d does not provide a metric on H(X). It is not 

symmetrical: the distance from A to B need not equal the distance from B to A. 

6.8. Figure 11.23 shows two subsets A and B of <• c ~2 , Euclidean). A is the white 

part and B is the black part. (a) Estimate the location of a pair of points, x E A and 

y E B, such that d(x, y) = d(A, B). (b) Estimate the location of a pair of points, 

x E A andy E B, such that d(x, y) = d(B, A). 

6.9. Figure 11.24 shows two fern-like subsets, A and B, of (~2 , Manhattan). Locate 

points x E A andy E B such that: (a) d(x, y) = d(A, B); (b) d(x, y) = d(B, A). 

Figure 11.22. Points in 
the space 1-£(~2) may be 
interpreted as black-and
white images. Unions of 
points yield new points. 
Be careful with intersec
tions, however. 

r------------· ------ .. ·- --- -

(5¥~~=) 
! -----· f \_ 

I 
L_____ __ _ 

The whole smiley 
face is a point 
in H(X). 
Call it XE H(X). 

l This thin torso 
; is a point 
: in H(X). 
· Call it y, H(X). 

This fellow is 
X J y. 

He is a single 
point in H(X). 
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6.10. Find d(France, U.S.A.) and d(U.S.A., France) on ((C, spherical metric). 

Which is larger? Also compare d(Georgia, U.S.A.) to d(U.S.A., Georgia). 

6.11. Let (X, d) be a complete metric space. Let A and B be points in 1t(X) such 

that A f. B. Show that either d(A, B) f. 0 or d(B, A) f. 0. Show that if A c B then 

d(A, B)= 0. 

6. 12. Let (X, d) be a~omplete metric space. Sh,ow that if A, B and C E 1t(X) then 

B c C =} d(A, C) :::: d(A, B). (Hint: Use 6.3.) 

6.13. Let (X, d) be a complete metric space. Show that if A, B, and C E 1t(X) then 

Figure 11.23. This frac
tal image contains a 
pair of disjoint subsets 
of • C ~2 • "black" and 
"white." Let A denote 
the closure of the set in 
black and let B denote 
the closure of its comple
ment. Find a pair of points 
x E A and y E B, such 
that d(x, y) = d(A, B). 

Find a pair of points 
x E A and y E B such 
that d(x, y) = d(B, A). 

Why do we "close" the 
sets before we begin? 
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Figure 11.24. Find a 
pair of points .X and y, 
one in the dark fern and 
one in the pale fern, such 
that the Hausdorff distance 
between the two fern 
images is the same as 
the distance between the 
points. 

d(A U B, C)= d(A, C) v d(B, C). 

We use the notation x v y to mean the maximum of the two real numbers x and y. 

Proof d(A U B, C) = max{d(x, C) : x E A U B} = max{d(x, C) : x E A} v 
max{d(x, C) : x E B}. 

6.14. Let A, B, and C belong to 1t(X), where (X, d) is a metric space. Show that 

d(A, B) :S d(A, C)+ d(C, B). 

Also determine whether or not the inequality 

d(A, B) :S d(C, A)+ d(C, B) 

is true in general. 

Definition 6.4 Let (X, d) be a complete metric space. Then the Hausdorff dis
tance between points A and Bin 1t(X) is defined by 

h(A, B)= d(A, B) v d(B, A). 

Examples & Exercises 
6.15. Show that his a metric on the space 1t(X). 
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Proof Let A, B, C E 1i(X). Clearly h(A, A)= d(A, A) v d(A, A)= d(A, A)= 

max{d(x, A): x E A}= 0. h(A, B)= d(a, b} for some a E A and bE B, using the 

compactness of A and B. Hence 0 ::=:: h(A, B)< oo. If A =I= B we can assume there 

is an a E A so that a fj. B. It follO-ws that h(A, B) :=: d(A, B) > 0. To show that 

h(A, B) :::S h(A, C)+ h(C, B) we first show that d(A, B) :::S d(A, C)+ d(C, B). We 

have for any a E A 

d(a, B)= min{d(a, b): bE B} 

::=:: min{d(a, c)+ d(c, b): bE B}Vc E C, 

= d(a, c)+ min{d(c, b): bE B}Vc E C, so 

d(a, B)::=:: min{d(a, c): c E C} + max{min{d(c, b): bE B}: c E C}, 

= d(a, C)+ d(C, B), so 

d(A, B)= d(A, C)+ d(C, B). 

Similarly, 

d(B, A) :::S d(B, C)+ d(C, A), whence 

h(A, B)= d(A, B) v d(B, A) :::S d(B, C) v d(C, B)+ d(A, C) v d(C, A) 

= h(B, C)+ h(A, C), as desired. 

6.16. Show that h(A U B, CUD) :::S h(A, C) v h(B, D), for all A, B, C, and DE 

1-l(X). 

6.17. Show that h(A, B)= d(a, b) for some a E Band bE B. 

6.18. The same situation as in 6.9, but this time locate a pair of points x E A and 

y E B such that d(x, y) = h(A, B), the Hausdorff distance from A to B. 

6.19. LetS c IR{, with S =I= 0. The supremum of Sis denoted by supS. The infmum 

of S is denoted by inf S. If there is no real number greater than all of the numbers 

in S, then supS= +oo; otherwise supS= min{x E IR{: x :=: s'v's E S}. If there is 

no real number less than all of the numbers in S, then inf S = -oo; otherwise 

inf S = max{x E IR{: x ::=:: s'v's E S}. Show that supS and inf S are well defined. Show 

that if S is compact then sup S = max S and inf S = min S. Further exercises on sup 

and inf are given following Definition 6.2 in Chapter III. 

By replacing max by sup and min by inf, respectively, throughout the definition 

of the Hausdorff metric, define a "distance" between arbitrary pairs of subsets of a 

metric space. Give several reasons why this "distance" is not usually a metric. 

7 The Completeness of the Space of Fractals 

We refer to (1i(X), h) as the "space of fractals." It is too soon to be formal about 

the exact meaning of a ;'fractal." At the present stage of development of science and 

mathematics, the idea of a fractal is most useful as a broad concept. Fractals are not 

defined by a short legalistic statement, but by the many pictures and contexts that 
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refer to them. For the first eight chapters of this book, any subset of (1-l(X), h) is a 

fractal. However, as with the concept of a "space," more meaning is suggested than 

is formalized. 
In this section our principal goal is to establish that the space of fractals (1-£ (X), h) 

is a complete metric space. We also want to characterize convergent sequences in 

1-l(X). To achieve these goals using only the tools introduced so far is quite difficult. 

Indeed, at this juncture, we want to introduce another notion; namely, the idea of 

extending certain Cauchy subsequences. 

Definition 7.1 LetS c X and let r::: 0. Then S + r = {y EX: d(x, y) _::: r for 

some xES}. S + r is sometimes called, for example, in the theory of set morphol

ogy, the dilation of S by a ball of radius r. 

Lemma 7.1 Let A and B belong to 1-l(X) where (X, d) is a metric space. Let 

E > 0. Then 

h(A, B)_::: E {:}A C B + E and B C A+ E. 

Proof Begin by showing that d(A, B)_::: E {:}A c B +E. Suppose d(A, B) 

_:::E. Then max{d(a, B) :a E A} _::: E implies d(a, B) _::: E for all a EA. Hence 

for each a E A we have a E B +E. Hence "A c B +E." Suppose "A c B +E." 

Consider d(A, B)= max{d(a, B): a E A}. Let a EA. Since A C B + E, there is 

a, bE B so that d(a, b)_::: E for all a EA. Hence d(a, B)_::: E. This is true for each 

a EA. So "d(A, B)_::: E." This completes the proof. 

Let {An : n = 1, 2, ... , oo} be a Cauchy sequence of sets in (1-l(X), h). That is, 

given E > 0, there is N so that n, m ::: N implies 

An + E :J Am and Am + E :J An' 

i.e., h(An, Am) _:::E. We are concerned with Cauchy sequences {xn}~ 1 in X with the 

property that Xn E An for each n. In particular, we need the following property that 

allows the extension of a Cauchy subsequence {xni E Ani lf=1, with the property that 

Xn
1 

E Ani for each j, to a Cauchy sequence {xn E An}~ 1 . 

Lemma 7.2 The Extension Lemma. Let (X, d) be a metric space. Let {An: 

n = 1, 2, ... , oo} be a Cauchy sequence of points in (1-l(X), h). Let {nn)f= 1 be an 

infinite sequence of integers 

Suppose that we have a Cauchy sequence {xn1 E An1 : j = 1, 2, 3, ... } in (X, d). 

Then there is a Cauchy sequence {in E An: n = 1, 2, ... } such that in1 
= Xn

1
, for 

all j = 1, 2, 3, .... 

Proof We give the construction of the sequence {in E An: n = 1, 2, ... }. For 

each n E {1, 2, ... , nd, choose in E {x E An: d(x, Xn) = d(xn" An)}. That is, in is 

the closest point (or one of the closest points) in An to Xn 1• The existence of such a 
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Figure 11.25. The be
ginning of a Cauchy 
sequence {An} of sets 
in 7-{(~ 2 ) is shown. A 
Cauchy subsequence of 
points {xn;} belonging to 
a subsequence of the sets 
is also indicated. Make a 
photocopy of the figure, 
and mark on it the exten
sion of the subsequence of 
points to the visible sets in 
{An}. 

closest point is ensured by the compactness of An. Similarly, for each j E {2, 3, ... } 

and each n E {n j + 1, ... , n j+d, choose in E {x E An: d(x, Xn) = d(xnj' An)}. 

Now we show that {in} has the desired properties, that it is indeed an extension 

of {xn) to {An}. Clearly inj = Xnj and Xn E An, by construction. To show that it 

is a Cauchy sequence let E > 0 be given. There is N 1 so that nb n j :::: N 1 implies 

d(xnk' Xn):::::: E/3. There is Nz so that m, n:::: Nz implies 

d(Am, An):::::: E/3. 

Let N = max{N1, N2} and note that, form, n:::: N, 

d(im, in) :::::: d(im, Xnj) + d(Xnj' Xnk) + d(Xnk' in), 

wherem E {nj-l + 1, nj-l +2, ... , nj} andn E {nk-1 + 1, nk-1 +2, ... , nk}. Since 

h(Am, An)< E/3 there exists y E Am n ({xn) + E/3) so that d(im, Xn):::::: E/3. Sim

ilarly d (xnk' in) :::::: E /3. Hence d (in, in) :::::: E for all m, n > N. This completes the 

proof. 

Examples & Exercises 
7.1. A Cauchy sequence {An} of sets in (1i(~2), h) is sketched in Figure 11.25. The 

underlying metric space is (~2 , Euclidean). A Cauchy subsequence {xnj E An) is 

also shown. Sketch, in the same figure, the extension {in} of this subsequence to 

{An}. 

7 .2. Repeat 7.1 but this time with reference to Figure 11.26. 

The central result toward which we have been driving is this: 

Theorem 7. 1 The Completeness of the Space of Fractals. Let (X, d) 

be a complete metric space. Then (1-l(X), h) is a complete metric space. Moreover, 

if {An E 7-l(X) }~ 1 is a ~auchy sequence, then 

A= lim An E 7-l(X) 
n---+oo 



36 Chapter II Metric Spaces; Equivalent Spaces 

can be characterized as follows: 

A= {x EX: there is a Cauchy sequence {xn E An} that converges to x}. 

Proof Let {An} be a Cauchy sequence in 1-l(X) and let A be defined as in the 

statement of the theorem. We break the proof up into the following parts: 

(a) A# 0; 
(b) A is closed and hence complete since X is complete; 

(c) forE> 0 there is N such that for n ~ N, A CAn+ E; 
(d) A is totally bounded and thus by (b) is compact; 

(e) lim An =A. 

Proof of (a): We shall prove this part by proving the existence of a Cauchy se

quence {a; E A;} in X. Toward this end find a sequence of positive integers N 1 < 

Nz < N3 < · · · < Nn < · · · such that 

1 
h(Am, An) < ---:- form, n > N;. 

2' 

Choose XN, E AN,· Then since h(ANp AN2):::::; 4, we can find an XN2 E AN2 such 

that d(xN" XN2) :::::; 4· Assume that we have selected a finite sequence XN; E AN;; i = 

1, 2, ... , k for which d(xN;_,, XN):::::; 2L. Then since h(ANk' ANk+):::::; ~.and XNk E 

ANk' we can find xNk+l E ANk+, such that d(xNk' xNk+,):::::; ~·For example let xNk+, be 
the point in ANk+, that is closest to xNk· By induction we can find an infinite sequence 

{xN; E AN;} such that d(xNp XN;+):::::; fr· To see that {xNJ is a Cauchy sequence in X, 

let E > 0 and choose NE such that L~N, fr < E . Then for m > n ~ NE we have 

d(XNm' XNn) :S d(XNm' XNm+) + d(XNm+I' XNm+Z) + · · · + d(XNn-I' XNJ 

00 1 
< ""' ---:- < E • . ~21 

l=N, 

By the Extension Lemma, there exists a convergent subsequence {a; E A;} for which 

aN;= XN;· Then lim a; exists and by definition is in A. Thus A# 0. 
Proof of(b): To show that A is closed, suppose {a; E A;} is a sequence that con

verges to a point a. We will show that a E A, hence making A closed. For each pos

itive integer i, there exists a sequence {x;,n E An} such that limn-+ooXi,n =a;. There 
exists an increasing sequence of positive numbers {N;}~ 1 such that d(aN;• a) < f. 

Figure 11.26. The same ~ 
problem as for Fig- Al! 1 G

2 ure 11.25. The sets {An} 
look very different here. 
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Furthermore, there is a sequence of integers {m;} such that d(xN;,mp aN) :S t· Thus 

d(xN;,mi' a) :S 2/ i. If we let Ym; = XN;,m; we see that Ym; E Am; and lim i --* OOYm; = 

a. By the Extension Lemma, {Ym;} can be extended to a convergent sequence { Z; E 

A;}, and so a E A. Thus we have shown A is closed. 

Proof of(c): Let E > 0. There exists anN such that form, n:::: N, h(Am. An) :S E. 

Now let n =::: N. Then form:::: n, Am CAn+ E. We need to show that A CAn+ E. 
To do this, let a EA. There is a sequence {a; E A;} that converges to a. We may 

assume N is also large enough so that form:::: N, d(am, a) <E. Then am E An+ E 

since Am C An + E. Since An is compact, it can be shown that An + E is closed. Then 

since am E An + E for all m =::: N, a must also be in An + E. This completes the proof 

that A C An + E for n large enough. 
Proof of (d): Suppose A were not totally bounded. Then for some E > 0 there 

would not exist a finite E-net. We could then find a sequence {xi}~ 1 in A such that 

d(x;, Xj) :::: E fori =f. j. We shall show that this gives a contradiction. By (c) there 

exists an n large enough so that A C An + } . For each x;, there is a corresponding 

Yi E An for which d(x;, y;) :S }· Since An is compact, some subsequence {YnJ of 
{y;} converges. Then we can find points in the sequence {Yn;} as close together as we 

wish. In particular we· can find two points Yn; and Yn 
1 

such that d (Yn;, Yn) < } . But 
then 

E E E 
d(Xn;• Xn) :S d(yni' Yn) + d(yni' Yn) + d(yni' Xn) < 3 + 3 + 3' 

and we have a contradiction to the way {xn;} was chosen. Thus A is totally bounded 

and by part (b) compact. 
Proof of (e): From part (d), A E 1t (X). Hence by part (c) and Lemma 7.1 the 

proof that lim A; = A will be complete if we show that for E > 0, there exists an 

N such that for n :::: N, An C A + E. To show this let E > 0 and find N such that 

form, n =::: N, h(Am, An) :S ~· Then form, n =::: N, Am CAn+~· Let n =::: N. We 
will show that An c A+ E. Let yEAn. There exists an increasing sequence {Nd 

of integers such that n < N1 < N 2 < N 3 < · · · < Nk <···and form, n:::: Nj, Am C 

An+ 21E+ 1 • Note that An C AN1 + ~· Since y E An, there is an XN1 E AN1 such that 

d(y, xN) :S ~·Since XN1 E ANp there is a point XN2 E AN2 such that d(xN~' XN2 ) :S fc. 
In a similar manner we can use induction to find a sequence XN1 , XN2 , XN1 , ••• , such 

that XNJ E ANi and d(xN
1

, XN
1
+ 1) < 21E+ 1 • Using the triangle inequality a number of 

times we can show that 

for all j 

and also that {xN) is a Cauchy sequence. From the way n was chosen, each AN1 c 
An+ ~· {xN) converges to a point x and since An+ ~ is closed, x E An+ ~ also. 
Moreover, d(y, xN) :Sl implies that d(y, x) :S E. We have thus shown that An C 

A + E for n :::: N. This· completes the proof that lim An = A and consequently that 

(1t (X), h) is a complete metric space. 
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Examples & Exercises 
7 .3. A tree waves in the wind. A special camera photographs the tree at times tn = 

(l - ~) sec, n = 1, 2, 3, .... Show that with reasonable assumptions the sequence 

of pictures thus obtained form a Cauchy sequence {An}~ 1 in 1i(IR{2). What does 

A = limn-+oo An look like? 

7.4. The Sierpinski triangle £ is a compact subset of (IR{2 , Euclidean). Hence 

(£, Euclidean) is a compact metric space. Given an example of an infinite set in 

(1i ( £, h), demonstrate a Cauchy sequence {An E 1i ( £)} that is contained in your 

set and describe its limit. 

7 .5. Figure 11.27 shows a convergent sequence of sets in 1i(•) converging to a fern. 

Pick a point in A. Find a Cauchy sequence {xn E An} that converges to it. 

* 7.6. Let (X, d) be a compact metric space. Show that (1i(X), h) is a compact 

metric space, where his the Hausdorff metric on the space 1i(X). 

It's a good idea to get familiar with 1i(X), by trying to see what properties of the 

space X are also true of 1i(X). We have seen that completeness is one of these, and 

exercise 7.6 shows that compactness is as well. So are some forms of connectedness, 

and by way of example we prove this for path-connectedness of 1-f(IR{) as follows: 

Theorem 7.2 The function f: IR{-+ 1i given by f(x) = {x} is continuous. 

Proof Let {xn} be a sequence in IR{ that converges to a point x. Then given E > 

0 there is anN such that for n > N, d(xn,x) <E. By definition, h({xn}, {x}) = 

d(xn, x), since there is only one element in each set. Hence {{xn}} converges to {x} 

in 1i(IR{). So the function f(x) is continuous. Thus the image of IR{ in 1-f(IR{) is path

connected. Notice that a function like this guarantees that there will be a copy of any 

space in its associated space of non-empty compact sets. 

Theorem 7.3 The functions fx: [0, 1]-+ 1i given by fx(a) = [x, x +a], 0 ~ 

a ~ 1 are continuous, thereby showing that there is a path in 1i from an interval to 

one of its endpoints. 

Proof As before, let {an} be a convergent sequence in [0, 1] with limit a. Suppose 

d(an, a) <E. Then the distance h([x, x +an], [x, x +a]) is given by 

h([x, x +an], [x, x +a])= d([x, x +an], [x, x +a]) V d([x, x +a], [x, x +an]) 

= d(a, an) <E. 

Hence each of the functions fx is continuous. 

Theorem 7.4 If A is a compact subset of IR{ then the function fA : [0, b] -+ 1i 

given by fA(a) = U[x, x +a] such that x E A is continuous. 

Proof By part (b), the function fA is continuous at each point in A, when b = 1. 

Hence the statement is true for b = 1. To get the whole statement, we note that if 

g: [0, b]-+ [0, 1] is given by g(x) = (1/b)x, g is continuous. Hence fA can be 

written as the composition of two continuous functions and is continuous. 
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Figure 11.27. A Cauchy 
sequence of sets {An} in 
the space 7t(!RI.2) converg
ing to a fern-like set. 
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~ 

Theorem 7.5 If A is a compact subset of~ then the set U[x, x + b] such that 
x E A is an interval for b large enough. 

Proof A is compact, hence it is bounded. If we take b to be the length of any 
interval [ c, d] such that A C [ c, d], then the set [ x, x + b] with x the least element 
of A will overlap the set [y, y + b] where y is the greatest element of A. Thus all 
the sets of this form will overlap, and their union forms one interval, which is path
connected. 

Theorem 7.6 If A and B are compact subsets of ~ then there is a path in 1t 
connecting them. 

Proof For any space X and three points a, b, c E X, if there is a path from a to b 

and one from b to c then there is one from a to c. We construct a path between A and 
B in 7t(~) by taking first a path from A to the interval formed in part (d), namely 
choose b as in (d) and construct the path 

f: [0, 1] ~ [0, b] ~ {fA(X): 0 :S X :S b}, 

which is continuous by part (c). Thus there is a path between every point in 7t(~) 
and a point that is an interval. Similarly, there is a path from some interval to every 
point in 7t(~). By part (b) there is a path from every interval to one of its endpoints. 
By part (a) there is a path (the image of ~) between any two of these endpoints. 
Therefore a path from A to B may be constructed by taking A to an interval, taking 
the interval to an endpoint, moving to the a new point of ~. making a path to 
an interval, and taking the path from the interval to B. Hence 1t(~) is path wise
connected. It is true, though somewhat more complicated, that if X is connected then 
so is 7t(X). 

8 Additional Theorems about Metric Spaces 

We state here a number of theorems that we shall use later on. Full proofs are not 
provided. They can be found in most introductory topology texts. We particularly 
recommend [Kasriel 1971] and [Mendelson 1963]. These theorems may be treated 
as exercises in metric space theory. 

Theorem 8.1 Let (X, d) be a metric space. Let {xn} be a Cauchy sequence 
convergent to x E X (or equivalently let { Xn} be a sequence and x he a point, such 

that limn-+oo d(x, Xn) = 0). Let f: X~ X be continuous. Then 

lim f(xn) = f(x). 
n-+oo 

Proof See your first calculus book. 

Theorem 8.2 Let (XI' dl) and (X2, d2) he metric spaces. Let f: XI ~ x2 he 
continuous. Let E C X1 be compact. Then f : E ~ X2 is uniformly continuous: that 
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is, given E > 0 there is a number () > 0 so that 

dz(f(x), f(y)) < E whenever dt (x, y) < c5 for all x, y E E. 

Proof Use the fact that any open cover of E contains a finite subcover. 

Theorem 8.3 Let (X;, d;) be metric spaces for i = 1, 2, 3. Let f : X 1 x Xz ---+ 

x3 have the following property. For each E > 0 there exists () > 0 such that 

and 

(i) d1 (xJ, YI) < c5 =:::} d3(f(x1, xz), f(yJ, yz)) < E, 

'v'xt.YI EX1 

'v'xz E Xz 

(ii) dz(xz, Yz) < c5 =:::} d3(f(yi, xz), f(yJ, Yz)) < E, 

'v'yl EX! 

'v'xz, Yz E Xz 

Then f is continuous on the metric space (X= X1 x Xz, d), where d((XJ, xz), (yJ, 

yz)) = max{dJ(XJ, Yt), dz(xz, Yz)}. 

Proof Use 

d(f(xJ, xz), f(yJ, Yz)) :S d(f(xJ, xz), f(yJ, xz)) + d(f(YI· xz), f(YI· Yz)), 

but check first that d is a metric. 

Theorem 8.4 Let (X;, d;) be metric spaces for i = 1, 2 and let the metric space 

(X, d) be defined as in Theorem 8.3. If K 1 C X 1 and Kz C Xz are compact, then 

K1 x Kz C X is compact. 

Proof Deal with the component in K 1 first. 

Theorem 8.5 Let (X;, d;) be compact metric spaces fori= 1, 2. Let f: X1---+ 

Xz be continuous, one-to-one, and onto. Then f is a homeomorphism. 
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Transformations on the Real Line 

Fractal geometry studies "complicated" subsets of geometrically "simple" spaces 

such as ~2 , «::, ~. and C. In deterministic fractal geometry the focus is on those 
subsets of a space that are generated by, or possess invariance properties under, 
simple geometrical transformations of the space into itself. A simple geometrical 
transformation is one that is easily conveyed or explained to someone else. Usually 
it can be completely specified by a small set of parameters. Examples include affine 
transformations in ~2 , which are expressed using 2 x 2 matrices and 2-vectors, and 
rational transformations on the Riemann Sphere, which require the specification of 
the coefficients in a pair of polynomials. 

Definition 1. 1 Let (X, d) be a metric space. A transformation on X is a function 
f : X --+ X, which assigns exactly one point f (x) E X to each point x E X. If S c X 
then f(S) = {f(x): xES}. f is one-to-one if x, y EX with f(x) = f(y) implies 
x = y. f is onto iff (X) = X. f is called invertible if it is one-to-one and onto: in 
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this case it is possible to define a transformation f- 1 :X~ X, called the inverse of 

f, by f- 1(y) = x, where x EX is the uniqu~ point such that y = f(x). 

Definition 1.2 Letf: X~ X be a transformation on a metric space. The forward 
iterates of f are transformations Jon : X ~ X defined by f 00 (x) = x, fo 1 (x) = 

f(x), fo(n+l)(x) = f o f(n)(x) = f( f(n)(x)) for n = 0, 1, 2, .... Iff is invertible 

then the backward iterates off are transformations fo(-m)(x) :X~ X defined by 
fo(-l)(x) = /- 1(x), fo(-m)(x) = (fom)- 1(x)for m = 1, 2, 3, .... 

In order to work in fractal geometry one needs to be familiar with the basic fam

ilies of transformations in ~. ~2 , ([, and C. One needs to know well the relation
ship between "formulas" for transformations and the geometric changes, stretchings, 
twistings, foldings, and skewings of the underlying fabric, the metric space upon 
which they act. It is more important to understand what the transformations do to 
sets than how they act on individual points. So, for example, it is more useful to 
know how an affine transformation in ~2 acts on a straight line, a circle, or a trian
gle, than to know to where it takes the origin. 

Examples & Exercises 
1. 1. Let f: X ~ X be an invertible transformation. Show that 

for all integers m and n. 

1.2. A transformation f : ~ ~ ~ is defined by f (x) = 2x for all x E ~. Is f in
vertible? Find a formula for Jon (x) that applies for all integers n. 

1.3. A transformation f: [0, 1] ~ [0, 1] is defined by f(x) = ~x. Is this transfor
mation one-to-one? Onto? Invertible? 

1.4. The mapping f: [0, 1] ~ [0, 1] is defined by f(x) = 4x · (1- x). Is this trans
formation one-to-one? Onto? Is it invertible? 

1.5. Let C denote the Classical Cantor Set. This subset of the metric space [0, 1] 
is obtained by successive deletion of middle-third open subintervals as follows. We 
construct a nested sequence of closed intervals 

where 
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Figure 111.28. Con

struction of the Classical 

Cantor Set C. o 

0 

0 

-

1 
3 

3 
9 

2 
3 

7 
9 

8 
9 

0 :}; 2 3 
27 27 

6 7 8 9 
27 27 27 27 

18 19 20 21 
27 27 27 27 

Io = [0, 1], 
1 1 2 

II= [0, 3] u [3, 3], 
1 2 3 6 7 8 9 

h = [O, 9] u [ 9' 9] u [ 9' 9] u [ 9' 9]' 
1 2 3 6 7 8 9 

h = [O, 27] u [ 27' 27] u [ 27' 27] u [ 27' 27] 

18 19 20 21 24 25 26 27 
u [27' 27 1 u [27' 27 1 u [27' 27 1 u [27' 27 1' 

I 4 = h take away the middle open third of each interval in 1), 

In = IN -I take away the middle open third of each interval in IN -I· 

This construction is illustrated in Figure III.28. We define 

c = n~oin. 

C contains the point x = 0, so it is nonempty. In fact C is a perfect set that contains 

uncountably many points, as discussed in Chapter IV. Cis an official fractal and we 

will often refer to it. 

We are now able to work in the metric space (C, Euclidean). A transformation 

f : C ---+ C is defined by f (x) = ~ x. Show that this transformation is one-to-one but 
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rotate 180° about b 
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Figure 111.29. The ac
tion of the affine transfor
mation f : ~ ---+ ~ defined 
by f(x) =ax+ b. 

Figure 111.30. This fig
ure suggests a sequence of 
intervals Un}~0 • Find an 
affine transformation f : 
~ ---+ ~ SO that Jon Uo) = 
In for n = 0, 1, 2, 3, .... 
Use a straight -edge and 
dividers to help you. 

not onto. Also, find another affine transformation (see example 1.7, which maps C 
one-to-one into C). 

1.6. f: IR?. 2 ---+ IR?.2 is defined by j(x1, x2) = (2xl, xi+ x 1) for all (x 1, x2) E IR?.2 . 

Show that f is not invertible. Give a formula for f 02 (x). 

1. 7. Affine transformations in IR?. 1 are transformations of the form f (x) = a · x + b, 
where a and bare real constants. Given the interval I= [0, 1], f(l) is a new interval 
of length I a I, and f rescales by a. The left endpoint 0 of the interval is moved to b, 
and f(l) lies to the left or right of b according to whether a is positive or negative, 
respectively (see Figure 111.29). 

We think of the action of an affine transformation on all of IR?. as follows: the whole 
line is stretched away from the origin if Ia I > 1, or contracted toward it if Ia I < 1; 
flipped through 180° about 0 if a < 0; and then translated (shifted as a whole) by 
an amount b (shift to the left if b < 0, and to the right if b > 0). 

1.8. Describe the set of affine transformations that takes the real interval X = [ 1, 2] 
into itself. Show that if f and g are two such transformations then f o g and g o f 
are also affine transformations on [1, 2]. Under what conditions does f o g(X) U go 
f(X) =X? 

1.9. A sequence of intervals Un}~0 is indicated in Figure 111.30. Find an affine 
transformation f: IR?.---+ IR?. so that fon(/o) =In for n = 0, 1, 2, 3, .... Use a straight
edge and dividers to help you. Also show that Un}~ 1 is a Cauchy sequence in 
(7t(IR?.), h), where h isHhe Hausdorff distance on H(IR?.) induced by the Euclidean 
metric on IR?.. Evaluate I = limn--+oo In· 
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~ 
---~---------·------ ----~-----~--------~-------------------~-~~ --------

---~---

Figure 111.31. Picture 
of a convergent geometric 
series in ~ 1 (see exer
cise 1.1 0). 

--
1.1 0. Consider the geometric series L~o b ·an = b +a · b + a2b + a3b + a4b + 
· · · > 0, 0 < b < l. This is associated with a sequence of intervals I0 = [0, b], In = 
fon(lo), where f(x) =ax+ b, n = 1, 2, 3, ... , as illustrated in Figure 111.31. 

Let I = U~0In and let l denote the total length of I. Show that f (I) = I \ I0 , and 

hence deduce that al = l - b so that l = hI ( 1 - a). Deduce at once that 

00 

L b · an = b I (1 - a). 
n=O 

Thus we see from a geometrical point of view a well-known result about geometric 

series. Make a similar geometrical argument to cover the case -1 <a < 0. 

Definition 1.3 A tramformation f : ~ --* ~ of the form 

f(x) = ao + a,x + a2x2 + a3x3 + · · · + anxn, 

where the coefficients ai (i = 0, 1, 2, ... , N) are real numbers, an# 0, and N is a 

nonnegative integer, is called a polynomial transformation. N is called the degree of 

the transformation. 

Examples & Exercises 
1.11. Show that iff: ~--* ~and g: ~--* ~are polynomial transfonnations, then 

so is f o g. Iff is of degree N, calculate the degee of fom (x) form = 1, 2, 3, .... 

1.12. Show that for n > 1 a polynomial transformation f: ~--* ~of degree n is not 

generally invertible. 

1.13. Show that far enough out (i.e., for large enough lxj), a polynomial transfor

mation f : ~ --* ~ always stretches intervals. That is, view f as a transformation 

from (~. Euclidean) into itself. Show that if I is an interval of the form I = {x : 

lx -a I ::: b} for fixed a, b E ~. then for any number M > 0 there is a number f3 > 0 

such that if b > f3, then the ratio (length of f (I) )/(length of I) is larger than M. This 

idea is illustrated in Figure III.32. 

1. 14. A polynomial transformation f : lPS. --+ lPS. of degree n can produce at most 

(n - 1) folds. For example f(x) = x 3 
- 3x + 1 behaves as shown in Figure Ill.33. 

1. 15. Find a family of polynomial transfonnations of degree 2 which map the inter

val [0, 2] into itself, such that, with one exception, if y E f ([ 0. 2]) then there exist 

two distinct points x 1 and x 2 in [0, 2] with f(xi) = f(x'2) = y. 

1.16. Show that the one-parameter family of polynomial transformations h.: 

T 



x-axis at lar~e posit ivt· x 
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[0, 2] --+ [0, 2], where 

h.(x) =A ·X· (2 -x), 
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Figure 111.32. A poly
nomial transformation 
f : ~ ~ ~ of degree > 1 
stretches ~ more and more 
the farther out one goes. 

and the parameter A. belongs to [0, 1], indeed takes the interval [0, 2] into itself. 
Locate the value of x at which the fold occurs. Sketch the behavior of the family, 
in the spirit of Figure III.33. 

1. 17. Let f : ~ --+ ~ be a polynomial transformation of degree n. Show that values 
of x that are transformed into fold points are solutions of 

df 
-(x) =O,x E ~. 
dx 

Solutions of this equation are called (real) critical points of the function f. If c is a 
critical point then f(c) is a critical value. Show that a critical value need not be a 
fold point. 

1. 18. Find a polynomial transformation such that Figure III.34 is true. 

1. 19. Recall that a polynomial transformation of an interval f : I c ~ --+ I is nor
mally represented as in Figure III.35. This will be useftd when we study iterates 
fon(x)~ 1 • However, the folding point of view helps us to understand the idea of 
the deformation of space. 

1.20. Polynomial transformations can be lifted to act on subsets of ~ 2 in a simple 

R -2 

fold point 
J 
1 
I 

c 

triply folded region 

fold point 
J 

0 1 2 3 
I I I I 

~£ ________ _,~~--------~) 
T '!" I I I I 

R -2 -1 0 11 ., 3 

I I 

Figure 111.33. The 
polynomial transformation 
j(x) = x 3

- 3x + 1. 



48 Chapter Ill Transformations on Metric Spaces; Contraction Mappings 

Figure 111.34. Find a 
polynomial transformation 
f : ~-+ ~, so that this 
figure correctly represents 
the way it folds on the real 
line. 

Figure 111.35. The 
usual way of picturing a 
polynomial transforma
tion. 

- ------·--------~---------, 
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critl"cal 
va ue ~-

! 

t --
II 

I 
I 
I 

-------r- -- --~- -----r-------1 

___ ~- _ _!:~i_tl~~int -~ _________ ) 

way: we can define, for example, F(x) = (fi(xi), h(x2)), where !1 and h are 
polynomial transformations in IR<., so that F : IR<.2 ---+ IR<.2 . Desired foldings in two 
orthogonal directions can be produced; or shrinking in one direction and folding in 
another. Show that the transformation F(x1, x2) =(~xi - ~xi+ ¥-x1, x2) acts on 
the triangular set S in Figure 111.36 as shown. 

The real line can be extended to a space which is topologically a circle by includ

ing the point at infinity. One way to do this is to think of IR<. as a subset of C, and 

Figure 111.36. A poly
nomial transformation 
acting on a set S in the 
plane. 

--~-------·--· --------------------

fold lines 
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N 

0 

Figure 111.37. !R u { oo} 
becomes a circle on a 
sphere. 

then include the North Pole on C. We define this space to be ~ = ~ U { oo} and will 
usually give it the spherical metric. 

Definition 1.4 A transformation f : ~ ~ ~ defined in the form 

f (X = ax + b b rm 
) cx+d' a, ,c,dEil'l>.,ad=f.bc, 

is called a linear fractional transformation or a Mobius transformation./f c =f. 0, then 
f( -djc) = oo, and f(oo) = ajc. If c = 0, then f(oo) = oo. 

Examples & Exercises 
1.21. Show that a Mobius transformation is invertible. 

1.22. Show that if /I and hare both Mobius transformations then so is !I o h. 
1.23. What does f (x) = 1 I x do to ~ on the sphere? 

1.24. Show that the set of Mobius transformations f such that f ( oo) = oo is the 
set of affine transformations. 

1.25. Find a Mobius transformation f : ~ ~ ~ so 'that /(1) = 2, /(2) = 0, 
f(O) = oo. Evaluate f(oo). 

1.26. Figure III.38 shows a Sierpinski triangle before and after the polynomial 
transformation x .-..+ ax(x- b) has been applied to the x-axis. Evaluate the real con
stants a and b. Notice how well fractals can be used to illustrate how a transforma
tion acts. 

2 Affine Transformations in the Euclidean Plane 

Definition 2.1 A transformation w: ~2 ~ ~2 of the form 

w(fi· x2) = (axi + bx2 + e, cxi + dx2 +f), 

where a, b, c, d, e, and f are real numbers, is called a (two-dimensional) affine 
transformation. 



50 Chapter Ill Transformations on Metric Spaces; Contraction Mappings 

-2 

We will often use the following equivalent notations 

Here A = (: ! ) is a two-dimensional, 2 x 2 real matrix and t is the column 

vector ( ; ) , which we do not distinguish from the coordinate pair ( e, f) E ~ 2 

Such transformations have important geometrical and algebraic properties. From this 

point on, we shall assume that the reader is familiar with matrix multiplication. 

The matrix A can always be written in the form 

AFTER (X,Y)~(aX·(X-b),Y) 

1 

0 0 

BEFORE 
TRANSFORMATION 

---!> 
X 

Figure 111.38. A Sierpinski triangle before and after the polynomial transformation 

x ~ ax(x -b) is applied to the x-axis. Evaluate the real constants a and b. 
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-1 0 

0 

-1 0 

Figure 111.39. An affine 
r 2 transformation takes par

allelograms into parallelo
grams. 

where (r1, e1) are the polar coordinates of the point (a, c) and (rz, (ez + n /2)) are 
the polar coordinates of the point (b, d). The linear transformation 

in lR?. 2 maps any parallelogram with a vertex at the origin to another parallelogram 
with a vertex at the origin, as illustrated in Figure III.39. Notice that the parallelo
gram may be "turned qver" by the transformation, as illustrated in Figure III.40. 

The general affine transformation w(x) =Ax+ tin lR?.2 consists of a linear trans
formation, A which deforms space relative to the origin, as described above, fol
lowed by a translation or shift specified by the vector t (see Figure III.41). 

Figure 111.40. A linear 
transformation can turn 
pictures over. 
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Figure 111.41. An affine 
transformation consists 
of a linear transformation 
followed by a translation. 

FIRST MAKE A liNEAR 

TRANSFORMATION 

THEN/ 
(e,f) 

/ TRANSLATE by t 

Figure 111.42. Two 
ivy leaves lying on the 
Euclidean Plane determine 
an affine transformation. 

0 .. 

How can one find an affine transformation that approximately transforms one 

given set into another given set in 11~.2? Let's show how to find the affine transfor

mation that almost takes the big leaf to the little leaf in Figure 111.42. This figure 

actually shows a photocopy of two real ivy leaves. We wish to find the numbers 

a, b, c, d, e, and f defined above, so that 

w(BIG LEAF) approximately equals LITTLE LEAF. 

T 
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Begin by introducing x and y coordinate axes, as already shown in Figure 111.42. 

Mark three points on the big leaf (we've cbosen the leaf tip, a side spike, and the 

point where the stem joins the leaf) and determine their coordinates (x1, x2), (y1, Y2), 

and (z1, z2). Mark the corresponding points on the little leaf, assuming that a cater
pillar hasn't eaten them, and determine their coordinates; say (x 1, x2), (.)1 1, y2), and 

(ZI, Z2), respectively. 
Then a, b, and e are obtained by solving the three linear equations 

while c, d, and f satisfy 

Examples & Exercises 

x1a + x2b + e = x1, 

Y1 a + Y2b + e = Y1, 

z1a + z2b + e = z1; 

x 1c + x2d + f = x2, 

Y!C + Y2d + f = Y2· 

Ztc+z2d+f=z2. 

2.1. Find an affine transformation in ~2 that takes the triangle with vertices at 
(0, 0), (0, 1), (1, 0) to the triangle with vertices at (4, 5), (-1, 2), and (3, 0). Show 
what this transformation does to a circle inscribed in the first triangle. 

2.2. Show that a necessary and sufficient condition for the affine transformation 

to be invertible is det A =j:. 0, where det A= (ad- be) is the determinant of the 2 x 2 

matrix A. 

2.3. Show that if f 1 : ~2 ~ ~2 and h: ~2 ~ ~2 are both affine transformations, 
then so is 

If Ji(x) = Aix + ti, i = 1, 2, 3, where Ai is a 2 x 2 real matrix, express A 3 in terms 
of A1 and A2. 

2.4. Let A and B be 2 x 2 matrices, with determinants det A and det B, respec
tively. Show that the determinant of the product is the product of the determinants, 
i.e., 

det(AB) = det A· det B. 
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.., 

Definition 2.2 A transformation w: ~2 ---+ ~2 is called a similitude if it is an 
affine transformation having one of the special forms 

w (XI) = (r c~s() 
x2 r smB 

-r sin()) (x1 ) + (e) 
r cos() x2 f 

w C~) = G~~:: ~,s!::e) C~) +G) 
for some translation (e, f) E ~2 , some real number r =/= 0, and some angle B, 0.::::: 
() < 2rr. () is called the rotation angle while r is called the scale factor or scaling. 
The linear transformation 

Re (xI ) = ( r c~s B 
x2 r smB 

-r sin()) (XI) 
r cos() X2 

is a rotation. The linear transformation 

R(XI) = (1 0) (XI) 
X2 \0 -1 X2 

is a reflection. 

Figure 111.43 shows some of the things a similitude can do. Notice that a simili
tude preserves angles. 

Examples & Exercises 
2.5. Find the scaling ratios r 1, r2 and the rotation angles 81, 82 for the affine trans
formation that takes the triangle (0, 0), (0, 1), (1, 0) onto the straight-line segment 
from (1, 1) to (2, 2) in ~2 in such a way that both (0, 1) and (1, 0) go to (1, 1). 

2.6. Let S be a region in ~2 bounded by a polygon or other "nice" boundary. Let 
w: ~2 ---+ ~2 be an affine transformation, w(x) =Ax+ t. Show that 

(area of w(S)) =I det AI ·(area of S); 

see Figure 111.44. Show that det A < 0 has the interpretation that S is "flipped over" 
by the transformation. (Hint: suppose first that Sis a triangle.) 

2. 7. Show that if w : ~ 2 ---+ ~ 2 is a similitude, w (x) = Ax + t, where t is the trans
lation and A is a 2 x 2 matrix, then A can always be written either A = r Re or 
A= rRRe. 

2.8. View the railway tracks image in Figure 111.45 as a subset S of ~2 • Find a 
similitude w: ~2 ---+ ~2 such that w(S) c S, w(S) =!= S. 

2. 9. We use the notation introduced in Definition 2.2. Find a nonzero real number 
r, an angle (), and a translation vector t such that the similitude wx = r Rex + t on 
~2 obeys 

w(A) c A, with w(A) =!= A, 

where A denotes a Sierpinski triangle with vertices at (0, 0), (1, 0), and <4. 1). 
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I 
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2. 1 0. Show that if w : ~ 2 -+ ~ 2 is affine, w (x) = Ax + t, then it can be reexpressed 

w(x) = (~ ;,) Re (~ ~) G:) +t, 

where r; E ~ and 0 ::s () < 2rr. We call a transformation of the form 

W (XI)= (ri 0) (XI). 
X2 0 r2 X2 

a coordinate rescaling. 

2.11. Let S denote the two-dimensional orchard subset of ~2 shown in Fig
ure 111.46. Find two fundamentally different affine transformations that map S into 
S but not onto S. Define the transformations by specifying how they act on three 
points. 

2. 12. Show that if A is a 2 x 2 matrix such that det A =j:. 0, with 

then the inverse of A, denoted A -I, is given by 

I i 1 ( d -b) = ( d;cA 
A- = detA -c a detA 

-b ) detA 
a • 

detA 

Figure 111.43. Some of 
the things that a similitude 
can do. 
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Figure 111.45. Railway 
to infinity. Can you find an 
affine transformation that 
nearly maps the track ties 
into themselves? 

Figure 111.44. The scal
ing factor by which an 
affine transformation 
changes area is deter
mined by the determinant 
of its linear part. 

/\ 

/::::•:::.••::., 

/_..,..------......... ....... 
/ AFFIHE ~ 

TRAHSFORMATI OH ::-:·.·. 
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Figure 111.46. Orchard subset of IR2• Can you find some interesting affine transformations 
that map this set into itself? 

2. 13. The trace of a matrix A is the sum of the elements along the diagonal, that is 

tr A= :Laii. 

Let A be a 2 x 2 matrix, and let B be another 2 x 2 matrix such that det B f= 0. Show 

that 

tr(BAB- 1) = tr A 

and 

det(BAB- 1
) = det A. 

1 

2.14. Let w(x) =Ax denote a linear transformation in the metric space (~2 , D) 

where 
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A=(: ~)· 
Define the norm of a point x E ~2 to be lxl = D(x, 0), where 0 denotes the origin. 

Define the norm of the linear transformation A by 

I A I = max { I Ax I : x E ~ 2, x # 0} 
lxl 

when this maximum exists. Show that I A I is defined when D is the Euclidean metric 

and when it is the Manhattan metric. Find an expression for I A I in terms of a, b, c, 

and d in each case. Make a geometrical interpretation of I A 1. Show that when 1 A 1 

exists we have 

IAxl::: IAI · lxl for all x E ~2 . 

3 Mobius Transformations on the Riemann Sphere 

Definition 3. 1 A transformation f : C --* C defined by 

(az +b) 
f(z) = (cz +d)' 

where a, b, c, and dE(, ad- be# 0, is called a Mobius transformation on C. If 

c # 0 then f( -djc) = oo, and f(oo) = ajc. If c = 0, then f(oo) = oo. 

As shown by the following exercises and examples, one can think of a Mobius 

transformation as follows. Map the whole plane (, together with the point at infin

ity, onto the sphere C, as described in Chapter II. A sequence of operations is then 

applied to the sphere. Each operation is elementary and has the property that it takes 

circles to circles. The possible operations are rotation about an axis, rescaling (uni

formly expand or contract the sphere), and translation (the whole sphere is picked 

up and moved to a new place on the plane, without rotation). Finally, the sphere is 

mapped back onto the plane in the usual way. Since the mappings back and forth 

from the plane to the sphere take straight lines and circles in the plane to circles on 

the sphere, we see that a Mobius transformation transforms the set of straight lines 

and circles in the plane onto itself. We also see that a Mobius transformation is in

vertible. It is wonderful how the quite complicated geometry of Mobius transforma

tions is handled by straightforward complex algebra, where we simply manipulate 

expressions of the form (az + b)j(cz +d). 

Examples & Exercises 
3. 1. Show that the most general Mobius transformation, which maps oo to oo, is of 

the form f(z) = az + b, a, bE(, a# 0, and that this is a similitude. Show that any 
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sets in the plane are 
mapped onto the sphere 

the sphere may be moved to 
a new location on the plane, 
rescaled, rotated, and inverted. 

Figure 111.47. A Mobius transformation acting on England to produce a new country. 

two-dimensional similitude that does not involve a reflection can be written in this 

form. That is, disregarding changes in notation, 

f(z) = f(xi + ix2) = (ai + ia2)(xi + ix2) + (bi + ib2) 

= reie (xi + ix2) + (bi + ib2), (i = -J=l) 

= (rcos() -rsin()) (XI)+ (bi). 
r sin() r cos() x2 b2 

Find r and () in terms of a I and a2• Show that the transformation can be achieved as 

illustrated in Figure III.48. 

3.2. Show that the M6\1ius transformation f (z) = 1 I z corresponds to first mapping 

the plane to the sphere in such a way that the unit circle {z E ([: lzl = 1} goes to 

the equator, followed by an inversion of the sphere (tum it upside down by rotating 
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Figure 111.48. The 
mechanism of the simil
itude f (z) = rei0 z + b in 
terms of the sphere. 

N 

A (l)map him onto 
the sphere 

~-Jl._rescale the globe 

1 
N until it is r times 

as large as it was 
I 

I 

N 

(2) spin the globe 
on its NS axis 
hrough angle e 

1~4)keeping the NS 
I vector constant 

pick up and move 
the sphere, putting 
S down on b. 

about an axis through + 1 and -1 on the equator), and finally mapping back to the 
plane. 

3.3. Show that any Mobius transformation that is not a similitude may be written 

f(z) = e + _j_ for some e, f, g E C, f # 0. z+g 

3.4. Sketch what happens to the picture in Figure III.49 under the Mobius transfor
mation f (z) = 1.. z 

3.5. What happens to Figure III.49 under the Mobius transfo~ation f (z) = 1 + i z? 



0 0 

(-1, 0) (0, 0) 

(0, -1) 
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Figure 111.49. Up the 
Garden Path. What does 
the Mobius transformation 
z ~----+ 1 + i z do to this 
picture? 

3.6. Show algebraically that a Mobius transformation f : C --+ C is always invert

ible. 

3. 7. Show that if /I and h are Mobius transformations, then f 1 o h is a Mobius 

transformation. 

3.8. Find a Mobius transformation that takes the real line to the unit circle centered 

at the origin. 

3.9. Evaluate fon(z) if f(z) = 1/(1 + z), n E {-2, -1, 0, 1, 2, 3, ... }. 

3.10. Interpret the Mobius transformation f(z) = i + 1/(z- i) in terms of opera

tions on the sphere. 

4 Analytic Transformations 

In this section we continue the discussion of transformations on the metric spaces 

(C, Euclidean) and (C, Spherical). We introduce a generalization of the Mobius 

transformations, called analytic transformations. We concentrate on the behavior 

of quadratic transformations. It is recommended that during a first reading or first 

course the reader obtaiqs a good mental picture of how the quadratic transformation 

acts on the sphere. The reader may then want to study this section more closely after 

reading about Julia sets in Chapter VII. 
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The similitude f : C --+ C defined by the formula f (z) = 3z + 1 is an example 
of an analytic transformation. It maps circles to circles magnified by a factor of 
three. A disk with center at zo is taken to a disk with center at f (zo) = 3z0 + 1. The 
tranformation is continuous, and it maps open sets to open sets. Nowhere does it 
"fold back along the dotted line." 

The similitude f: C--+ C defined by f(z) = (3 + 3i)z + (1 - 2i) is similarly de
scribed. The circles and disks are now rotated by 45° in addition to being magnified 
and translated. 

Loosely a transformation on C is analytic if it is continuous and it locally "be
haves like" a similitude. If you take a very small region indeed (How small? Small 
enough! There is a smallness such that what is about to be said is true!) and you 
watch what the transformation does to that tiny region, you will typically find that 
it is magnified or shrunk~ rotated, and translated, in almost exactly the same manner 
that some similitude would do the job. The similitude will always be of the special 
type discussed in exercise 3.1 above. 

We make this description more precise. Let us decide to look at what our transfor
mation does in the vicinity of a point zoE C. Assume that zo is not a critical point, 
defined below. Let T denote a tiny region, a disk for example, which contains the 
point z0 . Let f(T) be its image under the transformation. Then one can rescale T by 
a factor that makes it roughly the size of the unit square, and one can rescale f (T) 

by the same factor. The assertion of the previous paragraph is that the action of the 
transformation, viewed as taking T, rescaled, onto f(T), rescaled, can be described 
more accurately by a similitude. If you like, one could consider a picture P drawn 
in T and examine the transformed image f(P): if P and f(P) are rescaled by the 
same factor so that P is the size of the unit square, then f ( P) looks more and more 
like a similitude applied to P ., This description becomes more and more precise the 
tinier the region under discussion. 

Consider the quadratic transformation f : C --+ C defined by 

j(z) = z2 =(XI + ix2)2 = (xf- xi)+ 2XIX2i =/I (XI, X2) + /2(XI, X2)i, 

where !I (xi, x2) = (xf- xi) is called the real part of f(z), and h(xi, x2) = 2xix2 

is called the imaginary part of f. Pictures of what this transformation does to some 
Sierpinski triangles in C are illustrated in Figure 111.50. 

Two features are to be noticed. (I) Provided that we stay away from the origin, 
the transformation behaves locally like a similitude: for points z close to zo , f (z) is 
approximated by the similitude 

w(z) = az + b where a= 2zo and b = -z5. 
This fact shows up in Figure 111.50: upon close examination (we suggest the use of a 
magnifying glass here) of the transformed Sierpinski triangles, one sees that they are 
built up out of small triangles whose shapes are only slightly different from that of 
their preimages. The only place where this is not true is at the forward image of the 
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Figure 111.50. Quadrat
ic transformations are 
described by showing how 
they act on a Sierpinski 
triangle. Use a magnifying 
glass to check that the 
transformations behave 
locally like similitudes. 

origin, which is a critical point. (II) The transformation maps the space twice around 

the origin. 
One can track analytically what happens to the point 

z = R cos t + i R sin t, 

where R > 0. As the time parameter t goes from zero to 21r, z moves anticlockwise 

once around the circle of radius R. The transformed point f(z) is given by 

f(z) = R2 cos 2t + i R2 sin 2t. 

As the time parameter t goes from 0 to 21r, f(z) moves twice around the circle of 

radius R2• 

On the Riemann sph1re the transformation z 1--+ z2 can be described as follows. 

Let us say that the Equator corresponds to the circle of unit radius in the plane, that 

the South Pole corresponds to the Origin, and that the North Pole corresponds to the 
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Point at Infinity. Then the transformation leaves both Poles fixed. The Line of Longi-
tude L connecting the Poles, which corresponds to the positive real axis, is mapped 
into itself, and the Equator is mapped into itself. Here is what we must picture. First, 
points that lie above the Equator are moved closer to the North Pole; points that lie 
below the Equator are moved closer to the South Pole; and the Equator is not shifted. 
Second, the skin of the sphere is cut along the Line of Longitude L. One side of the 
cut is held fixed while the other side is pulled around the sphere (following the ter
minator when the Sun is high above the Equator), uniformly stretching the space, 
until the edge of the cut is back over L. The two lips of the the cut are rejoined. 
The sphere has been mapped twice over itself. The Poles are the critical points of the 
transformation; they are the points about which wrapping occurs. This description is 
illustrated in Figure 111.51. 

The most general quadratic transformation on the sphere is expressible by a for
mula of the form f(z) = Az2 + Bz + C, where A, B, and Care complex numbers. 

Figure 111.51. The ac
tion of the quadratic trans
formation z ~----+ z2 in terms 
of the sphere. (1) POINTS ABOVE 

THE EQUATOR MOVE 
CLOSER TO THE 
NORTH POLE; BELOW 
THEY MOVE SOUTH. 

(2)THE SPHERE IS CUT 
ALONG THE LINE OF 
LONGITUDE L. 

(3) ONE EDGE OF THE 
CUT IS PULLED RIGHT 
AROUND THE SPHERE. 
THE SPHERE IS 
COVERED TWICE. 
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y 

B 

One can show there is a change of coordinates, z 1--+ O(z), where () is a similitude, 

such that f(z) becomes expressible in the special form f(z) = z2 + C for some 

complex number C; see Exercise 5.20 in the following section. Hence the descrip

tion of the most general quadratic transformation on the sphere can be made in the 

same terms as above, except that at the end there is a translation by some constant 

amount C. This translation leaves the Point at Infinity fixed. 

The quadratic transformation f(z) = z2 maps the punctured plane ([ onto it

self twice. Each point on z E C{O} has two preimages. Hence f: C---+ C is not 

an invertible transformation. In such situations we can define a set-valued inverse 

function. 

Definition 4.1 Let f: C---+ C be an analytic transformation such that f(C) = 
C. Then the set-valued inverse off is the mapping f- 1 : 1i(C) ---+ 1i(C) defined by 

f- 1(A) ={wE C: f(w) E A} for all A E 1i(X). 

In Figure III.52 we ill~strate the transformation f- 1 acting on the Space of Frac

tals, in the case of the quadratic transformation f (z) = z2• 

Figure 111.52. The set 
valued inverse, f 1

, of 
the quadratic transforma
tion f(z) = z2, maps the 
Sierpinski triangle A 0 B 

into POQ U POQ. More 
generally, f- 1 maps the 
Space of Fractals into it
self. Look carefully at this 
image! Several important 
features of analytic trans
formations are illustrated 
here. 
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One can obtain explicit formulas for f- 1 (z) when f is a quadratic transfor

mation. For example for f(z) = z2, f- 1(0) = 0, f- 1(oo) = oo, and f- 1(z) = 

{wi(Z), w2(z)} for z E C \ {0, oo}. Here WJ(XI + ix2) = a(xJ, x2) + ib(xJ, x2), and 
W2(XJ, X2) = -a(x1, X2)- ib(XJ, X2), where 

Jx? +xi +x1 

2 

when x2 2:: 0, 

whenx2 < 0, 

Each of the two functions w 1 (z) and w2(z) is itself analytic on C \ {0, oo }. 

The following definition formalizes what is meant by an analytic transformation 
on the complex plane. We recommend further reading, for example [Rudin, 1966]. 

Definition 4.2 Let (C, d) denote the complex plane with the Euclidean metric. 

A transformation f : C ~ C is called analytic if for each zo E C there is a similitude 

of the form 

w(z) = az + b, for some pair of numbers a, bE C, 

such that d(f(z), w(z))/d(z, zo) ~ 0 as z ~ zo. The numbers a and b depend on z0. 

If, corresponding to a certain point zo = c, we have a= 0, then cis called a critical 
point of the transformation, and f (c) is called a critical value. 

If the analytic transformation f (z) is a rational transformation, which means that 
it is expressible as a ratio of two polynomials in z, such as 

(i)f(z) = 1 + 2i + 27z2 - 9z3
, 

( .. f( ) 1 + z 11) z = --, 
1-z 

("')f( ) 1 + z + z2 

111 z = ; 
1- z + z2 

then the numbers a and bin the similitude w(z) in Definition 4.2 are given by the 

formulas 

a = f' (zo) and b = f (zo) - azo. 

The derivative f' (z) of the rational function f (z) can be calculated by treating z as 
though it were the real variable x and applying the standard differentiation rules of 

calculus. The critical points c E C are the solutions of the equation f' (c) = 0. 
For example, close enough to any point zo E C such that f' (zo) # 0, the cubic 

1 
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transformation (i) is well described by the similitude 

w(z) = (54zo - 27zZ)z + (l + 2i - 27zZ + 18zJ). 

The finite critical points associated with (i) may be obtained by solving 

54c- 27c2 = 0 

and are accordingly c = 0 + iO and c = 2 + iO. By making the change of coordinates 
z' = 1/z (see section 5), one can also analyze the behavior near the point at infinity. 
It turns out that c = oo is always a critical point for a polynomial transformation 

f(z) on (. The space is "wrapped" an integral number of times about the image 
of critical point. For example, the cubic transformation (i) wraps space twice about 
each of the points f(O + iO) = 1 + 2i, and f(2 + iO) = 37 + 2i, and it wraps it three 
times about f ( oo) = oo. 

Examples & Exercises 
4. 1. Sketch a globe representing (, including a subset that looks like Africa, and 
show what happens to the subset under the quadratic transformation f(z) = z2. 

4.2. Verify the following explicit formulas for f-I(z), corresponding to f(z) = 

z2 - 1: f-I(-1) = 0; f-I(oo) = oo; and f-I(z) = {wi(Z), w2(z)} for z E ( \ 

{-1, 00}, where WI(XI + ix2) = a(XI, X2) + ib(XI, X2), and W2(XI, X2) = -a(XI, X2) 

- ib(xi, x2). Here 

and 

Jo + XI)2 +xi+ 1 +XI 

2 

Jo +xi)2 +xi+ 1 +xi 

2 

whenx2 ~ 0, 

whenx2 < 0, 

Jo + XI)2 +xi- 1- XI 

2 

Both wi(Z) and w2(z) are analytic on ([ \ {-1}. 

4.3. Locate the critical points and critical values of the quadratic transformation 

f(z) = z2 + 1. 

4.4. Draw a side view of a man with an arm stretched out in front of him, holding 
a knife. The blade shopld point down. Choose the origin of coordinates to be his 
navel. Draw another picture to explain how hara-kiri can be achieved by applying 
the inverse of the q~adratic transformation f (z) = z2 to your image. 
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4.5. Find a similitude that approximates the behavior of the given analytic transfor-
mation in the vicinity of the given point: (a) f(z) = z2 near zo = 1; (b) f(z) = 1/z 
near zo = 1 + i; (c) f(z) = (z- 1)3 near zo = 1 - i. 

5 How to Change Coordinates 

In describing transformations on spaces we usually make use of an underlying coor
dinate system. Most spaces have a coordinate system by means of which the points 
in the space are located. This underlying coordinate system is implied by the specifi
cation of the space: for example, X = [ 1, 2] provides a collection of points together 
with the natural coordinate x restricted by l ::=: x ::=: 2. We can think of either the 
space, made of points x E X, or equivalently the system of coordinates. If the space 
X is ~2 or C, then the underlying coordinate system may be Cartesian coordinates. 

If X = C, then the coordinate system may be angular coordinates on the sphere. 
In each case the underlying coordinate system is itself a subset of a metric space. 

We denote this metric space by Xc. Usually we do not consciously distinguish 
between a point x EX and its coordinate x E Xc. Notice, however, that the space 
Xc may contain points (coordinates) that do not correspond to any point in the space 
X. For example, in the case of the space X= • it is natural to take Xc = ~2 ; then 
points x E X in the space correspond to coordinates x = (xi, x2) E Xc restricted by 
0 ::=:XI ::=: 1 and 0 ::=: x2 ::=: 1. However, the coordinates (3, 5) E Xc do not correspond 
to a point in X. We would like the reader to think of the space itself as "lying above" 
its coordinate system, as suggested in Figure 111.53. 

A change of coordinate system may be described by a transformation () : Xc ---+ 

Xc. We can think of a change of coordinates being effected by physically moving 
each point x E X so that it no longer lies above x E Xc but instead above the coordi
nate x' = () (x) E Xc. Thus we must now distinguish between a point x lying in the 
space, X, from its coordinate x E Xc. Then we want to think of the change of coor
dinates () : Xc ---+ Xc as moving X relative to the underlying coordinate space Xc, 
as illustrated in Figure 111.54. 

Example 
5.1. Let X= [1, 2] and take Xc to be ~. Let (): ~---+ ~ be defined by ()(x) = 

2x + 1. Then the coordinate of the point x = 1.5 becomes changed to 4. We want 
to think of the space X as being moved relative to the coordinate space Xc, which is 
held fixed, as illustrated in Figure 111.55. 

Let () : Xc ---+ Xc denote a change of coordinates. In order that the new coordinate 
system be useful, it is usually necessary that (), treated as a transformation from X 
to ()(X), be one-to-one and onto, and hence invertible. Let f : X ---+ X be a transfor
mation on a metric space X. We want to consider how the transformation f should 
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Figure 111.53. The un
derlying coordinate sys
tem Xc for the space X. 

be expressed after the change of coordinates. Let x denote simultaneously a point 

in X and the coordinates of that point. Let f (x) denote simultaneousiy the point to 

which x is transformed by f, and the coordinates of that point. Let x' denote the 

point x EX in the new coordinate system. That is, x' = &(x) E Xc denotes the new 

coordinates of the point x. Let f' (x') denote the same transformation f : X ~ X, 

but expressed in the new coordinate system. Then the relation between the two co

ordinate systems is expressed by the commutative diagram in Figure III.57, and is 

illustrated in Figure III.56. 

Theorem 5.1 Let X be a space and let Xc =:> X be a coordinate space for X. 

Let a change of coordinates be provided by a transformation e : Xc ~ Xc . Let e be 

invertible when treated as a transformation from X to e (X). Let the coordinates of 

a point x EX be denoted by x before the change of coordinates, and by x' after the 

change of coordinates, so that 

x' = 8(x). 
? 

Let f : X ~ X be a transformation on the space X. Let x 1-+ f (x) be the formula 

for f expressed in the original coordinates. Let x' 1-+ f' (x') be the formula for f 

expressed in the new coordinates. Then 
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Figure 111.54. A 
change of coordinates 
in terms of X and Xc. 
We think of X as being 
removed relative to the 
underlying coordinate 
space Xc. 

f(x) = (B- 1 of' o B)(x), 

f'(x') = (B of o e- 1)(x'). 

Examples & Exercises 
5.2. Consider an affine transformation f(x) =ax+ b, a =f: 0, a =f: 1, a, bE IRL This 

has a fixed point Xf E ~defined by f(xf) =X f. We find Xf = b/(1- a). Xf is 
clearly the interesting point in the action of an affine transformation on ~. Accord
ingly let us change coordinates to move x f to the origin: that is x' = B (x) = x - x 1. 

What does f look like in this new coordinate system? 

j'(x') =((}of o (}- 1)(X 1
) = (} 0 (x' + Xj) = a(x' + Xj) + b- Xf; 

f' (x') = ax', which is simply a rescaling! Now using the first formula we get 

Figure 111.55. A X e(x) 
change of coordinates 
for the space [ 1, 2] given + -+----
by the transformation 

0 1 2 3 4 5 
x' = B(x) = 2x + 1. 

6 

1 
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Figure 111.56. The 
transformation F acting 
on X is equivalent to F' 
acting on 8(X). 

for all n E {0, 1, 2, 3, ... }. 

We now see a new way of visualizing an affine transformation on~: for example, if 
a > 1, we see the image in Figure III. 58. 

5.3. Show that for any affine transformation f (x) : ~ 2 --+ ~2 given by f (x) = 

Ax + t' with fixed point X f' that the coordinate transformation e (x) = X - X f trans
forms the function f' (x') = Ax'. 

5.4. Let X = [1, 2] and let a change of coordinates be defined by x' = 2x - 1. Let a 
transformation f : X --+ X be defined by f (x) = (x - 1 )2 + 1. Express f in the new 
coordinate system. 

Definition 5.1 Let f :X--+ X be a tramformation on a metric space. A point 
x f E X such that f (x f) = x f is called a fixed point of the transformation. 

1 
The fixed points of a transformation are very important. They tell us which parts 

of the space are pinned in place, not moved, by the transformation. The fixed points 
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~ 

of a transformation restrict the motion of the space under nonviolent, nonripping 

transformations of bounded deformation. 

Examples & Exercises 
5.5. Find the fixed points x1 and x2 of the Mobius transformation 

/(z) = (z + 2) 
(4- z) 

on C. Make a change of coordinates so that x1 becomes the origin and x 2 becomes 
the point at infinity. Hence interpret the action of f (z) on the sphere in geometrical 

terms. 

5.6. Let W (x) = Ax + t where det A =f. 0 is a two-dimensional affine transforma

tion acting on the space X = ~ 2. Find the fixed point x f. Change coordinates so 
that x f becomes the origin of coordinates. Hence describe the action geometri
cally of a two-dimensional, nondegenerate affine transformation. What can happen 

if det A= 0? 

5.7. Suppose we can find a coordinate transformation BAB- 1 = D, where Dis a 

diagonal matrix we denote by 

Figure 111.57. Com
mutative diagram for 
the coordinate change 
(): Xc ~ Xc. 

Figure 111.58. An affine 
transformation on rR. We 
see rescaling (magnifica
tion or diminution) cen
tered at the fixed point, 
together with a flip of 180° 
if a< 0. 

f(X) 
~------~~----------· 
X f 

e e 

~~----~-.--~------·, , x' t' f(X) 

ORIGINAL 
COORDINATES 

NEW 
COORDINATES 
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D=(~ ~J 
Show that A 1 and A2 satisfy the equation 

det ( e ~ A h ~ A ) = I e ~ A h ~ A I = A 
2 

- tr AA + det A = 0. 

5.8. Analyze the behavior of the affine transformation w(z) = 7z + 1 on <C near the 

point at infinity by making the change of coordinates h (z) = 1 j z. 

5.9. Two one-parameter families of transformations on IP& are J~(x) = x 2 - 11- and 

gA(x) = AX(l - x), where 11- and A are real parameters. Find a change of coordinates 

and a function 11- = f-1-(A) so that f~(A) (x') = gA (x') is valid for an appropriate interval 

on the A-axis. 

5.10. Find the real fixed points of g(x) = x 2 - !·Analyze the behavior of g near 

each of its fixed points by changing coordinates so as to move first one then the other 

to the origin. Another method for looking at the behavior of g near a fixed point is 

to approximate g(x) by the first two terms of its Taylor series expansion about the 

fixed point. Compare these methods. 

5.11. Suppose that the 2 x 2 matrix 

A=(; 0 
satisfies the condition (tr A)2 - 4 det A > 0. Show that there is a B such that 

BAB-1 = D, 

where D is a diagonal matrix. Furthermore, show that one choice for B is given by 

B=(: +). 
A2-h 

What do you think happens if (tr A)2 - 4 det A < 0? 

5. 12. Let w : IP& 2 ~ IP& 2 denote the affine transformation 

Make a change of coordinates so that the transformation is simply a coordinate 

rescaling. What are the rescaling factors? 

Definition 5.2 Let F denote a set of transformations on a metric space X. F 

is called a semigroup if f, g E F implies f o g E F. F is called a group if it is a 

semigroup of invertible transformations, and f E F implies f- 1 E F. 

We introduce this qefinition because we will use semigroups (and groups) of 

transformations both to characterize and to compute fractal subsets of X. However, 

we do not use any deep theorems from group theory. 
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Examples & Exercises 
5. 13. Let f : X ----* X be a transformation on a metric space. Show that the set of 
transformations {Jon: n=O, 1, 2, 3, ... } forms a semigroup. 

5. 14. A transformation T : ~ ----* ~ on code space is defined by 

T (x1x2x3X4X5 •• • ) = X2X3X4X5X6 ••• 

and is called a shift operator. Describe the semigroup of transformations {ron : n = 

0, 1, 2, 3, ... } . What are the fixed points of T 03 if the code space is built up from the 
two symbols {0, 1}? 

5. 15. Show that the set of Mobius transformations on ~ forms a group. 

5. 16. Show that the set of Mobius transformations on C forms a group. 

5. 17. Show that the set of invertible affine transformations on ~ 2 forms a group. 

5. 18. Show that the set of transformations f : ~ 2 ----* ~ 2 such that f ( £) c £ forms 
a semigroup. 

5. 19. Show that a group of transformations is provided by the set of affine trans-

formations of the form w(x) =Ax+ t, where A= (: ~) for a, b, c E ~, with 

ac =f. 0, and the translation vector t is arbitrary. 

5.20. The most general analytic quadratic transformation f: C----* C can be ex

pressed by a formula of the form f(z) = Az2 + Bz + C, where A, B, and C are 
complex numbers, and A =f. 0. Show that by means of a suitable change of coordi
nates, z' = B(z), where e is a similitude, show that f(z) can be reexpressed as a 
quadratic transformation of the special form f' (z) = (z') 2 + C for some complex 
number C. 

6 The Contraction Mapping Theorem 

Definition 6. 1 A transformation f : X ----* X on a metric space (X, d) is called 
contractive or a contraction mapping if there is a constant 0 :S s < 1 such that 

d(f(x), f(y)) :S s · d(x, y)'v'x, y EX. 

Any such number s is called a contractivity factor for f. 

It would be convenient to be able to talk about the largest number and the smallest 
number in a set of real numbers. However, a set such as S = ( -oo, 3) does not 

possess either. This difficulty is overcome by the following definition. 

Definition 6.2 Let S denote a set of real numbers. Then the infimum of S is 
equal to -oo if S contains negative numbers of arbitrarily large magnitude. Other
wise the infimum of S = max{x E ~: x :S s for all s E S}. The infinum of S always 
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exists because of the nature of the real number system, and it is denoted by inf S. 

The supremum of S is similarly defined. It is ~qual to +oo if S contains arbitrarily 

large numbers; otherwise it is the minimum of the set of numbers that are greater 

than or equal to all of the numbers inS. The supremum of S always exists, and it is 

denoted by sup S. 

Examples & Exercises 

6.1. Find the supremum and the infimum of the following sets of real numbers: (a) 

(-oo, 3); (b) C, the Classical Cantor Set; (c) {1, 2, 3, 4, ... }; (d) the positive real 

numbers. 

6.2. Let f : X ~ X be a contraction mapping on a compact metric space (X, d). 

Show that inf{s E ~: s is a contractivity factor for f} is a contractivity factor for f. 

6.3. Show that if f : X ~ X and g : X ~ X are contraction mappings on a space 

(X, d), with contractivity factors s and t, respectively, then f o g is a contraction 

mapping with contractivity factor st. 

Theorem 6.1 [(The Contraction Mapping Theorem).] Let f: X~ X be a con

traction mapping on a complete metric space (X, d). Then f possesses exactly one 

fixed point x f EX and moreover for any point x EX, the sequence {fan(x): n = 
0, 1, 2, ... } converges to x f. That is, 

for each x EX. 

Figure III.59 illustrates the idea of a contractive transformation on a compact 

metric space. 

Proof Let x E X. Let 0 ~ s < 1 be a contractivity factor for f. Then 

(1) 

for all m, n = 0, 1, 2, ... , where we have fixed x EX. The notation u 1\ v denotes 

the minimum of the pair of real numbers u and v. In particular, fork= 0, 1, 2, ... , 

we have 

d(x, fok(x)) ~ d(x, f(x)) + (f(x), f 02 (x)) + · · · + d(fo(k-l)(x), fok(x)) 

~ (1 + s + s 2 + · · · + sk-1)d(x, f(x)) 

~ (1- s)-1d(x, f(x)), 

so substituting into equation ( 1) we now obtain 

d(fon(x), fom(x)) ~ sml\n. (1- s)-1. (d(x, f(x)), 

from which it immediately follows that {f0n(x)}~0 is a Cauchy sequence. Since X 

is complete this Cauchy sequence possesses a limit x f E X, and we have 

lim fon(x) =X!· 
n-+oo 
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Figure 111.59. (a) Illus
trates the idea of a con
tractive transformation on 
a metric space. (b) A con
traction mapping doing 
its work, drawing all of a 
compact metric space X 
toward the fixed point. 

(a) 

(b) 

Now we shall show that x f is a fixed point off. Since f is contractive it is continu
ous and hence 

Finally, can there be more than one fixed point? Suppose there are. Let x f and y f be 
two fixed points of f. Then x f = f(x f), YJ = f(YJ ), and 

d(xf. YJ) = d(f(xf). f(xf)) :S sd(xf, YJ), 
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where (1- s)d(x1 , y1):::: 0, which implies d(x1 , YJ) = 0 and hence x1 = YJ· This 

completes the proof. 

Examples & Exercises 
6.4. Let w (x) = Ax + t be an affine transformation in two dimensions. Make the 

change of coordinates h(x) = x' = x - x 1, under the assumption that det(/ - A) =I= 

0, and show that w'(x') =how o h-1(x') =Ax', that w(x) = (h- 1 ow' o h)(x) = 

A(x- x 1 ) + x f• and hence that 

W
0 n(x) = An(x- X f)+ Xf for n = 0, 1, 2, 3,.... (2) 

Give conditions on A such that it is contractive (a) in the Euclidean metric, and (b) in 

the Manhattan metric. Show that if I A I < 1, where I A I denotes any appropriate norm 

of A viewed as a linear operator on a two-dimensional vector space, then {won (x)} 

is a Cauchy sequence that converges to x 1, for each x E ~ 2. 

6.5. Let f : •-+ • be a contraction mapping on (•, Euclidean). Show that Fig

ure 111.59 gives the right idea. 

6.6. Let f : ~ -+ ~ be the affine transformation f (x) = ! x + ! . Verify f is a 

contraction mapping and deduce 

for each x E ~-

Use this formula with x = 1 to obtain a geometrical series for the fixed point x 1 E ~

Observe, however, f (~) = ~; indeed f is invertible. 

6.7. Let (X, d) be a compact metric space that contains more than one point. Show 

that the situation in exercise 6.6 cannot occur for any contraction mapping f : X -+ 

X. That is, show that f (X) C X but f (X) =I= X. That is, show that a contraction 

mapping on a nontrivial compact metric space is not invertible. Hint: use the com

pactness of the space to show that there is a point in the space that is farthest away 

from the fixed point. Then show that there is a point that is not in f (X). 

6.8. Show that the set of contraction mappings on a metric space forms a semi

group. 

6. 9. Show that the affine transformation w : £ -+ £ defined by w (x) = Ax + t is a 

contraction, where 

( 
l cos 120° 

A= 2 
l sin 120° 
2 

_1. sin 120° ) ( l ) 2 and t = 2 . 
lcos120° 0 
2 

Here £ is an equilateral Sierpinski triangle with a vertex at the origin and one at 

(1, 0). You need to begin by verifying that w does indeed map£ into itself! Locate 

the fixed point x 1. Maf.e a picture of this contraction mapping "doing its work, 

mapping all of the compact metric space £ toward the fixed point." Use different 

colors to denote the successive regions fo(n)(£) \ fo(n+l)(£) for n = 0, 1, 2, 3, .... 
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Figure 111.60. The ex
istence of a positive 
eigenvalue of an "angle
squeezing" linear transfor
mation. 

6.10. Define a mapping on the code space of two symbols {0, 1} by f(x 1x2x3x4 .. . ) 
. (R 11 h h · · d( ) " 00 lx·-y·l · = lx 1xzx3x4.... eca t at t e metnc IS x, y = Li=l ~' or equivalent.) 

Show that f is a contraction mapping. Locate the fixed point of f. 

6. 11. Let (X, d) be a compact metric space, and let f : X ~ X be a contraction 
mapping. Show that {Jon (X)} ~0 is a Cauchy sequence of points in (1t (X), h) and 
limn---+oo fon(X) = {x f }, where x f is the fixed point of f. 

6. 12. Let (X, d) be a compact metric space. Let f : X ~ X have the property 
limn---+oo fon(X) = x !· Find a metric d on X such that f is a contraction mapping, 
and the identity is a homeomorphism from (X, d)~ (X, d). 

6.13. Let Ax= (: ~) ( ~:) with a, b, c, dE IR, all strictly positive, be a lin

ear transformation on ~2 . Show that A maps the positive quadrant {(x1, x2): x1 :::: 

0, x2 :::: 0} into itself. Let a mapping f : [0, 90°] ~ [0, 90°] be defined by 

A (~~::)=(some positive number) ( ~~: j~i) · 
Show that {Jon (B)} converges to the unique fixed point of f. Deduce that there 

exists a unique positive number A, and an angle 0 < 0 < 90" such that A ( ~:: ) = 

), (~~::).See Figure IIT.60. 
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7 Contraction Mappings on the Space of Fractals 

Let (X, d) be a metric space and let (1i(X), h(d)) denote the corresponding space 

of nonempty compact subsets, with the Hausdorff metric h(d). We introduce the 

notation h(d) to show that d is the underlying metric for the Hausdorff metric h. 

For example, we may discuss (1i(C), h(spherical)) or (1i(~2 ), h(Manhattan)). We 

will drop this additional notation when we evaluate Hausdorff distances. 

We have repeatedly refused to define fractals: we have agreed that they are sub

sets of simple geometrical spaces, such as (~2 , Euclidean) and (C, Spherical). If 

we were to define a deterministic fractal, we might say that it is a fixed point of a 

contractive transformation on (1i(X), h(d)).· We would require that the underlying 

metric space (X, d) be "geometrically simple." We would require also that the con

traction mapping be constructed from simple, easily specified, contraction mappings 

on (X, d), as described below. 

Lemma 7. 1 Let w : X --+ X be a contraction mapping on the metric space 

(X, d). Then w is continuous. 

Proof Let E > 0 be given. Let s > 0 be a contractivity factor for w. Then 

d(w(x), w(y))::::: sd(x, y) < E 

whenever d(x, y) < 8, where 8 = E/s. This completes the proof. 

Lemma 7.2 Let w : X --+ X be a continuous mapping on the metric space 

(X, d). Then w maps 1i(X) into itself 

Proof LetS be a nonempty compact subset of X. Then clearly w(S) = {w(x): 

xES} is nonempty. We want to show that w(S) is compact. Let {Yn = w(xn)} be 

an infinite sequence of points in S. Then {xn} is an infinite sequence of points in S. 

Since S is compact there is a subsequence { x Nn} that converges to a point .X E S. But 

then the continuity of w implies that {y Nn = f (x NJ} is a subsequence of {Yn} that 

converges toy= f(x) E w(S). This completes the proof. 

The following lemma tells us how to make a contraction mapping on (1i(X), h) 

out of a contraction mapping on (X, d). 

Lemma 7.3 Let w : X --+ X be a contraction mapping on the metric space 

(X, d) with contractivity factors. Then w: 1i(X)--+ 1i(X) defined by 

w(B) = {w(x): x E B}VB E 1i(X) 

is a contraction mapping on (1i(X), h(d)) with contractivity factors. 

Proof From Lemma 7.1 it follows that w : X --+ X is continuous. Hence by 

Lemma 7.2 w maps 1i(X) into itself. Now let B, C E 1t(X). Then 

d(w(B), w(C)) = max{min{d(w(x, y), w(y)): y E C}: x E B} 

::::: max{min{s · d(x, y): y E C}: x E B} = s · d(B, C). 
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Similarly, d(w(C), w(B)) :::;: s · d(C, B). Hence 

h(w(B), w(C)) = d(w(B), w(C)) v d(w(C), w(B)):::;: s · d(B, C) v d(C, B) 

:::::s·d(B,C). 

This completes the proof. 

The following lemma gives a characteristic property of the Hausdorff metric 
which we will shortly need. The proof follows at once from exercise 6.13 of Chapter 
II. 

Lemma 7.4 For all B, C, D, and E, in H(X) 

h(B U C, DUE):::;: h(B, D) v h(C, E), 

where as usual h is the Hausdorff metric. 

The next lemma provides an important method for combining contraction map
pings on (H(X), h) to produce new contraction mappings on (H(X), h). This 
method is distinct from the obvious one of composition. 

Lemma 7.5 Let (X, d) be a metric space. Let { Wn : n = 1, 2, ... , N} be con
traction mappings on (H(X), h). Let the contractivity factor for Wn be denoted by sn 
for each n. Define W: H(X)---+ H(X) by 

W(B) =WI (B) U w2(B) U ... U Wn(B) 

for each BE H(X). 

Then W is a contraction mapping with contractivity factors= max{sn : n = 1, 2, 
... , N}. 

Proof We demonstrate the claim for N = 2. An inductive argument then com
pletes the proof. Let B, C E H(X). We have 

h(W(B), W(C)) = h(w,(B) U w2(B), w 1(C) U w2(C)) 

:::: h(w1 (B), w 1 (C)) v h(w2(B), w2(C)) (by Lemma 7.2) 

:::;: s1h(B, C) v s2h(B, C):::;: sh(B, C). 

This completes the proof. 

Definition 7. 1 A (hyperbolic) iterated function system consists of a complete 
metric space (X, d) together with a finite set of contraction mappings Wn : X ---+ 
X, with respective contractivity factors sn, for n = 1, 2, ... , N. The abbreviation 
"/FS" is used for "iterated function system." The notation for the IFS just an
nounced is {X; Wn, n = 1, 2, ... , N} and its contractivity factor iss= max{sn : n = 
1,2, ... ,N}. 

We put the word "hyperbolic" in parentheses in this definition because it is some
times dropped in practice. Moreover, we will sometimes use the nomenclature "IFS" 
to mean simply a finite set of maps acting on a metric space, with no particular con
ditions imposed upon the maps. 

The following theorem summarizes the main facts so far about a hyperbolic IFS. 
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Theorem 7. 1 Let {X; wn, n = 1, 2, ... , N} be a hyperbolic iterated function 

system with contractivity factors. Then the t':ansformation W: 1-l(X) ~ 1-l(X) de
fined by 

W(B) = U~= 1 wn(B) 

for all BE 1-l(X), is a contraction mapping on the complete metric space (1-l(X), 
h(d)) with contractivity factors. That is 

h(W(B), W(C)) ~ s · h(B, C) 

for all B, C E 1-l(X). Its unique fixed point, A E 1-l(X), obeys 

A= W(A) = U~= 1 wn(A) 

and is given by A= limn-H)O won(B) for any B E 1-l(X). 

Definition 7.2 The fixed point A E 1-l(X) described in the theorem is called the 

attractor of the IFS. 

Sometimes we will use the name "attractor" in connection with an IFS that is 
simply a finite set of maps acting on a complete metric space X. By this we mean 
that one can make an assertion analagous to the last sentence of Theorem 7 .1. 

We wanted to use the words "deterministic fractal" in place of "attractor" in 

Definition 7 .2. We were tempted, but resisted. The nomenclature "iterated function 
system" is meant to remind one of the name "dynamical system." We will introduce 
dynamical systems in Chapter 4. Dynamical systems often possess attractors, and 
when these are interesting to look at they are called strange attractors. 

Examples & Exercises 
7.1. This exercise takes place in the metric spaces (~. Euclidean) and (1-l(R), 

h(Euclidean)). Consider the IFS {~; w1, w2}, where WI(x) = ~x and w2(x) = ~x + 
~· Show that this is indeed an IFS with contractivity factors= ~· Let B0 = [0, 1]. 
Calculate Bn = won(Bo), n = 1, 2, 3, .... Deduce that A= limn~oo Bn is the classi
cal Cantor set. Verify directly that A = ~A U {~A + ~}. Here we use the following 
notation: for a subset A of~. xA = {xy: yEA} and A+ x = {y + x: yEA}. 

7.2. With reference to example 7.1, show that if WI(x) =six and w2(x) = (1-

s1)x + s 1, where s 1 is a number such that 0 < s1 < 1, then BI = B2 = B3 = .... Find 
the attractor. 

7.3. Repeat example 7.1 with WI (x) = ~x and w2(x) = ~x + ~· In this case A= 
limn~oo Bn will not be the classical Cantor set, but it will be something like it. 
Describe A. Show that A contains no intervals. How many points does A contain? 

7 .4. Consider the IFS { ~; ~ x + ~ , ~ x, ~ x + ~}. Verify that the attractor looks like 
the image in Figure 111.61. Show, precisely, how the set in Figure 111.61 is a union of 

1 

three "shrunken copies of itself." This attractor is interesting: it contains countably 
many holes and countably many intervals. 
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Figure 111.61. Attractor · 
for three affine maps on 
the real line. Can you find 
the maps? 

Figure 111.62. A se- y 
quence of sets converging 
to a line segment. 

1 

0 32 48 S6 64 

X 
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7.5. Show that the attractor of an IFS having the form{~; w 1 (x) =ax+ b, w2(x) = 

ex+ d}, where a, b, c, and dE ~,is either connected or totally disconnected. 

7 .6. Does there exist an IFS of three affine maps in ~ 2 whose attract or is the union 

of two disjoint closed intervals? 

7. 7. Consider the IFS 

Let Ao = {(i, y): 0 ~ y ~ 1}, and let won(A0 ) =An, where W is defined on 1t(~2 ) 

in the usual way. Show that the attractor is A = { (x, y) : x = y, 0 ~ x ~ 1} and 

that Figure 111.62 is correct. Draw a sequence of pictures to show what happens if 

Ao = {(x, y) E ~2 : 0 ~ x ~ 1, 0 ~ y ~ 1}. 

7.8. Consider the attractor for the IFS {~; w1 (x) = 0, w2(x) = ~x + 1 }. Show that 
it consists of a countable increasing sequence of real points {xn : n = 0, 1, 2, ... } 

together with { 1 }. Show that Xn can be expressed as the nth partial sum of an infinite 

geometric series. Give a succinct formula for Xn. 

7.9. Describe the attractor A for the IFS {[0, 2]; w 1(x) = bx2, w2(x) = ~x + iJ by 

describing a sequence of sets which converges to it. Show that A is totally discon

nected. Show that A is perfect. Find the contractivity factor for the IFS. 

7.10. Let (r, B), 0 ~ r ~ oo, 0 ~ B < 2rr denote the polar coordinates of a point 

in the plane, ~2 . Define w 1(r, B)= Cir + i, iB), and w2(r, B)= (~r + 1, ~B + 
2
; ). Show that {~2 ; w 1, w2 } is not a hyperbolic IFS because both maps w 1 and w 2 

are discontinuous on the whole plane. Show that {~2 ; w1, w2 } nevertheless has an 

attractor; find it (just consider r and B separately). 

7. 11. Show that the sequence of sets illustrated in Figure 111.63 can be written in 

the form An= won(Ao) for n = 1, 2, ... , and find W: 1t(~2) ~ 1t(~2 ). 

7. 12. Describe the collection of functions that constitutes the attractor A for the IFS 

1 1 
{C[O, 1]; w, (f(x)) = 2 f(x), w2(j(x)) = 2 f(x) + 2x(l- x)}. 

Find the contractivity factor for the IFS. 

7.13. Let C0[0, 1] = {f E C[O, 1] : f(O) = f(l) = 0}, and define d(f, g)= 

max{lf(x)- g(x)i: X E [0, 1]}. Define Wt: C0[0, 1] ~ C0 [0, 1] by (wt(f))(x) = 
if(2x mod 1) + 2x(1- x) and (w2(f))(x) = if(x). Show that {C0[0, 1]; Wt, w2} 

is an IFS, find its contractivity factor, and find its attractor. Draw a picture of the 

attractor. 

7.14. Find conditions ~uch that the Mobius transformation w(x) =(ax+ b)j(cz + 
d), a, b, c, dE ([,ad- be f. 0, provides a contraction mapping on the unit disk 

w 

) 
~ 

w 

Figure 111.63. The first 
three sets A0 , A 1, and A2 

in a convergent sequence 
of sets in H.(~2 ). Can 
you find a transformation 
W : H(~2) --+ 7-l(~2) 

such that An+l = W(An)? 
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X= {z E C: lzl ::::: 1}. Find an upper bound for the contractivi{y factor. Construct an 

IFS using two Mobius transformations on X, and describe its attractor. 

7.15. Show that a Mobius transformation on (is never a contraction in the spheri

cal metric. 

7.16. Let (1:, d) be the code space of three symbols {0, 1, 2}, with metric 

d( ) 
_ ~ lxn - Yn I 

x,y -~ . 
n=l 4n 

Define w 1 : 1: ~ 1: by Wt (x) = Ox1x2x3 ... and w2(x) = 2x1x2x3 .. .. Show that w 1 

and w2 are both contraction mappings and find their contractivity factors. Describe 

the attractor of the IFS { 1:; w 1, w2 }. What happens if we include in the IFS a third 

transformation defined by w3x = 1x 1 x2x3 ... ? 

7. 17. Let .A c ~ 2 denote the compact metric space constisting of an equilateral 

Sierpinski triangle with vertices at (0, 0), (1, 0), and (~, f), and consider the IFS 

{.A, ~z + ~' ~e2ni13z + ~} where we use complex number notation. Let Ao = .A, 

and An= won(Ao) for n = 1, 2, 3, .... Describe At, A2, and the attractor A. What 

happens if the third transformation w3(z) = ~z + i + (.J3/4)i is included in the 

IFS? 

8 Two Algorithms for Computing Fractals from Iterated Function Systems 

In this section we take time out from the mathematical development to provide two 

algorithms for rendering pictures of attractors of an IFS on the graphics display de

vice of a microcomputer or workstation. The reader should establish a computer

graphical environment that includes one or both of the software tools suggested in 

this section. 
The algorithms presented are (1) the Deterministic Algorithm and (2) the Random 

Iteration Algorithm. The Deterministic Algorithm is based on the idea of directly 

computing a sequence of sets {An = won (A)} starting from an initial set A 0 . The 

Random Iteration Algorithm is founded in ergodic theory; its mathematical basis 

will be presented in Chapter IX. An intuitive explanation of why it works is pre

sented in Chapter IV. We defer important questions concerning discretization and 

accuracy. Such questions are considered to some extent in later chapters. 

For simplicity we restrict attention to hyperbolic IFS of the form {~2 ; Wn : n = 
1, 2, ... , N}, where each mapping is an affine transformation. We illustrate the al

gorithms for an IFS whose attractor is a Sierpinski triangle. Here's an example of 

such an IFS: 

WI [X1] = [0.5 0 ] [Xl] + [ 1]' 
X2 0 0.5 X2 1 
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w2 
[::] = [

0
0
5 

o
05J[::J + [5~ l 

W 3 [ Xt] = [ 0.5 0 ] [ X1] + [ 25] . 
X2 0 0.5 X2 50 

This notation for an IFS of affine maps is cumbersome. Let us agree to write 

W;(x) = W; [::] = [ :; ~;] [::] + [;,] = A;x + f;. 

Then Table 111.1 is a tidier way of conveying the same iterated function system. 

Table 111.1 also provides a number p; associated with w; fori= 1, 2, 3. These 

numbers are in fact probabilities. In the more general case of the IFS {X; Wn : n = 

1, 2, ... , N}, there would beN such numbers {p;: i = 1, 2, ... , N} that obey 

Pt + P2 + P3 + · · · + Pn = 1 and p; > 0 fori=1,2, ... ,N. 

These probabilities play an important role in the computation of images of the at

tractor of an IFS using the Random Iteration Algorithm. They play no role in the 

Deterministic Algorithm. Their mathematical significance is discussed in later chap

ters. For the moment we will u~e them only as a computational aid, in connection 

with the Random Iteration Algorithm. To this end we take their values to be given 

approximately by 

"'"' I det Ad _ la;d;- b;c;l 
Pi""-' N - N 

Li=l lA; I Li=l la;d; - b;c; I 
for i = 1, 2, ... , N. 

Here the symbol ~ means "approximately equal to." If, for some i, det A; = 0, 

then p; should be assigned a small positive number, such as 0.001. Other situations 

should be treated empirically. We refer to the data in Table 111.1 as an IFS code. 

Other IFS codes are given in Tables 111.2, 111.3, and III.4. 

Algorithm 8.1 The Deterministic Algorithm. Let {X; w1, w2, ... , wN} be a 

hyperbolic IFS. Choose a compact set A 0 C ~2 . Then compute successively An = 
won(A) according to 

for n = 1, 2, .... 

Thus construct a sequence {An: n = 0, 1, 2, 3, ... } c H(X). Then by Theorem 7.1 

the sequence {An} converges to the attractor of the IFS in the Hausdorff metric. 

Table Ill. 1. IFS code for a Sierpinski triangle. 

w a b c d e f p 

0.5 0 0 0.5 0.33 

2 0.5 0 0 0.5? 50 0.33 

3 0.5 0 0 0.5 50 50 0.34 
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Table 111.2. IFS code for a square. 

w a b c d e f p 

0.5 0 0 0.5 0.25 
2 0.5 0 0 0.5 50 1 0.25 

3 0.5 0 0 0.5 1 50 0.25 
4 0.5 0 0 0.5 50 50 0.25 

Table 111.3. IFS code for a fern. 

w a b c d e f p 

1 0 0 0 0.16 0 0 0.01 
2 0.85 0.04 -0.04 0.85 0 1.6 0.85 
3 0.2 -0.26 0.23 0.22 0 1.6 0.07 
4 -0.15 0.28 0.26 0.24 0 0.44 0.07 

Table 111.4. IFS code for a fractal tree. 

w a b c d e f p 

0 0 0 0.5 0 0 0.05 
2 0.42 -0.42 0.42 0.42 0 0.2 0.4 
3 0.42 0.42 -0.42 0.42 0 0.2 0.4 
4 0.1 0 0 0.1 0 0.2 0.15 

We illustrate the implementation of the algorithm. The following program com
putes and plots successive sets An+l starting from an initial set A 0 , in this case a 
square, using the IFS code in Table 111.1. The program is written in BASIC. It should 
run without modification on an IBM PC with Color Graphics Adaptor or Enhanced 
Graphics Adaptor, and Turbobasic. It can be modified to run on any personal com
puter with graphics display capability. On any line the words preceded by a ' are 
comments and not part of the program. 

Program 1. (Example of the Deterministic Algorithm) 

screen 1 : cls 'initialize graphics 
dim s(100,100) : dim t(100,100) 'allocate two arrays of pixels 
a(1)=0.5:b(1)=0:c(1)=0:d(1)=0.5:e(1)=1:f(1)=1 'input the IFS code 
a(2)=0.5:b(2)=0:c(2)=0:d(2)=0.5:e(2)=50:f(2)=1 
a(3)=0.5:b(3)=0:c(3)=0:d(3)=0.5:e(3)=25:f(3)=50 
for i=1 to 100 'input the initial set A(O), in this case 

a square, into the array t(i,j) 



8 Two Algorithms for Computing Fractals from Iterated Function Systems 8 7 

t(i,1)=1: pset(i,1) 'A(O) can be used as a condensation set 
t(1,i)=1:pset(1,i) 'A(O) is plotted on the screen 
t(100,i)=1:pset(100,i) 
t(i,100)=1:pset(i,100) 
next: do 
for i=1 to 100 'apply W to set A(n) to make A(n+1) in the 

array s(i,j) 
for j=1 to 100 : if t(i,j)=1 then 
s(a(1)*i+b(1)*j+e(1),c(1)*i+d(1)*j+f(1))=1 'and apply W to A(n) 
s(a(2)*i+b(2)*j+e(2),c(2)*i+d(2)*j+f(2))=1 
s(a(3)*i+b(3)*j+e(3),c(3)*i+d(3)*j+f(3))=1 
end if: next j: next i 
cls 'clears the screen--omit to obtain sequence with a A(O) as 

condensation set (see section 9 in Chapter II) 
for i=1 to 100 : for j=1 to 100 
t(i,j)=s(i,j) 'put A(n+1) into the array t(i,j) 
s(i,j)=O 'reset the array s(i,j) to zero 
if t(i,j)=1 then 
pset(i,j) 'plot A(n+1) 
end if : next : next 
loop until instat 'if a key has been pressed then stop, 

otherwise compute A(n+1)=W(A(n+1)) 

The result of running a higher-resolution version of this program on a Masscomp 

5600 workstation and then printing the contents of the graphics screen is presented 

in Figure III.64. In this case we have kept each successive image produced by the 

program. 
Notice that the program begins by drawing a box in the array t(i, j). This box has 

no influence on the finally computed image of a Sierpinski triangle. One could just 

as well have started from any other (nonempty) set of points in the array t(i, j), as 

illustrated in Figure III.65. 

To adapt Program 1 so that it runs with other IFS codes will usually require 

changing coordinates to ensure that each of the transformations of the IFS maps the 

pixel array s(i, j) into itself. Change of coordinates in an IFS is discussed in exercise 

10.14. As it stands in Program 1, the array s(i, j) is a discretized representation of 

the square in ~2 with lower left comer at (1, 1) and upper right comer at (100, 100). 

Failure to adjust coordinates correctly will lead to unpredictable and exciting results! 

Algorithm 8.2 The Random Iteration Algorithm. Let {X; WJ, w2, ... ' WN} 

be a hyperbolic IFS, where probability p; > 0 has been assigned to to w; fori = 

1, 2, ... , N, where L:7=1 p; = 1. Choose xo EX and then choose recursively, inde

pendently, 
1 

Xn E {WJ(Xn_l), W2(Xn-J), ... , WN(Xn-d} for n = 1, 2, 3, ... , 
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Figure 111.64. The re
sult of running the De
terministic Algorithm 
(Program 1) with various 
values of N, for the IFS 
code in Table III. I. 

where the probability of the event Xn = wi(Xn-1) is Pi· Thus, construct a sequence 
{xn: n = 0, 1, 2, 3, ... } C X. 

* The reader should skip the rest of this paragraph and come back to it after 
reading Section 9. If {X, w0 , w1, w2, ... , w N} is an IFS with condensation map w0 
and associated condensation set C c 1t(X), then the algorithm is modified by (a) 
attaching a probability Po> 0 to wo, so now L.:7=o Pi= 1; (b) whenever wo(Xn- 1) 
is selected for some n, choose Xn "at random" from C. Thus, in this case too, we 
construct a sequence {xn : n = 0, 1, 2, ... } of points in X. 

The sequence {xn}~0 "converges to" the attractor of the IFS, under various con
ditions, in a manner that will be made precise in Chapter IX. 

We illustrate the implementation of the algorithm. The following program com
putes and plots a thousand points on the attractor corresponding to the IFS code in 
Table III.1. The program is written in BASIC. It runs without modification on an 
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IBM PC with Enhanced Graphics Adaptor and Turbobasic. On any line the words 

preceded by a ' are comments: they are not part of the program. 

Program 2. (Example of the Random Iteration Algorithm) 

'Iterated Function System Data 
a[1] 0.5 b[1] =0 c [1] =0 d[1] =.5 e[1] =1 : f [1] =1 
a[2] 0.5 b[2] =0 c [2] =0 d[2] =.5 e [2] =50 f [2] =1 
a[3] 0.5 b[3] =0 c [3] =0 d[3] =.5 e [3] =50 : f [3] =50 

screen 1 : cls 'initialize computer graphics 

window (0,0)-(100,100) 'set plotting window to O<x<100, O<y<100 

x =0 : y = 0: numits =1000 'initialize (x,y) and define 

the number of iterations, numits 

Figure 111.65. The re
sult of running the Deter
ministic Algorithm (Pro
gram 1 ), again for the IFS 
code in Table III.l, but 
starting from a different 
initial array. The final re
sult is always the same! 
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Figure 111.66. The result of running the Random Iteration Algorithm for increasing 
numbers of iterations. The randomly dancing point starts to suggest the structure of the 
attractor of the IFS given in Table 111.3. 

for n =1 to numits 'Random Iteration begins! 
k int(3*rnd-0.00001) +1 'choose one of the numbers 1, 2, 

and 3 with equal probability 

'apply affine transformation number k to (x,y) 
newx =a[k]*x+b[k]*y+e[k] : newy =c[k]*x+d[k]*y+f[k] 
x =newx : y =newy 'set (x,y) to the point thus obtained 
if n > 10 then pset (x,y) 'plot (x,y) after the first 10 

iterations 
next end 

The result of running an adaptation of this program on a Masscomp workstation 
and then printing the contents of the graphics screen is presented in Figure III.66. 
Notice that if the size of the plotting window is decreased, for example by replacing 
the window call by WINDOW (0,0)-(50,50), then only a portion of the image is 
plotted, but at a higher resolution. Thus we have a simple means for "zooming in" 
on images of IFS attractors. The number of iterations may be increased to improve 
the quality of the computed image. 

Examples & Exercises 
8.1. Rewrite Programs 1 and 2 in a form suitable for your own computer environ
ment, then run them and obtain hardcopy of the output. Compare their performance. 

8.2. Modify Programs 1 and 2 so that they will compute images associated with the 
IFS code given in Table III.2. 
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8.3. Modify Program 2 so that it will compute images associated with the IFS codes 
given in Tables 111.3 and 111.4. 

8.4. By changing the window size in Program 2, obtain images of "zooms" on the 
Sierpinski triangle. For example, use the following windows: (1, 1) - (50, 50); (1, 
1)- (25, 25); (1, 1) - (12, 12); ... ; (1, 1) - (N, N). How must the total number of 
iterations be adjusted as a function of N in order that (approximately) the number 
of points that land within the window remains constant? Make a graph of the total 
number of iterations against the window size. 

8.5. What should happen, theoretically, to the sequence of images computed by 
Program 1 if the set A0 is changed? What happens in practice? Make a computa
tional experiment to see if there is any difference in say A 10 corresponding to two 
different choices for A0 • 

8.6. Rewrite Program 2 so that it applies the transformation wi with probabil
ity Pi, where the probabilities are input by the user. Compare the number of it
erations needed to produce a "good" rendering of the Sierpinski triangle, for the 
cases (a) Pt = 0.33, P2 = 0.33, P3 = 0.34; (b) Pt = 0.2, P2 = 0.46, P3 = 0.34; (c) 
Pt = 0.1, P2 = 0.56, P3 = 0.34. 

9 Condensation Sets 

There is another important way of making contraction mappings on 7t(X). 

Definition 9.1 Let (X, d) be a metric space and let C E 7t(X). Define a trans
formation wo: 7t(X)--+ 1t(X) by w0 (B) = C for all BE 7t(X). Then wo is called a 
condensation transformation and C is called the associated condensation set. 

Observe that a condensation transformation w0 : 7t(X) --+ 1t(X) is a contraction 
mapping on the metric space (7t(X), h(d)), with contractivity factor equal to zero, 
and that it possesses a unique fixed point, namely the condensation set. 

Definition 9.2 Let {X; w 1, w2 , ••. , wn} be a hyperbolic IFS with contractivity 
factor 0 ~ s < 1. Let w0 : 7t(X)--+ 1t(X) be a condensation transformation. Then 
{X; wo, w 1, ••• , Wn} is called a hyperbolic IFS with condensation, with contractivity 
factors. 

Theorem 7.1 can be modified to cover the case of an IFS with condensation. 

Theorem 9.1 Let {X; wn: n = 0, 1, 2, ... , N} be a hyperbolic iterated/unction 
system with condensation, with contractivity factor s. Then the transformation W : 
1t (X) --+ 1t (X) defined by 

W(B) = U~=own(B)VB E 7t(X) 
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Figure 111.67. A geo
metric series of pine trees, 
the attractor of an IPS with 
condensation. 

is a contraction mapping on the complete metric space ('H.(X), h(d)) with contrac

tivity factor s. That is 

h(W(B), W(C)):::: s · h(B, C)VB, C E 'H.(X). 

Its unique fixed point, A E 'H.(X), obeys 

A= W(A) = U~=own(A) 

and is given by A= limn-+oo won(B) for any B E 'H.(X). 

Examples & Exercises 
9.1. A sequence of sets {An c X}~0 , where (X, d) is a metric space, is said to be 

increasing if A0 c A 1 C A2 C · · · and decreasing if Ao :::> A 1 :::> A2 :::> • • •• The in

clusions are not necessarily strict. A decreasing sequence of sets {An C 'H.(X)}~0 
is a Cauchy sequence (prove it!). If X is compact then an increasing sequence of 

sets {An C 'H.(X)}~0 is a Cauchy sequence (prove it!). Let {X; wo, w 1, ••• , wn} be 

a hyperbolic IFS with condensation set C, and let X be compact. Let W0(B) = 

U~=own(B)VB E 'H.(X) and let W(B) = U~= 1 wn(B). Define {Cn = W0n(C)}~0 . 

Then Theorem 9.1 tells us { C n} is a Cauchy sequence in 'H. (X) that converges to 

the attractor of the IFS. Independently of the theorem observe that 

Cn = C U W(C) U W02 (C) U ... U won(C) 

provides an increasing sequence of compact sets. It follows immediately that the 

limit set A obeys W0(A) =A. 

9.2. This example takes place in (~2 • Euclidean). Let C = = Ao c ~2 

denote a set that looks like a scorched pine tree standing at the origin, with its trunk 

perpendicular to the x -axis. Let 
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1 

0 

w,G)=(o~s o.~s)G)+(o.~s). 
Show that {~2 ; w0 , wd is an IFS with condensation and find its contractivity factor. 
Let An= won(Ao) for n = 1, 2, 3, ... , where W(B) = U~=own(B) forB E 1t(~2 ). 
Show that An consists of the first (n + 1) pine trees reading from left to right in 
Figure 111.67. If the first tree required 0.1% of the ink in the artist's pen to draw, and 
if the artist had been very meticulous in drawing the whole attractor correctly, find 
the total amount of ink used to draw the whole attractor. · 

9.3. What happens to the trees in Figure lll.67 if w1 ( ~) is replaced by 

in exercise 9.2? 

9.4. Find the attractor for the IFS with condensation {~2 ; w0 , wd, where the 
condensation set is the interval [0, 1] and w 1 (x) = ~x + 2. What happens if w1 (x) = 
.!.x? 2 . 

9 .5. Find an IFS with condensation that generates the treelike set in Figure 111.68. 
Give conditions on r and e such that the tree is simply connected. Show that the tree 
is either simply connected or infinitely connected. 

9.6. Find an IFS with condensation that generates Figure 111.69. 

9.7. You are given a condensation map w0 (x) in ~2 that provides the largest tree 

Figure 111.68. Sketch 
of a fractal tree, the at
tractor of an IFS with 
condensation. 
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Figure 111.69. An end
less spiral of little men. 

in Figure 111.46. Find a hyperbolic IFS with condensation, of the form {!R{2 ; w0 , w1, 

w 2 }, which produces the whole orchard. What is the contractivity factor for this IFS? 

Find the attractorofthe IFS {!R{2 ; w1, w2 }. 

9.8. Explain why removing the command that clears the screen ("cls") from Pro

gram 1 will result in the computation of an image associated with an IFS with con

densation. Identify the condensation set. Run your version of Program 1 with the 

"cls" command removed. 

10 How to Make Fractal Models with the Help of the Collage Theorem 

The following theorem is central to the design of IFS 's whose attractors are close to 

given sets. 

Theorem 10. 1 (The Collage Theorem, (Barnsley 1985b)). Let (X, d) be 

a complete metric space. Let L E 1t(X) be given, and let E ~ 0 be given. Choose an 

IFS (or IFS with condensation) {X; (wo), Wt, w2, ... , Wn} with contractivity factor 
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0 :::: s < 1, so that 

h(L, unn=l Wn(L)):::: E, 
(n=O) 

where h(d) is the Hausdorff metric. Then 

h(L, A):::=: E/(1- s), 

where A is the attractor of the IFS. Equivalently, 

h(L, A):::: (1 - s)- 1h(L, un n=l Wn(L)) 
(n=O) 

for all L E 'H(X). 

The proof of the Collage Theorem is given in the next section. The theorem 
tells us that to find an IFS whose attractor is "close to" or "looks like" a given 

set, one must endeavor to find a set of transformations--contraction mappings on a 
suitable space within which the given set lies-such that the union, or collage, of the 
images of the given set under the transformations is near to the given set. Nearness 
is measured using the Hausdorff metric. 

Examples & Exercises 
10.1. This example takes place in(~. Euclidean). Observe that [0, 1] = [0, ~] U 

[~. 1]. Hence the attractor is [0, 1] for any pair of contraction mappings w 1 : ~-+ ~ 
and w2 : ~-+ ~such that w 1 ([0, 1]) = [0, ~]and w2([0, 1]) = [~. 1]. For example, 

w 1 (x) = ~ x and w2 (x) = ~ x + ~ does the trick. The unit interval is a collage of two 
smaller "copies" of itself. 

10.2. Suppose we are using a trial-and-error procedure to adjust the coefficients 
in two affine transformations w 1(x) =ax+ b, w2(x) =ex+ d, where a, b, c, dE 
~. to look for an IFS {~; w 1, w2} whose attractor is [0, 1]. We might come up 

with w 1 (x) = 0.51x- 0.01 and w 2(x) = 0.47x + 0.53. How far from [0, 1] will the 
attractor for the IFS be? To find out compute 

h ([O, 1], uf= 1 w; ([O, 1])) = h([O, 1], [ -O.Ol, 0.5] u [0.53, 1]) = 0.015 

and observe that the contractivity factor of the IFS is s = 0.51. So by the Collage 
Theorem, if A is the attractor, 

h([O, 1], A) ::S 0.015/0.49 < 0.04. 

10.3. Figure 111.70 shows a target set L c ~2 , a leaf, represented by the polygonal
ized boundary of the leaf. Four affine transformations, contractive, have been applied 

to the boundary at lower left, producing the four smaller deformed leaf boundaries. 

The Hausdorff distance between the union of the four copies and the original is ap
proximately 1.0 units, where the width of the whole frame is taken to be 10 units. 
The contractivity of the associated IFS {~2 ; w 1, w2 , w 3, w4 } is approximately 0.6. 
Hence the Hausdorff distance h(Euclidean) between the original target leaf L and 
the attractor A of the IFS will be less than 2.5 units. (This is not promising much!) 
The actual attractor, translated to the right, is shown at lower right. Not surprisingly, 
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Figure 111.70. The Col
lage Theorem applied to 
a region bounded by a 
polygonalized leaf bound

ary. 

Figure Ill. 71. The re
gion bounded by a right
angle triangle is the union 
of the results of two simil
itudes applied to it. 

b 

a 

it does not look much like the original leaf! An improved collage is shown at the 

upper left. The distance h(L, U~=l wn(L)) is now less than 0.02 units, while the con

tractivity of the IFS is still approximately 0.6. Hence h(L, A) should now be less 

than 0.05 units, and we expect that the attractor should look quite like L at the reso

lution of the figure. A, translated to the right, is shown at the upper right. 

1 0.4. To find an IFS whose attractor is a region bounded by a right-angle triangle, 

observe the collage in Figure III. 71. 

l 
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Figure 111.72. Use the 
Collage Theorem to help 
you find an IFS consisting 
of two affine maps in ~ 2 

whose attractor is close to 
this set. 

1 0.5. A nice proof of Pythagoras' Theorem is obtained from the collage in Fig
ure III. 71. Clearly both transformations involved are similitudes. The contractivity 
factors of these similitudes involved are (b/c) and (ajc). Hence the area A obeys 
A= (bjc) 2 A+ (ajc) 2 A. This implies c2 = a2 + b2 since A> 0. 

10.6. Figures III.72-III.76 provide exercises in the application of the Collage The
orem. Condensation sets are not allowed in working these examples! 

1 0. 7. It is straightforward to see how the Collage Theorem gives us sets of maps for 

IPS's that generate A. A Menger Sponge looks like this:~- Find an IFS 

for which it is the attractor. 

1 0.8. The IFS that generates the Black Spleenwort fern, shown in Figure III. 77, 
consists of four affine maps in the form 

w; ( x ) = ( r c?s () 
y r sm() 

-s sin() ) ( x ) ( h ) (. = 1 2 3 4). 
() + k l '''' s cos y 

see Table 111.5. 

10.9. Find a collage of affine transformations in ~2• corresponding to Figure III.78. 

10. 10. A collage of a leaf is shown in Figure III. 79 (a). This collage implies the IFS 
{(; w1, w2 , w3 , w4} where, in complex notation, 

w;(z) = s;z + (1- s;)a; 
? 

fori = 1, 2, 3, 4. 

Verify that in this formula a; is the fixed point of the transformation. The values 
found for s; and a; are listed in Table III.6. Check that these make sense in relation 
to the collage. The attractor for the IFS is shown in Figure III. 79 (b). 



98 Chapter Ill Transformations on Metric Spaces; Contraction Mappings 

Figure 111.73. This image represents the attractor of 14 affine transformations in ~2 . Use 

the Collage Theorem to help you find them. 

Figure 111.74. Use the 

Collage Theorem to help 

find a hyperbolic IFS of 

the form {~2 ; w1. w2. w3}, 

where w1, w2 , and W3 are 

similitudes in ~ 2, whose 

attractor is represented 

here. You choose the 

coordinate system. 



1 0 How to Make Fractal Models with the Help of the Collage Theorem 99 

10. 11. The attractor in Figure III.80 is determined by two affine maps. Locate the 

fixed points of two such affine transformations on IR{. 2• 

10. 12. Figure 111.81 shows the attract or for an IFS { IR{. 2 ; wi, i = 1, 2, 3, 4} where 

each wi is a three-dimensional affine transformation. See also Color Plate 3. The 

attractor is contained in the region {(xi, x2 , x 3) E IR{.3 : -10 ::=:: XI ::=:: 10, 0 ::=:: x2 ::=:: 

10, -10 :::S X3 :S 10}. 

10. 13. Find an IFS of similitudes in IR{. 2 such that the attractor is represented by the 

shaded region in Figure 111.82. The collage should be "just-touching," by which we 

mean that the transforms of the region provide a tiling of the region: they should fit 

together like the pieces of a jigsaw puzzle. 

10.14. This exercise suggests how to change the coordinates of an IFS. Let {X 1, d1} 

and {X2 , d2} be metric spaces. Let {XI; WI, w2, ... , WN} be a hyperbolic IFS with 

attract or A I· Let e : X I ---+ x2 be an invertible continuous. transformation. Consider 

the IFS {X2; e 0 WI 0 e-I' e 0 W2 0 e-I' ... 'e 0 WN 0 e-I }. Usee to define a metric 

on X2 such that the new IFS is indeed a hyperbolic IFS. Prove that if A2 E 1t(X2) is 

Table 111.5. The IFS code for the Black Spleenwort, expressed in scale and angle formats. 

Translations Rotations Scalings 

Map h k () c/> r s 

0.0 0.0 0 0 0.0 0.16 

2 0.0 1.6 -2.5 -2.5 0.85 0.85 

3 0.0 1.6 49 49 0.3 0.34 

4 0.0 0.44 120 -50 0.3 0.37 
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Figure 111.75. Find an IFS of the form {~2 ; w1, w2 , w 3 , w4 }, where the wi 's are affine 

transformations on ~2 • whose attractor when rendered contains this image. Check your 

conclusion using Program 2. 

the attractor of the new IFS, then A2 = 8(A 1). Thus we can readily construct an IFS 

whose attractor is a transform of the attractor of another IFS. 

1 0.15. Find some of the affine transformations used in the design of the fractal 

scene in Figure III.83. 

10.16. Use the Collage Theorem to find an IFS whose attractor approximates the 

set in Figure III.84. 
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10.17. Solve the problems proposed in the captions of (a) Figure 111.85, (b) Fig
ure 111.86, (c) Figure 111.87. 

11 Blowing in the Wind: The Continuous Dependence 
of Fractals on Parameters 

1 

The Collage Theorem provides a way of approaching the inverse problem: given a 
set L, find an IFS for which Lis the attractor. The underlying mathematical principle 

Figure 111.76. How 
many affine transforma
tions in ~ 2 are needed 
to generate this attractor? 
You do not need to use a 
condensation set. 
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Figure 111.77. The 
Black Spleenwort fern. 
The top image illustrates 
one of the four affine 
transformations in the IFS 
whose attractor was used 
to render the fern. The 
transformation takes the 
triangle ABC to triangle 
abc. The Collage Theorem 
provides the other three 
transformations. The IFS 
coded for this image is 
given in Table III.3. Ob
serve that the stem is the 
image of the whole set un
der one of the transforma
tions. Determine to which 
map number in Table III.3 
the stem corresponds.The 
bottom image shows the 
Black Spleenwort fern and 
a close-up. 

is very easy: the proof of the Collage Theorem is just the proof of the following 

lemma. 

Lemma 11.1 Let (X, d) be a complete metric space. Let f: X-+ X be a con

traction mapping with contractivity factor 0 ::::; s < 1 , and let the fixed point off be 

Xf EX. Then 

d(x, X f)::::; (1- s)- 1 
• d(x, f(x)) for all x EX. 
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Proof The distance function d(a, b), for fixed a EX, is continuous in bE X. 

Hence 

d(x, X J) = d (x, lim fon(x)) = lim d(x, fon(x)) 
n---+00 n--+oo 

n 

::=:: lim '"""d(fo(m-l)(x), fo(m)(x)) 
n---+00 ~ 

m=l 

::=:: lim d(x, f(x))(l + s + · · · + sn-l) ::=:: (1- s)- 1d(x, f(x)). 
n--+oo 

This completes the proof. 

The following results are important and closely related to the above material. 

They establish the continuous dependence of the attractor of a hyperbolic IFS on 

parameters in the maps that constitute the IFS. 

Table 111.6. Scaling factors and fixed points for the collage in Figure III.79. 

s a 

0.6 0.45 + 0.9i 

0.6 0.45 + 0.3i 
0.4 - 0.3i 0.60 + 0.3i 

0.4 + 0.3i 0.30 + 0.3i 

Figure 111.78. Use the 
Collage Theorem to find 
the four affine transfor
mations corresponding to 
this image. Can you find 
a transformation which 
will put in the "missing 
comer"? 

(a) Collage 

(b) Attractor 

Figure 111.79. A col
lage of a leaf is obtained 
using four similitudes, 
as illustrated in (a). The 
corresponding IFS is pre
sented in complex nota
tion in Table 111.6. The 
attractor of the IFS is ren
dered in (b). 
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~ 

Lemma 11.2 Let (P, dp) and (X, d) be metric spaces, the latter being com-

plete. Let w : P x X--+ X be a family of contraction mappings on X with contrac

tivity factor 0 :S s < 1. That is, for each p E P, w (p, ·) is a contraction mapping on 

X. For each fixed x E X let w be continuous on P. Then the fixed point of w depends 

continuously on p. That is, x 1 : P --+ X is continuous. 

Proof Let x 1 (p) denote the fixed point of w for fixed p E P. Let p E P and 

E > 0 be given. Then for all q E P, 

d(Xj(p), Xj(q)) = d(w(p, Xj(p)), w(q, Xj(q))) 

:::: d(w(p, Xf(p)), w(q, x1(p))) 

+ d(w(q, x 1(p)), w(q, x 1 (q))) 

:S d(w(p, x 1(p)), w(q, x 1(p))) + sd(x f(p), x 1(q)), 

which implies 

d(x 1(p), x f(q)) :S (1 - s)- 1d(w(p, x f(p)), w(q, x 1 (p))). 

The right-hand side here can be made arbitrarily small by restricting q to be suffi

ciently close top. (Notice that if there is a real constant C such that 

d(w(p, x), w(q, x)) :S Cd(p, q) for all p, q E P, for all x EX, 

then d(x1 (p), x1 (q)) :S (1- s)- 1 • C · d(p, q), which is a useful estimate.) This 

completes the proof. 

Examples & Exercises 

11.1. The fixed point of the contraction mapping w : ~--+ ~ defined by w(x) = 

1x + p depends continuously on the real parameter p. Indeed, x f = 2p. 

Figure 111.80. Locate 

the fixed points of a pair 

of affine transformations 

in !RI.2 whose attractor is 

rendered here. 

4.5 X 
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Figure 111.81. Single 
three-dimensional fern. 
The attractor of an IPS of 
affine maps in ~ 3 . 

Figure 111.82. Find a 
"just-touching" collage of 
the area under this Devil's 
Staircase. 
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Figure 111.83. Determine some of the affine transformations used in the design of this 

fractal scene. For example, where do the dark sides of the largest mountain come from? 

11.2. Show that the fixed function for the transformation w : C0 [0, 1] ---+ C0[0, 1] 

defined by w(f(x)) = pf(2xmod1) + x(l- x) is continuous in p for p E (-1, 1). 

Here, C0[0, 1] = {/ E C[O, 1]: /(0) = f(l) = 0} and the distance is d(f, g)= 

max{if(x)- g(x)l: x E [0, 1]}. 

In order for this to be of use to us, we need some method of moving the con

tinuous dependence on the parameter p to H(X). We cannot do this just because the 

image of a point in some set B depends continuously on p, since, although this gives 



.• 
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Figure 111.84. "Typi
cal" fractals are not pretty: 
use the Collage Theorem 
to find an IFS whose at
tractor approximates this 
set. 

Figure 111.85. Deter
mine the affine transfor
mations for an IFS corre
sponding to this fractal. 
Can you see, just by look
ing at the picture, if the 
linear part of any of the 
transformations has a neg
ative determinant? 
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Figure 111.86. Use the 
Collage Theorem to ana
lyze this fractal. On how 
many different scales is 
the whole image appar
ently repeated here? How 
many times is the smallest 
clearly discernible copy 
repeated? 

us a 8 to constrain p with in order that w (p, x) moves by less than E, this relation 
is still dependent on the point (p, x). A set B E H(X), which is interesting, contains 
an infinite number of such points, giving us no 8 greater than 0 to constrain p with to 
limit the change in the whole set. We can get such a condition by further restricting 
w(p, x). Many constraints will do this; we pick one that is simple to understand. For 
our IFS, parametrized by p E P, that is {X: w 1 p, ••• , w N), we want the conditions 
under which given E > 0, we can find a 8 > 0 such that 

dp(p, q) < 8 => h(wp(B), Wq(B)) <E. 
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Figure 111.87. Consider 
the white areas in this fig
ure to represent a set S in 
IR\. 2• Locate the boundary 
of the largest pathwise
connected subset of S. It 
is recommended that you 
work with a photocopy 
of the image, a magnify
ing glass, and a fine red 
felt-tip pen. 
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Suppose that for every p E P, Wi/X) is a continuous function on X. Furthermore, 
we ask that there is a k > 0, independent of x and p such that for each fixed x EX 
and for each wi,, the condition 

holds. This condition is called Lipshitz continuity. It is not the most general con
dition to prove what we need; we really only need some continuous function of 
d(p, q) which is independent of x on the right-hand side. We choose Lipshitz con
tinuity here because for the maps we are interested in, it is the easiest condition to 
check. If we can show that for any set BE H(X) we have 

then we can easily get the condition we want from the Collage Theorem. Proving 
this is simply a matter of writing down the definitions for the metric h. 

h(wp(B), wq(B)) = d(wp(B), wq(B)) v d(wq(B), wp(B)), 

where 

d(wp(B), wq(B)) = max (d(x, wq(B))) 
xEw,(B) 

d(x, wq(B)) = min (d(x, y)). 
yEwq(B) 

Now, x E wp(B) implies that there is an x E B such that x = wp(x). Then there is a 
point wq(x) E wq(B), which is the image of x under wq. For this point, our condition 
holds, and 

d(x, wq(x))::::: k · dp(p, q) =? min (d(x, y))::::: d(x, wq(x))::::: k · dp(p, q) 
yEwq(B) 

Since this condition holds, for every x E wp(B) the maximum over these points is at 
most k · dp(p, q), and we have 

d(wp(B), wq(B))::::: k · dp(p, q). 

The argument is nearly identical for d(wq(B), wp(B)), so we have 

h(wp(B), wq(B))::::: k · dp(p, q), 

and a small change in the parameter on a particular map produces a small change 
in the image of any set B E H(X). For a finite set of maps,w 1,, ••. , wN,• and 
their corresponding constants k1, ••• , kN, it is then certainly the case that if k = 
maxi=l, ... ,N(ki), we have 

Now the union of such image sets cannot vary from parameter to parameter by more 
than the maximum Hausdorff distance above, consequently, 



11 Blowing in the Wind 111 

h(Wp(B), Wq(B)) :S k · dp(p, q). 

We now apply the results of Lemma 11.2 to the complete metric space 1i(X), 

yielding 

Theorem 11.1 Let (X, d) be a complete metric space. Let {X; w 1, ... , wN} be 

a hyperbolic IFS with contractivity s. For n = I, 2, ... , N, let Wn depend on the 

parameter p E (P, dp) subject to the condition d(wn/X), Wnq(x)) :=:: k · dp(p, q)for 

all x EX with k independent ofn, p, or x. Then the attractor A(p) E 1i(X) depends 

continuously on the parameter p E P with respect to the Hausdorff metric h(d). 

In other words, small changes in the parameters will lead to small changes in the 

attractor, provided that the system remains hyperbolic. This is very important be

cause it tells us that we can continuously control the attractor of an IFS by adjusting 

parameters in the transformations, as is done in image compression applications. It 

also means we can smoothly interpolate between attractors: this is useful for image 

animation, for example. 

Examples & Exercises 
11.3. Construct a one-parameter family of IFS, of the form {~2 ; w 1, w2, w3}, 

where each w; is affine and the parameter p lies in the interval [0, 24]. The attrac

tor should tell the time, as illustrated in Figure 111.88. A (p) denotes the attractor at 

time p. 

11.4. Imagine a slightly more complicated clockface, generated by using a one

parameter family of IFS of the form {~2 ; w0, w 1, w2, w 3}, p E [0, 24]. w0 creates 

the clockface, w 1 and w2 are as in Exercise 11.3, and w3 is a similitude that places 

a copy of the clockface at the end of the hour hand, as illustrated in Figure 111.89. 

Then as p goes from 0 to 12 the hour hand sweeps through 360°, the hour hand on 

the smaller clockface sweeps through 720°, and the hour hand on the yet smaller 

clockface sweeps through 1080°, and so on. Thus as p advances, there exist lines 

on the attractor which are rotating at arbitrarily great speeds. Nonetheless we have 

continuous dependence of the image on p in the Hausdorff metric! At what times do 

all of the hour hands point in the same direction? 

11.5. Find a one-parameter family of IFS in ~2 , whose attractors include the three 

trees in Figure III.90. 

11.6. Run your version of Program 1 or Program 2, making small changes in the 

IFS code. Convince yourself that resulting rendered images "vary continuously" 

with respect to these changes. 

11.7. Solve the following problems with regard to the images (a)-(f) in Fig-., 
ure III.91. Recall that a''just-touching" collage in ~2 is one where the transforms 

of the target set do not overlap. They fit together like the pieces of a jigsaw puzzle. 
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Figure 111.88. A one
parameter family of IFS 
that tells the time! 

Figure 111.89. This 
fractal clockface depends 
continuously on time in 
the Hausdorff metric. 

60° 

30° 

A(2 a.m.) 

, 

172~0 

~--7!·-
2 

A(2.75 a.m.) 

90° 

A(3 a.m.) 
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(a) Find a one-parameter family collage of affine transformations. 
(b) Find a "just-touching" collage of affine transformations. 
(c) Find a collage using similitudes only. What is the smallest number of affine 

transformations in ~ 2 , such that the boundary is the attract or? 
(d) Find a one-parameter family collage of affine transformations. 
(e) Find a "just-touching" collage, using similitudes only, parameterized by the 

real number p. 
(f) Find a collage for circles and disks. 

Figure 111.90. Blowing 
in the wind. Find a one
parameter family of IFS 
whose attractors include 
the trees shown here. 
The Random Iteration 
Algorithm was used to 
compute these images. 
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Figure 111.91. Classical 
collages. Can you find 
an IFS corresponding to 
each of these classical 
geometrical objects? 

(a) 

3.5 

e 
3 ... 

(c) 

(d) 

(0, 2P ) (P, 2P ) ----------
.. (_P_, P_) ___ .. (2 P, P) 

(0, 0) (e) (2 P, 0) 

(b) 

3.5 ------7 

~- _ _,/1 

3 

(f) 



Chapter IV 

Chaotic Dynamics 
on Fractals 

The Addresses of Points on Fractals 

We begin by considering informally the concept of the addresses of points on the 

attractor of a hyperbolic IFS. Figure IV.92 shows the attractor of the IFS: 

{<C; WI (z) = (0.13 + 0.64i)z, w2(z) = (0.13 + 0.64i)z + 1 }. 

This attractor, A, is the union of two disjoint sets, WI (A) and w2 (A), lying to the 

left and right, respectively, of the dotted line ab. In tum, each of these two sets is 

made of two disjoint sets: 

This leads to the idea of addressing points in terms of the sequences of transfor

mations, applied to A, which lead to them. All points belonging to A, in the subset 

w I ( w I (A)), are situated on the piece of the attractor that lies below d c and to the left 

of ab, and their addresses all begin 11 .... Clearly, the more precisely we specify ge

ometrically where a point in A lies, the more bits to the address we can provide. For 

example, every point to the right of ab, below ef, to the left of gh, has an address 

that begins 212 .... In Theorem 2.1 we prove that, in examples such as this one, it is 

possible to assign a unique address to every point of A. In such cases we say that the 

IFS is "totally disconnected." 
Here is a different type of example. Consider the IFS 

1 1 1 1 1 
{<C; WI (z) = 

2
z, wz(z) = 2z + 2' w3(z) = 2z + 2i}. 

The attractor, A, of thi~ IFS is a Sierpinski triangle with vertices at (0, 0), (1, 0), 

and (0, 1). Again we can. address points on A according to the sequences of trans

formations that lead to them. This time there are at least three points in A that 

115 
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Figure IV.92. Ad
dresses of points on an 
attractor. The lines ab, cd, 
ef, and gh are not part of 
the attractor. 

Addresses begin 
22 ... 

f 

have two addresses, because there is a point in each of the sets WI (A) n w2(A), 

w 2(A) n w 3(A), and w3(A) n WI (A) , as illustrated in Figure IV.93. 

On the other hand, some points on the Sierpinski triangle have only one address, 

such as the three vertices (0, 0), (1, 0), and (0, 1). Although the attractor is con

nected, the proportion of points with multiple addresses is "small," in a sense we 

do not yet make precise. In such cases as this we say that the IFS is "just-touching." 

Notice that this terminology refers to the IFS itself rather than to its attractor. 

Let us look at a third, fundamentally different example. Consider the hyperbolic 

IFS 

1 3 1 
{[0, 1]; 2x, 4x + 4}. 

The attractor is A= [0, 1], but now 

1 1 1 1 
WI(A) n w2(A) = [0, 2] n [4, 1] = [4, 2]; 

so WI (A) n w2(A) is a significant piece of the attractor. The attractor would look 

very different if the overlapping piece[~, ~]were missing. Now observe that every 
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33333 

Find the 

point in [ ~, ~] has at least two addresses. On the other hand, the points 0 and 1 have 

only one address each. Nonetheless, it appears that the proportion of points with 

multiple addresses is large. In such cases we say that the IFS is "overlapping." 

The terminologies ';totally disconnected," "just-touching," and "overlapping" re

fer to the IFS itself rather than to the attractor. The reason for this is that the same 

set may be the attractor of several different hyperbolic IFS 's. Consider, for example, 

Figure IV.93. Some 
points on this Sierpin
ski triangle have two 
addresses, while others 
have only one address. 
Overlining on the last 
symbols, in an expres
sion such as 311 TI, means 
that the overlined symbols 
are repeated endlessly. 
For example, 311 TI = 
31111111111111111 
1111 ... , and 31 ill= 
31123123123123: .. 
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0 1 0 1 

I •I I •I I I 

Figure IV.94. Differ

ent IFS 's with the same 

attractor provide differ

ent addressing schemes. 

Here the symbols {0, 1} 

are used in place of { 1, 2} 

for obvious reasons. 

0000 0011.. 0111 0111 I ill 0000 0010 .. 0100 10100 1000 

and and and and 

1000 1000 1100 11000 

Binary addressing of the 
interval (0,1) induced by the 

IFS {[0.1),0.5x,0.5x+0.5} 

Alternative addresses of the 
interval (0.1) induced by the 
IFS {(0,1),0.5x,-0.5x+1} 

the two IFS 's 

and 
1 1 

{[0, 1]; w1(x) = 2x, w2(x) = - 2x + 1}. 

The attractor of each one is the real interval [0, 1]. We can obtain two different 

addressing schemes for the points in [0, 1], as illustrated in Figure IV.94. 

These two IFS are just-touching. However, the IFS 

1 3 1 
{[0, 1]; WI(X) = 2x, W2(x) = 4x + 4} 

is overlapping, while its attractor is also [0, 1]. 

Examples & Exercises 

1.1. Figure IV.95 shows the attractor of an IFS of the form {~2 ; Wn, n = 1, 2, 3}, 

where each of the transformations Wn : ~ 2 ----+ ~ 2 is affine. The addresses of several 

points are given. Find the addresses of a, b, and c. 

1.2. In Figure IV.95 locate the point whose address is 111TI. 

1.3. A quadtree is an addressing scheme used in computer science for addressing 

small squares in the unit square • = {(x1, x2) E ~2 : 0 s x1 s 1, 0 s x2 s 1} as fol

lows. The square is broken into four quarters. Points in the first quarter have ad

dresses that begin 0, points in the second quarter have addresses that begin 1, and 

so on, as illustrated in Figure IV.96. Find an IFS that gives rise to the addressing 

scheme suggested in Figure IV.96. Is this a totally disconnected, just-touching, or 

overlapping IFS? 

1.4. Addresses are assigned to the Sierpinski triangle, as in Figure IV.93. Character

ize the addresses of the set of points that lie on the outermost boundary, the triangle 

with vertices TI, 22, and 33. 
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-- 2222 

3333 / 

1.5. Characterize the addresses of points belonging to the boundary of the largest 

hole in Figure IV.97. 

1.6. Consider a hyperbolic IFS with condensation set C. Suppose the condensation 

set is itself the attractor of another hyperbolic IFS. Design an addressing scheme for 

the attractor of the IFS with condensation. Can all possible addresses occur? 

1.7. Figure IV.98 shows an "overlapping" IFS attractor, for two affine transforma

tions in []((2 . Choose one point in each of the marked regions on the attractor. Find the 

first four numbers in two different addresses for each of these points. The first few 

numbers in the addresses of some points on the attractor are included in the figure to 

remove possible ambiguities. 

1.8. * Identify the set of addresses of points on the attractor, A, of a hyperbolic 

IFS with code space. Argue that nearby codes correspond to points on A which are 

nearby. 

1.9. Address the real number 0.7513 in each of the two coding schemes given in 
1 

Figure IV.94. · 

In thinking about the addresses of points on fractals, already we have been led to 

Figure IV.95. Can you 
find the addresses of a, b, 
and c? 

33 32 23 22 

30 31 20 21 

03 02 13 12 

00 01 10 11 

Figure IV.96. Ad
dresses at depth two in 
a quadtree. 
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Figure IV. 97. Can you 
describe the addresses of 
the points on the bound
ary of the central white 
region? 

try to compare "how many" points have a certain property to how many have an

other property. For example, in the case of the addressing scheme on the Sierpinski 

triangle described above, we wanted to compare the number of points with multiple 

addresses to the number of points with single addresses. It turns out that both num

bers are infinite. Yet still we want to compare their numbers. One way in which this 

may be done is through the concept of countability. 

Definition 1.1 LetS be a set. S is countable if it is empty or if there is an onto 

transformation c : I ---+ S, where I is either one of the sets 

{1}, {1, 2}, {1, 2, 3}, ... , {1, 2, 3, ... , n}, ... , 

or the positive integers {1, 2, 3, 4, ... }. Sis uncountable if it is not countable. 

We think of an uncountable set as being larger than a countable set. 

We are going to make fundamental use of code space to formalize the concept of 

addresses. How many points does code space contain? 

Theorem 1 . 1 Code space on two or more symbols is uncountable. 

Proof We prove it here for the code space on the two symbols {1, 2}. Denote 

an element of code space I: by w = w1w2w3 ... , where each wi E {1, 2}. Define 
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ver appmg 
regions. 
Multiple 
addresses 
are available 

p: {1, 2}-+ {1, 2} by p(1) = 2 and p(2) = 1. Suppose code space is countable. Let 

the counting function be c: {1, 2, 3, ... } -+ :E. Consider the point a E :E defined by 

where an= p((c(n))n), and (c(n))n means the nth symbol of c(n). When does the 

counting function reach a? Never! For example, c(3) =/=-a because their third sym

bols are different! This completes the proof. 

Examples & Exercises 
1 

1.1 0. The set of integers ~ = {0, ± 1, ±2, ... , } is countable. Define c : N -+ ~ by 

c(z) = (z- 1)/2 if z is odd, c(z) = -z/2 if z is even. 

Figure IV.98. Attrac
tor of a hyperbolic IFS in 
the overlapping case. In 
the overlapping regions 
multiple addresses are 
available. 
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.. 
1. 11. Prove that a countable set of countable sets is countable. Show that an un-

countable set, take away a countable set, is uncountable. 

1. 12. The rational numbers are countable. A rational number can be written in the 

form pI q, where p and q are integers with q =1- 0. Figure IV.99 shows how to count 

the positive ones, some numbers being counted more than once. Make a rule that 

gets rid of the redundant countings. Also, show how to include the negative rationals 

in the scheme. 

1. 13. Show that a Sierpinski triangle contains countably many triangles. 

1. 14. Let S be a perfect subset of a metric space. Suppose that S contains more than 

one point. Prove that S is uncountable. 

1. 15. Characterize the addresses of the missing pieces in Figure IV.1 00. 

2 Continuous Transformations from Code Space to Fractals 

Definition 2.1 Let {X; w1, w2, ... , wN} be a hyperbolic IFS. The code space as

sociated with the IFS, ( 'E, de), is defined to be the code space on N symbols 

{ 1, 2, ... , N}, with the metric de given by 

d ~lwn-anl 
e(w, a)=~ (N + l)n for all w, a E 'E. 

Our goal is to construct a continuous transformation cp from the code space as

sociated with an IFS onto the attractor of the IFS. This will allow us to formalize 

our notion of addresses. In order to make this construction we will need two lem

mas. The first lemma tells us that if we have a hyperbolic IFS acting on a complete 

metric space, but we are only interested in studying how the IFS acts in relation to a 

fixed compact subset of X, then we can treat the IFS as though it were defined on a 

compact metric space. 

Lemma 2.1 Let {X; wn: n = 1, 2, ... , N} be a hyperbolic IFS, where (X, d) is a 

complete metric space. Let K E 1-i(X). Then there exists i< E 'H(X) such that K c K 
and Wn: K-+ K for n = 1, 2, ... , N. In other words, {K; Wn: n = 1; 2, 3, ... , N} 

is a hyperbolic IFS where the underlying space is compact. 

Proof Define W : 'H(X) -+ 'H(X) by 

for all B E 1-i(X). 

To construct K consider the IFS with condensation {X; Wn; n = 0, 1, 2, ... , N}, 

where the condensation map w 0 is associated with the condensation set K. By The

orem 7.1 in Chapter III the attractor of this IFS belongs to 1i (X). By exercise 9.1 in 

Chapter III it can be written 

K =Closure of (K U W 01 (K) U W 02 (K) U W 03 (K) U ... U won(K) U ...... ). 
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It is readily seen that K c k artd that W(K) c k. This completes the proof. 

The next lemma makes the first step in linking code space to IFS attractors, by 

introducing a certain transformation l/J, which maps the Cartesian product space 

I: x N x X into X. By taking appropriate limits, in Theorem 2.1 below, we will 

eliminate the dependence on N and X to provide the desired connection between 'E 

and X. 

Lemma 2.2 Let {X; wn: n = 1, 2, ... , N} be a hyperbolic IFS of contractivity 

s, where (X, d) is a complete metric space. Let ('E, de) denote the code space 

associated with the IFS. For each a E 'E, n E N, and x E X, define 

l/J(a, n, X)= Wa1 o Wa2 0 ... 0 Wan(X). 

Let K denote a compact nonempty subset of X. Then there is a real constant D such 

that 

d(tjJ(a, m, Xt), l/J(a, n, x2)) ~ DsmAn 

for all a E 'E, all m, n EN, and all x 1, x2 E K. 

Proof Let a, m, n, x 1, and x2 be as stated in the lemma. Construct k from K 

as in Lemma 2.1. Without any loss of generality we can suppose that m < n. Then 

observe that 

where 

Let x3 = ljJ (w, n - m, x2). Then x3 belongs to k. Hence we can write 

d(l/J(a, m, Xt), l/J(a, n, x2)) = d(ljJ(a, m, Xt), l/J(a, m, i3)) 

:S sd(Wa2 o ... 0 Wam(XJ), Wa2 o ... 0 Wam(x3)) 

:S s2d(Wa3 o ... 0 Wam(XI), Wa3 0 ... 0 Wam(X3)) 

:S smd(Xt, X3) :S sm D, 

where D = max{d(x 1, x3): x 1, x3 E K}. Dis finite because k is compact. This com

pletes the proof. 

Theorem 2.1 Let (X, d) be a complete metric space. Let {X; Wn: n = 1, 2, ... , 

N} be a hyperbolic /FS. Let A denote the attractor of the IFS. Let ('E, de) denote 

the code space associated with the IFS. For each a E 'E, n EN, and x EX, let 

Then 

l/J(a) = lim l/J(a, n, x) 
n---+oo 

Figure IV. 99. How to 

count the positive rational 
numbers. What is c(24)? 
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Figure IV.lOO. Char
acterize the addresses of 
the missing pieces. 

exists, belongs to A, and is independent of x E X. If K is a compact subset of X, 
then the convergence is uniform over x E K. The function cp : 'E ~ A thus provided 
is continuous and onto. 

Proof Let x EX. Let K E 1t(X) be such that x E K. Construct k as in Lemma 
2.1. Define W: 1t(X) ~ 1t(X) in the usual way. By Theorem 7.1 in Chapter III, W 
is a contraction mapping on the metric space (1t(X), h(d)); and we have 

A= lim {Won(K)}. 
n-+oo 

In particular {Won(K)} is a Cauchy sequence in Cit, h). Notice that cp(a, n, x) E 

won(K). It follows from Theorem 7.1 in Chapter II that if limn-+oo cp(a, n, x) exists, 
then it belongs to A. 

That the latter limit does exist follows from the fact that, for fixed a E I:, 
{l/J(a, n, x)}~ 1 is a Cauchy sequence: by Lemma 2.2 

d(cp(a, m, x), cp(a, n, x)) s Dsm!\n for all x E K, 

and the right-hand side here tends to zero as m and n tend to infinity. The uniformity 
of the convergence follows from the fact that the constant D is independent of 
X E K. 

Next we prove that cp : 'E ~ A is continuous. Let E > 0 be given. Choose n so 
that sn D < E, and let a, w E 'E obey 

oo N 
de( a, w) < " = . m~2 (N + l)m (N + l)n+l 

Then one can verify that a must agree with w through n terms; that is, a 1 = w1, a2 = 
wz, ... , an = Wn. It follows that for each m ~ n we can write 

d(cp(a, m, x), cp(w, m, x)) = d(cp(a, n, x 1), ¢(a, n, xz)), 
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for some pair x 1, x2 E K. By Lemma 2.2 the right-hand side here is smaller than sn D 

which is smaller than E. Taking the limit as m ·'-+ oo we find 

d(lj>(a), lj>(w)) <E. 

Finally, we prove that l/J is onto. Let a E A. Then, since 

A= lim won({x}), 
n--+oo 

it follows from Theorem 7.1 in Chapter II that there is a sequence {w<n) E I: : n = 
1, 2, 3, ... } such that 

lim l/J(w(n), n, x) =a. 
n--+oo 

Since (1:, de) is compact, it follows that {w(n): n = 1, 2, 3, ... } possesses a conver

gent subsequence with limit wE 1:. Without loss of generality assume limn--+oo w<n) 

= w. Then the number of successive initial agreements between the components of 

w<n) and w increases without limit. That is, if 

a(n) = number of elements in {j EN: win)= wk for 1 :::; k:::; j}, 

where N = {1, 2, 3, ... }, then a(n)-+ oo as n-+ oo. It follows that 

d(lj>(w, n, x), l/J(w(n), n, x)):::; sa(n) D. 

By taking the limit o~ both sides as ,. , oo we find d ( l/J ( w), a) = 0, which implies 

(j>(w) =a. Hence ljJ: I: -+ A is onto. This completes the proof. 

Definition 2.2 Let {X; Wn, n = 1, 2, 3, ... , N} be a hyperbolic IFS with associ

ated code space I:. Let l/J : I: -+ A be the continuous function from code space onto 

the attract or of the IFS constructed in Theorem 1. An address of a point a E A is any 

member of the set 

lj>-1(A) ={wE I:: l/J(w) =a}. 

This set is called the set of addresses of a E A. The IFS is said to be totally discon

nected if each point of its attractor possesses a unique address. The IFS is said to be 

just-touching if it is not totally disconnected yet its attract or contains an open set 0 

such that 

(1) wi(O) n wj(O) = 0Vi, j E {1, 2, ... , N} with i =1 j; 

(2) UN limi=l W;(0) C 0. 

An IFS whose attractor obeys (i) and (ii) is said to obey the open set condition. 

The IFS is said to be overlapping if it is neither just-touching nor disconnected. 

Theorem 2.2 Let {X; wn, n = 1, 2, ... , N} be a hyperbolic IFS with attractor 

A. The IFS is totally dis<;onnected if and only if 

wi(A) n wj(A) = 0Vi, j E {1, 2, ... , N} with i # }. (1) 
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Proof If the IFS is totally disconnected, then each point on its attractor possesses 

a unique address. This implies Equation 3. If the IFS is not totally disconnected, then 

some point on its attractor possesses two different addresses. These must disagree 

at some first place: choose inverse images to get this place out front, to produce a 

contradiction to Equation 3. This completes the proof. 

Examples & Exercises 
2.1. Show that the attractor of the IFS {~; ix, ix + il is just-touching. Classify 

the attractor for the IFS { ~; ! x, 1}. 

2.2. Prove that the attractor of the IFS {~; !x, ~x +~}is overlapping. 

2.3. Consider the IFS {[0, 1], Wn(X) = nu/ +-fox, n = 1, 2, 3, ... ' 10} and for the 

associated code space use the symbols {0, 1, 2, ... , 9}. Show that the attractor of 

the IFS is [0, 1] and that it is just-touching. Identify the addresses of points with 

multiple addresses. Show that the address of a point is just its decimal representation. 

Comment on the fact that some numbers have two decimal representations. 

2.4. Prove that the attractor to the IFS {[0, 1]; w 1(x) = ~x, w2(x) = ~x + ~} is 

totally disconnected. 

2.5. Prove that the IFS that generates the Black Spleenwort fern, given in Chapter 2, 

is just-touching. 

2.6. Show that the IFS {[0, 1]; w1(x) = 4, w2(x) = il is overlapping. 

We need to understand the structure of code space. Theorem 2.1 told us that the 

code space on N symbols is the mother of all hyperbolic IFS consisting of N maps. 

We will use the following theorem to show that the mother is metrically equivalent 

to a classical Cantor set. 

Theorem 2.3 Let :E denote the code space of theN symbols, {1, 2, ... , N}, and 

define two different metrics on :E by 

d x = 
00 

lxi - Yil 
1 ( 'y) 8 (N + 1)i' 

00 
d Xi- Yi 

2(X, y) = 18 (N + 1)i I. 

ThenCE, d 1) and (:E, d2 ) are equivalent metric spaces. 

Proof We give the proof for the case N = 10. Let x, y E :E be given. Clearly 

we have d2 (x, y) ::S d 1 (x, y). We must show that there is a constant C so that 

C d 1 (x, y) ::S d2 (x, y), where C is independent of x and y. Here we pick C = ~ 

and show that it works. 
We can suppose that for some k E {1, 2, 3, ... }, x1 = Y1, x2 = Y2, ... , Xk-1 = 

Yk-1· Xk 1- Yk· Then 
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I 

NOTHING I 
LANDS 
HERE 

0 1/4 1/2 3/4 

1 Loo lx; - Yd 1 
>- =-d X -19 lli 19 I( ,y). 

n=I 

This completes the proof. 

1 

Figure IV.101. Noth
ing lands here. 

We now show that code space is metrically equivalent to a totally disconnected 

Cantor subset of [0, 1]. Define a hyperbolic IFS by {[0, 1]; Wn(x) = (N~I)x + N:I : 

n = 1, 2, ... , N}. Thus 

n n + 1 
Wn([O, 1]) = [ N + l, N + l] for n = 1, 2, ... , N, 

as illustrated for N = 3 in Figure IV.l 0 1. 
The attractor for this IFS is totally disconnected, as illustrated in Figure IV.l 02 

for N = 3. 
In the case N = 3, the attractor is contained in [ t, 1]. The fixed points of the three 

transformations w1(x) = ix + i, w2(x) = ix + i, w2(x) = ix +~are t, ~.and 1, 

respectively. Moreover, the address of any point on the attractor is exactly the same 

as the string of digits that represents it in base N + 1. What is happening here is 

this. At level zero we begin with all numbers in [0, 1] represented in base (N + 1). 

We remove all those po\nts whose first digit is 0. For example, in the case N = 3 

this eliminates the interval [0, iJ. At the second level we remove from the remaining 

points all those that have digit 0 in the second place. And so on. We end up with 
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Figure IV.102. A spe
cial ternary Cantor set in 
the making. 

--- --- ---
L ___ ~--------~----1-~----~----i----~-----~~ 

those numbers whose expansion in base (N + 1) does not contain the digit 0. Now 
consider the continuous transformation ¢ : (:E, de) -+ (A, Euclidean). It follows 
from Theorem 2.3 that the two metric spaces are equivalent. ¢ is the transformation 
that provides the equivalence. Thus, we have a realization, a way of picturing code 
space. 

Examples & Exercises 
2. 7. Find the figure analogous to Figure IV.1 02, corresponding to the case N = 9. 

2.8. What is the smallest number in [0, 1] whose decimal expansion contains no 
zeros? 

We continue to discuss the relationship between the attractor A of a hyperbolic 
IFS {X; w 1, w2 , ... , WN} and its associated code space :E. Let¢: :E-+ X be the 
code space map constructed in Theorem 2.1. Let w = w 1 w2w3w4 ... be an address of 
a point x EA. Then 

is an address of wj(x), for each j E {1, 2, ... , N}. 

Definition 2.3 Let {X, w 1, w2 , •.. , w N} be a hyperbolic IFS with attract or A. 
A point a E A is called a periodic point of the IFS if there is a finite sequence of 
numbers {a(n) E {1, 2, ... , N}}~=l such that 

a= Wa(P) 0 Wa(P-1) 0 ... 0 Wa(l)(a). (2) 

If a E A is periodic, then the smallest integer P such that the latter statement is true 
is called the period of a. 

Thus, a point on an attractor is periodic if we can apply a sequence of Wn 's to it, 
in such a way as to get back to exactly the same point after finitely many steps. Let 
a E A be a periodic point that obeys (2). Let a be the point in the associated code 
space, defined by 

a= a(P)a(P- 1) ... a(l)a(P)a(P- 1) ... a(l)a(P)a(P- 1) ... 

= a(P)a(P- 1) ... a(l). (3) 
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Then, by considering limn--+oo ¢(a, n, a), we see that ¢(a)= a. 

Definition 2.4 A point in code space whose symbols are periodic, as in (3), is 

called a periodic address. A point in code space whose symbols are periodic after a 

finite initial set is omitted is called eventually periodic. 

Examples & Exercises 

2. 9. An example of a periodic address is 

1212121212121212121212121212121212121212121212121212121212 ... , 

where 12 is repeated endlessly. An example of an eventually periodic address is: 

1121111112111121111211112122121121212121212121212121212121 ... , 

where 21 is repeated endlessly. 

2.1 0. Prove the following theorem: "Let {X; w1, w2 , ... , w N} be a hyperbolic IFS 

with attractor A. Then the following statements are equivalent: 

( 1) x E A is a periodic point; 

(2) x E A possesses a periodic address; 

(3) x E A is a fixed point of an element of the semigroup of transformations 

generated by { w 1, w2, ... , w N} ." 

2.11. Show that a point x E [0, 1] is a periodic point of the IFS 

1 1 1 
{[0, 1]; 2x, 2x + 2} 

if and only if it can be written x = pI (2 N - 1) for some integer 0 :::; p :::; 2 N - 1 and 

some integer N E {1, 2, 3, ... }. 

2. 12. Let {X; w 1, w2, ... , w N} denote a hyperbolic IFS with attractor A. Define 

W(S) = U~= 1 wn(S) when Sis a subset of X. Let P denotethe set of periodic points 

of the IFS. Show that W(P) = P. 

2.13. Locate all the periodic points of period 3 for the IFS {~2 ; ~z, ~z + ~. ~z + 
1J. Mark the positions of these points on A. 

2.14. Locate all periodic points of the IFS {~; w1 (x) = 0, w 2(x) = ~x + ~ }. 

Theorem 2.4 The attractor of an IFS is the closure of its periodic points. 

Proof Code space is the closure of the set of periodic codes. Lift this statement to 

A using the code space map 4> : :E --+ A. ( 4> is a continuous mapping from a metric 

space :E onto a metric space A. If S c :E is such that its closure equals :E, then the 

closure of f(S) equals A.) 

Examples & Exercises 
1 

2. 15. Prove that the attractor of a totally disconnected hyperbolic IFS of two or 

more maps is uncountable. 
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2. 16. Under what conditions does the attractor of a hyperbdlic IFS contain uncount
ably many points with multiple addresses? Do not try to give a complete answer; just 
some conditions: think about the problem. 

2. 17. Under what conditions do there exist points in the attractor of a hyperbolic 
IFS with uncountably many addresses? As in 2.16, do not try to give a full answer. 

2.18. In the standard construction of the classical Cantor set C, described in exer
cise 1.5 in Chapter III, a succession of open subintervals of [0, 1] is removed. The 
endpoints of each of these intervals belong to C. Show that the set of such interval 
endpoints is countable. Show that C itself is uncountable. C is the attractor of the IFS 
{[0, 1]; ~x, ~x + ~}.Characterize the addresses of the set of interval endpoints in C. 

3 Introduction to Dynamical Systems 

We introduce the idea of a dynamical system and some of the associated terminol
ogy. 

Definition 3. 1 A dynamical system is a transformation f : X --+ X on a metric 

space (X, d). It is denoted by {X; f}. The orbit of a point x EX is the sequence 

{fon(x) }~o· 

As we will discover, dynamical systems are sources of deterministic fractals. The 
reasons for this are deeply intertwined with IFS theory, as we will see. Later we 
will introduce a special type of dynamical system, called a shift dynamical system, 
which can be associated with an IFS. By studying the orbits of these systems we 
will learn more about fractals. One of our goals is to learn why the Random Iteration 
Algorithm, used in Program 2 in Chapter III, successfully calculates the images of 
attractors of IFS. More information about the deep structure of attractors of IFS will 
be discovered. 

Examples & Exercises 

3. 1. Define a function on code space, f : :E --+ :E, by 

f(XIX2X3X4 .. . ) = X2X3X4X5 •... 

Then {:E; f} is a dynamical system. 

3.2. {[0, 1]; f(x) = A.x(l- x)} is a dynamical system for each A. E [0, 4]. We say 
that we have a one-parameter family of dynamical systems. 

3.3. Let w (x) = Ax + t be an affine transformation in ~ 2• Then { ~ 2; w} is a dy
namical system. 

3.4. Define T : C[O, 1]--+ C[O, 1] by 

1 1 1 1 1 
(Tf)(x) = 2 f(2x) + 2 f(2x + 2). 
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Then { C[O, 1]; T} is a dynamical system. 
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Figure IV. 1 03. An 
example of a "stretch, 
squeeze, and bend" dy
namical system (Smale 
horseshoe function). 

3.5. Let w: (.-+ C be a Mobius transformation. That is w(z) = (az + b)f(cz +d), 

where a, b, c, d E <C, and (ad -be) ::j:. 0. Then {C; w(z)} is a dynamical system. 

3.6. {[0, 1]; 2xmod1} is a dynamical system. Here 2xmod1 = 2x- [2x], where 

[2x] denotes the greatest integer less than or equal to 2x. 

3. 7. Define a transformation f : • -+ • as illustrated in Figure IV.1 03. { •; f} is a 

dynamical system. 

In dynamical systems theory one is interested in what happens when one follows a 

typical orbit: is there some kind of attractor that usually occurs? Dynamical systems 

become interesting when the transformations involved are not contraction mappings, 

so that a single transform~tion suffices to produce interesting behavior. The orbit of 

a single point may be a geometrically complex set. Some thought about horizontal 

slices through Figure IV.1 04 will quickly suggest to the inquisitive student that there 
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Figure IV. 1 04. One 
million iterations of a 
small black square in a 
"stretch, squeeze, and 
bend" dynamical system. 
Can you find a relation
ship to IFS theory? 

is a close relationship between this noncontractive dynamical system and a hyper

bolic IFS. 

Definition 3.2 Let {X; f} be a dynamical system. A periodic point off is a point 

x EX such that fon(x) = x for some n E {1, 2, 3, ... }. If x is a periodic point off, 

then an integer n such that Jon (x) = x, n E { 1, 2, 3, ... } is called a period of x. The 

least such integer is called the minimal period of the periodic point x. The orbit of 

a periodic point of f is called a cycle of f. The minimal period of a cycle is the 

number of distinct points it contains. A period of a cycle off is a period of a point 

in the cycle. 

Definition 3.3 Let {X; f} be a dynamical system and let x f E X be a fixed point 

off. The point x f is called an attractive fixed point off if there is a number E > 0 so 

that f maps the ball B (x f, E) into itself, and moreover f is a contraction mapping on 

B(x f• E). Here B(x f• E)= {y EX: d(x f• y) ~ E}. The point x f is called a repulsive 

fixed point off if there are numbers E > 0 and C > 1 such that 

d(f(xf), f(y)) ~ Cd(xf, y) for all y E B (x f, E). 

A periodic point of f of period n is attractive if it is an attractive fixed point of 

Jon. A cycle of period n is an attractive cycle of f if the cycle contains an attractive 

periodic point of f of period n. A periodic point of f of period n is repulsive if it 
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Figure IV.105. The 
dynamics of a simple 
Mobius transformation. 
Points spiral away from 
one fixed point and spiral 
in toward the other. What 
happens if the fixed points 
coincide? 

is a repulsive fixed point of Jon. A cycle of period n is a repulsive cycle of f if the 

cycle contains a repulsive periodic point of f of period n. 

Definition 3.4 Let {X, f} be a dynamical system. A point x EX is called an 

eventually periodic point off if !om (x) is periodic for some positve integer m. 

Remark: The definitions given here for attractive and repulsive points are con

sistent with the definitions we use for metric equivalence and will be used through

out the text. The definitions used in dynamical systems theory are usually more topo

logical in nature. These are given later in exercises 5.4 and 5.5. 

Examples & Exercises 
3.8. The point x f = 0 is an attractive fixed point for the dynamical system { ~; i x}, 

and a repulsive fixed point for the dynamical system { ~; 2x}. 

3. 9. The point z = 0 is ah attractive fixed point, and z = oo is a repulsive fixed 

point, for the dynamical system 

{C; (cos 10° + i sin 10°)(0.9)z}. 

J 



134 Chapter IV Chaotic Dynamics on Fractals 

Figure IV. 1 06. Points 
belonging to an orbit of a 
Mobius transformation on 
a sphere. 

Figure IV. 1 07. This 
shows an example of 
a web diagram. A web 
diagram is a means for 
displaying and analyzing 
the orbit of a point x0 E 1R 
for a dynamical system 
(IR, f). The geometrical 
construction of a web 
diagram makes use of the 
graph of f(x). 

Y=X 

... . .. .... ········· 
... . . . . . . . . . . . .. 
. . . . . . . . . . . . . . . 

. . . . .. . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . .. 

. . . . . .. 
. . . . . . . . . . . . . . 

~------------------------------------X--

A typical orbit, starting from near the point of infinity on the sphere, is shown in 

Figures IV.l 05 and IV.l 06. 

3. 1 0. The point x 1 = 111 ill is a repulsive fixed point for the dynamical system 

{I:; f} where f: I:---+ I: is defined by 
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Show that x = 121212 is a repulsive fixed point of period 2, and that { 1212, 2121 } is 

a repulsive cycle of period 2. 

3.11. The dynamical system {[0, 1]; 4 x (1 - x)} possesses the attractive fixed point 

x f = 0. Can you find a repulsive fixed point for this system? 

There is a delightful construction for representing orbits of a dynamical system 

of the special form { IR{; f (x)}. It utilizes the graph of the function f : IR{ ---+ IR{. We 

describe here how it is used to represent the orbit {xn = fon(x0) }~ 1 of a point 

XoE ~. 

For simplicity we suppose that f: [0, 1]---+ [0, 1]. Draw the square {(x, y): 0 ~ 

x:::: 1, 0 ~ y ~ 1} and sketch the graphs of y = f(x) and y = x for x E [0, 1]. 

Start at the point (x0 , x0 ) and connect it by a straight-line segment to the point 

(xo, x1 = f(xo)). Connect this point by a straight-line segment to the point (x1, xi). 

Connect this point by a straight-line segment to the point (x1, x2 = f(x 1)); and con

tinue. The orbit itself shows up on the 45° line y = x, as the sequence of points 

(xo, xo), (x1, x1), (x2, x2), .. .. We call the result of this geometrical construction a 

web diagram. 

It is straightforward to write computergraphical routines that plot web diagrams 

on the graphics display device of a microcomputer. The following program is written 

in BASIC. It runs without modification on an IBM PC with Color Graphics Adaptor 

and Turbobasic. On any line the words preceded by a ' are comments: they are not 

part of the program. 

Program 1. 

1=3.79 : xn=0.95 

def fnf(xn)=l*Xn*(1-xn) 

screen 1 : cls 
window (0,0)-(1,1) 

for k=1 to 400 
pset(k/400, fnf(k/400)) 
next k 
do 
n=n+1 
y=fnf(xn) 
line (xn,xn)-(xn,y), n 

line (xn,y)-(y,y), n 

xn=y 

'parameter value 3.79, orbit starts 
at 0.95 

'change this function f(x) for other 
dynamical systems. 

'initialize computer graphics 
'set plotting window to 0 < x < 1 , 
0 < y < 1 

'plot the graph of the f(x) 

'the main computational loop 
'increment the counter, $n$ 
'compute the next point on the orbit 
'draw a line from (xn,xn) to (xn,y) 
in color n 

'draw a line segment from (xn,y) to 
(y,y) in color n 

'set xn to be the most recently computed 
point on the orbit 

loop until instat end 'stop running if a key is pressed. 
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Two examples of some web diagrams computed using this program are shown in 
Figure IV.108. The dynamical system used in this case is {[0, 1]; f(x) = 3.79x(l
x)}. 

Examples & Exercises 
3. 12. Rewrite Program 1 in a form suitable for your own computer environment. 
Use the resulting system to study the dynamical systems {[0, 1]; Ax(l- x)} for A= 
0.55, 1.3, 2.225, 3.014, 3.794. Try to classify the various species of web diagrams 
that occur for this one-parameter family of dynamical systems. 

3.13. Divide [0, 1] into 16 subintervals [0, ft), [ ft• ft), ... , [ ~' ~), [ ~' 1]. Let 
J: [0, 1] ~ [0, 1] be defined by f(x) = Ax(l - x), where A E [0, 4] is a parame
ter. Compute {Jon(!): n = 0, 1, 2, ... , 5000} and keep track of theJrequency with 

which Jon(!) falls in the kth interval fork= 1, 2, 4, 8, 16, and A= 0.55, 1.3, 2.225, 
3.014, 3.794. Make histograms of your results. 

3. 14. Describe the behavior for the one-parameter family of dynamical system 
s{~ U {oo}; Ax}, where A is a real parameter, in the cases (i) A= 0; (ii) 0 < IAI < 1; 
(iii) A= -1; (iv) A= 1; (v) 1 <A < oo. 

3.15. Analyze possible behaviors of {~2 ; Ax+ t}, where Ax+ tis an affine trans
formation. 

3.16. Study possible behaviors of orbits for the dynamical system {C;Mobius 
transformation}. You should make appropriate changes of coordinates to simplify 
the discussion. 

3. 17. Show that all points are eventually periodic for the slide-and-fold dynamical 
system{~; J}, where 

J(x) = { x + 1 
-X+ 1 

This system is illustrated in Figure IV.1 09. 

if X ::S 0, 
if X ::: 0. 

3.18. Let {X; w 1, w2, ... , wN} be a hyperbolic IFS. Then {H(X); W} is a dynami-
cal system, where 

W(B) = U~= 1 wn(B) for all BE H(X). 

Dynamical systems that act on sets in place of points are sometimes called set 
dynamical systems. Show that the attractor of the IFS is an attractive fixed point of 
the dynamical system {1t(X); W}. You should quote appropriate results from earlier 
theorems. 

3. 19. We consider again our two-dimensional code space, having both past and 
future, called the space of shifts (see exercise 1.12 in Chapter II). In this space, the 
operation of the shift transformation is a homeomorphism of the space to itself (it is 
frequently called the shift automorphism). There is a very geometrical interpretation 
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ORDER 

Figure IV. 1 08. Two 

examples of web di

agrams computed us-

ing Program 1. The dy

namical system in this 

case is {[0, 1]; j(x) = 
AX(l - x)}, for two dif

ferent values of A E (0, 4). 

The system corresponding 

to the lower value of A is 

orderly; the other is close 

to being chaotic. 
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Figure IV.109. An or
bit of the "slide-and-fold" 
dynamical system de
scribed in example 3.17. 
Can you prove that all 
orbits are eventually peri
odic? 

Y=l-X 

~ 

Y=l+X 

/ 
of the shift automorphism here. We arrive at this by looking at the action of the shift 
transformation with the metric dk with k = N, as in exercise 2.19, Chapter II. To 
simplify the discussion, assume N = 2. The space of shifts is a two dimensional 
code space with points 

on which we put the "Euclidean" metric (see exercise 2.6 in Chapter II), 

The shift transformation here is best described by writing 

(x, y) = ... Y3Y2YI·XtXzX3 .... 

We now shift by moving the dot one place to the right, to get 

T(x, y) = ... YzYtXt.XzX3X4 ... = (xzx3 ... , XtYIY2 .. . ). 

With the metric just mentioned, we can relate it to the square [0, 1] x [0, 1]. Each 
point in this square has a binary expansion in terms of ones and zeros, so that a 
point (x, y) can be written (.x1x2 ... , .y1yz .. . ), with precisely the same symbols 
and metric (Euclidean). The shift operation can now be seen as doing the following: 

stretch x: double x. This shifts the first digit up so that it is in the ones place. 
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Figure IV.110. A sign 
of things to come. 

squeeze y: halve y. This shifts a zero into the first digit and shifts all other digits 

down. 

raise half the interval: If the digit now in the ones place for x is a 1, replace the 

new 0 first digit of y with a 1. This adds a half to y. 

put it on top: If the digit in the ones place for x is a 1, discard it. This brings the 

x values to those between 0 and 1, so this half of the points is put above the 

other half. 

What we have done is stretch the square to twice its width (double x) and half its 

height (halve y ), cut the rectangle into two pieces at x = 1, and put the right half on 

top of the bottom half (ad4 1/2 toy if the new x is greater than 1). This operation 

of stretching out the square, cutting it, and stacking the pieces is called a baker's 

transformation, because it resembles a baker rolling, cutting, and stacking dough (to 
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make pastry, for example). It is identical to the shift transformation on the space of 

shifts so long as the dough remains in distinct layers (unlike IRI.2, Ol # 10). 

Definition 3.5 This transformation is famous because it is the heart of any 

invertible "mixing" function (one has to allow any number of cuts and for uneven 

rolling). A mixing function is a function f such that given any set A (from some 

class of sets; here let's say sets with an interior), and any other set B from the same 

class, there is anN such that fn(A) n B # 0for any n > N. 

The term mixing is appropriate: if A is red and B is blue, then eventually they 

are both somewhat purple (have both red and blue in them). A nice property of this 

mixing business is that there is at least one point in the space such that {fn(x) : n = 

1, 2, ... } is dense, that is, given an open set (), there is an n such that fn (x) E (). 

When f has this property, we say that it has a dense orbit. Tis mixing on the space 

of shifts and on code space, and it has a dense orbit as a result. 

Examples & Exercises 

3.20. Prove that for any code space ~ on N symbols, there is a point a E ~. 

such that a has a dense orbit under the shift transformation, that is {Tn(a) : n = 

1, 2, 3, ... } is dense in~. 

3.21. Show that Tis mixing on code space for the class of open sets. 

4 Dynamics on Fractals: Or How to Compute Orbits by Looking at Pictures 

We continue with the main theme for this chapter, namely dynamical systems on 

fractals. We will need the following result. 

Lemma 4.1 Let {X; Wn, n = 1, 2, ... , N} be a hyperbolic IFS with attractor A. 

If the IFS is totally disconnected, thenfor each n E {1, 2, ... , N}, the transformation 

wn: A--+ A is one-to-one. 

Proof We use a code space argument. Suppose that there is an integer n E 

{1, 2, ... , N} and distinct points a1, a2 E A so that Wn(at) = Wn(a2) =a EA. If a1 

has address w and a2 has address a, then a has the two addresses nw and na. This is 

impossible because A is totally disconnected. This completes the proof. 

Lemma 4.1 shows that the following definition is good. 

Definition 4.1 Let {X; Wn, n = 1, 2, ... , N} be a totally disconnected hyper

bolic IFS with attractor A. The associated shift transformation on A is the trans

formation S : A --+ A defined by 

S(a) = w,-;- 1 (a) for a E Wn(A), 

where Wn is viewed as a transformation on A. The dynamical system {A; S} is called 

the shift dynamical system associated with the IFS. 
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Examples & Exercises 
4. 1. Figure IV.111 shows the attractor of tlie IFS 

{ ~2 ; 0.47 ( ~~), 0.47 ( ~~) + ( ~), 0.47 ( ~~) + ( ~)}. 
Figure IV.111 also shows an eventually periodic orbit {an= son(ao)}~0 for the 

associated shift dynamical system. This ·orbit actually ends up at the fixed point 
¢(2222). The orbit reads a0 = ¢(13132222), a 1 = ¢(31312222), a2 = ¢(132222), 
a3 = ¢(32222), a 4 = ¢(2222), where¢: I: ---+ A is the associated code space map. 
a4 E A is clearly a repulsive fixed point of the dynamical system. Notice how one 
can read off the orbit of the point a0 from its address. Start from another point very 
close to a0 and see what happens. Notice how the dynamics depend not only on A 

itself, but also on the IFS. A different IFS with the same attractor will in general lead 
to different shift dynamics. 

4.2. Both Figures IV.112 and IV.113 show attractors of IFS 's. In each case the 
implied IFS is the obvious one. Give the addresses of the points {an= son(ao)}~0 
of the eventually periodic orbit in Figure IV.112. Show that the cycle to which the 

Figure IV.111. An 
orbit of a shift dynamical 
system on a fractal. 
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Figure IV.112. This 

orbit ends up in a cycle of 

period 3. 

PERIOD 

THREE 

orbit converges is a repulsive cycle of period 3. The orbit in Figure IV.l13 is either 

very long or infinitely long: why is it hard for us to know which? 

4.3. Figure IV.114 shows an orbit of a point under the shift dynamical system 

associated with a certain IFS {11~2 ; w1, w2, w3}, where w1, w2, and w3 are affine 

transformations. Deduce the orbits of the points marked b and c in the figure. 

4.4. Figure IV.115 shows the start of an orbit of a point under the shift dy

namical system associated with a certain hyperbolic IFS. The IFS is of the fonn 

{~; w 1, w2 , w3 }, where the transformations Wn: ~ ~ ~are affine and the attractor 

is [0, 1]. Sketch part of the orbit of the point labelled bin the figure. (Notice that this 

IFS is actually just-touching: nonetheless it is straightforward to define uniquely the 

associated shift dynamics on 0 n A where 0 is the open set referred to in Definition 

2.2.) 

We can sharpen up the definition of the overlapping IFS with the aid of the mixing 

properties discussed in section 3. Let {X; w1, ... , w N} be a hyperbolic IFS, and 

define the set 

M = U<wi(A) n w j(A)) 
i#j 



4 Dynamics on Fractals: Or How to Compute Orbits by Looking at Pictures 143 

Figure IV.113. A 
chaotic orbit getting 
started. The shift dy
namics are often wild. 
Why? 

of points in various intersections of the maps of the IFS. Then the following proper

ties hold: 

open interior: If there is a set 0, open with respect· to A, such that 0 c M, 

then the IFS is overlapping. This allows the IFS to be declared overlapping 

easily in some cases. The proof is not too difficult: Suppose this to be the 

case, namely that M contains an open set 0. Suppose that 0 1 were an open 

set that we thought might satisfy the open set condition for just-touching IFS. 

Then wn(01) n 0 = 0 for all n, since 01 can't contain points in the overlap, 

and maps inside itself. Using the continuous map cp: b--+ A, we know that 

we would then have cp- 1(01) and cp- 1(0) both open sets in code space. But 

Tn(cp- 1(0)) must intersect cp- 1(01) in code space for some n, due to mixing, 

and an address in the intersection corresponds to a point a on the attractor 

such that wn({a} thus intersects 0. Hence 0 1 cannot exist, and the IFS is 

overlapping. 

dense address: Not\ce that in order to prevent the IFS from being just-touching 

in the proof just given, the orbit of cp- 1(M) only needs to be dense in :E 

to end up with points in the image of any open set in A. Consequently, 
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Figure IV. 114. The 

orbit of the point a is 

shown. Can you plot 

the first few points of 

the orbits of b and c? 

Warning! The IFS here is 

not the usual one. See how 

the know ledge of some 

dynamics can imply some 

more! 

Figure IV.115. This 

figure shows a sketch of 

part of an orbit of an 

IFS {[0, 1]; WJ, Wz, W3} 

on its attractor [0, 1]. 

The transformation w 1 : 

[0, 1] ~ [0, 1] is affine for 

i = 1, 2, 3. Sketch part of 

the orbit of b. 

1 

an IFS is overlapping if the orbit of cp-1(M) in code space under the shift 

transformation is dense. 

empty interiors: If the IFS is made up of affine maps, and it "looks" just

touching, that is, M does not have an interior, then it is just-touching. The 

important property of affine maps used here is that they map boundary points 

to boundary points, and boundary points come from boundary points. 

4.5. The empty interiors property is not general, but is useful when it applies. To 

see why it is restricted, consider the following IFS, made of six translated copies of 

the following map: 

On the interval [-1, 1], let B(x) = Arccos(x), that is, map x to the point directly 

above it on the unit circle. Then take B(x) to the point B(x) -a sin B(x), where 

a E [0, 1/2). Then map the new point on the circle back to [-1, 1] by taking B(x) 

to x' =cos B(x). Now fold the interval over at 0 with the map x'2 , and ensure that it 
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is contractive by dividing by 3. The interval has now been mapped to [0, 1/3]. Call 

this map v(x). Explicitly, we have 

1 
v(x) = 3 cos2(Arccos(x)- sin(Arccos(x)). 

We now form 6 maps WI, ... , w6 by translations and inversions of v(x): 

WI(x) = v(x)- 1 

1 
w3(x) = v(x)- -

3 
1 

ws(x) = v(x) + -
3 

1 
w2(x) = -v(x)- -

3 
1 

w4(x) = -v(x) + -
3 

w6(x) = -v(x) + 1. 

The reader should be able to verify that the attractor of the IPS 

{[-1, 1]; WI, W2, W3, W4, W5, W6} 

is the interval [- 1, 1], and that each of these maps touches any neighbor at a single 

point. There is a point x0(a) such that 

Arccos(xo) - a sin Arccos(x0) = rr /2, 

whose image is the points 

{-1, -1/3, 1/3, 1}, 

and whose endpoints map to { -2/3, 0, 2/3}. By choosing a at different values we 

can move x0 around the interval [ -1/3, 0]. If we pick a E l: to be a dense orbit in 

I; under the shift transformation, we can successively approximate this address for 

xo such that the address of x0 is 3a, and we can do this for each such a E I:. We can 

also do this for a variety of periodic orbits, which are not dense. 

It turns out that for most values of x0 E [ -1/3, 0] (the probability of a value in this 

interval being one of these is 100% ), this IPS is overlapping, although between every 

two values for which it is overlapping, there is a value for which it is just-touching. 

The attractors of this family of IPS are identical, as are the intersection points. 

This is thus both an example of an IPS that has a finite set of intersection points 

and is (sometimes) overlapping, and an example of one that does not go smoothly 

through the success10n from totally disconnected to just-touching to overlapping. 

Small wonder these properties are defined for the IPS and not the attractor; they are 

really properties governing the behavior of addresses in code space. 

5 Equivalent Dynamical Systems 
.. 

Definition 5.1 Two metric spaces (XI, di) and (X2, d2) are said to be topologically 

equivalent if there is a homeomorphism[" XI-+ x2. Two subsets SIc XI and s2 c 
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Figure IV.116. A com
mutative diagram that es
tablishes the equivalence 
between the two dynami
cal systems {X 1; Jd and 
{X2; fz}. The function 
h : X 1 ---* X2 is a home
omorphism. 

X2 are topologically equivalent, or homeomorphic, if the metric spaces (S1, d1) and 

(S2, d2) are topologically equivalent. S1 and S2 are metrically equivalent if (SI, d1) 

and (S2 , d2) are equivalent metric spaces. 

The Cantor set and code space, discussed following Theorem 2.3 in Chapter IV, 

are metrically equivalent. Theorem 8.5 in Chapter II tells us that iff: X1 ~ X2 is 

a continuous one-to-one mapping from a compact metric (X1, d1) onto a compact 

metric space (X2, d2 ) then f is a homeomorphism. So by means of the code space 

mapping </> : :E ~ A (Theorem 2.1) one readily establishes that the attractor of a 

totally disconnected hyperbolic IFS is topologically equivalent to a classical Cantor 

set. 
Topological equivalence permits a great deal more "stretching" and "compres

sion" to take place than is permitted by metric equivalence. Later we will define a 

quantity called the fractal dimension. The fractal dimension of a subset of a metric 

space such as ([R?.2 , Euclidean) provides a measure of the geometrical complexity of 

the set; it measures the wildness of the set, and it may be used to predict your ex

citement and wonder when you look at a picture of the set. We will show that two 

metrically equivalent sets have the same fractal dimension. If they are merely topo

logically equivalent, their fractal dimensions may be different. 

With the naturally implied metrics, [0, 1] is homeomorphic to [0, 2]. • is homeo-
~r~ 

>"'. ·{: 

morphic to •. What is mor~, is even homeomorphic to 

homeomorphic to ~. 
In fractal geometry we are especially interested in the geometry of sets, and in the 

way they look, when they are represented by pictures. Thus we use the restrictive 

condition of metric equivalence to start to define mathematically what we mean 

when we say that two sets are alike. However, in dynamical systems theory we are 

interested in motion itself, in the dynamics, in the way points move, in the existence 

of periodic orbits, in the asymptotic behavior of orbits, and so on. These structures 

are not damaged by homeomorphisms, as we will see, and hence we say that two 

dynamical systems are alike if they are related via a homeomorphism. 

Definition 5.2 Two dynamical systems {XI; fd and {X2; /2} are said to be 

equivalent, or topologically conjugate, if there is a homeomorphism e : X I ~ x2 

such that 

!I (XI)= e-I 0 h 0 B(XJ) for all XI E XJ, 

/2(x2) = e 0 !I 0 e- 1(x2) for all X2 E X2. 

In other words, the two dynamical systems are related by the commutative diagram 

shown in Figure IVJ16. 

The following theorem expresses formally what should already be clear intu

itively from our experience with shift dynamics on fractals. 

l 
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Theorem 5. 1 Let {X; WI, w2, ... , w N} be a totally disconnected hyperbolic IFS 
and let {A; S} be the associated shift dynamical system. Let 'E be the associated code 
space of N symbols and let T : :E ---+ :E be defined by 

Then the two dynamical systems {A; S} and {:E; T} are equivalent. The homeomor
phism that provides this equivalence is ¢: :E ---+ A, as defined in Theorem 4.2.1. 
Moreover, {ai, a2, ... , ap} is a repulsive cycle of period p for S if, and only if, 
{</>(ai), ¢(a2), ••• , ¢(ap)} is a repulsive cycle of period p forT. 

Examples & Exercises 
5.1. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor
phism that provides this equivalence be denoted by() :XI ---+ X2. Show that 

{XI, X2, ••• , Xp} 

is a cycle of period p for {X I; [I} if and only if 

is a cycle of period p for {X2; [2}. Suppose that {xi, x2, ••• , Xp} is an attractive cycle 
for fi· Show that this does not imply that {O(xi), ... , ()(xp)} is an attractive cycle for 

h· 
5.2. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor
phism that provides this equivalence be denoted by () : X I ---+ X2. Let { ftn (x)} ~0 be 
an eventually periodic orbit of [I. Show that {f2on(()(x))}~0 is an eventually peri
odic orbit of [2. 

5.3. Let {XI; fd and {X2; [2} be equivalent dynamical systems. Let a homeomor
phism that provides this eql:ivalence be denoted by () :XI ---+ X2. Let this homeo
morphism be such as to make the two spaces (XI, di) and (X2, d2) metrically equiva
lent. Construct an example where x f E X I is a repulsive fixed point of the dynamical 
system {XI, fd yet ()(x f) is not a repulsive fixed point of {X2, d2}. 

5.4. Let {XI; fd and {X2; [2} be equivalent metric spaces. Let a homeomorphism 
that provides their equivalence be denoted by () :XI ---+ x2. Let X f E XI be a fixed 
point of [I . Suppose there is an open set 0 that contains x f and is such that x E 0 
implies limn-+oo ftn (x) = x f. Show that there is an open neighborhood of() (x f) in 
x2 with a similar property. 

5.5. Our definition of attractive and repulsive fixed points and cycles, Definition 
3.4, has the feature tqat it depends heavily on the metric. It is motivated by the 
situation of analytic dynamics where small disks are almost mapped into disks. 
Show how one can use exercise 5.4 to make a definition of an attractive cycle in 
such a way that attractiveness of cycles is preserved under topological conjugacy. 
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Figure IV. 117. Attrac
tive and repulsive fixed 
points in a web diagram 
for a differentiable dy
namical system. Analyze 
the? points. 

5.6. Let A c !RL Then a function f : A ~ A is differentiable at a point x 0 E A if 

lim { f(x)- f(xo)} 

~~~ X- Xo 

exists. If this limit exists it is denoted by f'(xo). Let{~; w1, w2, ... , WN} be a to

tally disconnected hyperbolic IFS acting on the metric space (~. Euclidean). Sup

pose that, for each n = 1, 2, ... , N, Wn (x) is differentiable, with I w~ (x) I > 0 for all 

x E ~.Show that the associated shift dynamical system {A; S} is such that Sis dif

ferentiable at each point x0 E A and, moreover, IS'(xo)l > 1 for all x EA. 

5.7. Let{~; f} and{~; g} be equivalent dynamical systems. Let a homeomorphism 

that provides their equivalence be denoted by f) : ~ ~ ~. If f) (x) is differentiable for 

all x E ~.then the dynamical systems are said to be diffeomorphic. Prove that a 1 is 

an attractive fixed point off if and only if fJ(a 1) is an attractive fixed point of g. 

5.8. Let {~; f} be a dynamical system such that f is differentiable for all x E !It 

Consider the web diagrams associated with this system. Show that the fixed points 

off are exactly the intersections of the line y = x with the graph y = f(x). Let a 

be a fixed point of f. Show that a is an attractive fixed point of f if and only if 

1/'(a)l < 1. Generalize this result to cycles. Note that if {a1, a2, ... , ap} is a cycle 

of period p, then fx (f 0 P(x)lx=a1 = f'(ai)f'(a2) ... f'(ap). Assure yourself that the 

situation is correctly summarized in the web diagram shown in Figure IV.117. 

5.9. Consider the dynamical system {[0, 1]; f(x)} where 
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{ 
1 - 2x when x E [0, 4 ], 

f(x) = 
2x - 1 when x E [ 4, 1]. 

Consideralsothejust-touchingiFS {[0, 1], 4x + 4, -4x + 4l. Showthatitispossi

ble to define a "shift transformation," S, on the attractor, A, of this IFS in such a way 

that {[0, 1]; S} and {[0, 1]; f(x)} are equivalent dynamical systems. To do this you 

should define S : A ~ A in the obvious manner for points with unique addresses; 

and you should make a suitable definition for the action of S on points with multiple 

addresses. 

5. 1 0. Let { ~ 2; w 1' w2' W3} denote a one-parameter family of IFS, where 

Let the attractor of this IFS be denoted by A(p). Show that A(O) is a Cantor set 

and A (I) is a Sierpinski triangle. Consider the associated family of code space maps 

lf> (p) : I; ~ A (p). Show that lf> (p) (a) is continuous in p for fixed a E I;; that is 

lf>(p)(a) : [0, 1] ~ ~2 is a continuous path. Draw some of these paths, including 

ones that meet at p = 1. Interpret these observations in terms of the Cantor set be

coming "joined to itself" at various points to make a Sierpinski triangle, as suggested 

in Figure IV.118. 

Since the IFS is totally disconnected when p = 0, lf> (p = 0) : I: ~ A (0) is in

vertible. Hence we can define a continuous transformation () : A(O) ~ A(l) by 

8(x) = lf>(p = 1)(l/>-1(p = O)(x)). Show that if we define a set J(x) = {y E A(O): 

8(y) = x} for each x E A (I), then J(x) is the setofpoints in A(O) whose associated 

paths meet at x E A(1) when p = 1. Invent shift dynamics on paths. 

6 The Shadow of Deterministic Dynamics 

Our goal in this section is to extend the definition of the shift dynamical system 

associated with a totally disconnected hyperbolic IFS to cover the just-touching and 

overlapping cases. This will lead us to the idea of a random shift dynamical system 

and to the discovery of a beautiful theorem. This theorem will be called the Shadow 

Theorem. 1 

Let {X; w1, w2, ... , wN} denote a hyperbolic IFS, and let A denote its attractor. 

Assume that Wn : A ~ A is invertible for each n = 1, 2, ... , N, but that the IFS is 
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Figure IV.118. Con
tinuous transformation of 
a Cantor set into a Sierpin
ski triangle. The inverse 
transformation would in
volve some ripping. 
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Figure IV.119. The 
two possible shift dynam
ical systems associated 
with the just-touching IFS 

{[0, 1]; ~x, ~x + ~} are 
represented by the two 
possible graphs of S(x). 

"Most" orbits are unaf
fected by the difference 
between the two systems. 

not totally disconnected. We want to define a dynamical system {A; S} analogous to 

the shift dynamical system defined earlier. Clearly, we should define 

when X E Wn(A), but X¢ Wm(A) form -=j:.n, 

for each n = 1, 2, ... , N. 

However, at least one of the intersections wm(A) n wn(A) is nonempty for some 

m -=f. n. One idea is simply to make an assignment of which inverse map is to be 

applied in the overlapping region. For the case N = 2 we might define, for example, 

S(x) = { w1 1
(x) whenx E w1(A), 

w2 1(x) whenx E A\ w 1(A). 

In the just -touching case the assignment of where S takes points that lie in the 

overlapping regions does not play a very important role: only a relatively small 

proportion of points will have somewhat arbitrarily specified orbits. We look at some 

examples, just to get the flavor. 

Examples Be Exercises 
6. 1. Consider the shift dynamical systems associated with the IFS 

1 1 1 
{[0, 1]; 2x, 2x + 2 }. 

We have S(x) = 2x for x E [0, 4) and S(x) = 2x- 1 for x E (4, 1]. We can define 

the value of S(4) to be either 1 or 0. The two possible graphs for S(x) are shown in 

Figure IV.l19. The only points x E [0, 1] =A whose orbits are affected by the defi

nition are those rational numbers whose binary expansions end ... 01TI or ... 1000, 

the dyadic rationals. 

6.2. Show that if we follow the ideas introduced above, there is only one dynami

cal system {A; S} that can be associated with the just-touching IFS {[0, 1]; -4x + 
4, 4x}. The key here i~ that w1 1(x) = w21(x) for all x E w1(A) n w2(A). 

6.3. Consider some possible "shift" dynamical systems {A; S} that can be associ

ated with the IFS 
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Figure IV. 120. Two 
possible shift dynamical 
systems that can be associ
ated with the overlapping 
IFS {[0, 1]; 4x, ~x + il· 
In what ways are they 
alike? 

0 

1 1 1 1 i 
. {C; 2z, 2z + 2' 2z + 2 }. 

0 

The attractor, £, is overlapping at the three points a = w I ( £) n w2 ( £), b = 
w 2(£) n w3(£), and c = w3(£) n WI(£). We might define S(a) = w!I(a) or 

w2I(a), S(b) = w2 1(b) or w3 1(b), and S(c) = w3I(c) or w!I(c). Show that re

gardless of which definition is made, the orbits of a, b, and care eventually periodic. 

6.4. Consider a just-touching IFS of the form {~2 ; WI, w2 , w3} whose attractor is 

an equilateral Sierpinski triangle £. Assume that each of the maps is a simili

tude of scaling factor 0.5. Consider the possibility that each map involves a rota

tion through oo, 120°, or 240°. The attractor, £, is overlapping at the three points 

a= w1 (£) n w2(£), b = w2(£) n w3(£), and c = w3(£) n WI(£). Show that it 

is possible to choose the maps so that w!I(a) = w2 1(a), w2I(b) = w3 1(b), and 

w3I(c) = w!I(c). 

6.5. Is code space on two symbols topologically equivalent to code space on three 

symbols? Yes! Construct a homeomorphism that establishes this equivalence. 

6.6. Consider the hyperbolic IFS { b; t 1, t2, ... , fN}, where b is code space on N 

symbols {1, 2, ... , N} and 

for all a E b. 

Show that the associated shift dynamical system is exactly {b; T} defined in Theo

rem 4.5.1. Can two such shift dynamical systems be equivalent for different values 

of N? To answer this question consider how many fixed points the dynamical system 

{b; T} possesses for different values of N. 

6.7. Consider the overlapping hyperbolic IFS {[0, 1]; ~x, ~x + ~}. Compare the 

two associated shift dynamical systems whose graphs are shown in Figure IV.120. 

What features do they share in common? 

6.8. Demonstrate that code space on two symbols is not metrically equivalent to 

code space on three symbols. 

In considering exercises such as 6. 7, where two different dynamical systems are 
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OVERLAPPING 
NON-OVERLAPPING NON-OVERLAPPING 

Figure IV.121. A par
tially random and par
tially deterministic shift 
dynamical system as
sociated with the IFS 
{[0, 1); ~X, ~X+~}. 
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associated with an IPS in the overlapping case, we are tempted to entertain the idea 

that no particular definition of the shift dynamics in the overlapping regions is to 

be preferred. This suggests that we define the dynamics in overlapping regions in 

a somewhat random manner. Whenever a point on an orbit lands in an overlapping 

region we should allow the possibility that the next point on the orbit is obtained by 

applying any one of the available inverse transformations. This idea is illustrated in 

Figure IV.l21, which should be compared with Figure IV.120. 

Definition 6.1 Let {X; WI, w2} be a hyperbolic IFS. Let A denote the attractor 

of the IFS. Assume that both WI: A--+ A and wz: A--+ A are invertible. A sequence 

of points {xn}~0 in A is called an orbit of the random shift dynamical system 

associated with the IFS if 

when Xn E WI (A) and Xn f/_ WI (A) n Wz(A), 

{ 

w!I(Xn) 

Xn+I = W2I(Xn) when Xn E Wz(A) and Xn f/_ WI (A) n Wz(A), 

one of {w!I(xn), w2I(xn)} when Xn E WI(A) n Wz(A), 

for each n E {0, 1, 2, ... }. We will use the notation Xn+I = S(xn) although there may 

be no well-defined transformation S : A --+ A that makes this true. Also we will write 

{A; S} to denote the collection of possible orbits defined here, and we will call {A; S} 

the random shift dynamical system associated with the IFS. 
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~ 

Notice that if WI (A) n w2(A) = 0 then the IFS is totally disconnected and the 

orbits defined here are simply those of the shift dynamical system {A; S} defined 

earlier. 
We now show that there is a completely deterministic dynamical system acting 

on a higher-dimensional space, whose projection into the original space X yields the 

"random dynamics" we have just described. Our random dynamics are seen as the 

shadow of deterministic dynamics. To achieve this we tum the IFS into a totally 

disconnected system by introducing an additional variable. To keep the notation 

succinct we restrict the following discussion to IFS 's of two maps. 

Definition 6.2 The lifted IFS associated with a hyperbolic IFS {X; WI, w2} is 

the hyperbolic IFS {X x :E; WI, w2}, where :E is the code space on two symbols 

{1, 2}, and 

WI (x, a)= (wi (x), la) 

wz(x, a)= (wz(x), 2a) 

for all (x, a) EX x :E; 

for all (x, a) EX x :E. 

What is the nature of the attractor A c X x :E of the lifted IFS? It should be clear 

that 

A= {x E A: (x, a) E A} and :E ={a E :E: (x, a) E A}. 

In other words, the projection of the attractor of the lifted IFS into the original space 

X is simply the attractor A of the original IFS. The projection of A into :E is 'E. 

Recall that :E is equivalent to a classical Cantor set. This tells us that the attractor of 

the lifted IFS is totally disconnected. 

Lemma 6.1 Let {X; WI, w2} be a hyperbolic IFS with attractor A. Let the two 

transformations WI : A--+ A and wz: A --+ A be invertible. Then the associated 

lifted IFS is hyperbolic and totally disconnected. 

Definition 6.3 Let {X; WI, w2} be a hyperbolic IFS. Let the two transformations 

WI : A --+ A and wz : A --+ A be invertible. Let A denote the attractor of the associ

ated lzfted IFS. Then the shift dynamical system {A; S} associated with the lifted IFS 

is called the lifted shift dynamical system associated with the IFS. 

Notice that 

S(x, a)= (w~I(x), T(a)) for all(X, a) E A, 

where 

Theorem 6.1 [(The Shadow Theorem).] Let {X; WI, wz} be a hyperbolic IFS of 

invertible transformations WI and wz and attractor A. Let {xn}~0 be any orbit of the 

associated random shift dynamical system {A; S} . Then there is an orbit {in}:o of 

the lzfted dynamical system {A; S} such that the first component of Xn is Xn for all n. 
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SEEN 
FROM 
THE 
SIDE 
THE 
SET 
IS 
TOTALLY 
DISCONNECTED 

LIGHT 

Cantor set of 
infinitesimal 

leaflets 
grouped 
in fours 

Each "leaflet" 
is a microcosm 
of the whole 

·· leaflet stack 

/ 
~------------------------------------- xl~ 

THE SHADOW OF THE CANTOR SET 
IS A LEAF, THE ATTRACTOR OF AN IFS. 

We leave the proofs of Lemma 6.1 and Theorem 6.1 as exercises. It is fun, how

ever, and instructive to look in a couple of different geometrical ways at what is 

going on here. 

Examples & Exercises 

6.9. Consider the IFS { C; w 1 (z), w2(z), w3(z), w4(z)} where, in complex notation, 

Wt (z) = (0.5)(cos 45o - -J=-1 sin 45°)Z + (0.4- 0.2-J=-1), 

w2(z) = (0.5)(cos 45° + -J=-1 sin 45°)Z- (0.4 + 0.2-J=-1), 

W3(z) = (0.5)z + -J=-1(0.3), 

W4(z) = (0.5)z- -J=-1(0.3). 

A sketch of its attractor is included in Figure IV. 122. It looks like a maple leaf. The 

leaf is made of four overlapping leaflets, which we think of as separate entities, at 

different heights "above" the attractor. In tum, we think of each leaflet as consisting 

of four smaller leaflets, again at different heights. One quickly gets the idea: one 

ends up with a set of heights distributed on a Cantor set in such a way that the 

shadow of the whole collection of infinitesimal leaflets is the leaf attractor in the 

C plane. The Cantor set is essentially I:. The lifted attractor is totally disconnected; 

it supports deterministic shift dynamics, as illustrated in Figure IV.123. 

Figure IV.122. The lift 
of the overlapping leaf 
attractor is totally dis
connected. Deterministic 
shift dynamics become 
possible. See also Fig
ure IV.l23. 
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Figure IV. 123. A pic
ture of the Shadow The
orem. Deterministic dy
namics on a totally discon
nected dust has a shadow 
that is dancing random 
shift dynamics on a leaf 
attractor. 

A 

/ 
2 

DETERMINISTIC 
SHIFT DYNAMICS 
ON THE 
LIFTED 
lEAF 

RANDOM 
SHIFT DYNAMICS 
ON THE lEAF 

~--------------------------------X~ 

6. 10. Consider the overlapping hyperbolic IFS { !R?.; i x, ~ x + ~}. We can lift this to 

the hyperbolic IFS {!R?.2 ; w1(x), w2(x)}, where 

The attractor A of this lifted system is shown in Figure IV.124, which also 

shows an orbit of the associated shift dynamical system. The shadow of this orbit 

is an apparently random orbit of the original system. The Shadow Theorem asserts 

that any orbit {xn}~0 of a random shift dynamical system associated with the IFS 

{ !R?.; i x, ~ x + ~} is the projection, or shadow, of some orbit for the shift dynamical 

system associated with the lifted IFS. 

6. 11 . As a compelling illustration of the Shadow Theorem, consider the IFS 

1 3 1 
{IR?.; 2x, 4x + 4}. 

Let us look at the orbits {xn}~0 of the shift dynamical system specified in the 

left-hand graph of Figure IV.120. In this case we always choose S(x) = w21(x) 

in the overlapping region. What orbits {in}~0 of the lifted system, described in 

exercise 6.7, are these orbits the shadows of? Look again at Figure IV.124! Define 
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t 
y 

A looks like 
a Classical 
Cantor Set 
when seen 
from the 
side. 

OVERLAPPING 
REGION 

A 

the top of A as 

Atop= {(x, y) E A: (z, y) E A=} z ::=:: x, andy E [0, 1]}. 

Notice that S: Atop~ Atop· It is easy to see that there is a one-to-one correspon

dence between orbits of the lifted system {Atop; S} and orbits of the original system 

specified through the left-hand graph of Figure IV.120. Indeed, 

{ (xn, Yn)} :,0 is an orbit of the lifted system and (xo, Yo) E Atop 

~ 
{xn}~0 is an orbit of the left-hand graph of Figure IV.120 

6.12. Draw some pictures to illustrate the Shadow Theorem in the case of the just

touching IFS {[0, 1]; ~x, ~x + ~}. 

6.13. Illustrate the Shadow Theorem using the overlapping IFS {[0, 1]; -~x + 
~, ~ x + i}. Find an orbit of period 2 whose lift has minimal period 4. Do there exist 

periodic orbits whose lifts are not periodic? 

6.14. Prove Lemma 6.1. 

6. 15. Prove Theorem 6.1. 

Figure IV.124. The 
Shadow Theorem asserts 
that the random shift 
dynamical system orbit on 
the overlapping attractor 
A is the shadow of a 
deterministic orbit on A. 
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6.16. The IFS p::;; w1(a), ... , WN(a)} given by 

Wn(a) = na 

for each n = 1, 2, ... , N, has an interesting lift. Show that the lift of this IFS, with 
a suitably defined inverse, is the shift automorphism on the space of shifts and 
therefore equivalent to the baker's transformation. 

6. 1 7. In section 5 it was shown that the associated shift dynamical system of any 
totally disconnected IFS is equivalent to the shift transformation on code space. 
Then we may replace the second map in the lift for the Shadow Theorem with such 
a totally disconnected IFS. That is, we could take a map like the leaf shown in 
Figures IV.122 and IV.123, and define the map 

{IW.2 
X A; WI(X, y), ... W4(X, y)}, 

where wi = (wj1(x, y), vi(x, y)), where vi are the maps of the totally disconnected 
IFS 

Since this IFS produces an attractor that is totally disconnected, and therefore a copy 
of code space, the resulting lift is totally disconnected. What would a rendition of the 
lifted system look like if the maple leaf were lifted using a totally disconnected tree? 

7 The Meaningfulness of Inaccurately Computed Orbits Is Established by 
Means of a Shadowing Theorem 

Let {X; w 1, w2 , .•• , w N} be a hyperbolic IFS of contractivity 0 < s < 1. Let A de
note the attractor of the IFS, and assume that Wn :A~ A is invertible for each 
n = 1, 2, ... , N. If the IFS is totally disconnected, let {A; S} denote the associated 
shift dynamical system; otherwise let {A; S} denote the associated random shift dy
namical system. Consider the following model for the inaccurate calculation of an 
orbit of a point x0 E A. This model will surely describe the reader's experiences 
in computing shift dynamics directly on pictures of fractals. Moreover, it is a rea
sonable model for the occurrence of numerical errors when machine computation is 
used to compute an orbit. 
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Let an exact orbit of the point Xo E A be denoted by {xn}~o· where Xn = son(xo) 

for each n. Let an approximate orbit of the point x0 E A be denoted by {in}~0 where 

io = x0. Then we suppose that at each step there is made an error of at most () for 

some 0 ,:::: () < oo; that is, 

forn = 0, 1, 2, .... 

We proceed to analyze this model. It is clear that the inaccurate orbit {in}~0 will 

usually start out by diverging from the exact orbit {xn}~0 at an exponential rate. 

It may well occur "accidentally" that d(xn, Xn) is small for various large values 

of n, due to the compactness of A. But typically, if d(xn, Xn) is small enough, 

then d (xn+ j, Xn+ j) will again grow exponentially with increasing j. To be precise, 

suppose d(i1, S(i0)) = () and that we make no further errors. Suppose also that for 

some integer M, and some integers a 1, a 2 , ... , aM E {1, 2, ... , N}, we have 

Xn and Xn E WaJA), for n = 0, 1, 2, ... , M. 

Moreover, suppose that 

- 1( ) d - - 1(- ) o: 0 1 2 M Xn+1 =Wan Xn an Xn+1 =Wan Xn , 10f n = , , , ... , . 

Then we have 

d(xn+1· Xn+1) ~ s-ne, for n = 0, 1, 2, ... , M. 

For some integer J > M it is likely to be the case that 

XJ+1 = wa- 1(xn) and Xn+1 = w:=- 1(xn), for some a1 =f. Of 
J a, 

Then, without further assumptions, we cannot say anything more about the correla

tion between the exact orbit and the approximate orbit. Of course, we always have 

the error bound 

d(xn, Xn) :S diam(A) = max{d(x, y): x E A, yEA}, for all n = 1, 2, 3, .... 

Do the above comments make the situation hopeless? Are all of the calculations 

of shift dynamics we have done in this chapter without point because they are riddled 

with errors? No! The following wonderful theorem tells us that however many errors 

we make, there is an exact orbit that lies at every step within a small distance of our 

errorful one. This orbit shadows the errorful orbit. This type of theorem is extremely 

important in dynamics, and in any class of dynamical systems that has one (such as 

IFS) behavior that can be accurately analyzed using graphics on computers. Here we 

are use the word "shadows" in the sense of a secret agent who shadows a spy. The 

agent is always just out of sight, not too far away, usually not too close, but forever 

he follows the spy. 

Theorem 7.1 The Shadowing Theorem. Let {X; Wj' Wz, ... ' w N} be a hy

perbolic IFS of contract~vity s, where 0 < s < 1. Let A denote the attractor of the 

IFS and suppose that each of the transformations Wn : A ---+ A is invertible. Let 

{A; S} denote the associated shift dynamical system in the case that the IFS is totally 
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~ 

disconnected; otherwise let {A; S} denote the associated random shift dynamical 

system. Let {xn}~0 C A be an approximate orbit of S, such that 

for all n = 0, 1, 2, 3, ... , 

for some fixed constant() with 0 ~ () ~ diam(A). Then there is an exact orbit {xn = 
son(xo)}~ofor some Xo E A, such that 

- s() 
d(xn+1• Xn+1) ~ (

1 
_ s) for all n = 0, 1, 2, .... 

Proof As usual we exploit code space! For n = 1, 2, 3, ... , let an E {1, 

2, ... , N} be chosen so that w~/, w;;,/, w;;/, ... , is the actual sequence of inverse 
maps used to compute S(x0 ), S(x1), S(x2 ), .. .. Let 4>: ~~A denote the code space 
map associated with the IFS. Then define 

xo = 4>(a1a2a3 .. . ). 

Then we compare the exact orbit of the point x0 , 

{Xn = Son(Xo) ~ cj>(an+1an+2 · · .)}~o 

with the errorful orbit {in}~0 . 

Let M be a large positive integer. Then, since XM and S(.XM_1) both belong to A, 
we have 

d(S(xM-1), S(xM_1) ~ diam(A) < 00. 

Since S(xM-l) and S(xM-d are both computed with the same inverse map w;;~ it 
follows that 

Hence 

d(S(xM-2), S(.XM-2)) = d(XM-1· S(.XM-2)) 

~ d(xM-1· .xM-d + d(.XM-1. sc.xM-2)) 

~ () + s diam(A); 

and repeating the argument used above we now find 

d(XM-2· XM-2)) .S s(() + s diam(A)). 

Repeating the same argument k times we arrive at 

d(xM-k. XM-k) ~ s() + s2() + · · · + sk- 1() + sk diam(A). 

Hence for any positive integer M and any integer n such that 0 < n < M, we have 

d(xn, Xn) ~ s() + s2() + · · · + sM-n-1() + sM-n diam(A). 

Now take the limit of both sides of this equation as M ~ oo to obtain 

s() 
d(xn, Xn) ~ s()(l + s + s2 + · · ·) = ---, for all n = 1, 2, .... 

(1- s) 

This completes the proof. 
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Examples & Exercises 
7.1. Let us apply the Shadowing Theorem to an orbit on the Sierpinski triangle, 

using the random shift dynamical system associated with the IFS 

1 1 1 1 i 
{C; 2z, 2z + 2' 2z + 2}. 

Since the system is just-touching we must assign values to the shift transformation 

applied to the just-touching points. We do this by defining 

S(x1 + ixz) = 2xt mod 1 + i (2xz mod 1). 

We consider the orbit of the point x0 = (0.2147, 0.0353). We compute the first 11 

points on the exact orbit of this point, and compare it to the results obtained when a 

deliberate error()= 0.0001 is introduced at each step. We obtain: 

Errorful 
io = (0.2147, 0.0353) 
XI= (0.4295, 0.0705) 
i2 = (0.8591, 0.1409) 
i3 = (0.7183, 0.2817) 

i4 = (0.4365, 0.5635) 
is = (0.8731, 0.1269) 
i6 = (0.7463, 0.2537) 
i1 = (0.4927, 0.5073) 
i 8 = (0.9855, 0.0145) 
i 9 = (0.9711, 0.0289) 
iw = (0.9423, 0.0577) 

Exact 

S00 (io) = (0.2147, 0.0353) 
soi(io) = (0.4294, 0.0706) 

S02 (io) = (0.8588, 0.1412) 

S03 (io) = (0.7176, 0.2824) 

S04 (io) = (0.4352, 0.5648) 

S05 (io) = (0.8704, 0.1296) 
S06 (io) = (0.7408, 0.2592) 

S07 (io) = (0.4816, 0.5184) 

S08 (io) = (0.9632, 0.0368) 
S09 (io) = (0.9264, 0.0736) 
S010 (io) = (0.8528, 0.1472) 

Notice how the orbit with errors diverges from the exact orbit of x0 . Nonetheless, 

the shadowing theorem asserts that there is. an exact orbit {xn} such that 

1 

d(Xn, Xn) ~ ~(0.0001) = 0.0001, 
1- 2 

where d ( ·, ·) denotes the Manhattan metric. This really seems unlikely; but it must 

be true! Here~s an example of such a shadowing orbit, also computed exactly. 

Exact Shadowing Orbit Xn = son (xo) 

x0 = (0.21478740234375, 0.03521259765625) 

XI= (0.4295748046875, 0.0704251953125) 

X2 = (0.8591496093750, 0.1408503906250) 

X3 = (0.7182992187500, 0.2817007812500) 

X4 = (0.4365984375000, 0.5634015625000) 

x5 = (0.8731968750000, 0.1268031250000) 

X6 = (0.7463937500000,fl.2536062500000) 
X7 = (0.4927875000000, 0.5072125000000) 

Xg = (0.9855750000000, 0.0144250000000) 

d(Xn, Xn):::: 0.0001 
0.00009 
0.00008 
0.00005 
0.000001 
0.0001 
0.0001 
0.0001 
0.00009 
0.00008 
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Figure IV.125. The 
Shadowing Theorem tells 
us there is an exact orbit 
closer to {xn} than 0.03 for 
all n. 

1 

TRUE ORBIT OF x
0 
....,~~

COMPUTED ORBIT OF x
0

_.,., __ 

All errors are less than 0.03 

True orbit of x0 already 
far from the computed orbit 

0 

X9 = (0.9711500000000, 0.0288500000000) 

x 10 = (0.9423000000000, 0.0577000000000) 

Figure IV.125 illustrates the idea. 

0.00005 

0.000000 

1 

7 .2. Consider the shift dynamical system { 'E; T} on the code space of two symbols 

{1, 2}. Show that the sequence of points {in} given by 

io = 212, and Xn = 12 for all n = 1, 2, 3, ... 

is an errorful orbit for the system. Illustrate the divergence of ron x0 from in. Find 

a shadowing orbit {xn}~0 and verify the error estimate provided by the Shadowing 

Theorem. 

7 .3. Illustrate the Shadowing Theorem by constructing an erroneous orbit, and an 

orbit that shadows it, for the shift dynamical system { [0, 1]; 1 x, 1 x + 1}. 
7 .4. Compute an orbit for a random shift dynamical system associated with the 

overlapping IFS {[0, 1]; ~x, 1x + 1l· 
7 .5. An orbit of the shift dynamical system associated with the IFS 
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X 1 

Figure IV.126. An ex
act orbit shadows the orbit 
"computed" by "drawing" 
in this web diagram for 
a random shift dynamical 
system. 

is computed to accuracy 0.0005. How close a shadowing orbit does there exist? Use 

the Manhattan metric. 

7 .6. In Figure IV.126 an orbit of the random shift dynamical system associated with 

the overlapping IPS {[0, 1], w 1(x), w2(x)} is computed by drawing a web diagram. 

The computer in this case consists of a pencil and a drafting table. Estimate the 

errors in the drawing and then deduce how closely an exact orbit shadows the plotted 

one. You will need to estimate the contractivity of the IPS. Also draw a tube around 

the plotted orbit, within which an exact orbit lies. 

7.7. Figure IV.127 shows an orbit {xn} of the random shift dynamical system associ

ated with the IPS {[0, 1]; w 1(x), w2(x)}.lt was obtained by defining S(x) = w2 1(x) 

for x E w1 (A) n w 2(A). A contractivity factor for the IPS is readily estimated from 

the drawing to be ~. Hence if the web diagram is accurate to within 1 mm at each 

iteration, that is 

then there is an exact orbit {xn = son(xo)}~0 such that 

d( - ) (~) 1 5 
Xn, Xn < - 2- = . mm. 

- (5) 
? 

Thus there is an actual orbit that remains within the "orbit tube" shown in Fig-

ure IV.127. 
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Figure IV.127. Only 1.--------.---------...-------------, 

the Shadow knows. Inside 

the "orbit tube" there is an 

exact orbit { Xn} ~0 of the 

random shift dynamical 

system associated with the 

IPS. 

8 Chaotic Dynamics on Fractals 

y 

0 X 

The shift dynamical system {A; S} associated with a totally disconnected hyperbolic 

IFS is equivalent to the shift dynamical system {:E, T}, where :E is the code space 

associated with the IFS. As we have seen, this equivalence means that the two 

systems have a number of properties in common; for example, the two systems have 

the same number of cycles of minimal period 7. A particularly important property 

that they share is that they are both "chaotic" dynamical systems, a concept that we 

explain in this section. First, however, we want to underline that the two systems are 

deeply different from the point of view of the interplay of their dynanics with the 

geometry of the underlying spaces. 

Consider the case of an IFS of three transformations. Let :E denote the code space 

of the three symbols {1, 2, 3}, and look at the orbit of the point a E :E given by 

a= 
1231112132122233132331111 

12113121122123131132133211212213 

22122222323123223331131231332132 

23233313323331111111211131121112 

21123113111321133121112121213122 

11222122312311232123313 

1113121212 ............ FOREVER. 
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This orbit {Ton a }~0 may be plotted on a Cantor set of three symbols, as sketched 

in Figure IV.l28. This can be compared with the orbit {son(¢(a))}~0 of the shift 

dynamical system {A, S} associated with an IFS of three maps, as plotted in Fig

ure IV.129. Figure IV.130 shows an equivalent orbit, but this time for the just

touching IFS {[0, 1]; %x, %x + ~. ~x +~},displayed using a web diagram. 

In each case the "same" dynamics look entirely different. The qualities of beauty 

and harmony present in the observed orbits are different. This is not suprising: the 

equivalence of the dynamical systems is a topological equivalence. It does not pro

vide much information about the interplay of the dynamics with the geometries of 

the spaces on which they act. This interplay is an open area for research. For ex

ample, what are the special conserved properties of two metrically equivalent dy

namical systems? Can you quantify the grace and delicacy of a dancing orbit on a 

fractal? 
This said, we tum our attention back to an important collection of properties 

shared by all shift dynamical systems. For simplicity we formalize the discussion for 

the case of the shift dynamical system {A, S} associated with a totally disconnected 

hyperbolic IFS. 

Definition 8.1 Let (X, d) be a metric space. A subset B c X is said to be dense 

in X if the closure of B equals X. A sequence {xn}~0 of points in X is said to be 

dense in X if, for each point a E X, there is an subsequence {xuJ~=O that converges 

to a. In particular an orbit {xn}~0 of a dynamical system {X, f} is said to be dense 

in X if the sequence { Xn} ~0 is dense in X. 

By now you will have had some experience with using the random iteration al

gorithm, Program 2 of Chapter III, for computing images of the attractor A of IFS 

in ~2 . If you run the algorithm starting from a point x0 E A, then all of the com

puted points lie on A. Apparently, the sequences of points we plot are examples of 

sequences that are dense in the metric space (A, d). 

The property of being dense is invariant under homeomorphism : if B is dense in 

a metric space (X, d) ll!lld if e : X -+ Y is a homeomorphism, then e (B) is dense in 

Y. If {X; f} and {Y, g} are equivalent dynamical systems under 8; and if {xn} is an 

orbit off dense in X, then {8(xn)} is an orbit of g dense in Y. 

Figure IV. 128. The 
start of a chaotic orbit on a 
Ternary Cantor set. 
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Figure IV. 129. The 
start of an orbit of a de
terministic shift dynami
cal system. This orbit is 
chaotic. It will visit the 
part of the attractor inside 
each of these little circles 
infinitely many times. 

Figure IV.130. Equiv
alent orbit to the one 
in Figures IV.l28 and 
IV.129, this time ploted 
using a web diagram. The 
starting point has address 
12311121321222331 .... 
This manifestation of an 
orbit, which goes arbi
trarily close to any point, 
takes place on a just
touching attractor. 

1 

y 

0 

I'll visit you again and again! 

X 1 
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Definition 8.2 A dynamical system {X, f} is transitive if, whenever U and V are 

open subsets of the metric space (X, d), there exists a finite integer n such that 

The dynamical system {[0, 1]; f(x) = min{2x, 2- 2x}} is topologically transi

tive. To verify this just let U and V be any pair of open intervals in the metric 

space ([0, 1], Euclidean). Clearly, each application of the transformation increases 

the length of the interval U in such a way that it eventually overlaps V. 

Definition 8.3 The dynamical system {X; f} is sensitive to initial conditions if 

there exists 8 > 0 such that, for any x EX and any ball B(x, E) with radius E > 0, 

there is y E B (x, E) and an integer n :?: 0 such that d (Jon (x), Jon (y)) > 8. 

Roughly, orbits that begin close together get pushed apart by the action of the 

dynamical system. For example, the dynamical system { [0, 1]; 2x mod 1} is sensitive 

to initial conditions. 

Examples & Exercises 

8.1. Show that the rational numbers are dense in the metric space (II({, Euclidean). 

8.2. Let C (n) be a counting function that counts all of the rational numbers that lie 

in the interval [0, 1]. Let rc(n) denote the nth rational number in [0, 1]. Prove that the 

sequence of real numbers {rc(n) E [0, 1]: n = 1, 2, 3, ... }is dense in the metric space 

([0, 1], Euclidean). 

8.3. Consider the dynamical system {[0, 1]; f(x) = 2x mod 1}. Find a point x0 E 

[0, 1] whose orbit is dense in [0, 1]. 

8.4. Show that the dynamical system {[0, oo) : f (x) = 2x} is sensitive to initial 

conditions, but that the dynamical system {[0, oo) : f (x) = (0.5)x} is not. 

8.5. Show that the shift dynamical system { :E; T}, where :E is the code space of two 

symbols, is transitive and sensitive to initial conditions. 

8.6. Let {X, f} and {Y, g} be equivalent dynamical systems. Show that {X, f} is 

transitive if and only if {Y, g} is transitive. In other words, the property of being 

transitive is preserved between equivalent dynamical systems. 

Definition 8.4 A dynamical system {X, f} is chaotic if 

( 1) it is transitive; 

(2) it is sensitive to initial conditions; 

( 3) the set of periodic orbits off is dense in X. 

~ 

Theorem 8. 1 The shift dynamical system associated with a totally disconnected 

hyperbolic IFS of two or more transformations is chaotic . 
. i 

Sketch of Proof" First one establishes that the shift dynamical system { :E; T} is 

chaotic where :E is the code space of N symbols, with N =::: 2. One then uses the code 
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space map ¢ : :E -+ A to carry the results over to the equivalent dynamical system 
{A; S}. 

Theorem 1 applies to the lifted IFS associated with a hyperbolic IFS. Hence the 
lifted shift dynamical system associated with an IFS of two or more transformations 
is chaotic. In turn this implies certain characteristics to the behavior of the projection 
of a lifted shift dynamical system, namely a random shift dynamical system. 

Let us consider now why the random iteration algorithm works, from an intuitive 
point of view. Consider the hyperbolic IFS { ~ 2 ; w I, w2}. Let a E A; suppose that the 
address of a is a E :E, the associated code space. That is 

a= ¢(a). 

With the aid of a random-number generator, a sequence of one million ones and 
twos is selected. For example, suppose that the the actual sequence produced is the 
following one, which has been written from right to left, 

21 ... 12121121121211121112111111211211121111211212122211 

By this we mean that the first number chosen is a 1, then a 1, then three 2's, and so 
on. Then the following sequence of points on the attractor is computed: 

a= ¢(a) 

WI(a) = ¢(1a) 

WI o WI(a) = f/J(lla) 

W2 o WI 0 WI(a) = f/J(21la) 

W2 0 W2 0 WI 0 WI (a)= f/J(2211a) 

W2 o W2 0 W2 0 WI 0 WI (a)= f/J(22211a) 

WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(122211a) 

W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(2122211a) 

WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(12122211a) 

W2 0 WI 0 W2 0 WI 0 W2 o W2 0 W2 0 WI 0 WI (a)= f/J(212122211a) 

WI 0 W2 0 WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(1212122211a) 

WI o WI o W2 0 WI 0 W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= f/J(11212122211a) 

W2 o WI o ... WI 0 WI 0 W2 0 WI o W2 0 WI 0 W2 0 W2 0 W2 0 WI 0 WI (a)= ¢(21 ... 1121212221la) 

We imagine that instead of plotting the points as they are computed, we keep a list of 
the one million computed points. This done, we plot the points in the reverse order 
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from the order in which they were computed. That is, we begin by plotting the point 
</>(21 ... 11212122211a) and we finish by plotting the point cp(a). What will we 
see? We will see a million points on the orbit of the shift dynamical system {A; S}; 
namely, {S0 n(c/J(21 ... 11212122211a))}!~·000 . 

Now from our experience with shift dynamics and from our theoretical knowl
edge and intuitions what do we expect of such an orbit? We expect it to be chaotic 
and to visit a widely distributed collection of points on the attractor. We are looking 
at part of a "randomly chosen" orbit of the shift dynamical system; we expect it to 
be dense in the attractor. 

For example, suppose that you are doing shift dynamics on a picture of a totally 
disconnected fractal, or a fern. You should be convinced that by making sly adjust
ments in the orbit at each step, as in the Shadowing Theorem, you can most easily 
coerce an orbit into visiting, to within a distance E > 0, each point in the image. But 
then the Shadowing Theorem ensures that there is an actual orbit close to our artifi
cial one, and it too goes close to every point on the fractal, say to within a distance of 
2E of each point on the image. This suggests that "most" orbits of the shift dynamical 
system are dense in the attractor. 

Examples & Exercises 
8.7. Make experiments on a picture of the attractor of a totally disconnected hyper
bolic IFS to verify the assertion in the last paragraph that "by making sly adjustments 
in an orbit ... you can most easily coerce the orbit into visiting to within a distance 
E > 0 of each point in the image." Can you make some experimental estimates of 
how many orbits go to within a distance E > 0, for several values of E, of every point 
in the picture? One way to do this might be to work with a discretized image and to 
try to count the number of available orbits. 

8.8. Run the Random Iteration Algorithm, Program 2 in Chapter III, to produce an 
image of a fractal, for example a fern without a stem as used in Figure IV.129. As 
the points are calculated and plotted, keep a list of them. Then plot the points over 
again in reverse order, this time making them flash on and off on the picture of the 
attractor on the screen, so that you can see where they land. This way you will see 
the interplay of the geometry with the shift dynamics on the attractor. See if the orbit 
is beautiful. If you think that it is, try to make your impression objective. 

We want to begin to formulate the idea that "most" orbits of the shift dynamical 
system associated with a totally disconnected IFS are dense in the attractor. The 
following lemma counts the number of cycles of minimal period p. 

Lemma 8.1 Let {A; S} be the shift dynamical system associated with a totally 
disconnected hyperbolic IFS {X; w1, wz, ... , wN}. Let N(p) denote the number of 
distinct cycles ofminimhl period p,for p E {1, 2, 3, ... }. Then 
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( 

p-1 ) 
N(p) = NP- ~ kN(k) /p 

k divides p 

for p = 1, 2, 3, .... 

Proof It suffices to restrict attention to code space, and to give the main idea, 

consider only the case N = 2. For p = 1, the cycles of period 1 are the fixed points 

of T. The equation 

Ta =aa E b 

implies a = 1111 or a = 2222. Thus N (1) = 2. For p = 2, any point that lies on a 

cycle of period 2 must be a fixed point of T 02
' namely 

To2CJ = CJ, 

where a = TI, 12, 21, or 22. The only cycles here that are not of minimal period 2 

must have minimal period 1. Furthermore, there are two distinct points on a cycle of 

minimal period 2, so 

N(2) = (22
- N(l))/2 = 2/2 = 1. 

One quickly gets the idea. Mathematical induction on p completes the proof for 

N=2. 
For N = 2, we find, for example, N(2) = 1, N(3) = 2, N(4) = 3, N(5) = 

6, N(6) = 9, N(7) = 18, N(8) = 30, N(9) =56, NOO) = 99, N01) = 186, 

N(l2) = 335, N(13) = 630, N(l4) = 1161, N(15) = 2182, N(16) = 4080, 

N(l7) = 7710, N(18) = 14532, N(l9) = 27594, N(20) = 52377. In particular, 

99.9% of all points lying on cycles of period 20 lie on cycles of minimal period 20. 

Here is the idea we are getting at. We know that the set of periodic cycles are 

dense in the attractor of a hyperbolic IFS. It follows that we may approximate the 

attractor by the set of all cycles of some finite period, say period 12 billion. Thus we 

replace the attractor A by such an approximation A, which consists of 212
·
000

·000·000 

points. Suppose we pick one of these points at random. Then this point is extremely 

likely to lie on a cycle of minimal period 12 billion. Hence the orbit of a point 

chosen "at random" on the approximate attractor A is extremely likely to consist 

of 12 billion distinct points on A. 

In fact one can show that a statistically random sequence of symbols contains 

every possible finite subsequence. So we expect that the set of 12 billion distinct 

points on A is likely to contain at least one representative from each part of the 

attractor! 
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Fractal Dimension 

Fractal Dimension 

How big is a fractal? When are two fractals similar to one another in some sense? 

What experimental measurements might we make to tell if two different fractals may 

be metrically equivalent? What is the same about the two fractals in Figure V.131? 

There are various numbers, associated with fractals, which can be used to com

pare them. They are generally referred to as fractal dimensions. They are attempts 

to quantify a subjecti·;e feeling we have about how densely the fractal occupies the 

metric space in which it lies. Fractal dimensions provide an objective means for 

comparing fractals. 

Fractal dimensions are important because they can be defined in connection with 

real-world data, and they can be measured approximately by means of experiments. 

For example, one can measure the "fractal dimension" of the coastline of Great 

Britain; its value is about 1.2. Fractal dimensions can be attached to clouds, trees, 

coastlines, feathers, networks of neurons in the body, dust in the air at an instant in 

time, the clothes you are wearing, the distribution of frequencies of light reflected by 

a flower, the colors emitted by the sun, and the wrinkled surface of the sea during a 

storm. These numbers allow us to compare sets in the real world with the laboratory 

fractals, such as attractors of IFS. 

We restrict attention to compact subsets of metric spaces. This fits well with the 

idea of modelling the real physical world by subsets of metric spaces. Suppose that 

an experimentalist is studying a physical entity, and he wishes to model this entity 

by means of a subset of II<{ 3. Then he can use a compact set for his model. For 

example, he can assume that the distances he measures are Euclidean distances, 

and he can assume that the universe is bounded. He can assume that any Cauchy 

sequence of points in l!is model set converges to a point in his model set, because 

he cannot experimentally invalidate this assumption. Although mathematically we 

can distinguish between a set and its closure, we cannot make the same distinction 

171 
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Figure V. 131. Do the 
two implied fractals have 
the same dimension? 

between their physical counterparts. The assumption of compactness will allow the 
model to be handled theoretically with relative ease. 

Let (X, d) denote a complete metric space. Let A E 1t(X) be a nonempty com
pact subset of X. Let E > 0. Let B (x, E) denote the closed ball of radius E and center 
at a point x E X. We wish to define an integer, N (A, E), to be the least number of 
closed balls of radius E needed to cover the set A. That is 

N(A, E)= smallest positive integer M such that A C U!1 B(xn, E), 

for some set of distinct points {xn : n = 1, 2, ... , M} C X. How do we know that 
there is such a number N(A, E)? Easy! The logic is this: surround every point x E A 
by an open ball of radius E > 0 to provide a cover of A by open sets. Because A is 
compact this cover possesses a finite subcover, consisting of an integer number, say 
M, of open balls. By taking the closure of each ball, we obtain a cover consisting 
of M closed balls. Let C denote the set of covers of A by at most M closed balls 
of radius E. Then C contains at least one element. Let f : C--+ { 1, 2, 3, ... , M} be 
defined by f (c) = number of balls in the cover c E C. Then { f (c) : c E C} is a finite 
set of positive integers. It follows that it contains a least integer, N(A, E). 

The intuitive idea behind fractal dimension is that a set A has fractal dimension 
D if: 
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N(A, E)~ CE-D for some positive constant C. 

Here we use the notation "~" as follows. Let f (E) and g (E) be real valued functions 

of the positive real variable E. Then f(E) ~ g(E) means that limf---+o{ln(f(E))I ln 

(g(E))} = 1. If we "solve" forD we find that 

lnN(A, E) -ln C 
D~ . 

ln(l IE) 

We use the notation ln(x) to denote the logarithm to the base e of the positive real 

number x. Now notice that the term InC I ln(liE) approaches 0 as E -4 0. This leads 

us to the following definition. 

Definition 1.1 Let A E 7t(X) where (X, d) is a metric space. For each E > 0 let 

N(A, E) denote the smallest number of closed balls of radius E > 0 needed to cover 

A. If 

D=hm . { ln(N(A, E))} 
E---+0 ln(l IE) 

exists, then D is called the fractal dimension of A. We will also use the notation 

D = D (A) and will say "A has fractal dimension D." 

Examples & Exercises 

1.1. This example takes place in the metric space (~2 , Euclidean). Let a EX and 

let A= {a}. A consists of a single point in the space. For each E > 0, N(A, E)= 1. 

It follows that D(A) = 0. 

1.2. This example takes place in the metric space (~2 , Manhattan). Let A denote 

the line segment [0, 1]. Let E > 0. Then it is quite easy to see that N(A, E) = 

- [ -1 IE], where [x] denotes the integer part of the real number x. In Figure V.132 

we have plotted the graph of ln(N(A, E)) as a function of ln(l/E). Despite a rough 

start, it appears clear that 

hm = 1. . { ln(N(A, E))} 
E---+0 ln(liE) 

In fact for 0 < E < 1 

ln(liE) ln(-[-1/E]) ln(N(A, E)) ln(liE + 1) ln(l +E)+ ln(liE) 
--- < - < - -------
ln(liE) - ln(liE) - ln(liE) - ln(liE) - ln(liE) ' 

Both sides here converge to 1 as E -4 0. Hence the quantity in the middle also 

converges to 1. We conclude that the fractal dimension of a closed line segment is 

one. We would have obtained the same result if we had used the Euclidean metric. 

1.3. Let (X, d) be a metric space. Let a, b, c EX, and let A= {a, b, c}. Prove that 
.. 

D(A) =0. . 

The following two theorems simplify the process of calculating the fractal dimen

sion. They allow one to replace the continuous variable E by a discrete variable. 
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Figure V.132. Plot of 
ln([ljx]) as a function of 
ln (1 I x). This illustrates 
that in the computation 
of the fractal dimension 
one usually evaluates 
the limiting "slope" of a 
discontinuous function. In 
the present example this 
slope is 1. 

ln{(l/X]) 

I 
I 1t I 

ln(l/X) --!>! 
0 ~--- -----+-- -------+------~---1------------<-_______j 

1 2 3 4 

Theorem 1.1 Let A E ?t(X), where (X, d) is a metric space. Let En =ern for 
real numbers 0 < r < 1 and C > 0, and integers n = 1, 2, 3, .... If 

D = lim { ln(N(A, En))}, 
n--+oo ln(l I En) 

th{!n A has fractal dimension D. 

Proof Let the real numbers r and C, and the sequence of numbers E = {En : n = 
1, 2, 3, ... } be as defined in the statement of the theorem. Define /(E)= max{En E 
E: En :S E}. Assume that E ::=: r. Then 

f(E) ::=: E ::=: f(E)Ir andN(A, /(E)) ?:.N(A, E) ?:.N(A, f(E)Ir). 

Since ln(x) is an increasing positive function of x for x?:. 1, it follows that 

{ 
ln(N(A, j(E)Ir))} < { ln(N(A, E))} 

In (1 If (E)) - ln (1 IE) 
(1) 

< lln(N(A, /(E)))} . 
- ln(rlf(E)) 

(2) 

Assume thatN(A; E)-+ oo as E-+ 0; if not then the theorem is true. The right-hand 
side of equation 2 obeys 

lim { ln(N(A, /(E)))} = lim { ln(N(A, En))} 
E--+0 ln(rlf(E)) n--+oo ln(riEn) 

_ lim { ln(N(A, En)) } 
- n--+oo ln(r) + ln(liEn) 

_ 1. lln(N(A, En))} - lm . 
n--+oo ln(liEn) 
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The left-hand side of equation 2 obeys 

lim { ln(N(A, f(E)/r))} = lim { ln(N(A, En_1))} 

£--+0 ln(l/f(E)) n--+oo ln(l/En) 

. { ln(N(A, En-1)) } 
= hm 

n--+oo ln(1/r) + ln(l/En-1)) 

_ 1. 
{ ln(N(A, En))} 

- lm . 
n--+oo ln(l /En) 

So as E--* 0 both the left-hand side and the right-hand side of equation 2 approach 

the same value, claimed in the theorem. By the Sandwich Theorem of calculus, the 

limit as E --* 0 of the quantity in the middle of equation 2 also exists, and it equals 

the same value. This completes the proof of the theorem. 

Theorem 1.2 The Box Counting Theorem. Let A E 1-l(IW.m), where the Eu

clidean metric is used. Cover IW.m by closed square boxes of side length (lj2n), as 

exemplified in Figure V.l33 for n = 2 and m = 2. Let Nn(A) denote the number of 

boxes of side length ( 1 j2n) which intersect the attractor. If 

D = lim { ln(Nn (A))} ' 
n--+oo ln(2n) 

then A has fractal dimension D. 

Proof We observe that form= 1, 2, 3, ... , 

2-m Nn-1 ~ N(A, 1/2n) ~ Nk(n) for all n = 1, 2, 3, ... , 

where k(n) is the smallest integer k satisfying k 2: n - 1 + i log2 m. The first in

equality holds because a ball of radius 1 /2n can intersect at most 2m "on-grid" boxes 

of side 1 ;2n-1. The second follows from the fact that a box of side s can fit inside a 

ball of radius r provided r 2 2: (~)2 + (~)2 + cldots + (~)2 = m(~)2 by the theorem 

of Pythagoras. Now 

r { ln(Nk<n>)} r { ln(2k<n>) ln(Nk<n>)} D 

n~~ ln(2n) = n~ ln(2n) ln(2k(n)) = ' 

since k(n) --* 1. Since also 
n 

hm = hm =D, . { ln 2-m Nn-1} . { lnNn-1 } 

n--+oo ln(2n) n-+oo ln(2n-1) 

Theorem 1.1 with r = 1/2 completes the proof. 

There is nothing m~ical about using boxes of side (1/2)n in Theorem 1.2. One 

can equally well use boxes of side ern, where C > 0 and 0 < r < 1 are fixed real 

numbers. 

.1 

0 

Figure V. 133. Closed 

boxes of side (1 /2") 

cover IR2 • Here n = 2. See 

Theorem 1.2. 
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Figure V.134. It re- 1 
quires (l/2n)~ 2 boxes 
of side (lj2n) to cover 
• c rR;. 2• We deduce, with 
a feeling of relief, that the 
fractal dimension of • is 
2. To which collage is this 
related? 

0 

Examples & Exercises 
1.4. Consider the • c ~2 • It is easy to see that N 1 (•) = 4, Nz(•) = 16, N3(•) = 64, 
N 4 (•) = 256, and in general thatNn(•) = 4n for n = 1, 2, 3, ... ; see Figure V.134. 

Theorem 1.2 implies that 

D( ) _ 1. { ln(Nn(•))} _ 1. { ln(4n)} _ 2 • - Im - Im - . n---+oo ln(2n) n---+oo ln(2n) 

1.5. Consider the Sierpinski triangle £, in Figure V.135, as a subset of (1~2 , 
Euclidean). 

We see that N 1 (£) = 3, Ni(£) = 9, N3(£) = 27, N4(£) = 81, and in general 
Nn(£) = 3n forn = 1, 2, 3, .... 

Theorem 1.2 implies that 

. { ln(Nn(&)} . { ln(3n)} ln(3) D(£)= hm = hm -- =--. n---+oo ln(2n) n---+oo ln(2n) ln(2) 

1.6. Use the Box Counting Theorem, but with boxes of side length ( 1 /3 )n, to cal
culate the fractal dimension of the classical Cantor set C described in exercise 1.5 in 
Chapter III. 

1.7. Use the Box Counting Theorem to estimate the fractal dimension of the fractal 
subset of ~ 2 shown in Figure V.136. You will need to take as your first box the 
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Figure V. 135. It re

quires 3n closed boxes 

of side (1/2)n to cover 

the Sierpinski triangle 

A c I:R2 • We deduce that 

its fractal dimension is 
ln(3)/ ln(2). 

obvious one suggested by the figure. You should then find that there appears to be 

a pattern to the sequence of numbers N 1, N2, M, .... 

1.8. The same problem as 1. 7, this time applied to Figure V.137. By making the 

right choice of Cartesian coordinate system, you will make this problem easy. 

What happens to the fractal dimension of a set if we deform it "with bounded 

distortion"? The following theorem tells us that metrically equivalent sets have the 

same fractal dimension. For example, the two fractals in Figure V.131 have the same 

fractal dimension! 

Theorem 1.3 Let the metric spaces (X1, d 1) and (X2 , d2) be metrically equiv

alent. Let fJ : X 1 ~ X2 be a transformation that provides the equivalence of the 

spaces. Let A 1 E 1-l(X1) have fractal dimension D. Then A2 = fJ(AI) has fractal di

mension D. That is 

Proof This proof makes use of the concepts of the lim sup and lim inf of a func

tion. (The lim sup is discussed briefly following Definition 2.1 in the next section.) 

Since the two spaces (X 1, d1) and (X2, d2) are equivalent under(), there exist 

positive constants e1 and e2 such that 

for all x, y E X 1· (3) 

1 

Without loss of generality we assume that e1 < 1 < e2• Equation 3 implies 

d1(x, y) 
d2(fJ(x), fJ(y)) < for all X, y E X1. 

e1 
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Figure V.136. What 
other well-known frac
tal has the same fractal 
dimension? 

This implies 

B(B(x, E)) C B(B(x), E/e1)) for all x E X1. (4) 

Now, from the definition of N(A 1, E), we know that there is a set of points 

{x1, x2 , ••• , XN} C X1, where N = N(At, E), such that the set of closed balls 

{B(xn. E): n = 1, 2, ... , N(At, E)} provides a cover of At. It follows that {e(B(xn. 

E)): n = 1, 2, ... , N(A 1, E)} provides a cover of A 2• Equation 4 now implies that 

{B(B(xn), Ejet)): n = 1, 2, ... , N(A 1, E)} provides a cover of Az. Hence 

N(Az, E/et) ~ N(At. E). 

Hence, when E < 1, 

ln(N(Az, E/e1)) ln(N(At, E)) 
------ < -----

ln(1/E) ln(1/E) 

It follows that 

. { ln(N(Az, E))} 
hmsup 

E--+0 ln(1/E) 

. { ln(N(Az, Eje1))} 1
. { ln(N(At, E))} = hm sup < 1m = D(A 1). 

E--+0 ln(l/E) - E--+0 ln(l/E) 

We now seek an inequality in the opposite direction. Equation 3 implies that 

d1 (8- 1(x), e-l (y)) < ezdz(X, y) for all X, y E Xz. 

This tells us that 

(5) 

(6) 



and this in turn implies 

Hence, when E < 1, 

ln(N(A1, e2E)) ln(NCA2, E)) 
-----< . 

ln(l/E) - ln(l/E) 

It follows that 

D(A
1
) =lim { ln(N(A1, E))} 

E--*0 ln(l/E) 

=lim { ln(N(Al, e2E))} 
E--*0 ln(l/E) 

1. . f { ln(N(A2, E))} 
< lmm . 
- E--*0 ln(l/E) 

By combining equations 6 and 7 we obtain 
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Figure V.137. If you 
choose the "first" box just 
right, the fractal dimen
sion of this fractal is easily 
estimated. Count the num
ber N, of boxes of side 
1 ;2n which intersect the 
set, for n = 1, 2, 3, ... , 
and apply the Box Count
ing Theorem. 

(7) 

1. . f { ln(N(A2, E))} _ D(A ) _ 1. { ln(N(A2, E))} 
1m m - 1 - 1m sup . 

E--*0 ln(ljE) E-*O ln(l/E) 

From this it follows that 

D
1
(A2) =lim { ln(N(A2, E))} = D(A 1). 

E--*0 ln(l/E) 

This completes the proof. 



180 Chapter V Fractal Dimension 

Examples & Exercises 

1.9. Let C denote the classical Cantor set, living in [0, 1] and obtained by omitting 
"middle thirds." Let C denote the Cantor set obtained by starting from the closed 
interval [0, 3] and omitting "middle thirds." Use Theorem 1.3 to show that they 
have the same fractal dimension. Verify the conclusion by means of a box-counting 
argument. 

1. 1 0. Let A be a compact non empty subset of ~ 2• Suppose that A has fractal di
mension D1 when evaluated using the Euclidean metric and fractal dimension D2 

when evaluated using the Manhattan metric. Show that D 1 = D2 • 

1.11. This example takes place in the metric space (~2 • Manhattan). Let A1 and A2 

denote the attractors of the following two hyperbolic IFS 

{~2 ; WI(X, y), W2(X, y), W3(X, y)} and {~2 ; W4(X, y), Ws(X, y), w6(x, y)}, 

where 

and 

By finding a suitable change of coordinates, show A 1 and A2 have the same fractal 
dimensions. 

2 The Theoretical Determination of the Fractal Dimension 

The following definition extends Definition 1.1. It provides a value for the fractal 
dimension for a wider collection of sets. 

Definition 2.1 Let (X, d) be a complete metric space. Let A E 1i(X). Let N(f) 

denote the minimum number of balls of radius E needed to cover A. If 

{ {
lnN(E) _ }} D =lim sup _ : E E (0, E) 

E--+0 ln(ljE) 
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exists, then D is called the fractal dimension of A. We will also use the notation 

D = D(A), and will say "A hasfractal dimension D." 

In stating this definition we have "spelled out" the lim sup. For any function /(E), 

defined for 0 < E < 1, for example, we have 

lim sup /(E)= lim{sup{/(E): E E (0, E)}}. 
E~O E~O 

It can be proved that Definition 2.1 is consistent with Definition 1.1: if a set has 

fractal dimension D according to Definition 1.1 then it has the same dimension 

according to Definition 2.1. Also, all of the theorems in this book apply with either 

definition. The broader definition provides a fractal dimension in some cases where 

the previous definition makes no assertion. 

Theorem 2.1 Let m be a positive integer; and consider the metric space (~m, 

Euclidean). The fractal dimension D(A) exists for all A E 1-l(~m). Let B E 1-l(~m) 

be such that A C B; and let D(B) denote the fractal dimension of B. Then D(A) :S 

D(B). In particular, 

0 :S D(A) :Sm. 

Proof We prove the theorem for the case m = 2. Without loss of generality we 

can suppose that A c •· It follows that N(A, E) :S N(•, E) for all E > 0. Hence for 

all E such that 0 < E < 1 we have 

ln(N(A, E)) ln(N•, E)) 
0< < . 

- ln(1/E) - ln(1/E) 

It follows that 

. { ln(N(A, E))} . { ln(N(•, E))} 
hm sup < hm sup . 
E~O ln(ljE) - E~O ln(ljE) 

The lim sup on the right-hand side exists and has value 2. It follows that the lim sup 

on the left-hand side exists and is bounded above by 2. Hence the fractal dimension 

D(A) is defined and bounded above by 2. Also D(A) is nonnegative. 

If A, B E 1-£(~2 ) with A c B, then the fractal dimensions of A and Bare defined. 

The above argument wherein • is replaced by B shows that D(A) :S D(B). This 

completes the proof. 

The following theorem helps us to calculate the fractal dimension of the union of 

two sets. 

Theorem 2.2 Let m be a positive integer; and consider the metric space (~m, 

Euclidean). Let A and B belong to 1-l(~m). Let A be such that its fractal dimension 

is given by 

D(A) =lim { ln(N(A, E))}. 
E~O ln(ljE) 
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Let D(B) and D(A U B) denote the fractal dimensions of Band AU B, respectively. 
Suppose that D(B) < D(A). Then 

D(A U B)= D(A). 

Proof From Theorem 2.1 it follows that D(A U B)~ D(A). We want to show 
that D(A U B) :s D(A). We begin by observing that, for all E > 0, 

N(A u B, E) :sN(A, E) +N(B, E). 

It follows that 

D(A U B)= lim sup { ln(N(A U B, E))} 
E---+0 ln(1/E) 

. { ln(N(A, E)+ N(B, E))} < hm sup -_ --------
- E---+0 ln(ljE) 

. { ln(N(A, E))} . { ln(l + N(B, E)/N(A, E))} < hm sup + hm sup . 
- E---+0 ln(ljE) E---+0 ln(ljE) 

The proof is completed by showing that N(B, E)/N(A, E) is less than 1 when E is 
sufficiently small. This would imply that the second limit on the right here is equal 
to zero. The first limit on the right converges to D(A). 

Notice that 

{
ln(N(B,€)) _ } 

sup ln(1/E) : E < E 

is a decreasing function of the positive variable E. It follows that 

ln(N(B, E)) 
---- < D(A) for all sufficiently small E > 0. 

ln(l IE) 

Because the limit explicitly stated in the theorem exists, it follows that 

ln(N(B, E)) ln(N(A, E)) . 
---- < for all sufficiently small E > 0. 

ln(1/E) ln(1/E) 

This allows us to conclude that 

N(B, E) . 

N 
< 1 for all sufficiently small E > 0. 

(A, E) 

This completes the proof. 

Examples & Exercises 
2. 1. The fractal dimension of the hairy set A C ~2 , suggested in Figure V.138, is 2. 
The contribution from the hairs toN (A, E) becomes exponentially small compared 
to the contribution from •. as E ---* 0. 

We now give you a wonderful theorem that provides the fractal dimension of the 
attractor of an important class of IFS. It will allow you to estimate fractal dimensions 
"on the fly," simply from inspection of pictures of fractals, once you get used to it. 
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Theorem 2.3 Let {~m; w1, w2, ... , wN} be a hyperbolic IFS, and let A de

note its attractor. Suppose Wn is a similitude of scaling factor sn for each n E 

{1, 2, 3, ... , N}. If the IFS is totally disconnected or just-touching then the attractor 

has fractal dimension D(A), which is given by the unique solution of 

N L lsniD(A) = 1, D(A) E [0, m]. 

n=l 

If the IFS is overlapping, then D ~ D(A), where Dis the solution of 

N 

L lsnl0
 = 1, DE [0, oo). 

n=l 

Sketch of proof The full proof can be found in [Bedford 1986], [Hardin 1985], 

[Hutchinson 1981], and [Reuter 1987]. The following argument gives a valuable 

insight into the fractal dimension. We restrict attention to the case where the IFS 

{~m; w1, w2, ••. , WN} is totally disconnected. We suppose that the scaling factor Si 

associated with the similitude wi is nonzero for each i E {1, 2, ... , N}. Let E > 0. 

We begin by making two observations. 

Observation (i): Let i E {1, 2, ... , N}. Since Wi is a similitude of scaling factor 

si, it maps closed ballJ onto closed balls, according to 

Figure V.138. Picture 
of a hairy box. The fractal 

dimension of the subset 
of !R2 suggested here is 
the same as the fractal 
dimension of the box. The 
hairs are overpowered. 
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Assume that si =1= 0 . Then wi is invertible, and obtain 

wj 1(B(x, E))= B(wj1(x), lsii-1E). 

The latter two relations allow us to establish that for all E > 0, 

which is equivalent to 

This applies for each i E {1, 2, 3, ... , N}. 
Observation (ii): The attractor A of the IFS is the disjoint union 

(1) 

where each of the sets wn(A) is compact. Hence we can choose the positive number 
E so small that if, for some point x E ~ 2 and some integer i E { 1, 2, ... , N}, we have 
B(x' E) n Wj(A) =I= 0, then B(x, E) n Wj(A) = 0 for all j E {1, 2, ... ' N} with j =I= i. 
It follows that if the number E is sufficiently small we have 

N(A, E)= N(wi (A), E)+ NCw2(A), E)+ N(w3(A), E)+···+ N(wN(A), E) 

We put our two observations together. Substitute from equation 1 into the last equa
tion to obtain 

N(A, E) =N(A, lsti-1E) +N(A, ls2I-1E) 

+ N(A, ls3I-1E) + · · · + N(A, lsNI-1E). 
(2) 

This functional equation is true for all positive numbers E that are sufficiently small. 
The proof is completed by showing formally that this implies the assertion in the 

theorem. 
Here we demonstrate the reasonableness of the last step. Let us make the assump

tion N (A, E) '""' C E-D . Then substituting into equation 2 we obtain the equation: 

From this we deduce that 

This completes our sketch of the proof of Theorem 2.3. 

Examples & Exercises 
2.2. This example takes place in the metric space ( ~ 2 , Euclidean). A Sierpinski 
triangle is the attractor of a just-touching IFS of three similitudes, each with scaling 
factor 0.5. Hence the fractal dimension is the solution D of the equation 

(O.S)D + (O.S)D + (0.5)D = 1 
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ln(1/3) ln(3) 
D=--=--

ln(0.5) ln(2). 

Figure V.139. The 
Castle fractal. This is 
an example of a self
similar fractal, and its 
fractal dimension may 

be calculated with the 
aid of Theorem 2.3. The 
associated IFS code is 
given in Table V.l. 

2.3. Find a just-touching IFS of similitudes in ~2 whose attractor is •· Verify that 

Theorem 2.3 yields the correct value for the fractal dimension of •· 

2.4. The classical Cantor set is the attractor of the hyperbolic IFS 

1 1 2 
{[0, 1]; WI (x) = 3x; WI (x) = 3x + 3" }. 

Use Theorem 2.3 to calculate its fractal dimension. 

2.5. The attractor of a just-touching hyperbolic IFS {~2 ; wi(x), i = 1, 2, 3, 4} is 

represented in Figure V.139. The affine transformations wi : ~2 ---+ ~2 are simili

tudes and are given in tabular form in Table V.l. Use Theorem 2.3 to calculate the 

fractal dimension of the attractor. 
1 

2.6. The attractor of ~just-touching hyperbolic IFS {~2 ; wi(x), i = 1, 2, 3} is rep-

resented in Figure V.140. The affine transformations wi : ~2 ---+ ~2 are similitudes. 
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Figure V.140. To cal
culate the fractal dimen
sion of the subset of IR?. 2 

represented here, first ap
ply the Collage Theorem 
to find a corresponding set 
of similitudes. Then use 
Theorem 2.3. 

Fractal Dimension 

Table V.l. IFS code for a Castle. 

w a b c d e f p 

1 0.5 0 0 0.5 0 0 0.25 
2 0.5 0 0 0.5 2 0 0.25 
3 0.4 0 0 0.4 0 0.25 
4 0.5 0 0 0.5 2 0.25 

Use the Collage Theorem to find the similitudes, and then use Theorem 2.3 to calcu
late the fractal dimension of the attractor. 

2. 7. Figure V.l41 represents the attractor of an overlapping hyperbolic IFS 

{~2 ; w;(x), i = 1, 2, 3, 4}. 

Use the Collage Theorem and Theorem 2.3 to obtain an upper bound to the fractal 
dimension of the attractor. 

2.8. Calculate the fractal dimension of the subset of ~ 2 represented by Figure V.l42. 

2. 9. Consider the attractor A of a totally disconnected hyperbolic IFS 

{~7 ; w;(x), i = 1, 2} 

where the two maps 

WI : ~7 --* ~7 and w2 : ~7 --* ~7 

are similitudes, of scaling factors si and s2 , respectively. Show that A is also the 
attractor of the totally disconnected hyperbolic IFS {~7 ; v;(x), i = 1, 2, 3, 4} where 
VI= WI o WI, v2 =WI o w2, V3 = w2 o WI, and V4 = w2 o w2. Show that v;(x) is a 
similitude, and find its scaling factor, fori = 1, 2, 3, 4. Now apply Theorem 2.3 to 
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Figure V. 142. Calcu
late the fractal dimension 
of the subset of !R2 repre
sented by this image. 

Figure V.141. An up
per bound to the fractal 
dimension of the attractor 
of an overlapping IFS, cor
responding to this picture, 
can be computed with the 
aid of Theorem 2.3. 
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~ 

yield two apparently different equations for the fractal dimension of A. Prove that 

these two equations have the same solution. 

3 The Experimental Determination of the Fractal Dimension 

Figure V.143. Cover
ing a cloud of dots in a 
woodcut by balls of radius 
E > 0. 

In this section we consider the experimental determination of the fractal dimension 

of sets in the physical world. We model them, as best we can, as subsets of ( IR{ 2, 

Euclidean) or (IR{3 , Euclidean). Then, based on the definition of the fractal dimen

sion, and sometimes in addition on one or another of the preceding theorems, such 

as the Box Counting Theorem, we analyze the model to provide a fractal dimension 

for the real-world set. 
In the following examples we emphasize that when the fractal dimension of a 

physical set is quoted, some indication of how it was calculated must also be pro

vided. There is not yet a broadly accepted unique way of associating a fractal di

mension with a set of experimental data. 

Example 

3. 1. There is a curious cloud of dots in the woodcut in Figure V.143. Let us try to 

estimate its fractal dimension by direct appeal to Definition 1.1. 

We begin by covering the cloud of points by disks of radius E for a range of E

values from E = 3 em down toE= 0.3 em; and in each case we count the number of 
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Table V.2. Minimal numbers of balls, of various radii, needed to cover 

a "dust" in a woodcut. 

E N(A, E) 

3cm 2 
2cm 3 

1.5 em 4 
1.2 em 6 

1 em 7 
0.75 em 10 

0.5cm 16 
0.4cm 23 

0.3 em 31 
0.015 em 267 

Table V.3. The data in Table III.1 is tabulated in log-log form. These values 

are used to obtain the fractal dimension. 

ln(l/E) ln(N(A, E)) 

-1.1 0.69 

-0.69 1.09 

-0.405 1.39 
-0.182 1.79 
0 1.95 
0.29 2.30 
0.693 2.77 

0.916 3.13 
1.204 3.43 

4.2 5.59 

disks needed. This provides the set of approximate values for N (A, E) given in Table 

111.1. The data is redisplayed in log-log format in Table V.3. The data in Table V.3 is 

plotted in Figure V.144. A straight line that approximately passes through the points 

is drawn. The slope of this straight line is our approximation to the fractal dimension 

of the cloud of points. 

The experimental number N(A, 0.015 em) is not very accurate. It is a very rough 

estimate based on the size of the dots themselves and is not included in the plot in 

Figure V.144. The slope of the straight line in Figure V.144 gives 

D(A) ::: 1.2, over the range 0.3 em to 3 em, 
1 

where A denotes the set of points whose dimension we are approximating. 

(1) 

The straight line in Figure V.144 was drawn "by eye." Thus if one was to repeat 
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Figure V.144. Log
log plot to estimate the 
fractal dimension D for 
the cloud of dots in the 
woodcut in Figure V.143. 
The data is in Tables 111.1 
and V.3. 

3.45 

Log( N(A, E) ) 

• 

• 

0.69 
1.1 

• 

• 
I 

I 

• I 
I 

• I 
I 

I 

I 

I 

I 
I 

I 
I 
I 
I 
I 

Log(l/E) 4.2 

the experiment, a different value for D(A) may be obtained. In order to make there

sults consistent from experiment to experiment, the straight line should be estimated 

by a least squares method. 
In proceeding by direct appeal to Definition 1.1, the estimates of N (A, E) need 

to be made very carefully. One needs to be quite sure that N(A, E) is indeed the 

least number of balls of radius E needed. For large sets of data this could be very 

time-consuming. 
It is clearly important to state the range of scales used: we have no idea or defi

nition concerning the structure of the dots in Figure V.143 at higher resolutions than 

say 0.015 em. Moreover, regardless of how much experimental data we have, and 

regardless of how many scales of observation are available to us, we will always end 

up estimating the slope of a straight line corresponding to a finite range of scales. If 

we include the data point (0.015 em, 267) in the above estimation, we obtain 

D(A) ~ 0.9, over the range of scales 0.015 to 5 em. (2) 

We comment on the difference between the estimates in equations 1 and 2. If we 

restrict ourselves to the range of scales in equation 1, there little information present 

in the data to distinguish the cloud of points from a very irregular curve. However, 

the data used to obtain equation 2 contains values for N(A, E) for several values of 

E such that the corresponding coverings of A are disconnected. The data is "aware" 

that A is disconnected. This lowers the experimentally determined value of D. 

3.2. In this example we consider the physical set labelled A in Figure V.145. A is 

actually an approximation to a classical Cantor set. In this case we make an exper

imental estimate of the fractal dimension, based on the Box Counting Theorem. A 

Cartesian coordinate system is set up as shown and we attempt to count the num

ber of square boxes Nn(A) of side (1/2n) which intersect A. We are able to obtain 

fairly accurate values of Nn(A) for n = 0, 1, 2, 3, 4, 5, and 6. These values are pre-



1 

0 

3 The Experimental Determination of the Fractal Dimension 191 

1 

Figure V.145. Succes
sive subdivision of over
laying grid to obtain the 
box counts needed for 
the application of Theo
rem 1.2 to estimate the 
fractal dimension of the 
Cantor set A. The counts 
are presented in Table V.4. 

Table V.4. The data determined from Figure 145, in the experimental calculation 
of the fractal dimension of the physical set A. 

n N'n(A) lnNn(A) n ln2 

0 1 0 0 
1 3 1.10 0.69 
2 7 1.95 1.38 
3 10 2.30 2.08 
4 19 2.94 2.77 
5 33 3.50 3.46 
6 58 4.06 4.16 

sented in Table V.4. We note that these values depend on the choice of coordinate 
system. Nonetheless the values of Nn(A) are much easier to measure than the values 
of N(A, E) used in example 3.1. 

The analysis of the data proceeds just as in example 3.1. It is represented in 
Table V.4 and Figure V.146. We obtain 

1 
D(A) ~ 0.8, over the range g inch to 8 inches. 

3.3. In this example ~e show how a good experimentalist [Strahle 1987] overcomes 
the inherent difficulties with the experimental determination of fractal dimensions. 
In so doing he obtains a major scientific result. The idea is to compare two sets of 
experimental data, obtained by different means, on the same physical system. The 
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Figure V.146. Slope 
of the plot of the data 
in Table V.4 gives an 
approximation to the 
fractal dimension of the 
set A in Figure V.145. Log (N0 ) 

5 
n Log (2) -------1> 

physical system is a laboratory jet flame. The data are time series for the temperature 
and velocity at two different points in the jet. The idea is to apply the same procedure 
to the analysis of the two sets of data to obtain a value for the fractal dimension. 
The two values are the same. Instead of drawing the conclusion that the two sets of 
data "have the same fractal dimension," he deduces that the two sets of data have a 
common source. That common source is physical, real-world chaos. 

The experimental setup is as follows. A flame is probed by (a) a laser beam and 
(b) a very thin wire. These two probes, coupled with appropriate measuring devices, 
allow measurements to be made of the temperature and velocity in the jet, at two 
different points, as a function of time. In (a) the light bounces off the fast-moving 
molecules in the exhaust, and a receiver measures the characteristics of the bounced 
light. The output from the receiver is a voltage. This voltage, suitably rescaled, gives 
the temperature of the jet as a function of time. In (b) a constant temperaiure is 
maintained through a wire in the flame. The voltage required to hold the temperature 
constant is recorded. This voltage, suitably rescaled, gives the velocity of the jet as 
a function of time. In this way we obtain two independent readings of two different, 
but related, quantities. 

Of course the experimental apparatus is much more sophisticated than it sounds 
from the above description. What is important is that the measuring devices are of 
very high resolution, accuracy, and sensitivity. A reading of the velocity can be made 
once every microsecond. In this example the temperature was read every 0.5 x 10-4 

sec. Vast amounts of data can be obtained. A sample of the experimental output from 
(a) is shown in Figure V.14 7, where it is represented as the graph of voltage against 
time. It is a very complex curve. If one "magnifies up" the curve, one finds that its 
geometrical complexity in the curve continues to be present. It is just the sort of thing 
we fractal geometers like to analyze. 

A sample of the experimental output from (b) is shown in Figure V.148, again 
represented as a graph of voltage against time. You should compare Figures V.147 
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Figure V.147. Graph 
of voltage as a function of 
time from an experimental 
probe of a turbulent jet. 
In this case the probe 
measures scattering of a 
laser beam by the flame. 

Figure V.148. Graph 
of voltage as a function of 
time from an experimental 
probe of a turbulent jet. In 
this case the probe mea
sures the voltage across 
a wire in the flame. This 
data has a definite fractal 
character, as demonstrated 
by the expanded piece 
shown in Figure V.149. 

and V.148. They look different. Is there a relationship between them? There should 

be: they both probe the same burning gas and they are in the same units. 

In order to bring out the fractal character in the data, an expanded piece of the 

data in Figure V.148 is shown in Figure V.149. 

The fractal dimensions of the graphs of the two time series, obtained from (a) 

and (b), is calculated using a method based on the Box Counting Theorem. Exactly 

the same method is applied to both sets of data, over the same range of scales. Fig

ure V.150 shows the graphical analysis of the resulting box counts. Both experiments 

yield the same value 

D ~ 1.5, over the range of scales 26 x 10-5 sec to 213 x 10-5 sec. 

This suggests that, despite the different appearances of their graphs, there is a com

mon source for the da\a. 
We believe that this common source is chaotic dynamics of a certain special flavor 

and character, present in the jet flame. If so then fractal dimension provides an 
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experimentally measurable parameter that can be used to characterize the brand of 
choas. 

3.4. Use a method based on the direct application of Definition 1.1 to make an 
experimental determination of the fractal dimension of the physical set defined by 
the black ink in Figure V.151. Give the range of scales to which your result applies. 

3.5. Use a method based on the Box Counting Theorem, as in Example 3.2, toes
timate the fractal dimension of the "random dendrite" given in Figure V.152. State 
the range of scales over which your estimate applies. Make several complete experi
ments to obtain some idea of the accuracy of your result. 

3.6. Make an experimental estimate of the fractal dimension of the dendrite shown 
in Figure V.153. Note that agrid of boxes of size (lj12)th inch by (ljl2)th inch has 
been printed on top of the dendrite. Compare the result you obtain with the result 
of exercise 3.5. It is important that you follow exactly the same procedure in both 
experiments. 

3. 7. Make an experimental determination of the fractal dimension of the set in 
Figure V.142. Compare your result with a theoretical estimate based on Theorem 2.3, 
as in exercise 2. 7. 

3.8. Obtain maps of Great Britain of various sizes. Make an experimental determi
nation of the fractal dimension of the coastline, over as wide a range of scales as 
possible. 

3. 9. Obtain data showing the variations of a Stock Market index, at several different 
time scales, for example, hourly, daily, monthly, and yearly. Make an experimental 
determination of the fractal dimension. Find a second economic indicator for the 
same system and analyze its fractal dimension. Compare the results. 

Figure V.149. A 
blowup of a piece of the 
graph in Figure V.148. 

EXPANDED AREA HOT FILM UOLTACE 
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Figure V.150. Graphi
cal analysis of box counts 
associated with experi
ments (a) and (b). The 
data analyzed is illus
trated in Figures V.145 
and V.148. The two data 
streams, which come from 
probes of a single turbu
lent system, when ana
lyzed in exactly the same 
way, yield the same value 
D = 1.5 for the fractal di
mension. This suggests 
that, despite the differ
ent appearances of their 
graphs, there is a com
mon source for the data. 
This source is chaotic dy
namics of a certain special 
flavor and character. The 
fractal dimension provides 
a measurable symptom of 
the brand of chaos. 

4 The Hausdorff-Besicovitch Fractal Dimension 

The Hausdorff-Besicovitch dimension of bounded subset of ~m is another real num

ber that can be used to characterize the geometrical complexity of bounded subsets 

of ~m. Its definition is more complex and subtle than that of the fractal dimension. 

One of the reasons for its importance is that it is associated with a method for com

paring the "sizes" of sets whose fractal dimensions are the same. It is harder to work 

with than the fractal dimension, and its definition is not usually used as the basis of 

experimental procedures for the determination of fractal dimensions of physical sets. 

Throughout we work in the metric space (~m, d) where m is a positive integer and 

d denotes the Euclidean metric. Let A c ~m be bounded. Then we use the notation 

diam(A) = sup{d(x, y): x, yEA} . 

.. 
Let 0 < E < 00, and 0.::: p < 00. Let A denote the set of sequences of subsets 

{Ai C A}, such that A= U~ 1 Ai. Then we define 
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Figure V.151. Make 

an experimental estimate 
of the fractal dimension of 
the set A of black ink, 
above, over the range 
of scales 5 inches to 
0.1 inches. Base your 
experimental method 
directly on Definition 1.1. 
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(a) 
(b) 

Figure V.152. Make an experimental estimate of the fractal dimension of this set in (a), 
over the range of scales 5 inches to (1112)th inch, basing your method on the Box Counting 
Theorem and graphical analysis. In order to help you with your work, in (b) we have overlaid 
the set a grid of boxes (1 I 12)th inch by (1 I 12)th inch. 

Figure V.153. Make 
an experimental estimate 
of the fractal dimension 
of the random dendrite 
shown here. Note that 
a grid of boxes of size 
(1112)th inch by Oll2)th 
inch has been printed 
on top of the dendrite. 
Compare the experimental 
fractal dimension here 
with that of the dendrite in 
Figure V.152. In advance, 
which one do you expect 
will have lower fractal 
dimension? 
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M(A, p, E)= 

inf { t(diam(A;))P: {A;) E A, and diam(A;) < E for i = I, 2, 3, ... } . 

Here we use the convention that (diam(Ai))0 = 0 when Ai is empty. M(A, p, E) is 
a number in the range [0, oo]; its value may be zero, finite, or infinite. You should 
verify that it is a nonincreasing function of E. We now define 

M(A, p) = sup{M(A, p, E): E > 0}. 

Then for each p E [0, oo] we have M(A, p) E [0, oo]. 

Definition 4. 1 Let m be a positive integer and let A be a bounded subset of the 
metric space ([R{m, Euclidean). For each p E [0, oo) the quantity M(A, p) described 
above is called the Hausdorff p-dimensional measure of A. 

Examples & Exercises 
4.1. Show that M(A, p) is a nonincreasing function of p E [0, oo]. 

4.2. Let A denote a set of seven distinct points in ([R{2, Euclidean). Show that 
M(A, 0) = 7 and M(A, p) = 0 for p > 0. 

4.3. Let A denote a countable infinite set of distinct points in ([R{2, Euclidean). 
Show that M(A, 0) = oo and M(A, p) = 0 for p > 0 

4.4. Let C denote the classical Cantor set in [0,1]. Show that M(C, 0) = oo and 
M(C, 1) = 0. 

4.5. Let A denote a convenient Sierpinski triangle. Show that M(A, 1) = oo and 
M(A, 2) = 0. Can you evaluate M(A, ln(3)/ ln(2))? At least try to argue why this 
might be an interesting number. 

The Hausdorff p-dimensional measure M(A, p), as a function of p E [0, oo], 
behaves in a remarkable manner. Its range consists of only one, two, or three values! 
The possible values are zero, a finite number, and infinity. In Figure V.154 we 
illustrate this behavior when A is a certain Sierpinski triangle. 

Theorem 4. 1 Let m be a positive integer. Let A be a bounded subset of the met
ric space (!R{m, Euclidean). Let M(A, p) denote the function of p E [0, oo) defined 
above. Then there is a unique real number DH E [0, m] such that 

M(A, p) = { ':;' if p < DH and p E [0, oo), 
if p > DH and p E [0, oo). 

Proof This can be found, for example, in [Federer 1969], section 2.10.3. 

Definition 4.2 Let m be a positive integer and let A be a bounded subset of 
the metric space ([R{m, Euclidean). The corresponding real number DH, occurring 
in Theorem 4.1, is called the Hausdorff-Besicovitch dimension of the set A. This 
number will also be denoted by DH(A). 
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1 ZERO 
1.58 2 

Figure V. 154. Graph 
the function M(A, p) 
when A is a certain Sier
pinski triangle. It takes 
only three values. 

Theorem 4.2 Let m be a positive integer and let A be a subset of the metric 

space (l~m, Euclidean). Let D(A) denote the fractal dimension of A and let DH(A) 

denote the Hausdorff-Besicovitch dimension of A. Then 

Examples & Exercises 

4.6. Describe a situation where you would expect DH(A) < D(A). 

4. 7. Prove Theorem 4.2. 

Theorem 4.3 Let m be a positive integer. Let {~m; w1, w2, ... , wN} be a hy

perbolic IFS, and let A denote its attractor. Let Wn be a similitude of scaling factor 

snfor each n E {1, 2, 3, ... , N}. If the /FS is totally disconnected or just-touching, 

then the Hausdorff-Besicovitch dimension DH(A) and the fractal dimension D(A) 

are equal. lnfact D(A) = DH(A) = D, where Dis the unique solution of 

DE [O,m]. 

If D is positive, then the Hausdorff D-dimensional measure M(A, DH(A)) is a 

positive real number. ? 

Proof This can be found in [Hutchinson 1981]. 
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In the situation referred to in Theorem 4.3 the Hausdorff DH(A)-dimensional 
measure can be used to compare the "sizes" of fractals that have the same frac
tional dimension. The larger the value of M(A, DH(A)), the "larger" the fractal. 
Of course, if two fractals have different fractal dimensions, then we say that the one 
with the higher fractal dimension is the "larger" one. 

Examples & Exercises 
4.8. Here we provide some intuition about the functions M(A, p, E) and M(A, p), 
and the "sizes" of fractals. We illustrate how these quantities can be estimated. The 
type of procedure we use can often be followed for attractors of just-touching and 
totally disconnected IFS whose maps are all similitudes and should lead to correct 
values. Formal justification is tedious and follows the lines suggested in [Hutchinson 
1981]. 

Consider the Sierpinski triangle A with vertices at (0, 0), (0, 1), and (1, 0). 
We work in ~ 2 with the Euclidean metric. We begin by estimating the number 
M(£, p, E) for p E [0, 1] for various values of E. The values of E we consider are 
E = ,J2(lj2)n for n = 0, 1, 2, 3, .... Now notice that A can be covered very effi
ciently by 3n closed disks of radius ,J2(lj2)n. We guess that this covering is one for 
which the infinum in the definition of M(A, p, E = -J2(1/2)n) is actually achieved. 
We obtain the estimate 

The supremum in the definition of M(£, p) can be replaced by a limit; so we 
obtain 

M(£, p) =lim {3n(J2)P(l/2tP} 
n~oo 

= { rz)ln(2)/ln(3) 

if p < ln(3)/ ln(2), 
if p = ln(3)/ ln(2), 
if p > ln(3)/ln(2). 

This tells us that DH(£) = ln(3)/ ln(2), which we already know from Theo
rem 4.3. It also tells us that M(£, DH(£)) = (,J2)ln(2)/ln(3). This is our estimate 
of the "size" of the particular Sierpinski triangle under consideration. 

If one repeats the above steps for the Sierpinski triangle .i with vertices at 
(0, 0), (0, 1/-J2), and (lj,J2, 0), one finds M(.i, DH(.i)) = 1. Thus .i is "small
er" than £. Similar estimates can be made for pairs of attractors of totally discon
nected or just-touching IFS whose maps are similitudes and whose fractal dimen
sions are equal. The comparison of "sizes" becomes exciting when the two attractors 
are not metrically equivalent. 

4.9. Estimate the "sizes" of the two fractals represented in Figure V.155. Which one 
is "largest"? Does the computed estimate agree with your subjective feeling about 
which one is largest? 
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Figure V.155. The 
two images here rep
resent the attractors of 
two different IFS of the 
form {[]~2 ; WJ, W2, W3}, 

where all of the maps 
are similitudes of scal
ing factor 0.4. Both sets 
have the same fractal di
mension ln(3)/ ln(2.5). 
So which one is the 
"largest"? Compare their 
"sizes" by estimating their 
Hausdorff ln(3)/ ln(2.5)
dimensional measures . 

4.1 0. Prove that the Hausdorff-Besicovitch dimension of two metrically equivalent 

bounded subsets of (~m, Euclidean) is the same. 

4.11. Let d denote a metric on ~2 which is equivalent to the Euclidean metric. 

Let A denote a bounded subset of ~2 . Suppose that d is used in place of the Eu

clidean metric to calculate a "Hausdorff-Besicovitch" dimension of A, denoted by 

DH(A). Prove that DH(A) = DH(A). Show, however, that the "size" of the set, 

M(A, DH(A)), may be different when computed using din place of the Euclidean 

metric. 
1 

4. 12. If distance in ~ 2 is measured in inches, and a subset A of ~ 2 has fractal 

dimension 1.391, what are the units of M(A, 1.391)? 
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Figure V .156. Why 
are the fractal dimen
sion and the Hausdorff
Besicovitch dimension of 
the attractor of the IFS 
represented by this image 
equal? 

4.13. The image in Figure V.156 represents the attractor A of a certain hyperbolic 

IFS. 

( 1) Explain, with support from appropriate theorems, why the fractal dimension 
D and the Hausdorff-Besicovitch dimension DH of the attractor of the IFS 

are equal. 
(2) Evaluate D. 
(3) Using inches as the unit, compare the Hausdorff-Besicovitch D-dimensional 

measures of A and w(A), where w(A) denotes one of the small "first

generation" copies of A. 

4.14. By any means you like, estimate the Hausdorff-Besicovitch dimension of the 
coastline of Baron von Koch's Island, shown in Figure V.157. It is recommended 
that theoreticians try to make an experimental estimate, and that experimentalists try 

to make a theoretical estimate. 

4.15. Does the work of some artists have a characteristic fractal dimension? Make 
a comparison of the empirical fractal dimensions of Romeo and Juliet, over an 
appropriate range of scales; see Figure V.158. 
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The 
middle of 

Baron von Koch's 
Island is white to 

save ink 
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Figure V.157. By any 
means you like, estimate 
the Hausdorff-Besicovitch 
dimension of the coastline 
of Baron von Koch's 
Island. 
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Figure V. 158. Does 

the work of some artists 

have a characteristic frac

tal dimension? Make a 

comparison of the empir
ical fractal dimensions of 

Romeo and Juliet, over 

an appropriate range of 

scales. 



Chapter VI 

Fractal Interpolation 

1 Introduction: Applications for Fractal Functions 

Euclidean geometry, trigonometry, and calculus have taught us to think about mod

elling the shapes we see in the real world in terms of straight lines, circles, parabolas, 

and other simple curves. Consequences of this way of thinking are abundant in our 

everyday lives. They include the design of household objects; the common usage of 

drafting tables, straight-edges, and compasses; and the "applications" that accom

pany introductory calculus courses. We note in particular the provision of functions 

for drawing points, lines, polygons, and circles in computer graphics software such 

as Mac Paint and Turbo basic. Most computer graphics hardware is designed specifi

cally to provide rapid computation and display of classical geometrical shapes. 

Euclidean geometry and elementary functions, such as sine, cosine, and poly

nomials, are the basis of the traditional method for analyzing experimental data. 

Consider an experiment that measures values of a real-valued function F(x) as a 

function of a real variable x. For example, F (x) may denote a voltage as a function 

of time, as in the experiments on the jet-engine exhaust described in Example 3.3 in 

Chapter V. The experiment may be a numerical experiment on a computer. In any 

case the result of the experiment will be a collection of data of the form: 

{(x;, Fi): i = 0, 1, 2, ... , N}. 

Here N is a positive integer, Fi = F(xi), and the Xi's are real numbers such that 

The traditional method for analyzing this data begins by representing it graphi

cally as a subset of ~2 . That is, the data points are plotted on graph paper. Next the 

graphical data is analyzed geometrically. For example, one may seek a straight line 

segment that is a good approximation to the graph of the data. Or else, one might 

construct a polynomial of as low degree as possible, whose graph is a good fit to 
1 

the data over the inter\ral [x0 , XN ]. In place of a polynomial, a linear combination of 

elementary functions might be used. The goal is always the same: to represent the 

205 
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Figure Vl.159. Illus
tration of the process 
whereby experimental 
data is represented graph
ically and modelled geo
metrically by means of a 
classical geometrical en
tity, such as a straight line 
or a polynomial fit to the 
data. 

A STRAIGHT liNE IS A 
EUCliDEAN APPROXIMATION 
TO THE DATA 

THE GRAPH OF A POLYNOMIAL IS A 
EUCliDEAN APPROXIMATION 
TO THE DATA 

data, viewed as a subset of ~ 2, by a classical geometrical entity. This entity is repre
sented by a simple formula, one that can be communicated easily to someone else. 
The process is illustrated in Figure VI. I 59. 

Elementary functions, such as trigonometric functions and rational functions, 
have their roots in Euclidean geometry. They share the feature that when their graphs 
are "magnified" sufficiently, locally they "look like" straight lines. That is, the tan
gent line approximation can be used effectively in the vicinity of most points. More
over, the fractal dimension of the graphs of these functions is always 1. These el
ementary "Euclidean" functions are useful not only because of their geometrical 
content but because they can be expressed by simple formulas. We can use them 
to pass information easily from one person to another. They provide a common lan
guage for our scientific work. Moreover, elementary functions are used extensively 
in scientific computation, computer-aided design, and data analysis because they can 
be stored in small files and computed by fast algorithms. 

Graphics systems founded on traditional geometry are effective for making pic
tures of man-made objects, such as bricks, wheels, roads, buildings, and cogs. This 
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is not suprising, since these objects were designed in the first place using Euclidean 

geometry. However, it is desirable for graphics systems to be able to deal with a 

wider range of problems. 

In this chapter we introduce fractal interpolation functions. The graphs of these 

functions can be used to approximate image components such as the profiles of 

mountain ranges, the tops of clouds, stalactite- hung roofs of caves, and horizons 

over forests, as illustrated in Figure VI.160. Rather than treating the image compo

nent as arising from a random assemblage of objects, such as individual mountains, 

cloudlets, stalactites, or tree tops, one models the image component as an interre

lated single system. Such components are not well described by elementary func

tions or Euclidean graphics functions. 

Fractal interpolation functions also provide a new means for fitting experimen

tal data. Clearly it does not suffice to make a polynomial "least-squares" fit to the 

wild experimental data of Strahle for the temperature in a jet exhaust as a function 

of time, as illustrated in Figure V.14 7. Nor would classical geometry be a good tool 

for the analysis of voltages at a point in the human brain as read by an electoren

cephalograph. However, fractal interpolation functions can be used to "fit" such ex

perimental data: that is, the graph of the fractal interpolation function can be made 

close, in the Hausdorff metric, to the data. Moreover, one can ensure that the fractal 

dimension of the graph of the fractal interpolation function agrees with that of the 

data, over an appropriate range of scales. This idea is illustrated in Figure VI.161. 

Fractal interpolation functions share with elementary functions that they are of a 

geometrical character, that they can be represented succinctly by "formulas," and 

that they can be computed rapidly. The main difference is their fractal character. 

For example, they can have a noninteger fractal dimension. They are easy to work 

with- once one is accustomed to working with sets rather than points and with 

IFS theory using affine maps. If we start to pass them from one to another, fractal 

functions will become part of the common language of science. So read on! 

Examples & Exercises 

1. 1. Write an essay on the influences of Euclide"p geometry on the way in which 

we view the physical world. How does fractal geometry change that view? 

1.2. Find the linear approximation l (x) to the function f (x) = sin (x), about the 

point x = 0. Let E > 0. Find the linear change of coordinates (x', y') = () (x, y) in 

~2 , such that 8([0, E] x [0, E]) = [0, 1] x [0, 1]. Let l'(x') denote the function l(x) 

represented in the new coordinate system. Let f' (x') denote the function f (x) in 

the new coordinate system. Let L denote the graph of l'(x') for x' E [0, 1] and let G 

denote the graph of f~(x') for x' E [0, 1]. How small must E be chosen to ensure that 

the Hausdorff distance from L toG is less than 0.01? The Hausdorff distance should 

be computed with respect to the Manhattan metric in [~.2. 
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Figure VI. 160. The 
fractal interpolation func
tions introduced in this 
chapter may be used in 
computer graphics soft
ware packages to provide 
a simple means for render
ing profiles of mountain 
ranges, the tops of clouds, 
and horizons over forests. 

2 Fractal Interpolation Functions 

Definition 2.1 A set of data is a set of points of the form {(xi, Fi) E ~2 : i = 

0, 1, 2, ... , N}, where 

An interpolation function corresponding to this set of data is a continuous function 

f: [xo, xN]---+ ~such that 



THE EXPERIMENTAL DATA 
AND THE FRACTAL FUNCTION 

MIGHT "LOOK ALIKE" OVER 
A RANGE OF SCALES. 

DATA POINTS LIE CLOSE TO 
THE GRAPH OF A FRACTAL 
INTERPOLATION FUNCTION 

for i = 1, 2, ... , N. 
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Figure VI. 161. This 
figure illustrates the idea 
of using a fractal inter
polation function to fit 
experimental data. The 
graph of the interpolation 
function may be close, in 
the Hausdorff metric, to 
the graph of the experi
mental data. The fractal 
dimension of the interpo
lation function may agree 
with that of the data over 
an appropriate range of 
scales. 

The points (xi, Fi) E ~ 2 are called the interpolation points. We say that the function 

f interpolates the data and that (the graph of) f passes through the interpolation 

points. 

Examples & Exercises 
2. 1. The function f (x) = 1 + x is an interpolation function for the set of data 

{(0, 1), (1, 2)}. 

Consider the hyperbolic IFS {~2 ; w 1, w2 }, where 

Let G denote the attractor of the IFS. Then it is readily verified that G is the straight 

line segment that connects the pair of points (0, 1) and (1, 2). In other words, G is 

the graph of the interpolation function f(x) over the interval [0, 1]. 

2.2. Let {(xi, Fi): i =P, 1, 2, ... , N} denote a set of data. Let f: [xo, xN]--+ ~ 

denote the unique continuous function that passes through the interpolation points 

and is linear on each of the subintervals [xi-l• xJ. That is, 
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Figure VI. 162. Graph 
of the piecewise linear 
interpolation function 
f(x) through the inter
polation points {(Fi, xi): 
i = 0, 1, 2, 3, 4}. This 
graph is also the attrac
tor of an IFS of the form 
{IR2

; Wn, n = 1, 2, 3, 4}, 

where the maps are affine. 

y 

(x- Xi-I) . 
f(x) = Fi-1 + (Fi- Fi-1) for x E [Xi-1, xiJ, l = 1, 2, ... , N. 

(Xi- Xi-!) 

The function f (x) is called a piecewise linear interpolation function. The graph of 

f (x) is illustrated in Figure Vl.162. This graph, G, is also the attractor of an IFS of 

the form {~2 ; Wn, n = 1, 2, ... , N}, where the maps are affine. In fact, 

where 

(Xn- Xn-1) 
an= ' 

(xN- xo) 

(Fn- Fn-!) 
Cn = ' 

(xN- xo) 
l"n = (XN Fn-1 - xoFn)' 

J1 for n = 1, 2, ... , N. 
(XN- Xo) 

Notice that the IFS may not be hyperbolic with respect to the Euclidean metric in 

~ 2• Can you prove that, nonetheless, G is the unique nonempty compact subset of 

~2 such that 

2.3. Verify the claims in exercise 2.2 in the case ofthe data set { (0, 0), (1, 3), (2, 0)} 

by applying either the Deterministic Algorithm, Program 1, Chapter III, or the Ran

dom Iteration Algorithm, Program 2 of Chapter III. You will need to modify the 

programs slightly. 

2.4. The parabola defined by f(x) = 2x - x 2 on the interval [0, 2] is an interpo

lation function for the set of data {(0, 0), (1, 1), (2, 0)} . Let G denote the graph of 

f(x). That is 

G = { (x, 2x - x2) : x E [0, 2]}. 
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Then we claim that G is the attractor of the hyperbolic IFS {11~2 ; w 1, w2}, where 

We verify this claim directly. We simply note that for all x E [0, 2], 

WI ( f~x)) = ( 2(4xl 4~ <4xl2 ) = Ct;x))' 
( 

x ) ( 1 + lx ) ( 1 + lx ) 
w2 f(x) = 2(1 + !x) -

2

(1 + !x)2 = f(l +
2

!x) · 

As x varies over [0, 2], the right-hand side of the first equation yields the part of the 

graph of f(x) lying over the interval [0, 1], while the right-hand side of the second 

equation yields the part of the graph of f(x) lying over the interval [1, 2]. Hence 

G = w1 (G) U w2 (G). Since G E 1-£(~2) we conclude that it is the attractor of the 

IFS. Notice that the IFS is just-touching. 

2.5. Find a hyperbolic IFS of the form {~2 ; w 1, w2 }, where w 1 and w2 are affine 

transformations in ~ 2, whose attractor is the graph of the quadratic function that 

interpolates the data { (0, 0), (1, 1), (2, 4) }. 

Let a set of data {(xi, Fi): i = 0, 1, 2, ... , N} be given. We explain how one can 

construct an IFS in ~ 2 such that its attractor, which we denote by G, is the graph 

of a continuous function f: [x0, XN] ~ ~.which interpolates the data. Throughout 

we will restrict our attention to affine transformations. The usage of more general 

transformations is discussed in [Bamsley 1988f]. 

We consider an IFS of the form {~2 ; Wn, n = 1, 2, ... , N}, where the maps are 

affine transformations of the special structure 

The transformations are constrained by the data according to 

Wn (~) = (~=:) and Wn G:) = (~) forn = 1,2, ... , N. 

The situation is summarized in Figure Vl.163. 

Let n E {1, 2, 3, ... , N}. The transformation Wn is specified by the five real num

bers an. bn, Cn, dn, and en, which must obey the four linear equations 

anXO +en= Xn-1• 

anXN +en= Xn, 

CnXo + dnFo + fn = Fn-1• 

CnXN + dnFN + fn = Fn. 
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Figure Vl.163. Two il
lustrations showing how 
an IFS of shear transfor
mations is used to con
struct a fractal interpola
tion function. (Produced 
by Peter Massopust.) 

y 

K 

It follows that there is effectively one free parameter in each transformation. We 

choose this parameter to be dn for the following reason. The transformation wn is 

a shear transformation: it maps lines parallel to the y-axis into lines parallel to the 

y-axis. Let L denote a line segment parallel to they-axis. Then Wn(L) is also a line 

segment parallel to the y-axis. The ratio of the length of Wn (L) to the length of L 

is ldn 1. We call dn the vertical scaling factor in the transformation Wn. By choosing 

dn to be the free parameter, we are able to specify the vertical scaling produced by 

the transformation. With dn = 0, n = 1, 2, ... , N, one recovers the piecewise linear 

interpolation function. In section 6.2 we will show that these parameters determine 

the fractal dimension of the attractor of the IFS. 
Let dn be any real number. We demonstrate that we can always solve the above 

equations for an, Cn, en, and fn in terms of the data and dn. We find 
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(Xn- Xn-d 
an= , 

(xN- xo) 

(XNXn-1 - XoXn) 
en= 

(XN- Xo) 

(1) 

(2) 

(3) 

(4) 

Now let {11~2 ; Wn, n = 1, 2, ... , N} denote the IFS defined above. Let the vertical 

scaling factor dn obey 0 :=:: dn < 1 for n = 1, 2, ... , N. Even with this condition, the 

IFS is not in general hyperbolic on the metric space ( ~ 2, Euclidean). Despite this, let 

us see what happens if we apply the Random Iteration Algorithm to the IFS. 

Here we present Program 2 in Chapter III modified so that the input data consists 

of the interpolation points and vertical scaling factors. It is written for N = 3 and the 

data set 

{(0, 0), (30, 50), (60, 40), (100, 10)}. 

The vertical scaling factors are input by the user during execution of the code. The 

program calculates the coefficients in the shear transformations from the data, and 

then applies the Random Iteration Algorithm to the resulting IFS. The program is 

written in BASIC. It runs without modification on an IBM PC with enhanced graph

ics adaptor and Turbobasic. On any line the words preceded by a ' are comments: 

they are not part of the program. 

Program 1. 

x(O] =0 x[1] =30 x(2] =60 x[3] =100 ' Data set 

F(O] =0 F[1] =50 F(2] =40 F[3] =10 

'Vertical Scaling Factors 
input "enter scaling factors d(1), d(2), and d(3)", 

d(1) ,d(2) ,d(3) 

'Calculate the shear transformations from the Data 

'and Vertical Scaling Factors 
for n =1 to 3 

1 

b = x(3]-x[O] :'a[n] (x [n] -x [n-1]) /b 
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e [n] (x [3] *X [n-1] -x [0] *X [n]) /b 

c[n] (F[n]-F[n-1]-d[n]*(F[3]-F[O]))/b 

ff[n] = (x[3]*F[n-1]-x[O]*F[n]-d[n]*(x[3]*F[O]-x[O]*F[3]))/b 

next 

screen 2 : cls ' initalialize graphics 

window(0,0)-(100,100) 'change this to zoom and/or pan 

x =0: y =0 'initial point from which the random 
'iteration begins 

for n =1 to 1000 'Random Iteration Algorithm 

k =int(3*rnd-0.0001)+1 

newx a[k]*x + e[k] 

newy c[k]*x + d[k]*y + ff[k] 

x =newx y =newy 

pset(x,y) 'plot the most recently computed point on the screen 

next 

end 

The result of running an adaptation of this program on a Masscomp workstation 

and then printing the contents of the graphics screen is presented in Figure Vl.164. 

In this case d 1 = 0.5, d2 = -0.5, and d3 = 0.23. Notice that if the size of the plotting 

window is decreased, for example by replacing the window call by WINDOW (0,0)

(50,50), then a portion of the image is plotted at a higher resolution. The number of 

iterations can be increased to impove the quality of the computed image. 

Examples & Exercises 
2.6. Rewrite Program 1 in a form suitable for your own computer environment, then 

run it and obtain hardcopy of the output. 

2. 7. Vary the data used by Program 1. Verify, by means of computergraphical exper

iments, that the corresponding IFS always seems to have a unique attractor, provided 

that the vertical scaling factors are less than 1 in norm. Verify that, provided suffi-
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~------------------------------------------------x 

ciently many points are plotted, the attractor always contains the data points, and 

that it looks like the graph of a function. 

2.8. Show that the shear transformations Wn, descibed above, need not be contrac

tions in the Euclidean metric, even though the magnitudes of the vertical scaling 

factors are less than 1. Once you have found such an example, use Program 1, suit

ably modified, to obtain graphical evidence concerning the possible existence of an 

attractor. You are supposed to discover that even though the IFS is not hyperbolic in 

the Euclidean metric, it appears to possess an attractor. 

2.9. Use Program 1 to verify that the attractor of the IFS in exercise 2.4 is a 

parabola. 

We now give the theoretical basis for our experimental observations. 

Theorem 2.1 Let N be a positive integer greater than 1. Let {~2 ; wn. n = 

1, 2, ... , N} denote the IFS defined above, associated with the data set 

{(Xn, Fn): n = 1, 2, ... , N}. 

Let the vertical scaling factor dn obey 0 ::::; dn < 1 for n = 1, 2, ... , N. Then there is 

a metric don ~2 , equivalent to the Euclidean metric, such that the IFS is hyperbolic 

with respect to d.ln particular, there is a unique nonempty compact set G c ~2 such 

that 

Proof We defihe a metric d on ~ 2 by 

d((x1. YI), (x2, Y2)) = lx1 - x2l + 8ly1 - Y2l. 

Figure Vl.164. There
sult of running Program 1 
with vertical scaling fac-
tors 0.5, -0.5, and 0.23. 
It appears that the corre
sponding IFS possesses 
a unique attractor that 
is the graph of a func
tion that passes through 
the interpolation points 
{(0, 0), (30, 50), (60, 40), 

(100, 10)}. Is there a met
ric such that the IFS is 
hyperbolic? 
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where () is a positive real number, which we specify below. We leave it as an exercise 

to the reader to prove that this metric is equivalent to the Euclidean metric on ~ 2. 

Let n E {1, 2, ... , N}. Let the numbers an, Cn, en, fn, be defined by equations 1, 2, 

3, and 4. Then we have 

d(wn(XI, YI), Wn(X2, Y2)) 

= d((anXI +en, CnXI + dnYI + fn), (anX2 +en, CnX2 + dnY2 + fn)) 

=an lXI- X2l + Blcn(XI- X2) + dn(YI- Y2)1 

:S (ian I +()len I) lx1 - X2l + () ldn IIYI - Y21· 

Now notice that lanl = lxn - Xn-tlflxN- xol < 1 because N ~ 2. If c1 = c2 · · · = 

en = 0, then we choose () = 1. Otherwise we choose 

() _ min{(2- lanD: n = 1, 2, ... , N} 

- max{21cnl:n=1,2, ... ,N} · 

Then it follows that 

where 

d(wn(XI, YI), Wn(X2, Y2)) :S (lanl + Blcnl)lxi- x21 + BldniiYI- Y2l 

:S alx1- x2l + B81Yt- Y2l 

:s max{a, 8}d((x1, YI), (x2, Y2)), 

max{lanl: n = 1, 2, ... , N} 
a = ( 1 + an - ) < 1, 

2 
8 = max{ldnl: n = 1, 2, ... , N} < 1. 

This completes the proof. 

Theorem 2.2 Let N be a positive integer greater than 1. Let {~2 ; wn, n = 
1, 2, ... , N} denote the IFS defined above, associated with the data set {(xn, Fn): 

n = 1, 2, ... , N}. Let the vertical scaling factor dn obey 0 :S dn < 1for n = 1, 2, ... , 

N, so that the IFS is hyperbolic. Let G denote the attractor of the IFS. Then G is 

the graph of a continuous function f: [xo, XN] ~ ~' which interpolates the data 

{(x;, F;): i = 1, 2, ... , N}. That is, 

G = {(x, f(x)): X E [Xo, XN]}, 

where 

fori= 0, 1, 2, 3, ... , N. 

Proof Let :F denote the set of continuous functions f: [x0 , xd ~ ~ such that 

f(xo) = Fo and f(xN) = FN. We define a metric don :F by 

d(f, g)= max{lf(x)- g(x)l: x E [xo, xN]} for all f, gin :F. 

Then (:F, d) is a complete metric space-see, for example [Rudin 1966], or prove it 

yourself. 
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Let the real numbers an, Cn, en, fn, be defined by equations 1, 2, 3, and 4. Define 

a mapping T : :F ~ :F by 

(Tf)(x) = Cnl; 1(x) + dnf(l;1(x)) + fn for x E [Xn-1. Xn], for n = 1, 2, ... , N, 

where ln: [xo, XN] ~ [Xn-1. Xn] is the invertible transformation 

ln(X) = anX +en. 

We verify that T does indeed take :F into itself. Let f E :F. Then the function 

(T f) (x) obeys the endpoint conditions because 

and 

(T f)(xo) = c1l!1 (xo) + d1/(l!1(xo)) + fn 

= c1xo + d1/Cxo) + fn = C1Xo + d1Fo + fn 

=Fo 

(Tf)(xN) = CNt;/(xN) + dNf(r;/(xN)) + fN 

= CNXN + dNf(XN) + fN 

= CNXN + dNFN. 

The reader can prove that (T f)(x) is continuous on the interval [Xn- 1, Xn] for n = 

1, 2, ... , N. Then it remains to demonstrate that (Tf)(x) is continuous at each 

of the points x 1, x2, X3, ... , XN- 1. At each of these points the value of (Tf)(x) is 

apparently defined in two different ways. For n E {1, 2, ... , N- 1} we have 

and also 

(T f)(xn) = Cn+1z;;~1 (Xn) + dn+1f(l;;~1 (xn)) + fn+1 

= Cn+lXO + dn+lf(xo) + fn+l = Fn 

(T /)(Xn) = Cnl; 1(Xn) + dnf0; 1(Xn)) + fn 

= CnXN + dnf(xN) + fn = Fn, 

so both methods of evaluation lead to the same result. We conclude that T does 

indeed take :F into :F. 

Now we show that T is a contraction mapping on the metric space (:F, d). Let 

f, g E :F. Let n E {1, 2, ... , N} and X E (Xn-1• Xn]. Then 

I(Tf)(x)- (Tg)(x)l = ldnllf(l; 1(x))- g(l;1(x))l :S ldnld(f, g). 

It follows that 

d(Tf, Tg) :S l>d(f, g) where l> = max{ldnl: n = 1, 2, ... , N} < 1. 

We conclude that T : :F ~ :F is a contraction mapping. The Contraction Mapping 

Theorem implies that T possesses a unique fixed point in :F. That is, there exists a 

function f E :F such that 
1 

,(Tf)(x) = f(x) for all x E [xo, XN ]. 



218 Chapter VI Fractal Interpolation 

Figure Vl.165. A 
sequence of functions 
{fn+J(X) = (Tfn)(X)} 

converging to the fixed 
point of the mapping 
T : :F ~ :F used in the 
proof of Theorem 2.2. 
This is another example 
of a contraction mapping 
doing its work. 

The reader should convince himself that f passes through the interpolation points. 

Let G denote the graph of f. Notice that the equations that define T can be 

rewritten 

(Tf)(anx +en)= CnX + dnf(x) + fn for x E [xo, XN], for n = 1, 2, ... , N, 

which implies that 
- N -
G = un=l Wn(G). 

But G is a nonempty compact subset of IPS.2. By Theorem 2.1 there is only one 

nonempty compact set G, the attractor of the IFS, which obeys the latter equation. It 

follows that G = G. This completes the proof. 

Definition 2.2 The function f (x) whose graph is the attract or of an IFS as 

described in Theorems 2.1 and 2.2, above, is called a fractal interpolation function 

corresponding to the data {(xi, Fi) : i = 1, 2, ... , N}. 

Figure VI.165 shows an example of a sequence of iterates {Ton fo: n = 0, 1, 2, 3, 

... } obtained by repeated application of the contraction mapping T, introduced in 

the proof of Theorem 2.2. The initial function f 0 (x) is linear. The sequence con

verges to the fractal interpolation function f, which is the fixed point of T. Notice 

that the whole image can be interpreted as the attractor of an IFS with condensation, 

where the condensation set is the graph of the function f 0 (x). 

The reader may wonder, in view of the proof of Theorem 2.2, why we go to the 

trouble of establishing that there is a metric such that the IFS is contractive. After all, 

we could simply use T to construct fractal interpolation functions. The answer has 

two parts, (a) and (b). (a) We can now apply the theory of hyperbolic IFS to fractal 

interpolation functions. Of special importance, this means that we can use IFS algo

rithms to compute fractal interpolation functions, that the Collage Theorem can be 

used as an aid to finding fractal interpolation functions that approximate given data, 
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and that we can use the Hausdorff metric to discuss the accuracy of approximation of 

experimental data by a fractal "interpolation function. (b) By treating fractal interpo

lation functions as attractors of IFS of affine transformati0t1s we provide a common 

language for the description of an important class of functions and sets: the same 

type of formula, namely an IFS code, can be used in all cases. 

One consequence of the fact that the IFS {~; Wn, n = 1, 2, ... , N} associated 

with a set of data {(xn, Fn): n = 1, 2, ... , N} is hyperbolic is that any set Ao E 

11(~2) leads to a Cauchy sequence of sets {An} that converges toG in the Hausdorff 

metric. In the usual way we define W : 1i(~2) ~ 1i(~2) by 

W(B) = u~=l Wn(B) for all B E 1i(~2). 

Then {An= won(A0 )} is a Cauchy sequence of sets which converges to G in the 

Hausdorff metric. This idea is illustrated in Figure VI.166. Notice that if Ao is the 

graph of a function fo E :F then An is the graph of Ton fo. 

Examples & Exercises 
2.1 0. Prove that the metric on ~ 2 introduced in the proof of Theorem 2.1 is equiva

lent to the Euclidean metric on ~ 2• 

2. 11. Use the Collage Theorem to help you find a fractal interpolation function that 

approximates the function whose graph is shown in Figure VI.167. 

2.12. Write a program that allows you to use the Deterministic Algorithm to com

pute fractal interpolation functions. 

2.13. Explain why Theorems 2.1 and 2.2 have the restriction that N is greater 

than 1. 

2.14. Let a set of data { (x;, F;) : i = 0, 1, 2, ... , N} be given. Let the metric space 

(:F, d) and the transformation T : :F ~ :F be defined as in the proof of Theorem 2.2. 

Prove that if f E :F then T f is an interpolation function associated with the data. 

Deduce that if f E :F is a fixed point of T then f is an interpolation function 

associated with the data. 

2. 15. Make a nonlinear generalization of the theory of fractal interpolation func

tions. For example, consider what happens if one uses an IFS made up of nonlinear 

transformations Wn: ~2 ~ ~2 of the form 

Wn(X, y) = (anX +en, CnX + dny + gny2 + fn), 

where an, Cn, dn, gn, and fn are real constants. This example uses "quadratic scaling" 

in the vertical direction instead of linear scaling. Determine sufficient conditions for 

the IFS to be hyperbolic, with an attractor that is the graph of a function that inter

polates the data {(x;, Fd: i = 0, 1, 2, ... , N}. Note that in certain circumstances the 
1 

IFS generates the graph of a differentiable interpolation function. 

2. 16. Let f (x) denote a fractal interpolation function associated with a set of data 
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Figure Vl.166. Exam
ples of the convergence 
of a sequence of sets {An} 
in the Hausdorff metric, 
to the graph of a fractal 
interpolation function. 

© 
© 
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Figure Vl.167. Use 
the Collage Theorem to 
find an IFS {llt2; w1, w2}, 

where w 1 and w2 are 
shear transformations 
on llt 2 , such that the 
attractor of the IFS is a 
good approximation to 
the graph of the function 
shown here. 

{(x;, F;): i = 0, 1, 2, ... , N}, where N > 1. Let the metric space (:F, d) and the 

transformation T : :F ~ :F be defined as in the proof of Theorem 2.2. The functional 

equation T f = f can be used to evaluate various integrals of f. As an example 

consider the problem of evaluating the integral 

1
XN 

I= f(x) dx. 
xo 

The integral is well defined because f (x) is continuous. We have 

I= {N (Tf)(x)dx = ~ [", (TJ)(x)dx 

where 

Show that, under the standard assumptions, Ia I < 1. Show also that 

1
XN 

{3= fo(x)dx, 
xo 
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Figure Vl.168. Illus
tration of the geometrical 
viewpoint concerning the 
integration of fractal inter
polation functions. 

(total area) =( Det(A1)+Det (A2}}x(total area) + B 

f\~ 
area = Det{A2)x (total area) 

B=area of triangle 

where fo(x) is the piecewise linear interpolation function associated with the data. 
Conclude that 

1XN p 
f(x)dx = . 

x
0 (1- a) 

Check this result for the case of the parabola, described in Exercise 2.4. In Fig
ure Vl.168 we illustrate a geometrical way of thinking about the integration of a 
fractal interpolation function. 

2. 17. Let f (x) denote a fractal interpolation function associated with a set of data 
{(x;, F;): i = 0, 1, 2, ... , N}, where N > 1. By following similar steps to those in 
exercise 2.16, find a formula for the integral 

1
XN 

/1 = xf(x) dx. 
xo 

Check your formula by applying it to the parabola described in exercise 2.4. 

2. 18. Figure Vl.l69 shows a fractal interpolation function together with a zoom. 
Can you reproduce these images and then make a further zoom? What do you expect 
a very high-magnification zoom to look like? 
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I 
/1. 

I ~ 

3 The Fractal Dimension of Fractal Interpolation Functions 

The following excellent theorem tells us the fractal dimension of fractal interpolation 

functions. 

Theorem 3.1 Let N be a positive integer greater than 1. Let { (xn, Fn) E IR{2 : 

n = 1, 2, ... , N} be a set of data. Let {IR{2; Wn, n = 1, 2, ... , N} be an IFS associ

ated with the data, where 

for n = 1, 2, ... , N. 

The vertical scaling factors dn obey 0 ~ dn < 1; and the constants an, Cn, en, and fn 

are given by equations 1, 2, 3, and 4,for n = 1, 2, ... , N. Let G denote the attractor 

of the IFS, so that G is the graph of a fractal interpolation function associated with 

the data. If 

(1) 

n=l 
1 

and the interpolation points do not all lie on a single straight line, then the fractal 

dimension of G is the unique real solution D of 

Figure VI. 169. A frac
tal interpolation function 
together with a zoom. If 
the fractal dimension is 
equal to 1, what do you 
expect "most" very high 
magnification zooms to 
look like? 
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Figure VI. 170. The 
graph G of a fractal 
interpolation function is 
superimposed on a grid 
of closed square boxes 
of side length E. N(E) is 
used to denote the number 
of boxes that intersect 
G. What is the value of 
N(E)? 
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Proof (Informal Demonstration). The formal proof of this theorem can be 
found in [Barnsley 1988f]. Here we give an informal argument for why it is true. We 
use the notation in the statement of the theorem. 

Let E > 0. We consider G to be superimposed on a grid of closed square boxes of 
side length E, as illustrated in Figure VI.170. Let N (E) denote the number of square 
boxes of side length E which intersect G. These boxes are similar to the ones used 
in the Box Counting Theorem, Theorem 1.2 in Chapter V, except that their sizes are 
arbitrary. On the basis of the intuitive idea introduced in Chapter V, section 1, we 
suppose that G has fractal dimension D, where 

N(E) ~ constant· E-D as E --+ 0. 

We want to estimate the value of D on the basis of this assumption. 
Let n E {1, 2, ... , N}. Let N'rz(E) denote the number of boxes of side length E 

which intersect Wn (G) for n = 1, 2, ... , N. We suppose that E is very small com
pared to lxN - x0 1. Then because the IFS is just-touching it is reasonable to make 
the approximation 

(2) 
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Figure VI. 171. The 
boxes that intersect G can 
be thought of as organized 
in columns. The set of 
columns of boxes of side 
length E which intersect G 
is denoted by {cj(E): j = 
1, 2, ... , K(E)}, where 
K(E) denotes the number 
of columns. What is the 
value of K(E) and how 
many boxes are there in 
c2(E), in this illustration? 

We now look for a relationship between N (E) and Nn (E). The boxes that intersect G 

can be thought of as being organized into columns, as illustrated in Figure VI.171. 

Let the set of columns of boxes of side length E which intersect G be denoted 

by {cj(E): j = 1, 2, ... , K(E)}, where K(E) denotes the number of columns. Under 

the conditions in equation 1, in the statement of the theorem, one can prove that the 

minimum number of boxes in a column increases without limit as E approaches zero. 

To simplify the discussion we assume that 

ldnl >an for n = 1, 2, ... , N. 

(Notice that 

~ ~ (Xn- Xn-d 
~an=~ =1, 
n=l n=l (XN- Xo) . 

which tells us that this assumption is stronger than the assumption "L:=I ldn I > 1.) 

Then consider what happens to a column ofboxes c j (E) of side length E when we 

apply the affine transformation Wn to it. It becomes a column of parallelograms. The 

width of the column is anE and the height of the column is ldn I times the height of 

the column before transformation. Let N(cj(E)) denote the number of boxes in the 

column c j (E). Then the column Wn ( c j (E)) can be thought of as being made up of 

square boxes of side length anE, each of which intersects wn(G). How many boxes 

of side length anE are there in this column? Approximately ldniN(c(E))/an. Adding 

up the contribution to Nn(anE) from each column we obtain 

The situation is illustrated in Figure VI.172. 
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Figure VI. 172. When 
the shear transforma-
tion w 1 is applied to the 
columns of boxes which 
cover the graph, G, the 
result is a set of thinner 
columns, of width a 1E, 

which cover w1(G). The 
new columns are made up 
of small parallelograms, 
but the number of square 
boxes of side length a 1 E 

which they contain is read
ily estimated. 

G 

From the last equation we deduce that when E is very small compared to [x0 , XN ], 

ldnl E 
Nn(E) ~ -N(-) forn = 1, 2, ... , N. (3) 

an an 

We now substitute from equation 3 into 2 to obtain the functional equation 

d1 E dz E d3 E dN E 
N(E) ~ -N(-) + -N(-) + -N(-) + · · · + -N(-). 

a1 a1 az az a3 a3 aN aN 

Into this equation we substitute our assumption N(E) ~constant ·E-D to obtain the 
equation 

E-D~ ldtlaiD-IE-D + ldzlazD-IE-D + ld3la3D-IE-D + · · · + ldNiaND-IE-D. 

The main formula in the statement of the theorem follows at once. 
If the interpolation points are collinear, then the attractor of the IFS is the line 

segment that connects the point (xo, Fo) to the point (xN, FN), and this has fractal 
dimension 1. If :L~= 1 1dnl :S 1, then one can show thatN(E) behaves like a constant 
times E -I, whence the fractal dimension is 1. This completes our informal demon
stration of the theorem. 

Examples & Exercises 
3.1. We consider the fractal dimension of a fractal interpolation function in the 
case where the interpolation points are equally spaced. Let x; = x0 + -JJ (x N - x0) 
for i = 0, 1, 2, ... , N. Then it follows that an= t for n = 1, 2, ... , N. Hence if 
condition ( 1) in Theorem 3.1 holds then the fractal dimension D of the interpolation 
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function obeys 

It follows that 

This is a delightful formula for reasons of two types, (a) and (b). (a) This formula 

confirms our understanding of the fractal dimension of fractal interpolation func

tions. For example, notice that L.:::=l ldnl < N. Hence the dimension of a fractal 

interpolation function is less than 2: however, we can make it arbitrarily close to 2. 

Also, under the assumption that L.:::=l ldnl > 1, the fractal dimension is greater than 

1: however, we can vary it smoothly down to 1. (b) It is remarkable that the fractal 

dimension does not depend on the values { Fi : i = 0, 1, 2, ... , N}, aside from the 

constraint that the interpolation points be noncollinear. Hence it is easy to explore 

a collection of fractal interpolation functions, all of which have the same fractal di

mension, by imposing the following simple constraint on the vertical scaling factors: 

N 

L ldnl = ND-l. 

n=l 
Figure VI.173 illustrates some members of the family of fractal interpolation 

functions corresponding to the set of data {(0, 0), (1, 1), (2, 1), (3, 2)}, such that the 

fractal dimension ofeach member of the family is D = 1.3. , 

Figures 173 (a) and (c) illustrate members of a family of fractal interpolation 

functions parameterized by the fractal dimension D. Each function interpolates the 

same set of data. 

3.2. Make an experimental estimate of the fractal dimension of the graphical data 

in Figure VI.17 5. Find a fractal interpolation function associated with the data 

{(0, 0), (50, 50), (100, 0)}, which has the same fractal dimension and two equal ver

tical scaling factors. Compare the graph of the fractal interpolation function with the 

graphical data. 

3.3. Find a fractal interpolation function that approximates the experimental data 

shown in Figure V.14 7. 

3.4. Figure VI.176 shows the graphs of functions belonging to various one-para-
1 

meter families of fractal interpolation functions. Each graph is the attractor of an 

IFS consisting of two affine transformations. Find the IFS associated with one of the 

families. 
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Figure VI. 173. Mem
bers of the family of frac
tal interpolation functions 
corresponding to the set of 
data {(0,0), (1, 1), (2, 1), 
(3, 2)}, such that the frac
tal dimension of each 
member of the family is 
D= 1.3. 

(a) 

(b) 
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4 Hidden Variable Fractal Interpolation 

We begin by generalizing the results of section 6.2. Throughout this section, let 

(Y, dy) denote a complete metric space. 

Definition 4. 1 Let I c ~. Let f : I -+ Y be a function. The graph off is the set 

of points 

G = {(x, f(x)) E ~X Y: X E /}. 

Definition 4.2 A set of generalized data is a set of points of the form { (x;, F;) E 

~ x Y: i = 0, 1, 2, ... , N}, where 

An interpolation function corresponding to this set of data is a continuous function 

f: [xo, XN]-+ Y such that 

fori= 1, 2, ... , N. 

The points (x;, F;) E ~ x Y are called the interpolation points. We say that the func

tion f interpolates the data and that (the graph of) f passes through the interpola-
1 

tion points. · 

Let X denote the Cartesian product space ~ x Y. Let (} denote a positive number. 

(c) 
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Figure Vl.174. Mem
bers of a one-parameter 
family of fractal interpo
lation functions. They 
correspond to the set 
of data {(0,0), (1, 1), 
(2, 1), (3, 2)} with ver
tical scaling factors 
d1 = -d2 = d3 = 3D-2 

for D = 1, 1.1, 1.2, 
1.3, 1.4, 1.5, 1.6, and 1.7. 
D is the fractal dimension 
of the fractal interpolation 
function. 
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Figure Vl.176. This figure shows the graphs of various one-parameter families of fractal 

interpolation functions. fach graph is the attractor of an IFS consisting of two affine 

transformations. Can you find the families? 

Figure VI. 175. Make 
an experimental estimate 
of the fractal dimension of 

the graphical data shown 
here. Find a fractal inter
polation function associ
ated with the data { (0, 0), 
(50, -50), (100, 0)}, 

which has the same fractal 
dimension and two equal 
vertical scaling factors. 
Compare the graph of the 
fractal interpolation func
tion with the graphical 
data. 
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Define a metric d on X by 

(1) 

for all points X 1 = (x1, y 1) and X 2 = (x2, Y2) in X. then (X, d) is a complete metric 

space. 
Let N be an integer greater than 1. Let a set of generalized data {(xi, Fi) EX: i = 

0, 1, 2, ... , N} be given. Let n E {1, 2, ... , N}. Define Ln: IR{--+ IR{ by 

(Xn - Xn-1) (XNXn-1 - XoXn) 
Ln(X) = anx +en where an= and en= . (2) 

(XN- Xo) (XN- Xo) 

so that Ln([xo, XN]) = [Xn-1· Xn]. Let c and s be real numbers, with 0 ::=: s < 1 and 
c > 0. For each n E {1, 2, ... , N} let Mn: X--+ Y be a function that obeys 

d(Mn(a, y), Mn(b, y)) :S cia - bi for all a, bE IR{, (3) 

and 

d(Mn(X, a), Mn(X, b)) :S sdy(a, b) for all a, bEY. (4) 

Define a transformation Wn : X --+ X by 

Wn(X, y) = (Ln(x), Mn(X, y)) for all (x, y) EX, n = 1, 2, ... , N. 

Theorem 4.1 Let the IFS {X; Wn, n = 1, 2, ... , N} be defined as above with 

N > 1. In particular, assume that there are real constants c and s such that 0 ::=: s :::: 

1, 0 < c, and conditions 3 and 4 are obeyed. Let the constant() in the definition of 

the metric d in equation 1 be defined by 

(1 -a) . 
()=---where a= max{ai: z = 1, 2, ... , N}. 

2c 

Then the IFS {X; Wn, n = 1, 2, ... , N} is hyperbolic with respect to the metric d. 

Proof This follows very similar lines to the proof of Theorem 2.1. We leave it as 
an exercise for enthusiastic readers. The proof can also be found in [Barnsley 1986]. 

We now constrain the hyperbolic IFS {X; Wn, n = 1, 2, ... , N}, defined above, to 
ensure that its attractor includes the set of generalized data. We assume that 

Mn(Xo, Fo) = Fn-1 and Mn(XN, FN) = Fn for n = 1, 2, ... , N. (5) 

Then it follows that 

Theorem 4.2 Let N be a positive integer greater than 1. Let {X; Wn, n = 
1, 2, ... , N} denote the IFS defined above, associated with the generalized data set 

{(xi, Fi) E IR{ x Y: i = 1, 2, ... , N}. In particular, assume that there are real con

stants c and s such that 0 ::=: s ::=: 1, 0 < c, and conditions 3, 4, and 5 are obeyed. Let 
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G E 1t(X) denote the attract or of the IFS. Then G is the graph of a continuous func

tion f: [x0, xN]--+ Y which interpolates the data {(x;, F;): i = 1, 2, ... , N}. That 

is, 

G = {(x, j(x)): X E [xo, XN]}, 

where 

f(xJ = F; fori= 0, 1, 2, 3, ... , N. 

Proof Again we refer to [Bamsley 1988f]. The proof is analgous to the proof of 

Theorem 2.2. 

Definition 4.3 The function whose graph is the attractor o{an IFS, as described 

in Theorems 4.1 and 4.2, above, is called a generalized fractal interpolation function, 

corresponding to the generalized data {(x;, F;): i = 1, 2, ... , N}. 

We now show how to use the idea of generalized fractal interpolation functions 

to produce interpolation functions that are more flexible than heretofore. The idea is 

to construct a generalized fractal interpolation function, using affine transformations 

acting on ~3 , and to project its graph into ~2 . This can be done in such a way that 

the projection is the graph of a function that interpolates a set of data { (x;, F;) E 

!R{2 : i = 1, 2, ... , N}. The extra degrees of freedom provided by working in ~3 

give us "hidden" :variables. These variables can be used to adjust the shape and 

fractal dimension of the interpolation functions. The benefits of working with affine 

transformations are kept. 

Let N be an integer greater than 1. Let a set of data {(x;, F;) E ~2 : i = 0, 1, 2, 

... , N} be given. Introduce a set of real parameters {H;: i = 0, 1, 2, ... , N}. For 

the moment let us suppose that these parameters are fixed. Then we define a gen

eralized set of data to be {(x;, F;, H;) E ~ x ~2 : i = 0, l, 2, ... , N}. In the present 

application of Theorem 4.2 we take (Y, dy) to be (~2 ,Euclidean). We consider an 

IFS {~3 ; Wn, n = 1, 2, ... , N}, where for n E {1, 2, ... , N} the map Wn: ~3 --+ ~3 

is an affine transformation of the special structure: 

Here an, Cn, dn, en, fn, gn, hn, kn, ln, and mn are real numbers. We assume that they 

obey the constraints 

[ 
Xo] [ Xn-1] 

Wn Fo = Wn Fn-1 , 

Go Gn-1 

and 
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Wn [ ~:] = w. [ ~] , for n = 1, 2, ... , N. 

Then we can write 

Wn(X, y, z) = (Ln(x), Mn(X, y, z)) for all (x, y, z) E II~?. n = 1, 2, ... , N, 

where Ln(x) is defined in Equation 2 and Mn : ~3 --+ ~2 is defined by 

where 

hn] for n = 1, 2, ... , N. 
mn 

(6) 

Let us replace Fn in condition 5 by (Fn, Hn). Then Mn obeys condition 5. Let us 
define 

c = max{max{ci, kd: i = 1, 2, ... , N}. 

Then condition 3 is true. Lastly, assume that the linear transformation An: ~2 --+ ~2 

is contractive with contractivity factor s with 0 ,::: s < 1. Then condition 4 is true. 
We conclude that, under the conditions given in this paragraph, the IFS {~3 ; Wn, n = 
1, 2, ... , N} satisfies the conditions of Theorem 4.2. It follows that the attractor of 

'the IFS is the graph of a continuous function f: [xo, XN]--+ ~2 such that 

Now write 

f(x) = (JI(x), h(x)). 

Then fi : [x0 , XN]--+ ~is a continuous function such that 

Definition 4.4 The function f 1 : [x0 , xN]--+ ~2 constructed in the previous 
paragraph is called a hidden variable fractal interpolation function, associated with 
the set of data {(xi, Fi) E ~2 : i = 1, 2, ... , N}. 

The easiest method for computing the graph of a hidden variable fractal interpo
lation function is with the aid of the Random Iteration Algorithm. Here we present 
an adaptation of Program 1. It computes points on the graph of a hidden variable 
fractal interpolation function and displays them on a graphics monitor. It is written 
for N = 3 and the data set 

{ (0, 0), (30, 50), (60, 40), (100, 10) }. 
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The "hidden" variables, namely the entries of the matrices An and the number Hn 

for n = 1, 2, 3, are input by the user during execution of the code. The program 

calculates the coefficients in the three-dimensional affine transformations from the 

data, and then applies the Random Iteration Algorithm to the resulting IFS. The first 

two coordinates of each successively computed point, which has three coordinates, 

are plotted on the screen of the graphics monitor. The program is written in BASIC. 

It runs without modification on an IBM PC with Enhanced Graphics Adaptor and 

Turbobasic. On any line the words preceded by a ' are comments: they are not part 

of the program. 

Program 2. 

x[O] =0 x[1] =30 x[2] =60 x[3] =100 'Data set 

F[O] =0 F[1] =50 F[2] =40 F[3] =10 

input "enter the hidden variables H[O], H[1], H[2] and H[3]", 

H[1] ,H[2] ,H[3] ,H[4] 'Hidden Variables 

for n = 1 to 3 : print "for n = 11
, n 

input "enter the hidden variables d, h, 1, m", 

d[n] ,hh[n] ,l[n] ,m[n] 'More Hidden Variables 

next 

for n = 1 to 3 'Calculate the affine transformations from 

the Data and the Hidden Variables 

p = F[n-1]-d[n]*F[O]-hh[n]*H[O] q = H [n-1] -1 [n] *F [0] -m [n] *H [0] 

r = F[n]-d[n]*F[3]-hh[n]*H[3] : s = H[n]-l[n]*F[3]-m[n]*H[3] 

b x[3]-x[O] : c[n] = (r-p)/b : k[n] = (s-q)/b 

a[n] (x[n]-x[n-1])/b : e[n] = (x[3]*x[n-1]-x[O]*x[n])/b 

ff[n] = p-c[n]*x[O] : g[n] = q-k[n]*x[O] 

next 

screen 2 : cls 'initalialize graphics 

window(0,0)-(100,100) 'change this to zoom and/or pan 
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~ 

x =0: y =0: z =hh[O] 'initial point from which the random 

iteration begins 

for n 1 to 1000 'Random Iteration Algorithm 

kk int(3*rnd-0.0001)+1 

newx a[kk]*x + e[kk] 

newy c[kk]*x + d[kk]*y + hh[kk]*z + ff[kk] 

newz k[kk]*x + l[kk]*y + m[kk]*z + g[kk] 

x = newx : y = newy: z = newz 

pset(x,y),z 'plot the most recently computed point, in 

color z, on the screen 

next 

end 

The result of running an adaptation of this program on a Masscomp workstation 

and then printing the contents of the graphics screen is presented in Figure VI.177. In 

this case H[O] = 0, H[1] = 30, H[2] = 60, H[3] = 100, d(l) = d(2) = d(3) = 0.3, 

h(l) = h(2) = 0.2, h(3) = 0.1, /(1) = /(2) = /(3) = -0.1, m(l) = 0.3, m(2) = 0, 

m (3) = -0.1. Remember that the linear transformation An must be contractive, so 

certainly do not enter values of magnitude larger than 1 for any of the numbers 

d(n), h(n), l(n), and m(n). The program renders each point in a color that depends 

on its z-coordinate. This helps the user to visualize the "hidden" three-dimensional 

character of the curve. 
The important point about hidden variable fractal interpolation is this. Although 

the attractor of the IFS is a union of affine transformations applied to the attractor, 

this is not the case in general when we replace the word "attractor" by the phrase 

"projection of the attractor." The graph of the hidden variable fractal interpolation 

function f 1 (x) is not self-similar, or self-affine, or self-anything! 

The idea of hidden variable fractal interpolation functions can be developed using 

any number of "hidden" dimensions. As the number of dimensions is increased, the 

process of specifying the function becomes more and more onerous, and the function 

itself, seen by us in flatland, becomes more and more random. One would never 

guess, from looking at pictures of them, that they are generated by deterministic 

fractal geometry. 
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y 

X .--------------------------------------------------------~ 

Examples & Exercises 
4. 1. Generalize the proof of Theorem 2.1 to obtain a proof of Theorem 4.1. 

4.2. Let :F denote the set of continuous functions f: [x0 , XN] ~ Y such that 

f(xo) = Fo and f(xN) = FN. 

Define a metric d on :F by 

d(f, g)= max{dr(f(x), g(x)): x E [xo, xN]}. 

Then (:F, d) is a complete metric space; see, for example [Rudin 1966]. Use this fact 
to help you generalize the proof of Theorem 2.2 to provide a proof of Theorem 4.2. 

4.3. Rewrite Program 2 in a form suitable for your own computer environment, then 
run it and obtain hardcopy of the output. 

4.4. Modify your version of Program 2 so that you can adjust one of the "hidden" 
variables while it is running. In this way, make a picture that shows a one-parameter 
family of hidden variable fractal interpolation functions. 

4.5. Modify your version of Program 2 so that you can see the projection of the 
attractor of the IFS into the (y, z) plane. To do this simply plot (y, z) in place of 
(x, y). Make hardcopy of the output. 

4.6. Figure VI.178 sho\VS three projections of the graph G of a generalized fractal 
interpolation function f.: [0, 1] ~ ~2.,The projections are (i) into the (x, y) plane, 
(ii) into the (x, z) plane, and (iii) into the (y, z) plane. G is the attractor of an IFS of 

Figure Vl.l77. An ex
ample of a hidden vari
able fractal interpola
tion function. This graph 
was computed using Pro
gram 2 with the follow
ing "hidden" variables: 
H[O] = 0, H[l] = 30, 
H[2] = 60, H[3] = 100, 
d(l) = d(2) = d(3) = 
0.3, h(l) = h(2) = 0.2, 
h(3) = 0.1, /(1) = /(2) = 
l(3) = -0.1, m(I) = 0.3, 
m(2) = 0, m(3) = -0.1. 
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the form {~3 ; w 1, w 2 }, where w 1 and w 2 are affine transformations. Find w 1 and w2• 

See also Figure VI.l79. 

4.7. Use a hidden-variable fractal interpolation function to fit the experimental data 

in Figure V.l47. Here is one way to proceed. (a) Modify your version of Program 

6.4.1 so that you can adjust the "hidden" variables from the keyboard. (b) Trace 

the data in the Figure V.l4 7 onto a sheet of flexible transparent material, such as a 

viewgraph. (c) Attach the tracing to the screen of your graphics monitor using clear 

sticky tape. (d) Interactively adjust the "hidden" variables to provide a good visual 

fit to the data. 

4.8. •Show that, with hidden variables, one can use affine transformations to con

struct graphs of polynomials of any degree. 

5 Space-Filling Curves 

Here we make a delightful application of Theorem 4.2. Let A denote a nonempty 

path wise-connected compact subset of ~ 2. We show how to to construct a continu

ous function f: [0, 1]---+ ~2 such that f([O, 1]) =A. 

Let (Y, d y) denote the metric space ( ~ 2 , Euclidean). We represent points in Y us

ing a Cartesian coordinate system defined by a y-axis and a z-axis. Thus, (y, z) may 

represent a point in Y. To motivate the development we take A = • C Y. Consider 

the just -touching TFS {Y; w 1, w 2 , w 3 , w4}, where the maps are similitudes of scaling 

factor 0.5, corresponding to the collage in Figure VI.180. 

Let 

(Fo, H0 ) = (0, 0), (Ft, H1) = (0, 0.5), 

(F3, H3) = (1, 0.5), and 

(F4, H4) = (1, 0). 

The maps are chosen so that 

The IFS code for this IFS is given in Table VI. I. 

Let A0 E H(•) denote a simple curve that connects the point (F0 , Ho) to the point 

(F4, H4), such that A0 n a.= { (F0 , H0 ), (F4, H4) }. This last condition says that the 

curve lies in the interior of the unit square box, except for the two endpoints of the 

curve. Consider the sequence of sets {An= won(Ao)}~0 where W: H(•)---+ 1i(•) 

is defined by 

It follows from Theorem 7.1 in Chapter III that the sequence converges to • in 

the Hausdorff metric. The reader should verify that, for each n = 1, 2, ... , An is a 



T y 

! 

T y 

! 

T z 

T z 
! 

5 Space-Filling Curves 239 

Figure Vl.178. This 
figure shows three pro
jections of the. graph 
of a generalized frac-
tal interpolation function 
f: [0, 1]---+ ~2 • The pro
jections are into the (x, y) 
plane, the (x, z) plane, and 
the (y, z) plane. G is the 
attractor of an IFS of the 
form {~3 ; w 1, w2 }, where 
w 1 and w2 are affine trans
formations. Can you find 
w 1 and w 2? 

Figure Vl.179. Three 
orthogonal projections of 
the graph of a general
ized fractal interpolation 
function. The fractal di
mension here is higher 
than for Figure VL 178. 

__j 
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Figure Vl.180. Col
lage of • using four simil
itudes of scaling factor 
0.5. The map Wn is cho
sen so that Wn(Fo, Ho) = 
(Fn-I, Hn-I) and 
Wn(F4, H4) = (Fn, Hn) for 
n = 1, 2, 3, 4. 

(Fo, Ho) (F4, H4) 

Table Vl.l. IFS code for •, constrained to yield a space-filling curve. 

w a b c d e f p 

0 0.5 0.5 0 0 0 0.25 

2 0.5 0 0 0.5 0 0.5 0.25 

3 0.5 0 0 0.5 0.5 0.5 0.25 

4 0 -0.5 -0.5 0 0.5 0.25 

simple curve that connects the points (F0 , Ho) to the point (F4 , H4). Sequences of 

such curves are illustrated in Figures VI.181-VI.184. 

We use the IFS defined in the previous paragraph to construct a continuous func

tion f : [0, 1] ~ • such that f([O, 1]) = •· We achieve this by exploiting a hidden 

variable fractal function constructed in a special way. We use ideas presented in 

Chapter VI, section 4. Consider the IFS {~3 ; Wn, n = 1, 2, ... , N}, where the map 

wn : !R{ 3 ~ !R{ 3 is the affine transformation 

[ 

x ] _ [ 0. 25 0 0 ] [ x ] [ (n - 1) /4] 
Wn Y - 0 an bn Y + en 

Z 0 Cn dn Z fn 

for n E {1, 2, 3, 4}. 

The constants an, bn, Cn, dn, en, and fn are defined in Table Vl.l. This IFS satisfies 

Theorem 4.2, corresponding to the set of data 

It follows that the attractor of the IFS is the graph, G, of a continuous function 

f: [0, 1] ~ !R{2
• What is the range of this function? It is 



5 Space-Filling Curves 241 

Figure VI. 181. A se
quence of curves "con
verging to" a space-filling 
curve. These are obtained 
by application of the De
terministic Algorithm to 
the IFS code in Table Vl.l, 
starting from a curve A0 , 

which connects (0, 0) to 
(1, 0) and lies in •· 

Figure VI. 182. A 
higher-resolution view 
of one of the panels in 
Figure VI.184. How long 
is the shortest path from 
the lower left comer to the 
lower right comer? 
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Figure Vl.183. A se

quence of sets "converging 

to" a •· These are obtained 
by application of the De

terministic Algorithm to 
the IFS code in Table VI.l, 

starting from the set A0 in 
the lower left panel. How 
fascinating they are! 

Figure VI. 184, A se

quence of curves "con

verging to" a space-filling 

curve. These are obtained 
by application of the De
terministic Algorithm to 
the IFS code in Table VI.l, 

starting from a curve A0 , 

which connects (0, 0) to 

(1, 0) and lies in •· 

n 
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Gyz = {(y, z) E IR(2 : (x, y, z) E G}, 

namely the projection of G into the (y, z) plane. It is straightforward to prove that 

G yz is the attractor A = • of the IFS defined by the IFS code in Table VI.1. It follows 

that f([O, 1]) = •· So we have our space-filling curve! 

We have something else very exciting as well. The attractor of the three-dimen

sional IFS is the graph of a function from [0, 1] to •· The projections Gxy and Gxz, in 

the obvious notation, are graphs of hidden-variable fractal functions, while Gyz = •· 

What does G look like from other points of view? Various views of the attractor are 

illustrated in Figures VI.185 and VI.186. We conclude that G is a curious, complex, 

three-dimensional object. It would be wonderful to have a three-dimensional model 

of G made out of very thin strong wire. 

The following theorem summarizes what we have just learned. 

Theorem 5.1 Let A c IR(2 be a nonempty pathwise-connected compact set, such 

that the following conditions hold. Let N be an integer greater than 1. Let there be 

a hyperbolic IFS {IR(2
; Mn, n = 1, 2, ... , N} such that A is the attractor of the IFS. 

Let there be a set of distinct points { (Fi, Gt") E A: i = 0, 1, 2, ... , N} such that 

Mn(Fo, Ho) = (Fn-I· Hn-I) and Wn(FN, HN) = (Fn, Hn) for n = 1, 2, ... ' N. 

Then there is a continuous function f: [0, 1]--+ IR(2 such that f([O, 1]) =A. One 

such function is the one whose graph is the attract or of the IFS 

1 n- 1 
{IR(

3
; Wn(X, y, z) = (Nx + -----;:;--· Mn(y, z)), n = 1, 2, ... , N}. 

Examples & Exercises 
5.1. Let & denote the Sierpinski triangle with vertices at the points (0, 0), (0, 1), 

and (1, 0). Find an IFS of the form {IR(3; WI, w2 , w3 }, where the maps are affine, such 

that the attractor of the IFS is the graph of a continous function f : [0, 1] --+ IR(2 such 

that f([O, 1]) =&.Four projections of such an attractor are shown in Figure VI.187. 

5.2. Find an IFS {IR(3; WI, w 2 , w 3 , w4 }, where the transformations are affine, whose 

attractor is the graph of a continuous function f: [0, 1]--+ IR(2 such that /([0, 1]) = 

A, where A is the set represented in Figure VI.188. 
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Figure VI. 185. Vari

ous views of the attractor 
of a certain IFS. From 
some points of view we 
see that it is the graph of a 
function. From one point 
of view it is the graph of a 
space-filling curve! 

Figure VI. 186. Higher
resolution view of the 
lower right panel of Fig
ure VI.185. 
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Figure VI. 188. Find an 
IFS {~3 ; w 1, w2, w3, w4}, 
where the transforma
tions are affine, whose 
attractor is the graph of 
a continuous function 
f: [0, 1]--* ~2 such that 
f([O, 1]) =A, where A is 
the set represented here. 

Figure Vl.187. Four 
views of the attractor of 
an IFS. This attractor is 
the graph of a continuous 
function f: [0, 1]--* ~2 

such that f([O, 1]) is 
a Sierpinski triangle. 
This function provides 
a "space-filling" curve, 
where space is a fractal! 
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The Escape Time Algorithm for Computing Pictures of IFS Attractors 
and Julia Sets 

Let us consider the dynamical system {~2 ; f}, where f: ~2 --* ~2 is defined by 

{ 

(2x, 2y- 1) if y >0.5, 

f(x, y) = (2x- 1, y) if x > 0.5 andy~ 0.5, 

(2x, 2 y) otherwise. 

This dynamical system is related to the IFS {~2 ; WI, w2, w3}, where 

WI(X, y) = (0.5x, 0.5y + 0.5), 

w2(x, y) = (0.5x + 0.5, 0.5y), 

w3(x, y) = (0.5x, 0.5y)}. 

The attractor of the IFS is a Sierpinski triangle A with vertices at (0, 0), (0, 1), 

and (1, 0). The relationship between the dynamical system {~2 ; f} and the IFS 

{~2 ; WI, w2, w3} is that {A; f} is a shift dynamical system associated with the IFS. 

(Shift dynamical systems are discussed in Chapter IV, section 4.) One readily verifies 

that f restricted to A satisfies 

{ 

w~:(x, y) ~f (x, y) E WI(£)\ {(0, 0.5), (0.5, 0.5)}, 

f(x, y) = w2 (x, y) 1f (x, y) E w2(.A) \ {(0.5, 0)}, 

w3 1(x, y) if (x, y) E w3(.A). 

In particular, f maps A onto itself. The dynamical system {~2 ; f} is an exten

sion of the shift dynamical system {A; f} to ~2 . The situation is illustrated in Fig

ure VII.l89. 
Let d denote the Euclidean metric on ~2 • The shift dynamical system {~2 ; f} 

is "expanding": for any pair of points x1, x2 lying in any one of the three domains 

associated with f, we have 
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In this region f(x,y)=wi1(x,y) 

Here f(x,y)=wi(x,y) In this region f(x,y)=wf(x,y) 

One can prove that the orbit {Jon (x)} ~0 diverges toward infinity if x does not 

belong to £. That is 

d(O, fon(x)) ~ oo as n ~ oo for any point x E ~2 \ £. 

What happens if we compute numerically the orbit of a point x E £? Recall that 

the fractal dimension of£ is log(3) I log(2). This tells us that £ is "thin" compared 

to ~2 . Hence, although f(£) =£,errors in a computed orbit are likely to produce 

points that do not lie on£. This means that, in practice, most numerically computed 

orbits will diverge, regardless of whether or not the initial point lies on £. The 

Sierpinski triangle £ is an "unstable" invariant set for the transformation f : ~2 ~ 

~2 • It is a "repulsive" fixed point for the transformation f : 1i(~2 ) ~ 1i(~2 ). It is 

an attractive fixed poi~t for the transformation W : 1i(~2) ~ 1i(~2 ), where W = 

w 1 U w 2 U w 3 is defined in the usual manner. 

Figure Vll.189. The 
dynamical system { !R 2 , f} 
is obtained by extending 
the definition of a shift 
dynamical system on a 
Sierpinski triangle to all 
of !R2

. 
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Figure VII. 190. How 
long do orbits of points in 
W take to arrive in V? We 
expect that the number of 
iterations required should 
tell us something about the 
structure of A. 

Intuitively, we expect that orbits of the dynamical system {~2 ; /} that start close 
to £ should "take longer to diverge" than those that start far from £. How fast do 
different orbits diverge? Here we describe a numerical, computergraphical experi
ment to compare the number of iterations required for the orbits of different points 
to escape from a ball of large radius, centered at the origin. Let (a, b) and (c, d), re
spectively, denote the coordinates of the lower left comer and the upper right comer 
of a closed, filled rectangle W c ~ 2 • Let M denote a positive integer, and define an 
array of points in W by 

(c-a) (d-b) 
xp,q =(a+ p~,b+q M )for p,q =0, 1,2, ... , M. 

In the experiment these points will be represented by pixels on a computer graphics 
display device. We compare the orbits {fon(xp,q) :}~0 for p, q = 0, 1, 2, ... , M. 

Let R be a positive number, sufficiently large that the ball with center at the origin 
and radius R contains both£ and W. Define 

V = {(x, y) E ~: x 2 + y 2 > R}. 

A possible choice for the rectangle W and the set V, in relation to £, is illustrated 
in Figure VII.190. In order that the comparison of orbits provides information about 
£,one should choose W so that W n £ -:j:. 0. 

Let numits denote a positive integer. The following program computes a finite set 
of points 

{foi(Xp,q), fo2(Xp,q), Jo\xp,q), ... ' Jon(Xp,q)} 

belonging to the orbit of Xp,q E W, for each p, q = 1, 2, ... , M. The total number 
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of points computed on an orbit is at most numits. If the set of computed points of the 
orbit of xp,q does not include a point in V when n =numits, then the computation 
passes to the next value of (p, q). Otherwise the pixel corresponding to Xp,q is ren
dered in a color indexed by the first integer n such that Jon (x p,q) E V, and then the 
computation passes to the next value of (p, q). This provides a computergraphical 
method for comparing how long the orbits of different points in W take to reach V. 

The program is written in BASIC. It runs without modification on an IBM PC 
with Enhanced Graphics Adaptor and Turbobasic. On any line the words preceded 
by a' are comments: they are not part of the program. 

Program 1. ((Example of the Escape Time Algorithm)) 

numits=20: a=O : b=O: c=1 : d=1 : M=100 'Define viewing 
window, W, and numits . 

R=200 'Define the region V. 

screen 9: cls 'Initialize graphics. 

for p=1 to M 

for q=1 to M 

x = a + (c-a)*p/M y b + (d-b)*q/M 'Specify the initial 
point of an orbit, x(p,q). 

for n=1 to numi ts 'Compute at most numits points on the orbit 
of x(p,q). 

if y > 0.5 then 'Evaluate $f$ applied to the 

x = 2*x : y = 2*y - 1 

elseif x > 0.5 then 

X = 2*X - 1 : y = 2*y 

else 

y 

end if 

150 if x*x + Y*Y > R then 

previous point on the orbit. 

'THE FORMULA FOR THE 
FUNCTION f(x) 

'If the most recently computed 
point lies in V then ... 
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160 pset(p,q),n n = numits ' ... render the pixel x(p,q) 

in color n, and go to the next 

(p,q). 

170 end if 

if instat then end 'Stop computing if any key is pressed! 

next n next q next p 

end 

Color Plate 6 shows the result of running a version of Program 1 on a Masscomp 

5600 workstation with Aurora graphics. 

In Figure VII.191 we show the result of running a version of Program 1, but 

this time in black and white. A point is plotted in black if the number of iterations 

required to reach V is an odd integer, or if the orbit of the point does not reach V 

during the first numits iterations. 

In Figure VII. 192 we show the result of running a version of Program 1, with 

(a, b)= (0, 0), (c, d)= (5 x 10-18 , 5 x 10-18), and numits = 65. This viewing win

dow is minute. See also Color Plate 7. Now you should be convinced that A is not 

simplified by magnification. 

The dynamical system { ~ 2 ; J} contains deep information about the "repelling" 

set A. Some of this information is revealed by means of the Escape Time Algorithm. 

The orbits of points that lie close to A do indeed appear to take longer to escape from 

~2 \ V than those of points which lie further away. 

Examples & Exercises 

1. 1. Let { ~ 2 , J} denote the dynamical system defined at the start of this chapter 

and let A denote the associated Sierpinski triangle. Prove that the orbit {Jon (x)} ~0 
diverges, for each x E ~ 2 \ A. That is, prove that d ( 0, Jon (x)) ~ oo as n ~ oo for 

each x E ~2 \ A. 

1.2. Rewrite Program 1 in a form suitable for your own computergraphical envi

ronment, then run it and obtain hardcopy of the output. 

1.3. If the Escape Time Algorithm is applied to the dynamical system 

{~2 ; J(x, y) = (2x, 2y)}, 

what will be the general appearance of resulting colored regions? 

1.4. By changing the window size in Program 1, obtain images of "zooms" 

on the Sierpinski triangle. For example, use the following windows: (0, 0) -

(0.5, 0.5); (0, 0) - (0.25, 0.25); (0, 0) - (0.125, 0.125); .... How must the total 

number of iterations, numits, be adjusted as a function of window size in order 
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Figure Vll.191. Out

put from a modified ver

sion of Program 1. A pixel 

is rendered in black if 

either the number of it

erations required to reach 

V is an odd integer, or 

the orbit does not reach 

V during the first numits 

iterations. 

Figure VII. 192. Here 

we show the result 
of running a version 

of Program 1, with 
(a, b) = (0, 0), (c, d)= 

(5 X 10-18 , 5 X 10- 18), 

and numits = 65. This 
viewing window is 
minute, yet the com

putation time was not 

significantly increased. If 

we did not know it before, 

we are now convinced 
that A is not simplified by 

magnification. 



252 Chapter VII Julia Sets 

~ 

that (approximately) the quality of the images remains uniform? Make a graph of 
the total number of iterations against the window size. Is there a possible relation
ship between the behavior of numits as a function of window size, and the fractal 
dimension of the Sierpinski triangle? Make a hypothesis and test it experimentally. 

Here we construct another example of a dynamical system whose orbits "try to 
escape" from the attractor of an IFS. This time we treat an IFS whose attractor has a 
nonempty interior. Consider the hyperbolic IFS {IR{2 ; w 1, w2 }, where 

ands =h. 
The attractor of this IFS is a closted, filled rectangle, which we denote here by 

•· This attractor is the union of two copies of itself, each scaled by a factor 1 1 ,J2, 
rotated about the origin anticlockwise through 90°, and then translated horizontally, 
one copy to the left and one to the right. The inverse transformations are 

Define f : IR{2 --+ IR{2 by 

!( ) _ { w1 1
(x, y) 

x,y - -1 
w2 (x, y) 

when x >0 
whenx :::::0. 

Then the dynamical system {IR{2; f} is an extension of the shift dynamical system 
{•; f} to IR{2 . 

What happens when we apply the Escape Time Algorithm to this dynamical 
system? To see, one can replace the function f (x) in Program 1 by 

if x > 0 then 

newx s*y : newy -s*x + s 

else 

newx s*y newy -s*x - s 

end if 

x = newx y newy 

'THE FORMULA FOR THE 
FUNCTION f(x) 
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Results of running Program 1, thus modified, with the window W and the escape 

region V chosen appropriately, are shown in Figure VII.l93. 

It appears that the orbits of points in the interior • do not escape. This is not 

suprising. The fractal dimension of the attractor of the IFS is the same as the fractal 

dimension of ~2 , so small computational errors are unlikely to knock the orbit off 

the invariant set. It also appears that the orbits of points that lie in ~ 2 \ • reach V 

after fewer and fewer iterations, the farther away from • they start. 

Again we see that the Escape Time Algorithm provides a means for the compu

tation of the attractor of an IFS. Indeed, we have here the bare bones of a new algo

rithm for computing images of the attractors of some hyperbolic IFS on ~ 2• Here are 

the main steps. (a) Find a dynamical system {~2 ; f} which is an extension of a shift 

dynamical system associated with the IFS, and which tends to transform points off 

the attractor of the IFS to new points that are farther away from the attractor. (This 

is always possible if the IFS is totally disconnected. The tricky part is to find a for

mula for f(x), one which can be input conveniently into a computer. In the case of 

affine transformations ip ~ 2, one can often define the extensions of the domains of 

the inverse transformations with the aid of straight lines.) (b) Apply the Escape Time 

Algorithm, with V and W chosen appropriately, but plot only those points whose nu

merical orbits require sufficiently many iterations before they reach V. For example, 

Figure Vll.193. An 
image of an IFS attrac
tor computed using the 
Escape Time Algorithm. 
This time the attractor of 
the IFS is a filled rectangle 
and the computed orbits of 
points in • seem never to 
escape. 
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Figure VII. 194. Im
ages of an IFS attractor 
computed using the Es
cape Time Algorithm. 
Only points whose orbits 
have not escaped from 
~ \ V after numits iter
ations are plotted. The 
value for numits must be 
chosen not too large, as in 
(a); and not too small, as 
in (b); but just right, as in 
(c). 

~i.r.~..:..... 
~ ~-~- :~ =~ 
~~:--.:~.; .. :~;. :: .•. ~. 
:~ ~ .. ~- .!> •II. 

.)_!.:J:.:,~ ~:: .... -__,-

~1L ~ :::.._.. ~ 
U~::..: .. ~~~~~~~~ 

~~~, :~~~~t:,~:~":~t:r:~" 
(a) 

(c) 

in Program 1 as it stands, one can replace the three lines 150, 160, and 170 by the 

two lines 

150 if n = numits then pset(p,q),1 

160 if x*x + Y*Y > R then n = numits 
and define numits = 10. If the value of numits is too high, then very few points will 
not escape from W and a poor image of £ will result. If the value of numits is too 
low, then a coarse image of the A will be produced. An image of an IFS attractor 
computed using the Escape Time Algorithm, modified as described here, is shown 
in Figure VII.194. 

Color Plates 8-12 show the results of applying the Escape Time Algorithm to the 
dynamical system associated with various hyperbolic IFS in ~2 . In each case the 
maps are affine, and the shift dynamical system associated with the IFS has been 
extended to ~2 . 
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Examples & Exercises 

1.5. Modify your version of Program 1 to compute images of the attractor of the 

IFS {C; w 1(z) = rei8z- 1, w2 (z) = rewz + 1}, when r = 1/--.fi and()= rr/2. 

1.6. Show that it is possible to define a dynamical system { C; f} which extends to 

C the shift dynamical system associated with the IFS 

{C; w1(z) = rewz- 1, w2 (z) = rewz + 1}, 

for any() E [0, 2rr), provided that the positive real number r is chosen sufficiently 

small. Note that this can be done in such a way that f is continuous. 

1.7. Let {A; f} denote the shift dynamical system associated with a totally discon

nected hyperbolic IFS in ~2 • A denotes the attractor of the IFS. Show that there are 

many ways to define a dynamical system { ~ 2; g} so that f (x) = g (x) for all x E A. 

The Escape Time Algorithm can be applied, often with interesting results, to any 

dynamical system of the form {~2 ; f}, {C; f}, or {C; f}. One needs only to specify 

a viewing window W and a region V, to which orbits of points in W might escape. 

The result will be a "picture" of W wherein the pixel corresponding to the point z is 

colored according to the smallest value of the positive integer n such that fon(z) E V. 

A special color, such as black, may be reserved to represent points whose orbits do 

not reach V before (numits + 1) iterations. 

What would happen if the Escape Time Algorithm were applied to the dynamical 

system f : C ---+ C defined by f (z) = z2? This transformation can be expressed 

f(x, y) = (x 2 - y 2 , 2xy). From the discussion of the quadratic transformation in 

Chapter III, section 4, we know that the orbits of points in the complement of the 

unit disk F = { z E C : I z I .:::: 1} converge to the point at infinity. Orbits of points in 

the interior of F converge to the origin. So if W is a rectangle that contains F . 

and if the radius R, which defines V, is sufficiently large, then we expect that the 

Escape Time Algorithm would yield pictures of F surrounded by concentric rings of 

different colors. The reader should verify this! 

F is called the filled Julia set associated with the polynomial transformation 

f (z) = z2• The boundary of F is called the Julia set of f, and we denote it by 

1. It consists of the circle of radius 1 centered at the origin. One can think of J 

on the Riemann Sphere as being represented by the equator on a globe. This Julia 

set separates those points whose orbits converge to the point at Infinity from those 

whose orbits converge to the origin. Orbits of points on J itself cannot escape, 

either to infinity or to the origin. In fact J E 1t(C) and f(J) = J = f- 1(J). It is 

an "unstable" fixed point for the transform.ation f: 1t(C)---+ 1t(C). 

Definition 1. 1 Let f : C ---+ C denote a polynomial of degree greater than 1. 

Let F f denote the set of points in C whose orbits do not converge to the point at 
1 

infinity. That is, · · 

Ff = {z E C: {lfon(z)l}~0 is bounded}. 
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Figure VII. 195. Illus
tration showing what is 
going on in the proof 
of Theorem 1.1. This il
lustrates the increasing 
sequence of sets {Vn} of 
the point at infinity. It also 
shows the decreasing se
quence of sets, Kn, the 
complements of the lat
ter, which converge to the 
filled Julia set F1. In gen
eral the origin, 0, need 
not belong to F1 . 

RIEMANN 
SPHERE 

Ball around oO 

f 

0 

This set is called the filled Julia set associated with the polynomial f. The boundary 

ofF t is called the Julia set of the polynomial f, and it is denoted by It. 

Theorem 1. 1 Let f : C ~ C denote a polynomial of degree greater than 1. 

Let Ft denote the filled Julia setoff and let It denote the Julia set of f. Then Ft 

and It are nonempty compact subsets of C; that is, F t E 1i (C) and It E 1i (C). 

Moreover, f(It) =It= f- 1(It) and f(Ft) = Ft = f- 1(Ft)· The set V00 = C \ 
F t is pathwise-connected. 

Proof We outline the proof for the one-parameter family of transformations h. : 
C ~ C defined by 

h .. (z) = z2 
- A, where A E C is the parameter. 

The general case is treated in [Blanchard 1984], [Brolin], [Fatou 1919-20], and 

[Julia 1918], for example. This outline proof is constructed to provide information 

about the relationship between the theorem and the Escape Time Algorithm. Some 

of the ideas and notation used here are illustrated in Figure VII.195. 

Let h denote the Julia set for f>- and let F>- denote the filled Julia set for f>-· Let d 

denote the Euclidean metric on C and let 

R > o.s + Jo.25 + lA I. 

Then it is readily verified that 

d(O, f(z)) > d(O, z) for all z such that d(O, z)::: R. 

Define 

V = {z E C: lzl > R} U {oo}. 



The Escape Time Algorithm 257 

Then it follows that 

f(V) c V. 

One can prove that the orbit {fon(z)} converges to oo for all z E V. No bounded orbit 

intersects V. It follows that 

FA = { z E C : Jon (z) tj V for each finite positive integer n}. 

That is, FA is the same as the set of points whose orbits do not intersect V. 
Now consider the sequence of sets 

for n = 0, 1, 2, .... 

For each nonnegative integer n, Vn is an open connected subset of (C,Spherical). 

Vn is open because V is open and f is continuous. Vn is connected because of the 

geometry of the quadratic transformation, described in Chapter III, section 4: The 
inverse image of a path that joins the point at infinity to any other point on the sphere 

is a path that contains the point at infinity. 
Since f(V) C V it follows that V c f- 1(V). This implies that 

V = Vo c V1 c V2 c V3 c · · · c Vn c · · ·. (1) 

For each nonnegative integer n, 

That is, Vn is the set of points whose orbits require at most n iterations to reach V. 
Let 

for n = 0, 1, 2, 3, .... 

Then Kn is the set of points whose orbits do not intersect V during the first n 

iterations. That is, 

For each nonnegative integer n, Kn is a non empty compact subset of the metric space 

(C,Spherical). How do we know that Kn is nonempty? Because we can calculate that 

f possesses a fixed point z 1 E C, by solving the equation 

f(Zj) = ZJ- A= ZJ· 

The orbit of z f converges to z f. Hence it cannot belong to Vn for any nonnegative 

integer n. Hence ZJ E Kn for each nonnegative integer n. 
Equation 1 implies that 

Kof:J K1 :J K2 :J K3 :J · · · :J Kn :J · · ·. 

It follows that {Kn} is a Cauchy sequence in 1t(C). It follows that {Kn} converges to 
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a point in 1-l(C). The limit is the set of points whose orbits do not intersect V. Hence 

Ft = lim Kn = n~0Kn, 
n~oo 

and we deduce that F f belongs to 1-l (C). 

The equation 

forn=0,1,2, ... 

now implies, as in the proof of Theorem 4.1, that 

Ft..= fo-l(F~..). 

Applying f to both sides of this equation, we obtain 

f(Ft..) =Ft... 

Let us now consider the boundary ofF~.., namely the Julia set It.. for the dynamical 

system {C; ft..}. Let z E interior(F~..). Then the continuity of f implies f- 1(z) c 

interior(F~..). Hence Ft..:::) f- 1(aFt..):::) aF~... Now suppose that z E f- 1 (aF~..). Let 0 

be any open ball that contains z. Since f is analytic, f(O) is an open ball, and it 

contains f(z) E aF~... Hence f(O) contains a point whose orbit converges to the 

point at infinity. It follows that 0 contains a point whose orbit converges to the 

point at infinity. Thus f- 1 (aF~..) c aF~... We conclude that f- 1 (aF~..) = aF~.. and in 

particular that f (a Ft..) = a Ft... This completes the proof of the theorem. 

We summarize some of what we discovered in the course of this proof. The 

filled Julia set Ft.. is the limit of a decreasing sequence of compact sets. Its comple

ment, which we denote by V00 , is the limit of an increasing sequence {Vn} of open 

pathwise-connected sets in (C,spherical). That is, 

Voo = lim Vn = U~oVn. 
n~oo 

The latter is called the basin of attraction of the point at infinity under the polyno

mial tranformation ft..· It is connected because each of the sets Vn is connected. We 

have 

V 00 is open, connected, and nonempty. Ft.. is compact and nonempty. 

The Escape Time Algorithm provides us with a means for "seeing" the filled Julia 

sets F~.., as well as the sequences of sets {Vn} and {Kn} referred to in the theorem. 

Let us look at what happens in the case A. = 1.1. Define V by choosing R = 4, and 

let W = {(x, y): -2 s x s 2, -2 s y s 2}. The function ft..=l.l: C ~ C is given 

by the formula 

ft..=u(x, y) = (x 2
- y2

- 1.1, 2xy) for all (x, y) E C. 

An example of the result of running the Escape Time Algorithm, with V, W and 

f : C ~ C thus defined, is shown in Figure VII.196. The black object represents 
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the filled Julia set F'A=l.l· The contours separate the regions Vn+I \ Vn, for some 
sucessive values of n. These contours also represent the boundaries of the regions 
Kn referred to in the proof of the theorem. We refer to them as escape time contours. 

Points in Vn+l \ Vn have orbits that reach V in exactly (n + 1) iterations. In Color 
Plate 13 we show another example of running the Escape Time Algorithm to produce 
an image of the same set. The regions Vn+ 1 \ Vn are represented by different colors. 

Figure VII.197 shows a zoom on an interesting piece of F'A=l.l· including parts of 
some escape time contours. This image was computed by choosing W to be a small 
rectangular subset of the window used in Figure VII.196. 

Figures VII.198(a)-(e) shows pictures of the filled Julia sets F'A for a set of real 

values of A. These pictures also include a number of the escape time contours, to 
help indicate the location of F)._. Fo is a filled disk. As )... increases, the set becomes 
more and more pinched together until, when)...= 2, it is the closed interval [ -2, 2]. 

For some values of)... E [0, 2], it appears that F'A has no interior, and is "tree-like"; for 
other values it seems to possess a roomy interior. It also appears that F'A is connected 
for all)... E [0, 2], and totally disconnected when)...> 2. In the latter case F'A may be 
described as a "Cantor-like" set, or as a "dust." The transition between the totally 
disconnected set and the connected, bubbly set as the parameter )... is varied reminds 

us of the transition between the the Cantor set and the Sierpinski triangle, discussed 
in connection with Figure IV.118. 

Examples & Exercises 
1.8. Modify your version of the Escape Time Algorithm to allow you to com
pute pictures of filled Julia sets for the family of quadratic polynomials z2 -)... for 

Figure Vll.196. The 
Escape Time Algorithm 
provides us with a means 
for "seeing" the filled 
Julia sets F;.., as well 
as the sequences of sets 
{Vn} and {Kn} referred 
to in Theorem 1. In this 
illustration, 'A = 1.1. The 
black object represents 
the filled Julia set FJ...=l.l· 
The contours separate the 
regions Vn-! \ Vn, for 
some successive values 
of n. These contours also 
represent the boundaries 
of the regions Kn referred 
to in the proof of the 
theorem. 
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Figure VII. 197. Zoom 

in on an interesting piece 

of Figure VII.196. 

complex values of A. Compute a picture of the filled Julia set for A= i and obtain 

hardcopy of the output. 

1.9. Give the iteration formulas, and find a suitable value for R in terms of lA I, so 

that the Escape Time Algorithm can be applied to the complex polynomial z3 - A. 

1.10. Study web diagrams associated with x 2 - A, for increasing values of A E 

[0, 3]. Speculate on the relation of these diagrams to the corresponding filled Julia 

sets. 

1.11. Let A E [0, 0.7] U [0.8, 1.2]. Let V to be an open ball of radius 0.00001 

centered at the origin. Run the Escape Time Algorithm to the dynamical system 

{ C, z2 - A} with this choice of V. Obtain computergraphical data in support of the 

hypothesis that, in this case, the algorithm yields approximate pictures of pieces of 

the closure of C \F)._. Design an escape region V so that, for A E [0, 0.7] U [0.8, 1.2], 

the Escape Time Algorithm yields approximate pictures of h. 

1.12. The Escape Time Algorithm introduces numerical errors in the computation 

of orbits. These errors should lead to inaccuracies in the computed pictures of Julia 

sets and IFS attractors. Consider the application to the filled Julia set for z2 - 1. By 

means of computergraphical experiments, determine the importance of these errors 

in the images you compute. One way to proceed is to choose successively smaller 
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Figure Vll.198. (a)-(e) 
A sequence of Julia set im
ages, as in Figure VII.196, 
for an increasing sequence 
of values A in the range 
0 to 3. In (d) and (e) the 
filled Julia set is the same 
as the Julia set: the filled 
Julia set has no interior, so 
it equals its boundary. In 
(d) the Julia set is "tree
like." In (e) the Julia set is 
totally disconnected. 

Figure VII. 198. (b) 
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Figure Vll.198. (c) 

Figure Vll.198. (d) 

Figure VII. 198. (e) 
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windows W, which intersect the apparent boundary of the filled Julia set, and to 

seek the window size at which the quality of computed images seems to deteriorate. 

(You will need to increase the maximum number of iterations, M, as you zoom.) 

Can you give evidence to show that the apparently deteriorated images are not, in 

fact, correct? 

1. 13. Figure VII.199 was computed by applying the Escape Time Algorithm to the 

dynamical system {C; f(z) = z4 - z- 0.78}. The viewing window is W = {(x, y): 

-1 =::: x =::: 1, -1 =::: y =::: 1}. Determine the escape region V. Also, you might like to 

try magnifying one of the little faces in this image. 

1.14. The images in Figure VII.200 (a),(b),(c), and (d) represent the nontrivially 

distinct attractors of all IFS of the form 

{•; WI, W2, W3}, 

where the maps are similitudes of scaling factor one-half, and rotation angles in the 

set {0°,90°, 180°,270°}. The"three translations (0,0), (1,0), and (0, 1) are used. 

These IFS are all just-touching. Fori -:f. j the set w;(A) n wj(A) is contained in one 

of the two straight lin~ x = 1 or y = 1. Show that, as a result, it is easy to compute 

these images using the Escape Time Algorithm. 
Here are some observations about this "group" of images. Many of them contain 

Figure Vll.l99. This 
image was computed 
by applying the Es-
cape Time Algorithm 
to the dynamical sys
tem {C; j(z) = z4

- z-
0.78}. The viewing win
dow is W = { (x, y) : 

-I:::x:::I,-1::5y::51}. 
Can you determine the 
escape region V? 
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Figure Vll.200. (a)

(d) The images in (a), 

(b), (c), and (d) represent 

the nontrivially distinct 

attractors of all IFS of 

the form {•; w1, w2, w3}, 

where the maps are simil

itudes of scaling factor 

one-half, and the rota

tion angles are in the 

set {0°, 90°, 180°, 270°}. 

The three translations 

(0, 0), (1, 0), and (0, l) 

are used. These IFS are all 

just-touching. For i -=J j 

the set wi(A) n wJ(A) is 

contained in one of the 

two straight lines x = l or 

y = l. Hence it is easy to 

compute images of these 

attractors using the Escape 

Time Algorithm. 

Figure Vll.200. (b) 
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Figure Vll.200. (c) 

Figure Vll.200. (d) 



266 Chapter VII Julia Sets 

straight lines. They all have the same fractal dimension. They all use approximately 

the same amount of ink. Many of them are connected. Make some more observa

tions. Can you formalize and prove some of these observations? 

1. 15. Verify computationally that a "snowflake" curve is a basin boundary for the 

dynamical system {~2 ; f}, where for all (x, y) E ~2• 

f(x, y) = (0, -1) if y < 0; 

f(x, y) = (3x, 3y) if y:::: 0 and x < -yi.J3 + 1; 

f(x, y) = ((9- 3x- 3-J3y)l2, (3-J3- 3-J3x + 3)12) 

if y :::: 0 and - y I .J3 + 1 s x < 3 12; 

f(x, y) = ((3x- 3-J3y)l2, (3-J3x + 3y- 6-J3)12)12), 

if y :::: 0 and 312 s x < y I .J3 + 2; 

f(x,y)=(9-3x,3y), ify::::O, andx::::yi.J3+2. 

2 Iterated Function Systems Whose AHractors Are Julia Sets 

In section 1 we learned how to define some IFS attractors and filled Julia sets with 

the aid of the Escape Time Algorithm applied to certain dynamical systems. In this 

section we explain how the Julia set of a quadratic transformation can be viewed as 

the attractor of a suitably defined IFS. 
The Escape Time Algorithm compares how fast different points in W escape to 

V, under the action of a dynamical system. Which set repels the orbits? From where 

do the escaping orbits originate? In the case of the dynamical systems considered at 

the start of section 1, orbits were "escaping from" the attractor of the IFS. 

Let ).... E ([ be fixed. Which set repels the orbits, in the case of the dynamical sys

tem {C; f>.(z) = z2 - )....}? To find out let us consider the inverse of JA(z). This is 

provided by a pair of functions, f- 1(z) = {+~.-~},where, for exam

ple, the positive square root of a complex number is that complex root that lies on 

the nonnegative real axis or in the upper half plane. Explicitly, .JZ = J x 1 + i x2 = 

(a(x1. x2), b(x1, x2)) with 

xf +xi +x1 

2 
when x2:::: 0, 

when x2 < 0, 
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To find the "repelling" set, we must try to run the dynamical system backwards. This 

leads us to study the IFS 

{C; w1(z) = ~. w2(z) = -Jz +A}. 

The natural idea is that this IFS has an attractor. This attractor is the set from which 

points try to flee, under the action of the dynamical system { C; z2 - A}. 

A few computergraphical experiments quickly suggest a wonderful idea: they 

suggest that the the IFS indeed possesses an attractor, namely the Julia set h = 

aF;,. for f;,.(z). Consider, for example, the case A= 1. Figure VII.201 (a) illustrates 

points in the window W = {z = (x, y) E ([: -2 ~ x ~ 2, -2 ~ y ~ 2} whose orbits 

diverge. It was computed using the Escape Time Algorithm. Figure Vll.201 (b) 

shows the results of applying the Random Iteration Algorithm to the above IFS, with 

A= 1 and the same screen coordinates, superimposed on (a). The boundary of the 

region F;,.= 1 is outlined by points on the attractor of the IFS. 

Figures VII.202(a)-(d) show the results of applying the Random Iteration Algo

rithm to the IFS {C; w1(z) = Jz +A, w2(z) =-~}for various A E [0, 3]. In 

all cases it appears that the IFS possesses an attractor, and this attractor is the Julia 

set];,.. 
Perhaps 

is a hyperbolic IFS with 1;.,_ as its attractor? No, it is not, because C = w1 (C) U 

w2(C). The IFS is not1associated with a unique fixed point in the space H(C). In 

order to make the IFS have a unique attractor, we need to remove some pieces from 

(, to produce a smaller space on which the IFS acts. 

Figure Vll.201. (a) 

and (b) The attractor 

of the IPS {{:; w1(z) = 

v'Z+l, wz(z) = -v'Z+!} 
is the Julia set for the 
transformation f (z) = 
z2 

- 1. (a) illustrates 
points whose orbits "es
cape" when the Escape 
Time Algorithm is ap
plied. (b) shows the results 

of applying the Random 
Iteration Algorithm to the 
IPS, superimposed on (a). 
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Figure Vll.201. (b) 

Theorem 2.1 Let A E C. Suppose that the dynamical system {C; f(z) = z2 - A} 
possesses an attractive cycle {z1, Z2, Z3, ... , Zp} C C. Let E be a very small positive 
number. Let X denote the Riemann Sphere C with (p + 1) open balls of radius E 

removed. (The radius is measured using the spherical metric.) One ball is centered at 
each point of the cycle, and one ball is centered at the point at infinity, as illustrated 
in Figure Vl/.203. Define an IFS by 

{X; Wt(Z) = ~' w2(z) = -Jz +A}. 

Then the transformation Won H(X), defined by 

W (B) = w1 (B) U w 2 (B) for all B E H(X), 

maps H(X) into itself, continuously with respect to the Hausdorff metric on H(X). 
Moreover W: H(X)----+ H(X) possesses a unique fixed point, 1;., the Julia set for 
z2 - A. Also 

lim won(B) = h for all B E H(X). 
n-+00 

These conclusions also hold if the orbit of the origin, {fan( 0)}, converges to the 
point at infinity, and X= C \ B(oo, E). 

Sketch of proof The fact that W takes H(X) continuously into itself follows 
from Theorem 4.1. To apply Theorem 4.1, three conditions must be met. These 
conditions are (i), (ii) and (iii), stated next. f is analytic on C so (i) it is continuous, 
and (ii) it maps open sets to open sets. The way in which X is constructed ensures 
that, for small enough E, (iii) f(X)::) X. (The latter implies W(X) = f- 1(X) c X.) 

To prove that W possesses a unique fixed point we again make use of Theo
rem 4.1. Consider the limit A E H(X) of the decreasing sequence of sets, { won(X)}, 
namely, 

A= n~ 1 /o(-n)(X) = lim won(X). 
11-"~X 
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Figure Vll.202. (a)

(d) The results of apply

ing the Random Itera

tion Algorithm to the IFS 

{i; ~, -.Jz +A} 

for various values of 

A E [0, 3]. Compare these 

images with those in Fig

ure VII.l98. The results 

are pictures of the Julia 

set for fA.(Z) = z2
- A. The 

connection between these 

Julia sets and IFS theory is 

revealed! 

Figure Vll.202. (b) 

Figure Vll.202. (c) 
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Figure Vll.202. (d) 

Figure Vll.203. The 

Riemann Sphere cC with a 
number of very small open 
balls of radius E removed. 
One ball is centered at 
each of the points {Zp E ([} 

belonging to an attractive 
cycle of the transformation 
!1- (z) = z2 

- A.. One ball 
is centered at the point at 
infinity. 

This obeys W (A) =A. It follows from [Brolin 65], Lemma 6.3, that A = h, the 
Julia set. This completes the sketch of the proof. 

Theorem 2.1 can be generalized to apply to polynomial tranformations f : 
C -+ C of degree N greater than 1. Here is a rough description: let f- 1 (z) = 
{w 1(z), w2(z), ... , wN(Z)} denote a definition of branches of the inverse of f. Then 
consider the IFS {C; w1 (z), w2(z), ... , WN(Z)}. This IFS is not hyperbolic: the "typ

ical" situation is that the associated operator W : 1-i(C) -+ 1-i(C) possesses a finite 
number of fixed points, all except one of which are "unstable." The one "stable" 
fixed point is lt, and won(A)-+ lt for "most" A E 1-i(C). In principle, lt can be 
computed using the Random Iteration Algorithm. 
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Results like Theorem 2.1 are concerned with what are known as hyperbolic Julia 

sets. The Julia set of a rational transformation f : C ---+ C is hyperbolic if, whenever 

c E ( is a critical point of f, the orbit of c converges to an attractive cycle of f. 

The Julia set for z2 - 0.75 is an example of a nonhyperbolic Julia set. We refer to 

[Peitgen 1986] as a good source of further information about Julia sets from the 

dynamical systems' point of view. 

Explicit formulas for the inverse maps, {wn(z): n = 1, 2, ... , N}, for a polyno

mial of degree N, are not generally available. So the Random Iteration Algorithm 

cannot usually be applied. Pictures of Julia sets and filled Julia sets are often com

puted with the aid of the Escape Time Algorithm. The case of quadratic transfor

mations is somewhat special, because both algorithms can be used. The Random 

Iteration Algorithm can also be applied to compute Julia sets of cubic and quar

tic polynomials, and of special polynomials of higher degree such as zn +A. where 

n = 5, 6, 7, ... , and A. E C. 

Examples & Exercises 

2.1. Consider the dynamical system {C; f(z) = z2}. The origin, 0, is an at

tractive cycle of period 1: indeed f ( 0) = 0 and If' ( 0) I = 0 < 1. Notice that 

limn~oo fon(z) = 0 for all z E B(O, 0.99999999). Let B (z, r) denote the open ball 

on (, with center at z and radius r. Theorem 2.1 tells us that the IFS 

{X= C \ {B (0, 0.0000001)U B (oo, 0.0000001)}; w 1(z) = y'Z,w2(z) = -y'Z} 

possesses a unique attractor. The attractor is actually the circle of radius 1 centered at 

the origin. It can be computed by means of the Random Iteration Algorithm. Notice 

that if we extend the space X to include 0, then 0 E 1i(X) and 0 = W ( 0) = 

w1(0) U w2(0). If we extend X to include B (0, 0.0000001), then the filled Julia 

set F0 belongs to 1i(X) and obeys F0 = W(F0 ). If we take X to be all of C then 

( = W (C). In other words, if the space on which the IFS acts is too large then 

uniqueness of the "attractor" of the IFS is lost. 

Can you find two more nonempty compact subsets of C that are fixed points of 

W, in the case X= C? 
Establish that, for all A. E ( -0.25, 0.75), the point zo = 0.5 - .J0.25 +A. is an 

attractive cycle of period 1 for {C; z2 -A.}. Deduce that the corresponding IFS, 

acting on a suitably chosen space X, possesses a unique attractor. 

2.2. Let A. E (0.75, 1.25). Consider the dynamical system {C; f(z) = z2 - A.}. Let 

z1, z2 E ~ denote the t}Vo solutions of the equation z2 + z + ( 1 - A.) = 0. Show 

/(ZI) = Z2, j(z2) = Zl.'I(/02)'(ZI)I = 1(/02)'(z2)1 < 1 and hence that {z1, Z2} is an 

attractive cycle of period 2. Deduce that the IFS 
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{C \ {lJ (zt, E)U B (z2, E)U B (oo, E)}; +-JZ+"I, -Jz +A} 

possesses a unique attractor when E is sufficiently small. 

2.3. The Julia set 1;,_ for the polynomial z2 -A is a union of two "copies" of 
itself. Identify these two copies for various values of A. Explain how, when A= 1, 
the two inverse maps w} 1(z) and w:2 1(z) rip the Julia set apart, and the set map 
W = w1 U w 2 puts it back together again. Where is the rip? Describe the geometry 
of what is going on here. 

2.4. Consider the one-parameter family of polynomials f (z) = z3 - A, where A E 

(( is the parameter. Give explicit formulas for the real and imaginary parts of three 
inverse functions w1 (z), w2(z), and w3(z) such that f-1 (z) = { w1 (z), w2(z), w3(z)} 

for all A E C. Compute images of the filled Julia set for f(z) for A= 0.01 and 
A = 1. Compare these images with those obtained by applying the Random Iteration 
Algorithm to the IFS { C; w1 (z), w2(z), w3(z) }. 

2.5. Consider the dynamical system {C; f(z) = z2 -A} for A > 2. Show that 
{Jon( 0)} converges to the point at infinity. Deduce that the IFS 

{X= C \ B(oo, E); +Jz +A, --JZ+"I} 

possesses a unique attractor A(A). A(A) is a generalized Cantor set. Compute some 
pictures of A(3). Use the Collage Theorem to help find a pair of affine transforma
tions Wi: lR<.---+ lR<., i = 1, 2, such that the attractor of the IFS {lR<.; w 1, w2} is an ap
proximation to A(3). Define J: lR<.---+ lR<. by f(x) = w} 1(x) when x < 0 and f(x) = 
wz- 1 (x) when x :;: 0. Compare the graphs of the functions f(x) = x 2 - 3 and f(x) 
for, say, x E [ -4, 4]. Compare one-dimensional "images" obtained by applying the 
Escape Time Algorithm in a similar manner to both {lR<.; f} and {lR<.; f}. 

One can sometimes obtain a hyperbolic IFS associated with a Julia set, if the do
mains and ranges of the inverse transformations are defined carefully. The following 
theorem provides such an example. 

Theorem 2.2 Let A E [ -0.249, 0.749], and let E be a very small positive num
ber. Let a = 0.5 - J0.25 +A, an attractive fixed point of the dynamical system 

{C; f(z) = z2 - A}. Let X= C \ {B (a, E)U B (oo, E) U (0, oo)}. That is, X consists 
of the Riemann Sphere with a small open ball centered at a, a small open ball cen

tered at oo, and the open interval (0, oo), removed. (This space is not compact be

cause the edges of the lips of the cut,from 0 to oo, are missing.) To each lip let there 

be attached copies of the pieces of the real interval (0, oo) which were removed, to 

provide a compact space X, as illustrated in Figure Vl/.204. The distance d(z1, z2) 

between a pair of points Z1 and Z2 EX is the length (measured using the spherical 

metric) of the shortest path that lies in X and connects z1 to z2. (Paths in X cannot 
cross the cut, they have to go around it.) (X, d) is a compact metric space. 

Define w1 :X---+ X by w1 (z) = -JZ+"I, the root that lies in the "upper half 
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THE RIEMANN SPHERE 
AFTER SURGERY 

->. 

"UPPER HALF PlANE" 

small ball centered 
Both edges of the 

at removed 
cut are copies of [0,«>] 

Cut along the 
positive real axis 
with two lips. 

"LOWER HALF PlANE" 

-Infinity 

plane." For z on the upper edge of the cut, w1 (z) is also on the upper edge. For z 

on the lower edge of the cut, w 1(z) lies on the negative real axis. Define w2 : X---+ X 

by w2(z) = -,JZ+"'I, the root that lies in the "lower half plane." For z on the the 

upper edge of the cut, w2(z) lies on the negative real axis; and, for z located on the 

lower edge of the cut, w2(z) lies on the lower edge of the cut. 

Then there is a metric on X, equivalent to the metric d, such that the IFS 

{X; w1, w2} is hyperbolic. The attractor is the Julia set h for z2 - A, where the 

real point 0.5 + J0.25 + A is repeated on both the upper and the lower edges of the 

cut. 

Sketch of proof Let e = (e1, e2 , .•• , en, ... ) E ~. the code space on the two 

symbols { 1, 2}. Define a sequence of nonempty compact subsets of X by 

It follows, using [Brolin], Theorem 6.2, and Lemma 6.3, that the sequence {Xn E 

1t(X)} converges to a singleton, say {</>(e)}, where </>(e) E ];._and 

UeEL.</>(e) = 1;._. 

A beautiful theorem of Elton [Elton 1988] applies under just these conditions and 

provides the conclusionO>f the theorem. This completes the outline of the proof. 

In those situations where the IFS {X; +Jz +A, -,JZ+"'I} is hyperbolic one can 

use the associated code space to discuss both the Julia set and the associated shift 

Figure Vll.204. Con
struction of a compact 
metric space X for IFS 
{X; .JZTI, -Jz +A} 
with A E ( -0.25, 0.75), 
used in Theorem 2.2. 
Both sides of the "slit" 
from -A to infinity belong 
to the space. The distance 
between a pair of points 
on X is the length of the 
shortest path that connects 
the points without cross
ing the slit. The distance 
between points may be 
much greater than it looks. 

j 
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~ 

dynamical system {];._; f(z) = z2 -A.}. Here we give some of the flavor of such a 

discussion. More details can be found in [Barnsley 1984]. 

For the remainder of this section let A. E ( -0.25, 0.75) and consider the IFS 

{X; w1 (z) = -JZ+I. w2 (z) = --Jl+I}, as defined in Theorem 2.2. Let b de

note the code space on the two symbols { 1, 2}, and let ljJ : b -+ ];._ denote the 

associated code space map, introduced in Theorem 2.1 in Chapter IV. If e = 

(e1, e2, ... , en, ... ) E b, then 

¢(e)= lim We 1 o We2 o We3 o We4 o We5 o We6 o · · · o Wen(z). 
n-oo 

Replace the symbol "1" by the symbol "+" and replace the symbol "2" by the 

symbol "-". Then the point f/J(e) on the Julia set ];._ can be represented by the 

formula 

where ei E { +. -} for each positive integer i. The set J'A itself can be represented by 

the collection of formulas 

± A.± (1) 

where all possible sequences of plus and minus signs are permitted. A particular 

sequence of signs, corresponding to a point in };._, is an address of the point. 

In Figure VII.205 we show the Julia set for z2 - 0.7, with the addresses of various 

points marked on it. Some points on 10.1 have multiple addresses while others have 

single addresses. It appears that the the IFS is just-touching. 

The shift dynamical system associated with the IFS is{];._; f(z) = z2 - A.}. Notice 

how the set of points represented by the formulas in equation 1 is mapped into itself 

by the function that "squares" a formula and subtracts A. from the result. A point on 

a cycle of period 2 is represented by 

The other point on this cycle is obtained by squaring the formula and subtracting. A.. 

In Theorem 2.4 in Chapter IV, we learned that the set of periodic points of the 

shift dynamical system associated with a hyperbolic IFS is dense in the attractor of 

the IFS. Here this tells us that the set of periodic points of the dynamical system 



2 Iterated Function Systems Whose Attractors Are Julia Sets 275 

+~0. 7 -~0.7 + ~0. 7- ~0.7 + ~0.7- ~0. 7 + ~0. 7- ............ + ~0.7 ....... . 
The "positive" root lies l 
in the upper half plane 

+ ~0. 7 +~0.7 + ~0. 7 + ~0.7 +~0. 7 + ~0. 7 +40.7 + ....... +,roy:::::: 

- ~o. 1 + ~o. 1- ~o.1 + ~o. 1 -~0.7 + ~o.1- jo. 1 + ............ - 4o.7 ....... . 

Figure Vll.205. The Julia set for z2 - 0.7, labelled with various addresses. Chaotic 

dynamics takes place on the Julia set and orderly dynamics takes place off it. Boundaries 

of a fractal character often separate regions where the dynamical system behaves differently. 

The behavior of the dynamical system on such a boundary may then be indecisive, and in 

some way chaotic. 

{h; f(z) = z2 - A} is dense in h. In fact, a related idea was the starting point of Ju

lia's original investigations. He considered dynamical systems of the form { C; f (z)}, 

where f (z) is analytic. He defined the (Julia) set to be the closure of the set of repul

sive cycles of f. 
Following Theorem 8.1 in Chapter IV we explained the sense in which the shift 

dynamical system associated with a hyperbolic IFS is chaotic. In the present context 

we learn that the dynamical system {h; z2 - A} is chaotic. 

One can think of the dynamical system {C; z2
- A} as being the union of two 

dynamical systems, a chaotic one {h; z2 -A} and an orderly one {C \ h; z2 
-

).}. The orbit of any point in the latter system converges to a fixed point of the 

transformation. The orbits of "most" points in the former system are wild. In practice 

they are usually so wild they cannot be constrained to remain on the repelling set h. 
They escape and thereafter behave in a rather predictable manner. 

An example of cha~tic dynamics on a Julia set is provided by the dynamical 

system {[0, 1]; f(x) = 4x(l - x)}. The interval [0, 1] is exactly the Julia set for the 

transformation. This system is close to the "chaotic" one illustrated in Figure IV.108. 

The branch cut is on 
the positive real aXiS. 



276 Chapter VII Julia Sets 

Examples & Exercises 

2.6. The Julia set for z2 - 2 is the interval [ -2, 2]. Show that the shift dynamical 

system associated with the IFS {[ -2, 2]; +-JZ+2."- J z + 2} is precisely the dy

namical system {[ -2, 2]; z2 - 2}. Use a chain of square roots to locate a cycle of 

minimal period 3. 

2. 7. Verify numerically that for various choices of ± on each square root, and 

for various complex numbers A such that I A I is very small, the expression below 

evaluates approximately to a complex number that lies on the unit circle centered 

at the origin, if enough square roots are taken. ( +JZ means the solution, w, of the 

equation w2 = z, which lies either on the nonnegative real axis or in the upper half 

plane.) Make a hand-waving explanation of why this is, in terms of Julia set theory. 

2.8. Design an IFS with condensation such that its attractor looks like an infinite 

nested chain of square root signs. 

2. 9. Figure VII.206 represents a sequence of sets {An} which converges to the 

Julia set of f(z) = z2 - 1. Ao denotes the union of the two largest faces and An= 

fo(-n)(Ao). Identify the set A2. 

3 The Application of Julia Set Theory to Newton's Method 

We are familiar, since our first course in calculus, with Newton's method for com

puting solutions of the equation F (x) = 0. Or are we? 

Consider the polynomial F(z) = z4 - 1 for z E C. There are four distinct com

plex numbers, ai (i = 1, 2, 3, 4) such that F(ai) = 0. These are called the roots, or 

the zeros, of the polynomial F(z). Newton's method provides a means to compute 

them. Pretend that we do not know that a 1 = 1, a2 = -1, a3 = i, and a4 = - i. Then 

Newton tells us to consider the dynamical system 

{t· f( ) - - F(z)} 
' z - z F'(z) . 

We call f(z) the Newton transformation associated with the function F(z). The 

general expectation is that a typical orbit {fon(zo)}, which starts from an initial 
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"guess" zo E ([, will converge to one of the roots of F(z). In the present example, 
the Newton transformation is given by 

3z4 + 1 
f(z) = 4z3 . 

We expect the orbit of zo to converge to one of the numbers a 1, a2, a3, or a4. If we 
choose zo close enough to ai, then it is readily proved that 

lim Jon (zo) = ai, fori = 1, 2, 3, 4. 
n~oo 

If, on the other hand, zo is far away from all of the ai 's, then what happens? Perhaps 
the orbit of zo converges to the root of F (z) closest to zo? Or perhaps the orbit does 
not settle down, but wanders, hopelessly, forever? 

Let us make a computergraphical experiment to help answer these questions. 
We use the Escape Time Algorithm to produce a picture of those points zo E ( 

whose orbits converge to a 1. Define W = {(x, y) E ([: -2 :::=: x :::=: 2, -2 :::=: y :::=: 2} 
and V = {z E ([: lz- ad :::=: 0.0001}. The real and imaginary parts of f(x + iy) are 
given by 

. (ce + df) . (de - cf) 
f(x + zy) = (e2 + J2) + l (e2 + J2)' 

Figure Vll.206. Let 

f : C ~ C denote the 
polynomial z2 

- ·1. Let 
A0 be the union of the 
two largest smiley faces. 
Define a transforma
tion W : 'H(C) ~ 'H(C) 
by W(B) = J- 1(B) for 
all B E 'H(C) and let 
An= won(A0 ) for n = 
0, 1, 2, .... Then the se
quence of sets {An} con
verges to the Julia set 
z2 

- 1. Can you identify 
Az? 
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~ 

where a= x 2
- y2

, b = 2xy, c = 3a2
- 3b2 + 1, d = 6ab, e = 4(xa- yb), and f = 

4(xb + ya). Program 7.1.1 is modified accordingly. Pixels corresponding to points 
in W whose orbits reach V in less than a fixed number of iterations are plotted. 
A picture resulting from such an experiment is shown in Figure VII.207. See also 
Figures VII.208 and VII.209. 

Color Plate 14 shows the output from another such experiment. This time Mer
cator's projection is used to represent the Riemann sphere, and points whose orbits 
converge to the different points a 1, az, a3, and a4 are plotted in different colors. 

The following definition is equivalent to Definition 1.1 in the case of polynomials, 
[Brolin]. 

Definition 3. 1 The Julia set of a rational function f : C -+ C, of degree greater 
than 1, is the closure of the set of repulsive periodic points of the dynamical system 
{C; fl. . 

For the rational function f (z) considered above, one can prove that the Julia set J 
is the same as the set of points whose orbits do not converge to any one of the points 
a 1, a2 , a3, a4. In Figure VII.207, J n W is represented by the boundary between 
the black and white regions. In Color Plate 14, J n W is the place where the four 
colors meet. The complement of the Julia set consists of four open sets, the basins 
of attraction of the four attractive fixed points of the Newton iteration scheme. In 
Color Plate 14 the dark green region represents part of the basin of attraction of a 1• 

The black regions in the color plate are caused by (a) rounding errors, and (b) the fact 
that only 100 points on each orbit are tested, for convergence to one of the points a 1, 

az, a3, a4. 
The Julia set J is the part of C on which chaotic dynamics occurs. It can be 

characterized as the closure of the set of points whose orbits wander, hopelessly, 
forever. Orderly, slightly boring motion takes place on C \ J. J is the boundary of 
the white region. It is the boundary of the dark green region. It is a bonafide fractal, 
yet nobody knows its fractal dimension. 

There is a beautiful theorem of Sullivan, which can be illustrated using the 
"petals" in Color Plate 14. The complement of the Julia set is the union of a count
able collection of connected open sets, which we call petals. If P is a petal then 
f(P) is another petal. The Non-Wandering Domain Theorem [Sullivan 1982] says 
that no connected component of the complement of the Julia set wanders, hope
lessly, forever. It always settles into a periodic orbit of petals. If P is a petal in 
the present example, then one can prove that there is a positive integer S so that 
f 0 S(P) = fo(S+l)(P) = fo(S+Z)(P) = fo(S+3)(P) = · · ·. The final petal f 0 S(P) is 
one of the connected components of the complement of the Julia set that contains 
one of the points a 1, az, a3, a4. Each petal is eventually periodic. The orbit of a petal 
ends up in a cycle of petals of period 1. 

How are we to think about this fabulous Julia set? IFS theory provides a simple 
point of view, as we show next. We begin by defining the inverse map associated 
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Figure Vll.207. The 

Escape Time Algorithm 

is applied to analyze 

Newton's method for 

finding the complex roots 

of the polynomial z4 
- 1. 

The boundary of this 

region represents the 

Julia set for the rational 

function f (z) = (3z4 + 
1)/4z3• The points plotted 

black are those points z = 
X + i y with -2 ~ X ~ 2, 

and -2 ~ y ~ 2, whose 

orbits intersect V = {z E 

C: lz + 11 ~ 0.0001} in 

less than 1 ,000 iterations. 

Figure Vll.208. The 

boundary of this region 

represents the Julia set 

for the rational function 

f(z) = (3z4 + l)/4z3
• The 

two shades of gray, black 

and white, correspond to 

the basins of attraction of 

the four attractive fixed 

points of f(z). To which 

point in ([ do the orbits of 

points in the white region 

converge? 
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Figure Vll.209. Mer
cator's projection of the 
Riemann sphere show
ing the basins of attrac
tion of the four attractive 
fixed points of the Newton 
transformation of z4 

- 1. 
The top of the rectangle 
corresponds to the point 
at infinity, and the bottom 
of the box corresponds to 
the origin. The points -1, 
+i, + 1, and -1 lie on the 
equator. The shading fol
lows the same convention 
as in (a) and (b). Which 
point on cC is represented 
by the midpoint of this 
image? 

with f. Let z E C be given and solve 

3w4 + 1 
z=---

4w3 

to find w in terms of z. This leads to the quartic equation 

3w4 
- 4zw3 + 1 = 0. 

This has four solutions, when we count solutions according to their multiplici
ties. We can organize these solutions to provide four functions; that is, we write 
f- 1(z) = {w,(z), w2(z), w3(z), w4(z)}. Then the Julia set is the "attractor" for the 
IFS {C; w;, i = 1, 2, 3, 4}. However, as in the case of quadratic transformations on 
C, this statement must be treated cautiously: for example, clearly this IFS admits 
more than one invariant set. 

Theorem 3.1 Let f : C --+ C be the Newton transformation associated with the 

polynomial z4
- 1. Let E > 0 be very small. Let X= C \ uj=1 B (ai, E) where a 1 = 1, 

a 2 = -1, a3 = i, and a4 = -i. As above, define W: 1t(X)--+ 1t(X) by 

for all B E 1t(X). 

Then W is continuous, possesses a unique fixed point, J, the Julia setoff, and 

lim won(B) = J for all BE 1t(X). 
n~oo 



3 The Application of Julia Set Theory to Newton's Method 281 

Sketch of proof This is essentially the same as the sketch of the proof of 

Theorem 2.1. · 

The Newton transformation associated with a polynomial may possess an attrac

tive cycle of minimal period greater than 1. This cycle may not be directly related 

to the roots of the polynomial. As as example consider the Newton transformation 

f (z) associated with the polynomial 

F(z) = z3 +(A.- 1)z + 1. 

A. E ([can be chosen so that f(z) possesses an attractive cycle {b1, b2} of minimal 

period 2. Figure VII.210 illustrates the basin of attraction of the cycle. The Escape 

Time Algorithm was used to obtain this image. Points whose orbits arrive within a 

distance 0.01 of the cycle, prior to 100 iterations, are plotted in black. Accordingly, 

the escape region is V = B(b1, 0.00001) U B(b2, 0.00001). Notice the resemblance 

of the basin of attraction of { b1, b2} to the filled Julia set for z2 - 1. This similarity is 

not accidental. It can be explained using the theory of "polynomial-like" mappings 

[Douady 1985]. 
1 

Some interesting coinputergraphical experiments involving Julia sets for New-

ton's method are described in [Curry 1983], [Peitgen 1986], and [Vrscay 1986]. 

Figure Vll.210. The 
Escape Time Algorithm is 
applied to a Newton trans
formation f (z) associated 
with a cubic polynomial. 
f (z) possesses an attrac
tive cycle {b1, b2} of mini
mal period 2. The basin of 
attraction of the two-cycle 
is represented in white. 
Points whose orbits arrive 
within a distance of 0.01 
of the cycle, prior to 100 
iterations, are plotted in 
white. Does the basin of 
attraction of the cycle look 
familiar? 



282 Chapter VII Julia Sets 

Examples & Exercises 
3. 1. Verify that z = 1 is an attractive fixed point for the Newton transformation 

associated with F(z) = z4 - 1. 

3.2. The Newton transformation associated with the polynomial F(z) = z2 + 1 is 

f(z)=Hz-D· 
Show the corresponding IFS is {C; w1 (z) = z + .JZ2+1, w2(z) = z - .JZ2+1}, 
where the square root is defined appropriately. Verify that A = ~ U { oo} is an aurae

tor of the IFS. Prove, or give evidence to show, that A is the Julia set for f(z). (Hint: 

see exercise 3. 7.) How could the space C be modified so that the IFS has a unique 

attractor? Notice that numerically computed orbits of points on A, under the dynam

ical system { C; f}, can be constrained from escaping from A by keeping imaginary 

parts equal to zero. Verify numerically that the dynamics of {A; f} are wild. 

3.3. Find the Newton transformation f(z) associated with the polynomial F(z) = 

z3 - 1. Use the Escape Time Algorithm to obtain an image, analagous to Fig

ure VII.207, which illustrates this Julia set. Discuss the dynamics of the "petals" 

in the image. 

3.4. In this example we speculate on the application of fractal geometry to bio

logical modelling. Let F;..(z) = (z- i).)(z- 1)(z + 1), where). is a real parameter, 

and let f;..(z) denote the associated Newton transformation. Let h denote the Julia 

set for /;...(z). In Figure VII.211 we show images relating to h. for an increasing se

quence of values of A. These images were computed by applying the Escape Time 

Algorithm to /;.. .. 
These images show complex blobs that are reminiscent of something small, bi

ological, and organic. They make one think of the nuclei of cells; of collections of 

cells during the early stages of development of an embryo; of the process of cell di

vision; and of protozoans. As we track the images we see that the blobs pass through 

one another. Somehow they do so while preserving their complex geometries. Their 

geometries seem to interact with one another. Such images suggest that fractal ge

ometry can do more than provide a means for modelling static biological structures, 

such as ferns: it appears feasible to construct deterministic fractal models, which 

describe the processes of physiological change that occur during the growth, meta

morphosis, and movement of living organisms. 

3.5. Find the Newton transformation f (z) associated with the function F (z) = 

ez - 1. What are the attractive fixed points of the dynamical system {C; f}? Fig

ure VII.212 was computed using the Escape Time Algorithm applied to f(z), with 

W = {(x, y) E ~2 : -2.5::::: x::::: 2.5, -2.5::::: y::::: 2.5}. Describe the main features' of 

the image. Explain, roughly, the causes of some of these features. 

3.6. What are the "petals" in the case of the Julia set for z2 - 1? Use a picture of 



3 The Application of Julia Set Theory to Newton's Method 283 

Figure Vll.211. (a)

(h) Julia sets associated 
with a one-parameter fam
ily of dynamical systems. 
Can such systems be used 
to model biological pro
cesses such as meiosis? 

Figure Vll.211. (b) 
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Figure Vll.211. (c) 

Figure Vll.211. (d) 
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Figure Vll.211. (e) 

Figure Vll.211. (f) 
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Figure Vll.211. (g) 

Figure Vll.211. (h) 
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the Julia set for z2 - 1 to illustrate the orbit of a tiny petal that is eventually periodic 
with minimal period 2. 

3.7. By making an explicit change of the coordinates, using a Mobius transforma
tion, show that the following two dynamical systems are equivalent: 

" 1 ( 1) " . {([; f(z) = 2 z- ~ } and{([; f(z) = z2
}. 

Figure Vll.212. This 
image was computed us
ing the Escape Time Algo
rithm applied to the New
ton transformation associ
ated with f(z) = ez- 1. 
The viewing window 
is W = {(x, y) E [R2 : 

-2.5 :S X :S 2.5, -2.5 :S 
y :s 2.5}. Can you work 
out what "escape region" 
was used? 

4 A Rich Source for Fractals: Invariant Sets of Continuous Open Mappings 

Let f be a transformation that acts on a space X. Recall that a set A is invariant under 
f if f- 1 (A)= A, and that this implies f(A) =A. We are interested in invariant sets 
off that belong to 1t(X). The following theorem is a theoretical tool that provides 
both the existence and a means for the computation of invariant sets. Most of the 
material in this chapter is based on it. 

Theorem 4.1 Let (Y, d) be a metric space. Let X c Y be compact and i 

nonempty. Let f : X ~ Y be continuous and such that f (X) :::) X. Then, ( 1) a trans-
formation W: H(X) ~ 1t(X) is defined by 
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~ 

for all A E 1-l(X). 

(2) W possesses a fixed point A E 1-l(X), given by 

A= n~0fo(-n)(X) = lim won(X). 
n~oo 

Suppose f obeys the additional condition that f(O) is an open subset of the metric 

space (f(X), d) whenever() C X is an open subset of the metric space (X, d). Then 

( 3) W is a continuous transformation from the metric space (1-i (X), h (d)) into itself 

Proof of ( 1) and (2). The proof of (3) can be found in (Barnsley 

1988c) .. (1) We begin by proving that W maps 1-i(X) into 1-i(X). Let BE 1-i(X). 

The condition f(X) :J X implies that f- 1(B) C X, and that f- 1(B) is nonempty. B 

is compact, so it is a closed set in the metric space (X, d). It follows that X\ B is 

open. The continuity off implies that f- 1(X \B) is open. Since f(X) :J X :J B, it 

follows that f- 1(B) =X\ f- 1(X \B). Hence f- 1(B) is closed in the metric space 

(X, d). Since X is compact it follows that f- 1(B) is compact. This completes the 

proof of (1). 

(2) Since f(X) :J X, it follows that X :J fo(-I)(X). Application of fo(-n) to both 

sides of the latter equation yields 

X :J fo(-l)(X) :J fo(-2)(X) :J fo(-3)(X) ... :J Jo(-n\X) :J .... 

It follows that {fo(-n)(X)} is a Cauchy sequence in 1-i(X), and it possesses a limit 

A E 1-l (X), given by 

A~ n~0fo(-n)(X) = lim won(X). 
n~oo 

It remains to be proved that A is a fixed point of f. We need to show that 

fo(-l)(n~0An) = n~0An where An= fo(-n)(X) for n = 1, 2, .... First we prove 

that fo(-l)(n~oAn) :J n~oAn. Suppose X E fo(-l)(n~oAn). Then there is y E 

n~0An such that x info(-l)(y), andy E An for n = 0, 1, 2, .... It follows that x E 

fo(-l)(An) = An+l for n = 0, 1, 2, .... It follows that X E n~oAn. To prove the in

clusion the other way around, suppose that x E n~0An. Then x E An+l = f- 1(An) 

for n = 0, 1, 2, 3, .... It follows that there is Yn E An such that f(Yn) = x for n = 

0, 1, 2,3 .... The sequence {Yn} possesses a convergent subsequence. Let y denote 

the limit of this subsequence. Then y E An for n = 0, 1, 2, ... , and so y E n~0An. 
Since f is continuous it follows that f(y) = x. Hence x E fo(-l)(n~0An). We have 

shown that fo(-l)(n~0An) C n~0An. This completes the proof of (2). 

The invariant set A referred to in Theorem 4.1 can be expressed 

A= {x EX: fon(x) EX for all n = 1, 2, 3, ... }. 

That is, A is the set of points whose orbits do not escape from X. Also, A is the 

complement of the set of points whose orbits do escape. If X C IR 2, then pictures of 

A can be computed by using the Escape Time Algorithm. 
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The last statement in the theorem expresses a desirable property for a transforma

tion Won 1-i(X). If W is not continuous, yet A0 E 1-i(X) and {Won(Ao)} converges 

to A E 1-i(X), one cannot conclude that W(A) =A. Without continuity of W, one 

should not trust the results of applying the Escape Time Algorithm. For example, 

slight numerical errors may mean that a computed sequence of sets {An ~ won (X)} 

is not decreasing. One may still wish to define A= lim An. Without continuity one 

cannot suppose that f- 1(A) =lim W(An) =A, even approximately. 

Analytic transformations map open sets to open sets. Hence their inverses act 

continuously on the space 1-i(X), where X c C is chosen appropriately. To help 

vizualize this, look back at Figure 111.52. If the Sierpinski triangle A B 0 is deformed 

or moved, its inverse image P 0 Q U P 0 Q will move continuously with it. 

The Hausdorff metric is the metric of perception: what we call a small change in 

the appearance of a picture is probably a small change in a Hausdorff distance. When 

one talks about continuous motion in the context of graphics, continuous growth in 

the context of botany, or continuous change in the context of a chemical system, 

the word "continuous" can often be replaced, pedantically, by "continuous in the 

Hausdorff metric." Theorem 4.1 suggests that one could use continuous open maps 

to model such systems. 

Examples & Exercises 
*4.1. Let A E [ -1, 1]. Define a transformation f: ~2 ~ ~2 by 

f(x ) _ { (x 2
- y 2

- 1, 2xy) whenx > 0, 
'Y - (x 2 - y 2 - 1 +AX, 2xy) when x ::s 0. 

Show that f is continuous. Show that if X denotes a ball, centered at the origin, of 

sufficiently large radius, then f (X) :::) X. Also verify that if A E [ -1, 0] then f maps 

open sets into open sets. Show that this is not the case for A = 1. (Hint: look at what 

the map does to a very small disk centered at the origin.) 

Figure VII.213 shows the result of applying the Escape Time Algorithm to f 
when A = 1. The inner region, bounded by an ellipse, actually represents a disk 

X such that f (X) :::) X. Different scales have been used in the x and y directions. 

f (X) is the region bounded by the outer curve. The image of a point that goes once 

around the inner ellipse is a point that goes twice around the origin, following the 

outer curve, which looks like a folded figure eight. Different "escape times" of orbits 

of points in X are represented by different gray tones. A magnified version of X, 

painted by escape times, is shown in Figure VII.214. Roughly speaking, regions 

closest to the outside escape fastest. Points in the white region also escape. So 

where is the invariant set A? It is right in the middle. It appears to be a branching, 

connected, tree-like set, with no interior. 
Figure VII.215 shqws the result of applying the Escape Time Algorithm to f 

when A= 0. This time we see that the invariant set A, in the center, in white, is 

just the filled Julia set for z2 - 1. 
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Figure Vll.213. The result of applying the Escape Time Algorithm to the function f 
in example 4.1 with 'A = 1. This function is continuous and is such that f (X) ::) X, where 

X denotes the Faberge egg in the middle. f (X) is the region bounded by the outer curve. 

Different "escape times" of orbits of points in X are represented by different gray tones. 

What happens if we choose )... = - 1? This time we obtain the image shown in 

Figure VII.216. However, this time things may not be as simple as they appear to be. 

The inner "layers" that surround the apparent invariant set A are highly irregular and 

unstable. That is, points that are very close together seem to have orbits that have 

very different escape times. Could it be that, although the mapping W: 1t(X) ~ 

1t (X) is continuous, it has a very poor modulus of continuity? 

4.2. Construct a function f : X ---+ ~2 , where X c ~2 , which obeys the conditions 

of Theorem 4.1. Use the Escape Time Algorithm to analyze the associated invariant 

set A described in the statement of the theorem. Your example should be interesting 

and of a different character from those specifically described in this chapter. 
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Figure Vll.214. A magnified version of the region X in Figure VII.213. Approximately, 
orbits of points closest to the outside escape the fastest. Points in the white region also escape. 
The invariant set A is in the middle. It appears to be a branching, connected, tree-like set. It is surrounded by layers, just as the center of a real tree is surrounded by layers of growth. 
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Figure Vll.215. The result of applying the Escape Time Algorithm to f in exam

ple VII.213 with A. = 0. This time we see that the invariant set A, in the center, in white, 

is just the filled Julia set for z2 - 1. 
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Figure Vll.216. This image was computed using the Escape Time Algorithm applied 
to the Newton transformation associated with f (z) = ez - 1. The viewing window is 
W = {(x, y) E !R2 : -2.5::: x::: 2.5, -2.5::: y::: 2.5}. Can you work out what "escape 
region" was used? 



Chapter VIII 

Parameter Spaces and 
Mandelbrot Sets 

1 The Idea of a Parameter Space: A Map of Fractals 

294 

A map with nothing marked on it is practically useless. A map of a 1000 x 1000 

square mile region containing the British Isles is shown in Figure VIII.217; it does 

not convey much information. However, as a concept it is quite exciting. Each lo

cation on the map corresponds to somewhere on Earth. For example, the dot with 

coordinates (7 50, 227.3) represents the town of Maids tone. A point on the map may 

represent a certain grain of soil in a ploughed field, or a molecule of flotsam on the 

top of some foam on the surface of the sea. Nearby points in the map correspond 

to nearby points on the Earth. Connected sets with interiors correspond to physical 

regions. 
How could a perfect map be made? Ideally, it should specify locations on the 

Earth's surface at a certain instant. The coordinates would be relative to some abso

lute coordinate system, perhaps determined by reference to the fixed stars. Moreover, 

the surface of the Earth would have to be defined precisely, up to the last molecule 

of water, soil, and plant matter; for this purpose one can imagine using a straight line 

from the center of the Earth as suggested in Figure VIII.218. Of course, maps are not 

made like this, but the goal is the same: to have an accurate correspondence between 

points on the physical surface of the Earth and the physical surface of the paper. 

We must be careful how we interpret a map. Geographical maps are complicated 

by the real number system and the unphysical notion of infinite divisibility. Mathe

matically, the map is an abstract place. A point on the map cannot represent a certain 

physical atom in the real world, not just because of inaccuracies in the map, but be

cause of the dual nature of matter: according to current theories one cannot know the 

exact location of an atom at a given instant. 

Fractal geometers avoid this problem by pretending that the surface of the Earth is 

an abstract place too; we imagine, once again, that matter is infinitely divisible, and 
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Figure Vlll.217. A 
map with no information 
marked on it is quite excit
ing. A very unhelpful map 
of the British Isles. The 
dot represents Maidstone. 
The map is accurate up to 
dot size. 

that we can address every point. In the same spirit, we presume that we can model 
trees, clouds, horizons, churning seas, and infinitely finely defined coastlines. Then, 
for example, we can define the Hausdorff-Besicovitch dimension of the coastline of 
the British Isles. 

For a map to be useful it must have information marked on it, such as heights 

above sea level, population densities, roads, vegetation, rainfall, types of underlying 
rock, ownership, names, incidence of volcanoes, malarial infestation, and so on. 

A good way of providing such information is with colors. For example, if we use 
blue for water and green for land then we can "see" the land on the map and we 
can understand some geometrical relationships. We can estimate overland distances 
between points, land areas of islands, the shortest sea passage from LLanellian Bay 

point on map 

exact center of Earth 

coordinates 
specified by 
the fixed stars 

Figure Vlll.218. How 
Figure VIII.217 might 
have been made. 
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Figure Vlll.219. In 

this map points corre
sponding to land have 
been shaded. A fascinat

ing entity, the coastline, is 

revealed. I 
1000 miles 

1 
~<---1000 miles---)~ 

to Amylwch Harbour, the length of the coastline, etc. All this is achieved through 

the device of marking some colors on a blank map! 

Let us consider the boundary of the shaded region in Figure VIII.219. It is here 

that the map conveys extra information. In the interior of the shaded region we learn 

no more about the surface of the Earth than that "there is land there." However, on 

the boundary we learn not only that "there are land and sea there," but also, if the 

map is accurate enough, a feature that we will actually "see" on the surface, namely 

the local shape of the coastline. 

The latter idea can be extended. If we include more colors on a geographical map, 

to provide more information about properties of the Earth's surface, we produce 

more boundaries on the map. These boundaries can give information about local 

geometry. For example, a map finely colored according to elevation reveals the 

shapes of the bases of the mountains, the paths of rivers, and - if we look closely 

enough-the outlines of buildings. Such a map, made abstract and perfect, placed in 

a metric space, would contain much detailed information about what, at each point, 

the local observer would see. 

Examples & Exercises 

1.1. Study an atlas that contains maps colored according to diverse criteria, such as 

rainfall, population density, vegetation, and elevation. Discuss to what extent these 

maps provide information about the local geometry of the surface of the Earth. 

We tum attention to making colored maps of parameterized families of fractals. 

We consider families of iterated function systems and families of dynamical systems 

that depend on two real parameters. The collection of possible parameter values 

defines a parameter space associated with the family. We use the notation P to 

denote a parameter space. Typically P is a subspace of (~2 ,Euclidean) such as •, 

a closed ball, or ~2 • 

An example of a parameter space is P = {() .. 1, A.2) E ~2 : IA.Ii, IA.2I < 2-0·5}. This 
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is a parameter space for the family of hyperbolic IFS { <C; (). 1 + i). 2) z + 1, (). 1 + 
il .. 2)z- 1}. Each point).= (). 1, ).2) E P corresponds to an IFS. Each IFS possesses a 
unique attractor, say A(A). Hence each point of P corresponds to a single fractal. We 
can think of P as representing part of 1t(<C), a space of fractals. A map of P, with a 
few points marked on it, is shown in Figure VIII.220. Each point in P corresponds 

to a single fractal. Nearby points in P correspond to nearby fractals, that is, points 

in 1t(<C) whose Hausdorff distance apart is small. 
Another example is P = <C, which provides a parameter space for the family of 

dynamical systems {C; f;. .. (z) = z2 - ).}. Each point in the parameter space corre
sponds to a different dynamical system. Each dynamical system is associated with a 
unique Julia set, J().). The collection of fractals {J().):). E P}, associated with the 

parameter space, is vast and diverse. 
Let X be a two-dimensional metric space such as ~2 or C. Let P denote a pa

rameter space corresponding to a family of fractals {A().) E 1t(X) :). E P}. Can we 

provide the explorer of fractals, who wishes to investigate this collection of fractals, 
with a colored map? This map should give her information about the sets A().) to be 

found at different points on P. 
Suppose P = •· To make a map, let us represent P by the set of pixels on the 

screen of a computer1graphics monitor. The idea is to color the pixel ). according 
to some property of A().). (We write ). = pixel = point in P, without repeatedly 
explaining that ). is a point in the small rectangle in P that corresponds to the pixel.) 

Figure Vlll.220. An 
example of a parameter 
space. Each point A. in 
the space corresponds to 
a fractal, A(A.). This is a 
poor map, because very 
little has been marked on 
it. It is like the map of 
the British Isles shown in 
Figure VIII.217. It needs 
coloring. 



298 Chapter VIII Parameter Spaces and Mandelbrot Sets 

Suitable properties could relate to the connectivity of A(A), the fractal dimension of 

A(A), the escape time near a special point on A(A) under an associated dynamical 

system, the number of holes in A(A), or the presence of straight lines in A(A), for 

example. 

If we make a good selection of the properties to associate with colors, the result 

will be a useful map containing various differently colored regions. This map will be 

a ready reference for the explorer of fractals. It will tell him something about what 

to expect at he travels about P. He might be suprised nonetheless. 

The boundaries of the colored regions can provide additional geometrical infor

mation to the explorer, over and above the information that the map was originally 

designed to convey. It sometimes occurs that the local shapes of the boundaries in 

the map reflect the shapes of the corresponding fractals. There is a deep principle 

here, which we shall not pin down as a theorem, but which we will illustrate in a 

number of cases. 

Examples & Exercises 

1.2. It is often useful, when establishing the Lipshitz continuity condition in Theo

rem 11.1 in Chapter III, to remove dependencies on x E X by restricting the domain 

of the IPS to a compact set B that contains the attractors A(A) for all values of A E P. 

Since this does not change the attractors themselves, continuous dependency on A in 

B then guarantees it for the original IPS. This can be done in practice by means of 

the following lemma: 

Lemma 1. 1 Let B E 1-l (X) such that for all p E P, W (p, B) c B. Then for all 

p E P, A (p) C B. 

Prove the lemma. 

1.3. Let P = {(A1, A2) E ~2 : !A1!, IA2I :S 0.9}. The family of IPS {~; A1x, A2x + 
1 - A2, 0.5x + 0.5} is hyperbolic, with contractivity factor s = 0.9, for all A E P. 

Use Theorem 3 .11.1 and the lemma of the previous problem to prove that the aurae

tor A(A) depends continuously on A. 

1.4. The family of IPS {[0, 1]; A1x 2, A2x + (1- A2)} is hyperbolic, with contractiv

ity factors= 0.9, for all A in the parameter space 

P ={(AI, A2) E ~2 : 0::: A1::: 0.45, 0::: A2::: 0.9}. 

Since we have 

d(w1 (x), w1 (x)) = !x2IIA1 - A1 I < IA1 - A1 I p q p q- p q 

d(JJ2p(x), w2/x)) = lx- 1IIA2p- A2ql :S IA2p- A2ql' 

we can satisfy the Lipshitz condition with k = 1 in both cases. The attractor depeJ;}ds 

continuously on A. 

1.5. Sometimes the Lipshitz condition is not that convenient to prove directly. In 

this case, we can go directly to the continuity statement that it is used to guarantee. 
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Suppose we can show directly that Wi (p, x) is a continuous function from P x X --+ 

X. That is, without holding either p or x fixed, given E > 0, there is a 8i > 0 for each 

wi(p, x), such that 

whenever d((p, x), (q, x)) < 8i. 

Then the conclusions of Theorem 11.1 in Chapter III hold. This does not mean 

that the Lipshitz condition (or something like it) is unnecessary; such conditions 

guarantee the statement we have just made. If we can guarantee it some other way, it 

is equivalent. 

1.6. An example of a parameter space is ( P, Euclidean), where P = {(A 1, A2) E ~ 2 
: 

IA.tl, IA21 :S 0.999}. This space can be used to represent the family of hyperbolic IFS 

{~2 ; w1, w2}, where 

w,G) =(~ ~JG)+C)· 
W2 (X) = (0.3 -0.2) (X). 

y 0.1 0.4 y 

Since (using (z, w) = (A 1, A2) to emphasize familiarity) 

Wt(X, y, z, w) = (zx, wy + 1) 

is continuous from basic calculus, Theorem 11.1 in Chapter III holds, and the aurae

tor varies continuously with A. 

2 Mandelbrot Sets for Pairs of Transformations 

Let P c ~ 2 be a parameter space corresponding to a family of fractals. That is, 

we have a function A : P--+ H(X), so that each point A E P corresponds to a set 

A(A) E H(X). One way to make a map is to color the parameter space according to 

whether or not A(A) is connected. 

Theorem 2.1 Let {X; wi, w2 } be a hyperbolic IFS with attractor A. Let Wt and 

w2 be one-to-one on A. If 

WI (A) n w2(A) = 0, 

then A is totally disconnected. If 

then A is connected. 

Proof Suppose that lfi (A) n w2(A) = 0. Let :E denote the code space map asso

ciated with the IFS. By Theorem 2.2 in Chapter IV the code space map <P: :E --+ A is 

invertible. </J is also a continuous transformation between two compact metric spaces. 
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~ 
Hence, by Theorem 8.5 in Chapter II, ¢ is a homeomorphism. Hence A is homeo-
morphic to code space, which is totally disconnected. (Recall that code space on two 
or more symbols is metrically equivalent to a classical Cantor set.) It follows that A 
is totally disconnected. 

Suppose that WI (A) n w2(A) =I= 0. Then there is at least one point x E WI (A) n 
w2(A). This point x has two addresses, say 

x =¢(~)=¢(a), where ~I= 1 and ai = 2. 

Let us see what happens if we additionally suppose that "A is not connected." Then, 
since A is compact, we can find two nonempty compact sets E and F so that 

A= EU F, En F =0. 

Using compactness, there is a positive real number 8 so that 

d(e, f)~ 8 for all e E E, f E F. 

Let n and 1/1 be a pair of codes that agree through the first K symbols, for some 
positive integer K. That is rr; = 1/1; fori = 1, 2, ... , K. Then 

d(¢(rr), ¢(lfr )) ::=:: sK diam(A), 

where diam(A) = Max{d(x, y): x, yEA}, and s E [0, 1) is a contractivity factor for 
the IFS. Suppose also that ¢ (rr) E E and ¢ ( lfr) E F. Then 

8 ::=:: d(¢(rr), ¢(lfr)). 

Combining the latter two inequalities we discover 8 ::=:: sKdiam(A), which implies 

log(8/diam(A)) 
K< . 

- log(s) 

We conclude that if e E E and f E F then the number of successive agreements 
between an address of e and an address of f cannot exceed the number on the right
handside here. It follows that there is a maximum number, M, of initial agreements 
between the address of a point e E E and a point f E F;. and this maximum is 
achieved on some pair of points, say e and f. Then we can find Pi E { 1, 2} for 
i = 1, 2, ... , M such that 

¢(Pt, P2, p3, ... , PM, 1, ... ) = e E E 

and 

¢(pi, P2, P3, ···,PM, 2, ... ) = f E F. 

Now consider the point z E A, which has the two addresses 

Z =¢(PI, P2, P3, ···,PM, 1, ~2. ~3, ~4, · · .) 

=¢(PI, P2, p3, ... , PM, 2, a2, a3, a4, .. . ). 

Suppose z E E. Then its address agrees with that off E F through (M + 1) initial 
symbols. Hence z E F. But then its address agrees with that of e E E through (M + 
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Figure Vlll.221. A 
map of the family of IPS 
{C; A.z- 1, /...z + 1}, where 
the parameter space is 
P ={A.= (A.J, /...2) E ([: 

I A. I < 1}. This picture of 
a parameter space is ob
tained by "painting" black 
where the attractor of 
the IPS is disconnected 
and light where it is con
nected. The Mandelbrot 
set is the light region, the 
sea. It contains a dragon at 
A.= (0.5, 0.5). 

1) initial symbols, which is not possible. We have a contradiction. Hence "A is 

not disconnected." It follows that A is connected. This completes the proof of the 

theorem. 

Definition 2.1 Let {X; WI, w2} be a family of hyperbolic IFS that depends on a 

parameter A E P c ~2 . Let A(A) denote the attractor of the IFS. The set of points 

M C P defined by 

M ={A E P: A(A) is connected} 

is called the Mandelbrot set for the family of IFS. 

For the rest of this section we consider the family of IFS 

{C; AZ- 1, AZ + 1}, 

where the parameter space is 

P ={A= (AI, A2) E ([: Ai +A~< 1}. 

Figure VIII.221 shows a picture of the associated Mandelbrot set, M. This is a map 

for the collection of fractals associated with the IFS. It has been colored dark where 

the attractor is totally disconnected and light where it is connected. 

Here is an outline qf an algorithm to compute images of the Mandelbot set M 
associated with the family {C; WI(Z) = Az- 1, w2(z) = AZ + 1}. It is based on The

orem 2.1. 
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Algorithm 2. 1 Example of Method for Making Pictures of the 

Mandelbrot Set of a Family of IFS. 

( 1) Choose a positive integer, L, corresponding to the amount of computation one 

is able to do. The greater the value of L, the more accurate the resulting map 

image will be. 

(2) Represent the parameter space P ={A. E C: lA. I < 1} by an array of pixels. 

Carry out the following steps for each A. in the array. 

( 3) Calculate a number R, so that the attractor is contained in a ball of radius R, 

centered at the origin; that is, choose R > 0 so that A(A.) C B(O, R). 

( 4) Compute the number 

H = min{d(x, y): X E WI (W 0 L({0})), y E w2(W0 L({O}))}, 

where W =WI U w2. If H ::S 21A.IL+I R, then the pixel A. is assumed to belong 

to M and is colored accordingly. 

Step ( 4) is based on the following observation. The attractor of the /FS is 

contained in the set wo{L+I)(B(O, R)), which consists of 2L+l balls of radius 

IA.IL+I R. The centers of these balls lie in the union of the two sets WI (W 0 L(O)) and 

w2(W 0 L(O)). If His greater than 21A.IL+I R, then A(A.) must be disconnected. 

Figure VIII.222 shows the "coastal region" of a quarter of the complement of the 

Mandelbrot set in Figure VIII.221. It has been laid over a grid in order to help you 

locate points where interesting fractals lie. 

The boundary of M is complicated and intricate. Close-ups of the "coast

line" near the places marked (a), (b), and (c) are shown in Figure VIII.223. Fig

ure VIII.224 shows a zoom on the spiral peninsula in Figure VIII.222. 

Now look at Figures VIII.225 and VIII.226, which show pictures of the attractors 

A(A.) for some points A. located near the boundary of the Mandelbrot set. There is 

a "family resemblance" between the places on the boundary from which the fractals 

come, and the fractals themselves. To help see this you should look back at the close

ups on the coastline in Figure VIII.223. Figure VIII.227 shows the IFS attractor 

corresponding to the tip of the peninsula in Figure 224. Notice how it contains 

spirals, very much like the ones in the peninsula in parameter space. At the end of 

this chapter we make some comments on why such "family resemblances" occur. 

The following theorem provides rigorous bounds on the locations of M and aM. 

The proof is delightful, because it relies on a fractal dimension estimate. 

Theorem 2.2 [Barnsley 1985c] The attractor A(A.) of the IFS {C; A.z- 1, A.z + 
1} is totally disconnected if lA. I < 0.5 and connected if 1 > lA. I> 1/h. The bound

ary of the associated Mandelbrot set is contained in the annulus 1/2 ::::: lA. I ::::: 1 I .J2. 

Proof Let A denote the attractor of the IFS and let D(A) denote its fractal di

mension. The two maps in the IFS are similitudes of scaling factor IA.I. This means 

that Theorem 2.3 in Chapter V can be applied. 
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Figure Vlll.222. This 
shows the coastal region 
of a quarter of the com
plement of the Mandelbrot 
set in Figure VIII.221. 
It has been laid over a 
grid in order to help you 
locate points where inter
esting fractals lie. Close
ups of the coast at (a), 
(b), and (c) are shown in 
Figure VIII.223. The co
ordinates of the grid are 
(0, 0)- -(0.71, 0.71). 

Suppose that A is totally disconnected. Then the IFS is totally disconnected and, 

by Theorem 2.3 in Chapter V, 

D(A) = log(l/2)/ log(IAI). 

By Theorem 2.1 in Chapter V, D(A) ::=: 2. Hence 

log(l/2)/ log( lA I) ::=: 2. 

This implies that IAI :S 1/h. 
Suppose that A is connected. Then it contains a path that connects two dis

tinct points. The fractal dimension of any path is greater than or equal to 1. Hence 

D(A) :::: 1. However, by Theorem 2.3 in Chapter V, 

D(A) :S log(l/2)/ log( lA I). 

It follows that 

1 ::=: log(l/2)/ log(IAI). 

This implies that IAI :::: 1/2. This completes the proof of the theorem. 

A different point of view on the Mandelbrot set considered above is given by 
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Figure Vlll.223. Close
ups of the boundary of the 
Mandelbrot set at (a), 
(b), and (c). The diverse 
structures in this bound
ary echo the shapes of 
the attractors of the corre
sponding IFS. 

Figure VIII.228. M has been turned inside-out by making the change of variables 

A1 =A -r. The inner white disk is no-man's land; it does not belong to the parameter 

space. Also included are the two bounds provided by Theorem 2.2, namely the circle 

IA'I = 2 and the circle IA'I =h. The fractal dimension decreases with increasing 

distance from the origin. 

Examples & Exercises 
2.1. Sketch the Mandelbrot set for the family of IFS {~; A1x + A2, A2X +AI} where 

the parameter space is P = {(Ar, A2): lAd, IA2i < 1}. 

2.2. Let {X; w 1, w2} be a family of hyperbolic IFS which depends on a parameter 

A E P c ~ 2 . Let w 1 and w2 depend Lipshitz continuously on A for some k > 0 and 

for fixed x E X. Assume that the IFS has contractivity factor s E [0, 1) which is 

independent of A E P. Then by Theorem 11.1 in Chapter III, the function A : P -+ 

'H(X) is continuous. Use this continuity to prove that the Mandelbrot set associated 

with the family of IFS is closed. It is suggested that you begin by showing that the 

setS= {B E 'H(X) : B is not connected} is an open subset of 'H(X). 
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2.3. Use Figure VIII.222 to determine some values of A that belong, approximately, 
to the boundary aM of the Mandelbrot set. Compute images of the correspond
ing attractors. Compare images corresponding to two points A1 and A2 E aM, with 
IAtl < IA21· Explain why the picture of A(AI) is more delicate than the picture of 
A(A2 ). Also comment on similarities and differences between your images and the 
local geography oftheparts of aM from which they come. 

2.4. The pictures of the Mandelbrot set associated with the family of IFS {([; AZ-

Figure Vlll.224. Close
up on the spiral penin
sula on the edge of 
the Mandelbrot set in 
Figures VIII.221 and 
VIII.222. What infor
mation about the corre
sponding fractals does this 
boundary convey? 
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Figure Vlll.225. Some 

of the fractals to be found 

at various points near the 

boundary of the Mandel

'brot set associated with 

the parameterized family 
ofiFS {([; ),.z- 1, ),.z + 1}. 

1, "Az + 1} suggest the conjecture that M is symmetric about the x-axis and about 

the origin. Prove the conjecture. 

2.5. An interesting point in the parameter space for the family{([; "Az- 1, "Az + 1} 

is ).. = (1/2, 1/2). This lies on the circle 1/I"AI = I"A'I = v'2 in Figure VIII.228. It 

appears to be located in the interior of the Mandelbrot set, although the IFS is just

touching. It corresponds to the Twin-Dragon Fractal. A picture of it is shown in 

Figure VIII.229. It is possible to tile the plane with Twin-Dragons. Various other 

1 
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values of). also correspond to tilings of the plane. See [Gilbert 1982]. Show that the 

attractor at the point 'A= (0, 1/-J2) can be used to tile the plane. 

2.6. Notice the line segments on the real axis in Figure VIII.228. In [Barnsley 

1985c] it is proved that! 

{'A E ([ : 0.5 :::::AI ::::: 0.53; A2 = 0} c M. 

Figure Vlll.226. Some 
of the IFS attractors to be 
found at various points 
near the boundary of the 
Mandelbrot set associated 
with the parameterized 
family of IFS {<C; A.z -

1 , ).z + 1}. Where would 
you look for an interesting 
fractal? 
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Figure Vlll.227. At
tractor of the IFS {((; 'Az -

1, 'Az + 1} corresponding 
to the value of 'A at the 
tip of the spiral peninsula, 
shown in Figure VIII.224. 

For A. in such a line segment what does the attractor look like? Are you suprised, in 

view of what you know about maps of coastlines? 

2. 7. Some of the most delicate attractors of the family { C; 'Az - 1, 'Az + 1} are 

associated with points on oM where it touches the circle 1/I'AI = I'A'I = 2. These 

have the lowest possible fractal dimension while still being connected. Let us call 

these attractors tree-like if w1 (A) n w2(A) is a single point. Argue (or, better yet, 

prove) that a tree-like attractor A contains no trapped holes; that is, A contains 

no nontrivial, non-self-intersecting paths that start and finish at the same point. A 

picture of a tree-like attractor is shown in Figure VIII.230. 

2.8. Let e = e1 e2e3 ... en .... be a point in the code space 'E of two symbols, with 

en E { + 1, -1} for all n. Let A. E C. Prove that the series 

f(A.) = e1 + e2'A + e3A.2 + e4A.3 + es'A 4 + e6A.5 ... + en'An + ... 

has radius of convergence 1. What is the relationship between f(A.) and the code 

space map <P : 'E ---+ A ('A) associated with the family of IFS { C; 'Az - 1, 'Az + 1}? Let 
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DECREASING 
FRACTAL 

~SION 

NO MAN'S LAND 

DECREASING 
FRACTAL 

DIMENSION 

/ 

TOTALLY 
DISCONNECTED 
HERE AND IN 

BLACK 

IAI < 1. Show that the attractor of the IFS is the union of all points which can be 
written in the form 

± 1 ±A± A2 ± A3 ± )..4 ±As± )..6 ± A7 ±As± A9 ± )..10 ±All± .... 

3 The Mandelbrot Set for Julia Sets 

In this section we introduce a good method for making maps, such as might be found 
in an atlas, of families of dynamical systems. The method is based on the use of 
escape times and is discussed more generally in section 4. Here we restict attention 
.to the family 

where the parameter space is P = ([. This family is of special importance because 
it provides a model for the onset of chaotic behavior in physical and biological 
systems; see [May 1976] and [Feigenbaum 1979]. Moreover, it was the first family 

1 

of dynamical systems for which a useful computergraphical map was constructed, 
by Mandelbrot. We concentrate on map making. 

Figure Vlll.228. Inside
out picture of the 
~andelbrot set for 
{([; A.z- 1, A.z + 1}. It 
has been turned inside-out 
by making the change of 
variables A.' = A. -I. The in
ner white disk is no-man's 
land; it does not belong 
to the parameter space. 
The figure also includes 
the two bounds provided 
by Theorem 2.2, namely 
the circle [A.'I = 2 and the 
circle [A.'I = J2. 
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Figure Vlll.229. The 

Twin-Dragon Fractal. You 

can tile the plane with 

these sets. Although it is 

just-touching, it appears 
to lie in the interior of the 

Mandelbrot set. 

The Julia set J(A) associated with f;,.(z) is symmetric about the origin, 0. We 

know this because the filled Julia set, of which J (A) is the boundary, is the set of 

points whose orbits remain bounded. The orbit of z E ([ remains bounded if and only 

if the orbit of - z remains bounded. 

For some values of A E P, 0 belongs to the filled Julia set, F (A), while for others 

it is quite far from F(A). This suggests that we try to color the parameter space 

according to the distance from 0 to F(A). How can we estimate this distance? An 

approximate method is to look at the "escape time" of the orbit of 0. That is, we 

can color the parameter space according to the number of steps along the orbit of 

0 that are required before it lands in a ball around the point at infinity, from where 

we know that all orbits diverge. The intuitive idea is that the longer an orbit of 0 

takes to reach the ball, the closer 0 must be to F(A). Of course, if an orbit does not 

diverge then we know that 0 E F(A). 

Suppose that we want to make a map corresponding to a region W c P. Here we 

choose 

Let R > 0 and define 

V(R) = {z E ([: izl > R} U {oo}. 

Suppose 

R > 0.5 + 0.25 + lA I. 

Then it is readily proved that the orbit {f{'n(z)} diverges if and only if it intersects 

V(R). So if we chooseR= 10 we are sure that, for all A E W, the orbit {f~.on(O)} 
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diverges if and only if it intersects V(R). Let us see what happens if we color the 

pixels of W according to the number of iterations required to enter V(lO). 

The following program is written in BASIC. It runs without modification on an 

IBM PC with Enhanced Graphics Adaptor and Turbobasic. On any line the words 

preceded by ' are comments: they are not part of the program. 

Program 1. (Algorithm for Coloring Parameter Space According to an Escape Time) 

'Define viewing window, W, and numits. 
numits = 20 : a = -2 : b = -2 c = 2 : d = 2 : M = 100 

R =10 'Define the region V. 

screen 9 : cls 'Initialize graphics. 

for p =1 to M 

for q =1 to M 

'Specify the value of lambda (k,l) in P 
k = a+(c-a)•p/M : 1 = b+(d-b)•q/M 

Figure Vlll.230. A 
"tree-like" attract or 
A from the family 
{C; w,(z) = A.z- 1, Wz = 
A.z + 1}. The two sets 
w 1(A) and w2(A) meet 
approximately at a single 
point. 
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'Specify the initial point, 0, on the orbit 
X =0 : y =0 

'Compute at most numits points on the orbit of 0 
for n 1 to numits 

x = newx : y newy 

'If the most recently computed point lies in V then ... 
if x*x+y*y > R then 

' ... render the pixel (p,q) in color n, and 
'go to the next (p,q). 
pset(p,q),n : n = numits 

end if 

if instat then end 'Stop computing if any key is pressed! 

next n : next q next p 

end 

Color Plate 16 shows the result of running a version of Program 1 on a Masscomp 

5600 workstation with Aurora graphics. 
In Figure VIII.231 we show the result of running a version of Program 1, but this 

time in halftones. The central white object corresponds to values of A. for which the 
computed orbit of 0 does not reach V during the first numits iterations. It represents 

the Mandelbrot set (defined below) for the dynamical system {C; z2 - A.}. The bands 
of colors (or white and shades of gray) surrounding the Mandelbrot set correspond 
to different numbers of iterations required before the orbit of 0 reaches V(IO). 

The bands farthest away from the center represent orbits that reach 0 most rapidly. 
Approximately, the distance from 0 to F(A.) increases with the distance from A. to 

the Mandelbrot set. 

Definition 3.1 The Mandelbrot setfor the family of dynamical systems {C; z2 -

A.} is 

M ={A. E P: J (A.) is connected}. 

The relationship between escape times of orbits of 0 and the connectivity of J(J..) 

is provided by the following theorem. 
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Theorem 3.1 The Julia set for the family of dynamical systems {C; h.(z) = 

z2 - 'A}, 'A E P = ([, is connected if and only if the orbit of the origin does not escape 

to infinity; that is 

M ={A. E ([: lf;n(O)I fr oo as n-+ oo} 

Proof This theorem follows from [Brolin], Theorem 11.2, which says that the 

Julia set of a polynomial, of degree greater than 1, is connected if and only if none 

of the finite critical points lie in the basin of attraction of the point at infinity. f>.. (z) 

possesses two critical points, 0 and oo. Hence J ('A) is connected if and only if 

IJ;n(O)I fr oo as n-+ oo. 

In this paragraph we discuss the relationship between the Mandelbrot set for 

the family of dynamical systems {C; z2 - 'A} and the corresponding family of IFS 

{(; Jz +'A, -Jz +'A}. We know that for various values of 'A in ([ the IFS can 

be modified so that it is hyperbolic, with attractor J ('A). For the purposes of this 

paragraph let us pretend that the IFS is hyperbolic, with attractor J ('A),for all 'A E C. 

Then Definition 2.1 would be equivalent to Definition 3.1. By Theorem 2.1, the 

attractor of the IFS woyld be connected if and only if WI (J(A.)) n w2 (J('A)) =/:- 0. But 

WI(([) n w2(([) = 0. Then it would follow that the attractor of the IFS is connected if 

and only if 0 E J ('A). In other words: we discover the same criteria for connectivity 

Figure Vlll.231. The 
Mandelbrot set for z2 

- A., 

computed by escape times. 
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of J (A) if we argue informally using the IFS point of view, as can be proved using 

Julia set theory. This completes the discussion. 

We return to the theme of coastlines and the possible resemblance between fractal 

sets corresponding to points on boundaries in parameter space and the local geome

try of the boundaries. Figures VIII.232 and VIII.233 show the Mandelbrot set for 

z2 -A, together with pictures of filled Julia sets corresponding to various points 

around the boundary. If one makes a very high-resolution image of the boundary 

of the Mandelbrot set, at a value of A corresponding to one of these Julia sets, one 

"usually" finds structures that resemble the Julia set. It is as though the boundary of 

the Mandelbrot set is made by stitching together microscopic copies of the Julia sets 

that it represents. An example of such a magnification of a piece of the boundary of 

M, and a picture of a corresponding Julia set, are shown in Figures VIII.234 and 

VIII.235. 
If you look closely at the pictures of the Mandelbrot set M considered in this 

section, you will see that there appear to be some parts of the set that are not 

connected to the main body. Pictures can be misleading. 

Theorem 3.2 [Mandelbrot-Douady-Hubbard] 

The Mandelbrot set for the family of dynamical systems { C; z2 - A} is connected. 

Proof This can be found in [Douady 1982]. 

The Mandelbrot set for z2 -A is related to the exciting subject of cascades of bi

furcations, quantitative universality, chaos, and the work of Feigenbaum. To learn 

more you could consult [Feigenbaum 1979], [Douady 1982], [Bamsley 1984], [De

vaney 1986], [Peitgen 1986], and [Scia 1987]. 

Examples & Exercises 
3. 1. Rewrite Program 1 in a form suitable for your own computergraphical envi

ronment. Run your program and obtain hardcopy of the output. Adjust the window 

parameters a, b, c, and d, to allow you to make zooms on the boundary of the Man

delbrot set. 

3.2. Figure VIII.236 shows a picture of the Mandelbrot set for the family of dynam

ical systems {C; z2 - A} corresponding to the coordinates -0.5 ~ A1 ~ 1.5, -1.0::: 

A2 ~ 1.0. It has been overlaid on a coordinate grid. The middle of the first bubble has 

not been plotted, to clarify the coordinate grid. Let B0 , B1, B2 , B3 , ••• denote these

quence of bubbles on the real axis, reading from left to right. Verify computationally 

that when A lies in the interior of Bn the dynamical system possesses an attractive 

cycle, located in C, of minimal period 2n, for n = 0, 1, 2, and 3. 

3.3. The sequence of bubbles {Bn}~0 in exercise 3.2 converges to the Myreberg 

point, A = 1.40115 .... The ratios of the widths of successive bubbles converge to 

the Feigenbaum ratio 4.66920 .... Make a conjecture about what sort of "attractive 

cycle" the dynamical system {C; z2 - A} might possess at the Myreberg point. Test 

your conjecture numerically. You will find it easiest to restrict attention to real orbits. 
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Figure Vlll.232. Man
delbrot set for z2 -A, dec
orated with various Julia 
sets and filled Julia sets. 

Figure Vlll.233. Man
delbrot set for z2 - A, 
decorated with various 
Julia sets and filled Julia 
sets. These often resemble 
the place on the boundary 
from which they come, es
pecially if one magnifies 
up enough. 
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Figure Vlll.234. A 
zoom on a piece of the 
boundary of the Mandel
brot set for z2 - A.. 

Figure Vlll.235. A 
filled Julia set corre
sponding to the piece 
of the coastline of the 
Mandelbrot set in Fig
ure VIII.234. Notice the 
family resemblances. 

' 
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-0.5 1.5 

3.4. Make a parameter space map for the family of dynamical systems {C; h.(z)}, 

where h. is the Newton transformation associated with the family of polynomials 

F(z) = z3 +(A- 1)z + 1, A E P = ([. 

Notice that the polynomial has a root located at z = 1, independent of A. Color 

your map according to the "escape time" of the orbit of 0 to a ball of small radius 

centered at z = 1. Use black to represent values of A for which 0 does not converge 

to z = 1. Examine some Julia sets of h .. corresponding to points on the boundary of 

the black region. Are there resemblances between structures that occur in your map 

of parameter space, and some of the corresponding collection of Julia sets? (The 

correct answer to this question can be found in [Curry 1983].) 

Figure Vlll.236. A 
picture of the Mandel
brot set for the family 
of dynamical systems 
{([; z2 - A.}. It has been 
overlaid on a coordinate 
grid. The middle of the 
first bubble has not been 
plotted, to clarify the coor
dinate grid .. 

4 How to Make Maps of Families of Fractals Using Escape Times 

We begin by looking aq:he Mandelbrot set for a certain family of IFS. It is disap

pointing, and we do not learn much. We then introduce a related family of dynam

ical systems and color the parameter space using escape times. The result is a map 
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Figure Vlll.237. The 
complement of the Man
delbrot set M 1 associated 
with the family of IFS 

{C; w 1 = A.z + 1, W2 = 
A.* z - 1}. Points in the 
complement of the Man
delbrot set are colored 
black. The boundary of 
M 1 is smooth and does 
not reveal much infor
mation about the family 
of fractals it represents. 
The figure also shows 
attractors of the IFS corre
sponding to various points 
on the boundary of M 1• 

What a disappointing map 
this is! 

( 

packed with information. We generalize the procedure to provide a method for mak

ing maps of other families of dynamical systems. We discover how certain bound

aries in the resulting maps can yield information about the appearance of the fractals 

in the family. That is, we begin to learn to read the maps. 

Figures VIII.237 and VIII.238 show the Mandelbrot set M 1 for the family of 

hyperbolic IFS 

{C; Wt(z) = A.z + 1, w2(z) = A.*z- 1}, P ={A. E ([: lA. I< 1}. 

We use the notation A.*= (A.t + iA.2)* = (A.t - iA.2) for the complex conjugate of A. 

The two transformations are similitudes of scaling factor lA. I. At fixed A., they rotate 

in opposite directions through the same angle. The figures also show attractors of 

the IFS corresponding to various points around the boundary of the Mandelbrot set. 

What a disappointing map this is! There are no secret bays, jutting peninsulas, nor 

ragged rocks in the coastline. 

Theorem 4.1 (Hardin 1985). The Mandelbrot set Mt is connected. Its 

boundary is the union of a countable set of smooth curves and is piecewise dif

ferentiable. 

Proof This can be found in [Barnsley 1988d]. 
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Figure Vlll.238. The 

complement of the Man

delbrot set M 1 associated 

with the family of IFS 

{([;WI= )...z + 1, Wz = 

)... * z - 1}, together with 

some of the corresponding 

fractals. Notice how these 

have subsets of points 

that lie on straight lines, 

like the local structure of 

BM'1• 

Let us try to obtain a better map of this family of attractors. In order to do so we 

begin by defining an extension of the associated shift dynamical system, for each 

A. E P \ M 1• Let A(A) denote the attractor of the IFS. One can prove that A(A) is 

symmetric about the y-axis. Hence A(A) E M1 if and only if A(A) intersects the 

y-axis. Define h.: ([ ~ ([ 

f ( ) = { w}
1
(z) ifRe z :=:: 0; 

A z w2 1(z) ifRe z < o. 

Then, when A is such that A(A.) is disconnected, {A(A.); fA} is the shift dynamical 

system associated with the IFS; { ([; fA} is an extension of the shift dynamical system 

to all of([; and A(A) is the "repelling set" of{([; f)._}. This system can be used to 

compute images of A(A) in the just-touching and totally disconnected cases, using 

the Escape Time Algorithm, as discussed in Chapter VII, section 1. 

We make a map of the family of dynamical systems { ~ 2; f).}, A E P. To do this we 

use the following algorithm, which was illustrated in Program 8.3.1. The algorithm 

applies to any family of dynamical systems {~2 ; fA} that possesses a "repelling set" 

A(A), and such that P is a two-dimensional parameter space with a nice classical 

shape, such as a square or a disk. 
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Figure Vlll.239. A 

map of the family of dy
namical systems {I(; f)J, 

~ 

Algorithm 4. 1 Method for Coloring Parameter Space According to 

an Escape Time. 

(i) Choose a positive integer, numits, corresponding to the amount of computa

tion one is able to do. Fix a point Q E ~2 such that Q E A(A) for some, but 

not all, A E P. 

(ii) Fix a ball B C ~2 such that A(A) C B for all A E P. Define an escape region 

to be V = ~ 2 
\ B. 

(iii) Represent the parameter space P by an array of pixels. Carry out the fol

lowing step for each A in the array. 

(iv) Compute {f:n(Q): n = 0, 1, 2, 3, ... ,numits}. Color the pixel A according 

to the least value of n such that f:n(Q) E V. If the computed piece of the 

orbit does not intersect V, color the pixel black. 

The result of applying this algorithm to the dynamical system defined above, with 

Q = 0, is illustrated in Figures VIII.239 and VIII.240 (a)-(g) and Color Plates 17 

and 18. 
Figure VIII.239 contains four different regions. The first is a neighborhood of 0, 

surrounded by almost concentric bands of black, gray, and white. The location of 

this region is roughly the same as that of P \ M 1, which corresponds to totally dis-

where connected and just-touching attractors. The second region is the grainy area, which 

{
(z-1)/A. ifRez:::O; 

/A(z) = (z + 1)/A. ifRe z < 0. 

The parameter space is 
P ={A. E ([; 0 < A. 1 < 

1, 0 < A. 2 _::: 0.75}. The 
map is obtained by ap
plying Algorithm 8.4.1. 
Pixels are shaded accord
ing to the "escape time" 
of a point 0 E IR\. 2. The 
exciting places where the 
interesting fractals are to 
be found are not within 
the solid bands of black, 
gray, or white, but within 
the foggy coastline. This 
coastline is itself a fractal 
object, revealing infinite 
complexity under mag
nification. In it one finds 
approximate pictures of 
some of the connected 
and "almost connected" 
repelling sets of the dy
namical system. Why are 
they there? 
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Figure Vlll.240. A se
quence of zooms on a 
piece of the foggy coast
line in Figure VIII.239. 
The window coordinates 
of the highest power 
zoom are 0.4123::::; Aj ::::; 

0.4139, 0.6208::::; A- 2 ::::; 

0.6223. Can you find 
where each picture lies 
within the one that pre
cedes it? 

Figure Vlll.240. (b) 
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Figure Vlll.240. (c) 

Figure Vlll.240. (d) 
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Figure Vlll.240. (e) 

Figure Vlll.240. (f) 
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Figure Vlll.240. (g) 

we refer to as the foggy coastline. Here, upon magnification, one finds complex 

geometrical structures. An example is illustrated in the sequence of zooms in Fig

ure VIII.240 (a)-(g). The structures appear to be subtly different from one another. 

Early experiments show that if A. is chosen in the vicinity of one of these structures, 

then images of the "repelling set" of the dynamical system {IR2; J~..}, computed us

ing the Escape Time Algorithm, contains similar structures. An example of such 

an image is shown in Figure VIII.241. The third region, at the lower right in Fig

ure VIII.239, is made up of closed contours of black, grey, and white. Here the map 

conveys little information about the family of dynamical systems. To obtain infor

mation in this region one should examine the orbits of a point Q, different from 0. 

The fourth region, the outer white area in Figure VIII.239, corresponds to dynamical 

systems for which the orbit of 0 does not escape. It is likely that for A. in this region, 

the "repelling set" of the dynamical system possesses an interior. 

Our new maps, such as Figure VIII.239, can provide information about the family 

ofiFS 

{ C; w 1 (z) = A.z + 1, Wz (z) = A.* z - 1}, P = {A. E C : I A. I < 1} 

in the vicinity of the boundary of the Mandelbrot set. For A. E aM 1 the attractor of 

the IFS is the same as the repelling set of the dynamical system. For A. close to aM 1 

the attractor of the IFS "looks like" the repelling set of the dynamical system. 

Figure VIII.242 shows a transverse section through the anther of a lily. We include 

it because some of the structures in Figure VIII.240 (a)-(g) are reminiscent of cells. 
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Figure Vlll.242. Lon
gitudinal section through 
part of the stigma of a 
lily, showing germinating 
pollen-grains. h pappil
lae of stigma; p.g., pollen 
grains; t, pollen tubes. 
Highly magnified. (After 
DodelPort, [Scott 1917].) 

Figure Vlll.241. Im
age of the repelling set 
for one of the family 
of the dynamical sys
tems whose parameter 
space was mapped in Fig
ure VIII.239. This image 
corresponds to a value of 
A. that lies within the high
est power zoom in Fig
ure VIII.240. Notice how 
the objects here resemble 
those in the corresponding 
position in the parameter 
space. 
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Algorithm 1 in section 4 can be applied to families of dynamical systems of the 

type described in Theorem 4.1 in Chapter VII. For example, let {~2 ; J.d. where 

A. E P = • c ~2 , denote a family of dynamical systems. Let X c ~2 be compact. Let 

h. : X -+ ~ 2 be continuous and such that f (X) ~ X. Then h. possesses an invariant 

set A(A.) E 1-l(X), given by 

A(A.) is the set of points whose orbits do not escape from X. The set of points in P 

corresponding to which orbit of Q does not escape from X is 

M(Q) ={A. E P: Q E A(A.)}. 

We conclude this chapter by giving an "explanation" of how family resemblances 

can happen between structures that occur on the boundary of M(Q) and the sets 

A(A.). (1) Suppose that A(A.) is a set in ~2 that looks like a map of Great Britain, 

translated by A.. Then what does M(Q) look like? It looks like a map of Great 

Britain. (2) Suppose that A(A.) is a set that looks like a map of Great Britain at time 

A. 1, translated by A.. We picture the set A(A.) varying slowly, perhaps its boundary 

changing continuously in the Hausdorff metric as A. varies. Now A(A.) looks like a 

deformed map of Great Britain. The local coves and inlets will be accurate represen

tations of those coves at about the time A. 1 to which they correspond in the parameter 

space map. That is, the boundary of M(Q) will consist of neighboring bays and 

inlets at different times stitched together. It will be a map that is microscopically ac

curate (at some time) and globally inaccurate. (3) Now pretend in addition that the 

coastline of Great Britain is self-similar at each time A. 1• That is, imagine that lit

tle bays look like whole chunks of the coastline, at a given instant. Now what will 

M(Q) look like? At a given microscopic location on the boundary, magnified enor

mously, we will see a picture of a whole chunk of the coastline of Great Britain, at 

that instant. (4) Now imagine that for some values of A., Great Britain, in the dis

tant future, is totally disconnected, reduced to grains of isolated sand. It is unlikely 

that those values of A. belong to M(Q). As A. varies in a region of parameter space 

for which A(A.) is totally disconnected, it is not probable that Q E A(A.). In these 

regions we would expect M ( Q) to be totally disconnected. 

The families of sets {A(A.) EX: A. E P} considered in this chapter broadly fit into 

the description in the preceding paragraph. Both P and X are two-dimensional. The 

sets A(A.) are derived from transformations that behave locally like similitudes. For 

each A. E P, A(A.) is either connected or totally disconnected. Finally, the sets A(A.) 

and their boundaries appear to depend continuously on A.. 

Examples & Exercises 
4.1. In the above section we applied Algorithm 1 in section 4, with Q = (0, 0), to 

compute a map of the family of dynamical systems 



{ 
(z- 1)/A. 

J~.(z) = (z + 1)/A. * 
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ifRe z =::: 0, 
ifRe z < 0. 

The resulting map was shown in Figure VIII.239. This map contains an unexplored 

region. Repeat the computation, but with (a) Q = 0.5, and (b) Q = -0.5, to obtain 

information about the unexplored region. 

4.2. In this example we consider the family of dynamical systems {C; /~.},where 

{ 
(z- 1)/A. if A.2x- A.1y =::: 0, 

J~.(z) = (z + 1)/A. if A.2x - A.2y < 0. 

The parameter space is A. E P ={A. E ([: 0 < IA.I < 1}. This family is related to the 

family of IFS 

{([; WI(Z) = AZ + 1, w2(z) = AZ- 1}. 

Let A(A.) denote the attractor of the IFS and let A(A.) denote the "repelling set" 

associated with the dynamical system. Let 

S ={A. E P: the line A.2x- A. 1y = 0 separates w 1(A(A.)) and w2(A(A.))}. 

If A. E S then {A(A.); J~.} is the shift dynamical system associated with the IFS, and 

A(A.) = A(A.). Even when A.¢ S we expect there to be similarities between A(A.) and 

A(A.). 

In Figures VIII.243, VII1.244, and VIII.245 and Color Plates 19 and 20 we show 

some results of applying Algorithm 1 in section 4 to the dynamical system{([;/~.}. 

In Figure VIII.243, the outer white region represents systems for which the orbit 

of the point 0 does not diverge, and probably corresponds to "repelling sets" with 

nonempty interiors. The inner region, defined by the patchwork of gray, black, and 

white sections, bounded by line segments, represents systems for which the orbit 

of 0 diverges and corresponds to totally disconnected "repelling sets." The grainy 

gray area is the interesting region. This is the "coastline"; it is itself a fractal object, 

revealing infinite complexity under magnification. Figures VIII.244 and VIII.245 

show magnifications at two places on the coastline. The grainy areas revealed by 

magnification resemble pictures of the repelling set of the dynamical system at the 

corresponding values of A.. 

4.3. This exercise refers to the family of dynamical systems {C; z2 - A.}. Use Algo

rithm 1 in section 4 with -0.25 ~ A. 1 ~ 2, -1 ~ A.2 ~ 1, and Q = (0.5, 0.5) to make 

a picture of the "Mandelbrot Set" M(0.5, 0.5). An example of such a set, for a dif

ferent choice of Q, is shown in Figure VIII.246. 



Figure Vlll.243. A 
map of the family of dy
namical systems described 
in example 4.2, computed 
using Algorithm 1 in sec
tion 4. The parameter 
space is P ={A. E ([; 0 < 

A. 1 < 1, 0 < A.2 < 1}. The 
gray grainy area is the in
teresting region. This is 
the "coastline"; it is itself 
a fractal object, revealing 
infinite complexity under 
magnification. 

Figure Vlll.244. Zoom 
on a small piece of 
the foggy area in Fig
ure VIII.242. In it one 
finds grainy areas that re
semble the repelling sets 
of the corresponding dy
namical systems. At what 
value of A. does one find 
them? At the value of A. 
in the map where the pic
ture you are interested in 
occurs. 
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Figure Vlll.245. Zoom 
on a small piece of 
the foggy area in Fig
ure VIII.242. The grainy 
areas in this picture here 
have different shapes from 
those in Figure VIII.244. 

Figure Vlll.246. A 
"Mandelbrot set" M(zo) 
associated with the family 
of dynamical systems 
{([; z2

- .A}. This was 
computed using escape 
times of orbits of the point 
z = zo different from the 
critical point, z = 0. 

J 



Chapter IX 

Measures on Fractals 

1 Introduction to Invariant Measures on Fractals 

330 

In this section we give an intuitive introduction to measures. We focus on measures 

that arise from iterated function systems in ~2 • 

In Chapter III, section 8 we introduced the Random Iteration Algorithm. This 

algorithm is a means for computing the attractor of a hyperbolic IFS in ~2 • In order 

to run the algorithm one needs a set of probabilities, in addition to the IFS. 

Definition 1. 1 An iterated function system with probabilities consists of an IFS 

{X; Wt, W2, ... , WN} 

together with an ordered set of numbers {pt. p2, ... , PNL such that 

PI + P2 + P3 + · · · + PN = 1 and Pi > 0 fori = 1, 2, ... , N. 

The probability p; is associated with the transformation w;. The nomenclature 

"IFS with probabilities" is used for "iterated function system with probabilites." The 

full notation for such an IFS is 

Explicit reference to the probabilities may be suppressed. 

An example of an IFS with probabilities is 

{C; Wt(Z), W2(z), W3(z), W4(z); 0.1, 0.2, 0.3, 0.4}, 

where 
Wt (z) = 0.5z, w2(z) = 0.5z + 0.5, 

W3(z) = 0.5z + (0.5)i, W4(z) = 0.5z + 0.5 + (0.5)i. 

It can be represented by the IFS code in Table IX.1. The attractor is the filled square 

•. with comers at (0, 0), (1, 0), (1, 1), and (0, 1). 

Here is how the Random Iteration Algorithm proceeds in the present case. An 

initial point, zo E C, is chosen. One of the transformations is selected "at random" 
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Table IX.l. IFS code for a measure on •· 

w a b c d e f p 

1 0.5 0 0 0.5 0.1 

2 0.5 0 0 0.5 50 1 0.2 

3 0.5 0 0 0.5 50 0.3 

4 0.5 0 0 0.5 50 50 0.4 

from the set {w1, w 2 , w 3 , w4 }. The probability that wi is selected is pi, for i = 

1, 2, 3, 4. The selected transformation is applied to zo to produce a new point z1 E 

C. Again a transformation is selected, in the same manner, independently of the 

previous choice, and applied to z1 to produce a new point z2• The process is repeated 

a number of times, resulting in a finite sequence of points {zn : n = 1, 2, ... ,numits}, 

where numits is a positive integer. For simplicity, we assume that zo E •· Then, since 

wi(•) C •, fori= 1, 2, 3, 4, the "orbit" {Zn: n = 1, 2, ... ,numits} lies in •· 

Consider what happens when we apply the algorithm to the IFS code in Table 

IX.1. If the number of iterations is sufficiently large, a picture of • will be the 

result. That is, every pixel corresponding to • is visited by the "orbit" {zn : n = 

1, 2, ... ,numits}. The rate at which a picture of• is produced depends on the prob

abilities. If numits = 10, 000, then we expect that because the images of • are just

touching, 

the number of computed points in w 1 (•) ~ 1000, 

the number of computed points in w2(•) ~ 1000, 

the number of computed points in w3(•) ~ 1000, 

the number of computed points in w4 (•) ~ 1000. 

These estimates are supported by Figure IX.247, which shows the result of running 

a modified version of Program 2 in Chapter III, with the IFS code in Table IX.l, and 

numits = 100, 000. 

In Figure IX.248 we show the result of running a modified version of Program 2 

in Chapter III, for the IFS code in Table IX.l, with various choices for the proba

bilities. In each case we have halted the program after a relatively small number of 

iterations, to stop the image from becoming "saturated." The results are diverse tex

tures. In each case the attractor of the IFS is the same set, •· However, the points 

produced by the Random Iteration Algorithm "rain down" on • with different fre

quencies at different places. Places where the "rainfall" is highest appear "darker" 

or "more dense" than those places where the "rainfall" is lower. In the end all places 

on the attractor get wet. 
1 

The pictures in Figure IX.248 (a)-(c) suggest a wonderful idea. They suggest 

that associated with an IFS with probabilities there is a unique "density" on the 



332 Chapter IX Measures on Fractals 

Figure IX.247. The 
Random Iteration Algo
rithm, Program 1 in Chap
ter III, is applied to the 
IFS code in Table IX.l, 
with numits = 100,000. 
Verify that the number of 
points that lie in w; (•) is 
approximately (numits) p;, 
fori= 1,2,3,4. 

~~~ 
_-;'·':::"::"~i-.• ,_.-~---~-·-.-..... :·rr-~7-~7:{~~ --· .--_;_.?:.-,_·~rt~::~-;~-:'-~·:::::"~~f1~~~~):~f~ 

• -; .'.! ...... - '.6: . ···~·~·::.:: . . . - ; ... ··:~ ·-~ , .- .. ~~~~.':·~~~ 
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··rE:, ':' '';r:"'"'j''''"r:r~~~! 
.. . .. -·~:-~: 

attractor of the IFS. The Random Iteration Algorithm gives one a glimpse of this 
"density," but one loses sight of it as the number of iterations is increased. This is 
true, and much more as well! As we will see, the "density" is so beautiful that we 
need a new mathematical concept to describe it. The concept is that of a measure. 
Measures can be used to describe intricate distributions of "mass" on metric spaces. 
They are introduced formally further on in this chapter. The present section provides 
an intuitive understanding of what measures are and of how an interesting class of 
measures arises from IFS 's with probabilities. 

As a second example, consider the IFS with probabilities 

{<C; w1 (z) = 0.5z + 24 + 24i, w2(z) = 0.5z + 24i, w3 (z) = 0.5z; 0.25, 0.25, 0.5}. 

The attractor is a Sierpinski triangle £. The probability associated with w 3 is twice 
that associated with either w 1 or w2• In Figure IX.249 we show the result of applying 
the Random Iteration Algorithm, with these probabilities, to compute 10,000 points 
belonging to A. There appear to be different "densities" at different places on A. For 
example, w3(A) appears to have more "mass" than either w1 (A) or w2 (A). 

In Figure IX.250 we show the result of applying the Random Iteration Algorithm 
to another IFS with probabilities, for three different sets of probabilities. The IFS 
is {~2 ; w 1, w 2 , w 3 , w4 }, where wi is an affine transformation fori= 1, 2, 3, 4. The 
attractor of the IFS is a leaf-like subset of ~2 • In each case we see a different pattern 
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Figure IX.248. The 
Random Iteration Algo
rithm is applied to the IFS 
code in Table IX.l, but 
with various different sets 
of probabilities. The result 
is that points rain down on 
the attractor of the IFS at 
different rates at different 
places. What we are see
ing are the faint traces of 
wonderful mathematical 
entities called measures. 
These are the true fractals. 
Their supports, the aurae
tors of IFS, are mer~ly sets 
upon which the measures 
live. 

Figure IX.248. (b) 
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Figure IX.248. (c) 

of "mass" on the attractor of the IFS. It appears that each "density" is itself a fractal 
object. 

Examples & Exercises 
1. 1. Carry out the following numerical experiment. Apply the Random Iteration 
Algorithm to the IFS code in Table IX.1, for numits = 1000, 2000, 3000, .... In 
each case record the number, N, of computed points that land in B = { (x, y) E 

~ 2 : (x - 1 )2 + (y - 1 )2 :::: 1}, and make a table of your results. Verify that the ratio 
N I numits appears to approach a constant. 

1.2. Repeat the computergraphical experiment that produced Figure IX.247. Verify 
that you obtain "similar-looking" output to that shown in Figure IX.247, even though 
you (probably) use a different random-number sequence. 

1.3. The Random Iteration Algorithm is used to compute 100,000 points belonging 
to •, using the IFS code in Table IX.1. How many of these points, do you expect, 
would belong to w1 o w3(•)? Why? 

Let (X, d) be a complete metric space. Let {X; w1, ... , wN; p1, ... , PN} be an 
IFS with probabilities. Let A denote the attractor of the IFS. Then there exists a 
thing called the invariant measure of the IFS, which we denote here by J.L. J.L assigns 
"mass" to many subsets of X. For example, J.L(A) = 1 and J.L(0) = 0. That is, the 
"mass" of the attractor is one unit, and the "mass" of the empty set is zero. Also 
J.L(X) = 1, which says that the whole space has the same "mass" as the attractor of 
the IFS; the "mass" is located on the attractor. 
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Not all subsets of X have a "mass" assigned to them. The subsets of X that do 

have a "mass" are called the Borel subsets of X, denoted by B(X). The Borel subsets 

of X include the compact nonempty subsets of X, so that 1-l(X) c B(X). Also, if 0 is 

an open subset of X, then 0 E B(X). So there are plenty of sets that have "mass." Let 

B denote a closed ball in X. Here is how to calculate the "mass" of the ball, JL(B). 

Apply the Random Iteration Algorithm to the IFS with probabilities, to produce a 

sequence of points {zn}~0 • Let 

N(B, n) = number of points in {zo, z1, zz, Z3, ... , Zn} n B, for n = 0, 1, 2, .... 

Then, almost always, 

JL(B) = lim { N(B, n)}. 
n--+oo (n + 1) 

That is, the "mass" of the ball B is the proportion of points, produced by the Random 

Iteration Algorithm, which land in B. (To be precise we also have to require that the 

"mass" of the boundary of B is zero; see Corollary 7.1.) 

By now you should be bursting with questions. How do we know that this formula 

"almost always" gives the same answer? What are Borel sets? Why don't all sets 

have "mass"? Welcome;o measure theory! 

As an example, we evaluate the measure of some subsets of C, for the IFS with 

probabilities 

Figure IX.249. The 
Random Iteration Algo
rithm is used to compute 
an image of the Sierpinski 
triangle A. The probabil
ity associated with w3 is 
twice that associated with 
w1 or w2 • One thousand 
pointshave been com
puted. The result is that 
w3 (A) appears denser than 
w 1 (A) or w2(A). This ap
pearance is lost when the 
number of iterations is in
creased. We are led to the 
idea of a "mass" or mea
sure that is supported on 
the fractal. 
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Figure IX.250. The Random Iteration Algorithm is used to compute an image of a leaf. 

Different sets of probabilities lead to different distributions of "mass" on the leaf. 

{<C; w1 (z) = 0.5z, w2(z) = 0.5z + (0.5)i, w3(z) = 0.5z + 0.5; 0.33, 0.31, 0.34}. 

The attractor is a Sierpinski triangle £ with vertices at 0, i, and 1. We compute the 

measures of the following sets: 

B1 = {z E <C: lzl ::::: 0.5} 

B2 = {z E <C: lz- (0.5 + 0.5i)l ::::: 0.2} 

B3 = {z E <C: lz- (0.5 + 0.5i)l ::::: 0.5} 

B4 = {z E <C: lz- (2 + i)l :S -J2}. 
The results are presented in Table IX.2. 

Figure IX.251 illustrates the ideas introduced here. 

Examples & Exercises 
1.4. Explain why J.1,(B4) ~ 0 in Table IX.2. 

1.5. What value, approximately, would have been obtained for f.J,(B1) in Table 

IX.2, if the probabilities on the three maps had been p 1 = 0.275, p 2 = 0.125, and 

P3 = 0.5? 
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Table IX.2. The measures of some subsets of A are computed by random iteration. 

n N(B~o n)jn N(B2, n)/n 

5,000 0.3313 0.1036 

10,000 0.3314 0.1050 

15,000 0.3323 0.1041 

20,000 0.3330 0.1030 

50,000 0.3326 0.1041 

100,000 0.3325 0.1054 

N(B3 , n)jn N(B4, n)jn 

0.6385 0.0004 

0.6500 0.0002 

0.6512 0.0001 

0.6525 0.0000 

0.6527 0.0000 

0.6497 0.0000 

The "mass" of B is the 
proportion of time 
spent in B 

Figure IX.251. Di

agram of the Random 
Iteration Algorithm run
ning, and a dancing point 
coming and going from 
the ball B. The "mass" 
or measure of the ball is 
J-t(B). It is equal to the 
proportion of points that 
land in B. 

1.6. Why, do you think, is the phrase "almost always" written in connection with 

the formula for f..L(B), given above? 

2 Fields and Sigma-Fields 

Definition 2.1 Let X be a space. Let F denote a nonempty class of subsets of a 

space X, such that 
1 

(1) A,BEF=tAUBEF; 

(2) A E F =t X\ A E F. 
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Then :F is called a field. 

(In exercise 2.12 you will be asked to prove that X E F.) 

Theorem 2.1 Let X be a space. Let Q be a nonempty set of subsets of X. Let :F 
be the set of subsets of X which can be built up from finitely many sets in Q using the 
operations of union, intersection, and complementation with respect to X. Then :F is 
afield. 

Proof Elements of :F consist of sets such as 

X\ (((X\ (G1 U G2)) n G3) U (Gs n G6)), 

where G 1, G 2, G 3, G 3, ... denote elements of Q. That is, :F is made of all those 
sets that can be expressed using a finite chain of parentheses, \, U, n, elements of 
Q, and X. (In fact, using de Morgan's laws one can prove that it is not necessary to 
use the intersection operation.) If we form the union of any two such expressions 
we obtain another one. Similarly, if we form the complement of such an expression 
with respect to X, we obtain another such expression. So conditions (i) and (ii) in 
Definition 2.1 are satisfied. This completes the proof. 

Definition 2.2 The field referred to in Theorem 2.1 is called the field generated 
byQ. 

Examples & Exercises 
2.1. Let X be a space and let A c X. Then :F ={X, A, X\ A, 0} is a field. 

2.2. Let X be the set of all leaves on a certain tree and let :F be the set of all subsets 
of X. Then :F is a field. Let A denote the set of all the leaves on the lowest branch of 
the tree. Then A E F. Prove that :F is generated by the leaves. 

2.3. Let X= [0, 1] c lR?.. Let g denote the set of all subintervals (open, closed, half
open) of [0, 1]. Let :F denote the field generated by Q. Examples of members ofF 
are [0.5, 0.6) U (0.7, 0.81); [0, 1]; [1, 1]; and(~, 1) U (~, i) U .. · U ( 16o, ~).Show 
that 

U00 
(-

1 ~) = (~ 1) u (~ ~) u (~ ~) u ... n=l (n + 1)' n 2' 3' 2 4' 3 

is a subset of X but it is not a member of :F. 

2.4. Let X= • c 0<?. 2 . Let g denote the set of closed rectangles contained in X, 
whose sides are parallel to the coordinate axes and whose comers have rational 
coordinates. Let :F denote the field generated by Q. An example of an element of 
:F is 

where R1, R2 , R3 , R4 , and R5 are rectangles in Q. LetS E F. Prove that the area of 
S is a rational number. Deduce that :F does not contain the ball B ( 0, 1) = { (x, y) E 
•: x2 + l ~ 1}. 
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2.5. Let X denote the set of pixels corresponding to a certain computer graphics 

display device. The set of all monochrome images that can be produced on this 

device forms a field. Figure IX.252 shows an example of a small field of subsets of 

X. It is generated by the pair of images, G 1 and G2, in the middle of the second row, 

together with the set X. X is represented by the black rectangle. The empty set is 

represented by a blank screen. Find formulas for all of the images in Figure IX.252, 

in terms of G1, G2, and X. 

2.6. Let 'E denote the code space on two symbols 1 and 2. Let n E {1, 2, 3, ... } and 

e; E {1, 2} fori= 1, 2, ... , n. Let 

C(e1, e2, ... , en)= {x E 'E: X;= e; fori= 1, 2, ... , n} . 

.f\ny subset of 'E that can be written in this form is called a cylinder subset of 'E. Let 

F denote the field generated by the cylinder subsets of 'E. Find a subset of 'E that is 

not in :F. 

2. 7. Let X be a space. Let :F denote the set of all subsets of X. The customary 

notation for this field is :F = 2x. Show that :F is a field. 

Definition 2.3 Lh :F be a field such that 

A; E :Ffor i E l, 2, 3, ... => U~1 A; E :F. 

Figure IX.252. A field 
whose elements are sets 
of pixels. Can you find 
two elements of the field 
which generate the field? 



340 Chapter IX Measures on Fractals 

Then F is called a a-field (sigma-field). 

Given any field, there always is a minimal, or smallest, a-field which contains it. 

Theorem 2.2 Let X be a space and let g be a set of subsets of X. Let {Fa : a E 

I} denote the set of all a -fields on X which contain g. Then F = naFa is a a -field. 

Proof Note that there is at least one a-field that contains Q, namely 2x, the field 

consisting of all subsets of X. We have to show that naFa is a a-field if each Fa is a 

a-field that contains 9. Suppose that A; E naFa; then, for each a, A; is an element 

of the a -field Fa and so u~lA; E Fa. Suppose A E naFa; then, for each a, A E Fa 

and so X\ A E Fa. Hence X\ A E naFa. This completes the proof. 

Definition 2.4 Let 9 be a set of subsets of a space X. The minimal a -field which 

contains Q, defined in Theorem 2.2, is called the a-field generated by Q. 

Definition 2.5 Let (X, d) be a metric space. Let B denote the a-field generated 

by the open subsets of X. B is called the Borel field associated with the metric space. 

An element of B is called a Borel·subset of X. 

The following theorem gives the flavor of ways in which the Borel field can be 

generated. 

Theorem 2.3 Let (X, d) be a compact metric space. Then the associated Borel 

field B is generated by a countable set of balls. 

Proof We prove a more general result first. Let g = {bn c X: n = 1, 2, 3, 

... ; bn open } be a countable base for the open subsets of X. That is, every open 

set in X can be written as a union of sets in g. Then B is generated by g. To see 

this, let B denote the a-field generated by g. Then B c B because g is contained in 

the set of open subsets of X. On the other hand, B c B because i3 contains all the 

generators of B. Hence B = B. 
It remains to construct a countable base for the open subsets of X using balls. For 

R > 0 let 

B(x, R) = {y EX: d(x, y) < R}. 

Let n be a positive integer. Then X= UxExB(x, ~).Hence {B(x, ~): x EX} is an 

open covering of X. Since X is compact it contains a finite subcovering { B (xf:), ~) : 

m = 1, 2, ... , M(n)} for some integer M(n). We claim that 

V = {B(x;:), ~): m = 1, 2, ... , M(n); n = 1, 2, 3, ... } 
n 

is a countable base for the open subsets of X. Let 0 be an open subset of X, and let 

x E 0. Then there is an open ball, of radius R > 0, such that B(x, R) c 0. Let n be 

large enough that ~ < ~. Then there is m E { 1, 2, ... , M (n)} so that x is in the ball 

B(xf:), ~ ), and this ball is contained in 0. Each x in 0 is contained in such a ball, 

belonging to V. Hence V is indeed a countable base for the open subsets of X. This 

completes the proof. 



Examples & Exercises 
2.8. Let B denote the a-field generated by the field in exercise 2.4. Then B contains 
the ball B ( 0, 1). Similarly it contains all balls in • c 0~.2. Show that B is the Borel 
field associated with ( •, Manhattan). 

2.9. Let I: denote the code space on the two symbols {0, 1}. Show that the Borel 
field associated with (I:, code space metric) is generated by the cylinder subsets of 
~.defined in exercise 2.5. 

2. 10. Let .A c ~2 denote a Sierpinski triangle. Let g denote the set of connected 
components of ~2 \.A. Let F denote the a-field generated by Q. Show that F is 
contained in, but not equal to, the Borel field associated with (~2 ,Euclidean). 

2.11. Let X be a space and let g be a set of subsets of X. Let F 1 be the field 
generated by Q, let F2 be the a-field generated by Q, and let F3 be the a-field 
generated by F 1• Prove that F 3 = F2. 

2.12. Let F be a field of subsets of a space X. Prove that X E F. 

3 Measures 

A measure is defined on a field. Each member of the field is assigned a nonnegative 
real number, which tells us its "mass." 

Definition 3. 1 A measure J-L, on a field F, is a real nonnegative function 11- : 

F-+ [0, oo) c ~.such that whenever Ai E F fori= 1, 2, 3, ... , with Ai n AJ = 0 
fori =f. j and U~1 Ai E F, we have 

00 

J-L(U~l Ai) = L J-t(Aj). 
i=l 

(In other texts a measure as defined here is usually referred to as a finite measure.) 

Definition 3.2 Let (X, d) be a metric space. Let B denote the Borel subsets of 

X. Let 11- be a measure on B. Then 11- is called a Borel measure. 

Some basic properties of measures are summarized below. 

Theorem 3.1 Let F be afield and let 11-: F--+ ~be a measure. Then 

(1) If B :) A, then J-t(B) = J-t(B \A)+ J-t(B),for A, BE F; 

(2) If B :) A, then J-t(B)::::: J-t(A); 

(3) J-L(0) = 0; 
(4) If Ai E F fori= 1, 2, 3, ... , and U~1 Ai E F, then 11- {U~ 1 Ai)::::: 

L~I J-t(Ai); 1 

(5) If {Ai E F} obeys At C A2 C A3 C ... , and if U~1 Ai E F, then J-t(Ai)--+ 

J-L(U~ 1 Ai). 
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(6) If {Ai E F} obeys A1 :::> A2 :::> A3 :::> •.• ,.and if n~1 Ai E F, then J.L(Ai)-+ 

J.L(n~ 1 AJ. 

Proof [Rudin 1966] Theorem 1.19, p. 17. These are fun to prove for yourself! 

We are concerned with measures on compact subsets of metric spaces such as 
(~2 , Euclidean). The natural underlying a-field is the Borel field, generated by the 

open subsets of the metric space. The following theorem allows us to work with the 
restriction of the measure to any field that generates the a-field. 

Theorem 3.2 [Caratheodory] Let J.L denote a measure on a field F. Let J: 
denote the a-field generated by F. Then there exists a unique measure [Lon J: such 

that J.L(A) = [L(A) for all A E F. 

Sketch of proof The proof can be found in most books on measure theory; see 

[Eisen 1969] Theorem 5, P.· 180, Chapter 6, for example. First J.L is used to define an 
"outer measure" J.Lo on the set of subsets of X. J.L0 is defined by 

JL
0
(A) = inf {~ JL(A.): A C U~ 1 A., An E :FVn E z+}. 

J.L0 is not usually a measure. However, one can show that the class .rD of subsets A 

of X such that-this was Caratheodory's smart idea-

for all E E 2x 

is a a-field that contains F. One can also show that J.L0 is a measure on J=fl. Note that 
.rD :::> J:. [Lis defined by restricting J.Lo to J:. Finally one shows that this extension of 

J.L to J: is unique. This completes the sketch. 

In the above sketch we have discovered how to evaluate the extended measure [l 
in terms of its values on the original field. 

Theorem 3.3 Let a measure J.L on a field F be extended to a measure [L on the 

minimal a-field J: that contains F. Then, for all A E J:, 

{t(A) = inf {~ JL(A.): A C U~ 1 A., An E :FVn =I, 2, ... }. 

Examples & Exercises 
3. 1. Consider the field F = {X, A, X \ A, 0}, where A =1- X and A =1- 0. A measure 

J.L: F-+ ~ is defined by J.L(X) = 7.2, J.L(A) = 3.5, J.L(X \A) = 3.7, and J.L(0) = 
0. F is also a a-field. The extension of the measure promised by Caratheodory's 

theorem is just the measure itself. 

3.2. Let F be the field made of sets of leaves on a certain tree, at a certain instant 
in time, and let J.L(A) be the number of aphids on all the leaves in A E F. Then J-t is 
a measure on a finite a-field. 



3.3. Let X= [0, 1] C IR. Let F be the field generated by the set of subintervals 

of [0, 1]. Let a, bE [0, 1] and define p,((a, b))= p,([a, b]) = b- a, for a~ b; and 

more generally let 

Jl(element of F)= sum of lengths of subintervals which comprise the element. 

Show that p, is a measure on F. The a -field !J:: generated by F is the Borel field for 

([0, 1],Euclidean). Show that S = {x E [0, 1] : x is a rational number} belongs to !J:: 
but not to F. Evaluate jl(S), where fl is the extension of p, to !J::. 

3.4. Let X = :E, the code space on the two symbols 1 and 2. Let F denote the field 

generated by the cylinder subsets of :E, as defined in exercise 2.5. Let 0 ~PI ~ 1 

and P2 = 1 - PI· Define 

p,(C(ei, e2, ... , en))= PetPe2 ···Pen' 

for each cylinder subset C(ei, e2, ... , en) of :E. Show how p, can be defined on the 

other elements of F in such a way as to provide a measure on F. Evaluate 

p,({x E :E : x7 = 1}) and p,(:E). 

Extend F to the field !J:: generated by F, and correspondingly extend p, to fl. Show 

that 

S = {x E :E : Xood = 1} E j:: 

and evaluate jl(S). 

3.5. This example takes place in the metric space ([0, 1],Euclidean). Consider the 

IFS with probabilities 

1 1 2 
{[0, 1]; WI (x) = 3x, w2(x) = 3x + 3; PI, P2}. 

Let F denote the field generated by the set of intervals that can be expressed in the 

form 

We 1 0 We2 0 ... 0 Wen([O, 1]), 

where n E { 1, 2, ... } and e; E { 1, 2} for each i = 1, 2, ... , n. Let 0 ~ PI ~ 1 and 

p2 = 1 - p 1• Show that one can define a measure on F so that, for every such 

interval, 

P,(We1 0 We2 0 · · · 0 Wen ([0, 1])) = Pe1Pe2 •• • Pen• 

Let A denote the attract or of the IFS. Evaluate p, (A), p, (X \ A), and p, ( [ ~ , ~]). 

3.6. What happens in exercise 3.5 if the IFS is replaced by 

1 1 1 
{[0, 1]; WI (x) = -x, w2(x) = -x + -

2
; PI, P2l? 

i 2 2 

For what value of p 1 is the extension of the measure to the a-fieldgenerated by F 

the same as the Borel measure defined in exercise 3.3? 
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4 Integration 

~ 

Definition 3.3 Let (X, d) be a metric space, and let f..L be a Borel measure. Then 

the support of f..L is the set of points x EX such that J.L(B(x, E))> 0 for all E > 0, 
where B(x, E)= {y EX: d(y, x) < E}. 

The support of a measure is the set on which the measure lives. The following is 
an easy exercise. 

Theorem 3.4 Let (X, d) be a metric space, and let f..L be a Borel measure. Then 

the support of f..L is closed. 

Examples & Exercises 

3.7. Let (X, d) be a compact metric space and let f..L be a Borel measure on X such 
that J.L(X) I= 0. Show that the support of f..L belongs to 1i(X), the space of nonempty 
compact subsets of X. 

3.8. Prove the following. "Let f..L be a measure on a a-field :F, and let :F be the 
class of all sets of the form A U B where A E :F and B is a subset of a set of measure 
zero. Then :F is a a-field and the function Ti: :F-+ ~defined by Ji(A U B) = Ji(A) 

is a measure." The measure Ti referred to here is called the completion of J.L. The 
completion of the measure in exercise 3.3 is called the Lebesgue measure on [0, 1]. 

In the next section we will introduce a remarkable compact metric space. It is a space 
whose points are measures! In order to define the metric on this space we need to 
be able to integrate continuous real-valued functions with respect to measures. Can 
one integrate a continuous function defined on a fractal? How does one evaluate the 
"average" temperature of the coastline of Sweden? Here we learn how to integrate 
functions with respect to measures. Let (X, d) be a compact metric space. Let f..L be 
a Borel measure on X. Let f : X -+ ~ be a continuous function. We will explain the 
meaning of integrals such as 

i f(x) dJ.L(x). 

Definition 4.1 We reserve the notation XA for the characteristic function of a 

set A C X. It is defined by 

{ 
1 for x E A, 

XA(x) = O for x EX\ A. 

A function f : X -+ ~ is called simple if it can be written in the form 

N 

f(x) = LYiXIi(x), 
i=l 



where N is a positive integer, I; E B and Y; E ~for i = 1, 2, ... , N, U~1 /; = X, 

and I; n /i = 0for i =f: j. 

The graphs of several simple functions, associated with different spaces, are 

shown in Figures IX.253 and IX.254. 

Definition 4.2 The integral (with respect to JL) of the simple function f in 

Definition 4.1, is 

!. f(x) dJL(x) = J. f dJL = t Y;JL(/;). 
X X i=l 

Examples & Exercises 
4.1. Let f: [0, 1] ~ ~be a piecewise constant function, with finitely many dis

continuities. Show that f is a simple function. Let 1-L denote the Borel measure on 

[0, 1] such that JL(/) =length of I, when I is a subinterval of [0, 1]. Show that 

{

1 

f(x) dx = { f(x) dJL(X), 
lo J[O,l] 

where the right-hand side denotes the area under the graph of f. 

4.2. This example takes place in the metric space (•, Euclidean). Let g denote the 

set of rectangular subsets of •· Let :F denote the field generated by g. Show that 

there is a unique measure JL on :F such that JL(A) =area of A, for all A E Q. Notice 

that the a-field generated by :F is precisely the Borel field B associated with (•, 

Euclidean). Let [L denote the extension of 1-L to B. Let A denote a Sierpinski triangle 

contained in •· Show that A E B, and 

f. XA d[L = {L(A) = 0. 

4.3. This example concerns the IFS with probabilities 

{C; w1 (z), w2(z), w3(z); P1 = 0.2, P2 = 0.3, P3 = 0.5}, 

where 

w1 (z) = 0.5z, W2(Z) = 0.5z + (0.5)i, W3(z) = 0.5z + 0.5. 

Let A denote the attractor of the IFS, and B the.Borel subsets of (A, Euclidean). Let 

J.L denote the unique measure on B such that 

JL(A) = 1 

JL(W;(A)) = p; fori E {1, 2, 3}; 

JL(W; o Wj(A)) = PiPj fori, j E {1, 2, 3}; 

for i, j, ... , k E { 1, 2, 3}; 
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Figure IX.253. The 
graph of a simple function 
on a Sierpinski triangle. 
The domain is a Sierpinski 
triangle in the (x, y) 

plane. The function values 
are represented by the z
coordinates. 

Figure IX.254. The 
graph of a function whose 
domain is a fractal fern. 
If, instead, the function 
values were represented 
by colors, a painted fern 
would replace the graph. 

z 

X 



Define a simple function on A by 

. 11 f(x + zy) = _
1 

for x + iy E A and 1/3 :s x :s 1, 

for X+ iy E A and 0 :S X :S 2/3. 

Calculate J A f(z)dJ.L(z), accurate to two decimal places. 

Based on the ideas in section 1 of this chapter, can you guess a method for 

calculating the integral that makes use of the Random Iteration Algorithm? Try it! 

4.4. Show that if a, f3 E !Pi and f, g are simple functions then af + f3g is a simple 

function, and 

4.5. Black ink is printed to make this page. Let • c !Pi 2 be a model for the page, 

and represent the ink by means of a Borel measure J.L, so that J.L(A) is the mass of ink 

associated with the set A c •· Let A E F denote the smallest Borel set that contains 

all of the letters "a"on the page. Assume that the total mass of ink on the page is one 

unit. Estimate f. XAdJ.l. 

4.6. Let :E denote code space on two symbols { 1, 2}. B denotes the Borel field 

associated with ( :E, code space metric). Consider the IFS { :E; w I (x) = 1x, w2 (x) = 

2x; PI = 0.4, P2 = 0.6}, where "1x" means the string "1xix2x3 •• • "and "2x" means 

the string "2xix2x3 •. •• " The attractor of the IFS is :E. Let J.l denote the unique 

measure on B such that 

J.L(Wi 0 Wj ... 0 Wk(:E)) = PiPj ... Pk 

Define sets A and B in B by 

for i, j, ... , k E { 1 , 2}. 

A= {x E B: XI= 0} and B = {x E B: x2 = 1}. 

Define f : :E -+ !Pi by 

f(x) = XA(x) + (2.3)XB(x) for all x E :E. 

Evaluate the integral 

l f(x) dJ.L(X). 

Definition 4.3 Let (X, d) be a compact metric space, and let B denote the 

associated Borel field. Let J.l be a Borel measure. A partition of X is a finite set of 

nonempty Borel sets, {Ai E B: i = 1, 2, ... , M}, such that X= uf!I Ai, and Ai n 
Aj = 0for i # j. The diameter of the partition is max{sup{d(x, y): x, y E Ad: i = 

1, 2, ... , M}. 

Theorem 4. 1 Let (X, d) be a compact metric space. Let B denote the asso-
.. 

ciated Borel field. Let Jl be a Borel measure on X. Let f: X-+ !Pi be continuous. 

(i) Let n be a positive integer. Then there exists a partition Bn = {An,m E B: m = 
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1, 2, ... , M(n)} of diameter 1/n. (ii) Let Xn,m E An,mfor m = 1, 2, 3, ... , and define 

a sequence of simple functions by 

M(n) 

fn (x) = L f (Xn,m) XAn,m (x) forn=1,2,3, .... 
m=l 

Then {fn} converges uniformly to f(x). (iii) The sequence {fx fndJ.L} converges. (iv) 

The value of the limit is independent of the particular sequence of partitions, and of 

the choices of Xn,m E An,m· 

Sketch of proof 

(i) Since X is compact it is possible to cover X by a finite set of closed balls 

of diameter 1/n, say bn,l• bn,2· ... , bn,M(n)· We can assume that each ball 

contains a point not in any of the other balls. Then define An,l = bn,l, and 
' 1 

An,j = bn,j \ u~:, 1 An,b for j = 2, 3, ... , M(n). Then Bn = {An,m E B: m = 

1, 2, ... , M(n)} is a partition of X of diameter 1/n. 

(ii) Let E > 0. f is continuous on a compact space, so it is uniformly continuous. 

It follows that there exists an integer N (E) so that if x, y E X and d (x, y) :s 
1/ N(E) then lf(x) - f(y)l :S E. It follows that lf(x)- fn(x)l :S E when 

n ~ N(E). 

(iii) It is readily proved that {fx fndJ.L} is a Cauchy sequence. Indeed, for all 

n, m ~ N(E) we have 

I fx fn dJL - fx fm dJLI :0: fx lfn - fm I dJL :0: 2fJL(X). 

It follows that the sequence converges. 

(iv) Let {fn} be a sequence of simple functions, constructed as above. Then there 

is an integer N(E) such that lf(x) - fn(x)l :S E when n ~ N(E). It follows 

that for all n ~ max{N(E), N(E)}, 

I fx fn d 1-' - fx j. d 1-' I :0: fx I fn - j. I d JL :0: 2€ JL (X). 

This completes the sketch of the proof. 

Definition 4.4 The limit in Theorem 4.1 is called the integral off (with respect 

to J.L). It is denoted by 

lim { fndJ.L = { f dJ.L. 
n-+oo lx lx 

Examples & Exercises 
4.7. Let (X, d) be a metric space. Let a EX. Define a Borel measure 8a by 8a(B) = 
1 if a E Band 8a(B) = 0 if a¢ B, for all Borel sets B C X. This measure is referred 
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to as a "a delta function" and "a point mass at a." Let f: X----+ ~ be continuous. 

Show that 

fx f(x) d8a(X) = f(a). 

4.8. This example takes place in the metric space (•, Euclidean). Let J..L be the 

measure defined in exercise 4.2, and define f : • ----+ ~ by f (x, y) = x 2 + 2xy + 3. 

Evaluate 

LtdJ..L. 

4.9. Make an approximate evaluation of the integral J £ x 2dJ..L(x) where J..L and £ 

are as defined in exercise 4.3. 

4.1 0. Let X denote the set of pixels corresponding to a certain computer graphics 

display device. Define a metric d on X so that (X, d) is a compact metric space. Give 

an example of a Borel subset of X and of a nontrivial Borel measure on X. Show that 

any function f :-X ----+ ~ is continuous. Give a specific example of such a function, 

and evaluate fx f dJ..L. 

5 The Compact Metric Space (P(X), d) 

We introduce the most exciting metric space in the book. It is the space where 

fractals really live. 

Definition 5. 1 Let (X, d) be a compact metric space. Let J..L be a Borel measure 

on X. If J..L(X) = 1, then J..L is said to be normalized. 

Definition 5.2 Let (X, d) be a compact metric space. Let P(X) denote the set 

of normalized Borel measures on X. The Hutchinson metric dH on P(X) is defined 

by 

dH(M, v) = sup {fx f dJJ,- fx f dv: f: X-+ IRI.f continuous, 

lf(x)- f(y)l ::0 d(x, y)Vx, y EX }• 

for all f..L, v E P(X). 

Theorem 5.1 Let (X, d) be a compact metric space. Let P(X) denote the set 

of normalized Borel measures on X and let dH denote the Hutchinson metric. Then 

(P(X), dH) is a compact metric space. 
i 

Skatch of proof A direct proof, using the tools in this book, is cumbersome. 

It is straightforward to verify that dH is a metric. It is most efficient to use the 
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concept of the "weak topology" on P(X) to prove compactness. One shows that this 
topology is the same as the one induced by the Hutchinson metric, and then applies 
Alaoglu's theorem. See [Hutchinson 1981] and [Dunford 1966]. 

Examples & Exercises 

5.1. Let K be a positive integer. Let X= {(i, j): i, j = 1, 2, ... , K}. Define a 
metric on X by d((i1, j}), (iz, h))= lit- izl + lh -hi. Then (X, d) is a compact 
metric space. Let J.L E P(X) be such that J.L((i, j)) = (i + j)f(K3 + K 2) and let v E 

P(X) be such that v(i, j) = 1/ K 2, for all i, j E {1, 2, ... , N}. Calculate dH(J.L, v). 

5.2. Let (X, d) be a compact metric space. Let J.L E P(X). Prove that the support of 
J.L belongs to 1t(X). 

6 A Contraction Mapping on P(X) 

Let (X, d) denote a compact metric space. Let B denote the Borel subsets of X. Let 
w: X--+ X be continuous. Then one can prove that w- 1 

: B--+ B. It follows that if v 
is a normalized Borel measure on X then so is v o w- 1

• In tum, this implies that the 
function defined next indeed takes P(X) into itself. 

Definition 6. 1 Let (X, d) be a compact metric space and let P(X) denote the 
space of normalized Borel measures on X. Let 

be a hyperbolic IFS with probabilities. The Markov operator associated with the IFS 

is the function M : P(X) --+ P(X) defined by 

M(v) = P1V o w1 1 + pzv o w;- 1 + · · · + PNV o w"N1 

for all v E P(X). 

Lemma 6.1 Let M denote the Markov operator associated with a hyperbolic 
IFS, as in Definition 6.1. Let f : X--+ ~ be either a simple function or a continuous 

function. Let v E P(X). Then 

{ fd(M(v)) = t Pi { f o wi dv. 
lx i=1 lx 

Proof Suppose that f: X--+ ~ is continuous. By Theorem 5.1 we can find a 
sequence of simple functions {fn} which converges uniformly to f. Let n be a 
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positive integer. It is readily verified that 

{ fnd(M(v)) = t Pi { fn dv o w;- 1 

lx i=1 lx 
N 

= LPi { fndv o w;- 1 

i=1 lw;(X) 

= t p; f. fnow;dv. 
i=1 X 

The sequence {j fnd(M(v))} converges to J fd(M(v)). 

For each i E { 1, 2, ... , N} and each positive integer n, fn o wi is a simple func

tion. The sequence {fn o wd~1 converges uniformly to f o Wi· It follows that 

{j fn o widv}~ 1 converges to J f o Wi· It follows that (E~= 1 Pi J fn o widv}~ 1 
converges to 'L,~ 1 Pi J f o widv. This completes the proof. 

Theorem 6.1 Let (X, d) be a compact metric space. Let 

be a hyperbolic IFS with probabilities. Let s E (0, 1) be a contractivity factor for 

the IFS. Let M: P(X)--+ P(X) be the associated Markov operator. Then M is a 

contraction mapping, with contractivity factor s, with respect to the Hutchinson 

metric on P(X). That is, 

for all v, J-L E P(X). 

In particular, there is a unique measure J-L E P(X) such that 

Proof Let L denote the set of continuous functions f : X --+ ~ such that If (x) -

f(y)l :=:: d(x, y)Vx, y EX. Then 

dH(M(v), M(J-L)) =sup{/ fd(M(J-L))- f fd(M(v)): f E L} 

=sup{/ t p;j o W;dJ.t- f t p;j o W;dv: f E L). 
i=1 i=1 

- -1 N - - - • - -1 N 

.Let f =s Li=1 Pi! o Wi· Then f E L. Let L = {/ E L. f =s Li=1 Pi! o wi, 

some f E L}. Then we can write 

dH(M(v), M(J-L)) = sup{s J ]dJ-L- s J ]dv:] E i}. 

Since i c L, it follows that 
1 
· dH(M(v), M(J-L)) :S sdH(v, J-L). 

This completes the proof. 
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Definition 6.2 Let JL denote the fixed point of theM arkov operator, promised by 
Theorem 6.1. JL is called the invariant measure of the IFS with probabilities. 

We have arrived at our goal! This invariant measure is the object we discussed 
informally in section 1 of this chapter. Now we know what fractals are. 

Examples & Exercises 
6. 1. Verify that the Markov operator associated with a hyperbolic IFS on a compact 
metric space indeed maps the space into itself. 

6.2. This example uses the notation in the proof of Theorem 6.1. Let f E L and let 
- -I N -f = s Li=I p;f ow;. Prove that f E L. 

6.3. Consider the hyperbolic IFS 

{• C ~2 ; WI, w2, W3, w4; PI, P2, p3, P4} 

corresponding to the collage in Figure IX.255(a). Let M be the associated Markov 
operator. Let JLo E P(X), so that JLo(•) = 1. For example, JLo could be the uni
form measure, for which JLo(S) is the area of S E P{•). We look at the sequence 
of measures {JLn = Mon(JLo)}. The measure JLI = M(JLo) is such that JL(w;(•)) = p; 
fori= 1, 2, 3, 4, as illustrated in Figure IX.255(b). It follows that JL2 = M 02 (JLo) 
obeys JL(w; o Wj(•)) = PiPj fori, j = 1, 2, 3, 4, as illustrated in Figure IX.255(c). 
We quickly get the idea. When the Markov operator is applied, the "mass" in 
a cell •ij ... k = w; o w j o · · · o wk(•) is redistributed among the four smaller cells 
WI (•ij ... k), w2(•ij ... d. w3(•ij ... k), and w4(•ij ... k). Also, mass from other cells is 
mapped into subcells of •ij ... k in such a way that the total mass of •ij ... k remains 
the same as before the Markov operator was applied. In this manner the distribution 
of "mass" is defined on finer and finer scales as the Markov operator is repeatedly 
applied. What a wonderful idea. We have also illustrated this idea in Figures IX.256 
and IX.257. 

6.4. Apply the Random Iteration Algorithm to an IFS of the form considered in 
example 6.3. Choose the probabilities PI, p2, p3, and P4 so as to obtain a "picture" 
of the invariant measure that would occur at the end of the sequence that commences 
in Figure IX.257(a), (b), (c), and (d). 

6.5. Consider the IFS 

{[0, 1] C ~; WI (x) = (0.5)x, w2(x) = (0.7)x + 0.3; PI = 0.45, P2 = 0.55}. 

The attractor of the IFS is [0, 1]. Let M denote the associated Markov operator. 
Let JLo E P([O, 1]) be the uniform measure on [0, 1]. In Figure IX.258(a), JLo is 
represented by a rectangle, whose base is [0, 1] and whose area is 1. The successive 
iterates M(JLo), M 02 (JLo), M 03 (JLo) are represented in Figure IX.258(b), (c) and (d). 
Each measure is represented by a collection of rectangles whose bases are contained 
in the interval [0, 1]. The area of a rectangle equals the measure of the base of the 
rectangle. Although the sequence of measures converges { Mon (JLo)} in the metric 
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Figure IX.255. A col
lage for an IPS of four 
maps. The attractor of the 
IPS is •, and the prob
ability of the map w; 
is p; for i = 1, 2, 3, 4. 
Let M denote the as
sociated Markov oper
ator. Let /-to = 1. Then 
1-t 1 = M (~-to) is a measure 
such that J-t(W;(•)) =Pi 
fori = 1, 2, 3, 4, as illus
trated in (b). The measure 
~-t 2 = M02 (~-t0) is such that 
J-t(W; o Wj(•)) = p;pj for 
i, j = 1, 2, 3, 4, as illus
trated in (c). See also Fig
ures IX.256 and IX.257. 

Figure IX.255. (b) 
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Figure IX.255. (c) (c) 

p4p4 p4p3 p3p4 p3p3 

p4pl p4p2 p3pl p3p2 

plp4 plp3 p2p4 p2p3 

plpl plp2 p2pl p2p2 

space{P([O, 1], dH}, some of the rectangles would become infinitely tall as n tends 
to infinity. 

6.6. Make a sequence of figures, analagous to Figure IX.258(a)-(d), to represent 
the Markov operator applied to the uniform measure f-Lo, for each of the following 
IFS 's with probabilities: 

(i){[O, 1] C ~; WI (x) = (0.5)x, w2(x) = (0.5)x + 0.5; PI = 0.5, P2 = 0.5}; 

(ii){[O, 1] C ~; WI (x) = (0.5)x, w2(x) = (0.5)x + 0.5; 

PI= 0.99, P2 = 0.01}; 

(iii){[O, 1] C ~; WI(x) = (0.9)x, w2(x) = (0.9)x + 0.1; PI= 0.45, P2 = 0.55}. 

In each case describe the associated invariant measure. 

6.7. Let X= {A, B, C} denote a space that consists of three points. Let B denote 
the a-field that consists of all subsets of X. Consider the IFS with probabilities 

{X; WI, W2; PI = 0.6, P2 = 0.4}, 

where WI: X~ X is defined by wi(A) = B, wi(B) = B, WI(C) = B, and w2: 
X~ X is defined by w2(A) = C, W2(B) =A, and w2(C) =C. Let P(X) denote the 
set of normalized measures on B. Let f-Lo E P(X) be defined by f-Lo(A) =f-Lo( B)= 

f-Lo( C) = ~. Let M denote the Markov operator associated with the IFS, and let 
1-Ln = Mon(/-Lo) for n = 1, 2, 3, .... Determine real numbers a, b, c, d, e, J, g, h, 
i such that for each n, 

[

/-Ln(A)] [a b c] [1-Ln-I(A)] 
1-Ln (B) = d e f 1-Ln-I (B) . 

/-Ln(C) g h i f-Ln-I(C) 

r 
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Figure IX.256. This il
lustrates the action of the 
Markov operator on one 
of the sequence of mea
sures {Man (J.Lo)}, where 
J.Lo(•) = 1. When the 
Markov operator is ap
plied, the "mass" in a cell 
.ij ... k = w i 0 w j 0 ... 0 

wk (•) is redistributed 
among the four cells 
w1 (•iJ ... k), w2(•iJ ... k), 
w3(•i) ... d, and w4(•i.i .. k). 
Also, mass from other 
cells is mapped into sub
cells of •i.i ... k in such a 
way that the total mass of 
•iJ ... k remains the same as 
before the Markov oper
ator was applied. In this 
manner the distribution 
of "mass" is defined on 
finer and finer scales as 
the Markov operator is 
repeatedly applied. 
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Figure IX.257. This 
sequence of figures repre
sents successive measures 
produced by iterative ap
plications of a Markov 
operator of the type con
sidered in Figures IX.255 
and IX.256. The result 
of one application of the 
operator to the uniform 
measure on • is repre
sented in (a). Figures (b), 
(c),· and (d) show the re
sults of further successive 
applications of the Markov 
operator. The measures are 
represented in such a way 
as to keep the total number 
of dots constant. The mea
sure of a set corresponds 
approximately to the num
ber of dots it contains. 
This represents the first 
few of a sequence of mea
sures that converges in the 
metric space (P(•), dH) 

to the invariant measure of 
the IFS. 

Figure IX.257. (b) 
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Figure IX.257. (c) 

Figure IX.257. (d) 
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Figure IX.258. This 

sequence of images re

lates to the IPS {[0, 1] c 
IR; w1 (x) = (0.5)x, w2(x) 

= (0.7)x + 0.3, PI = 
0.45, p2 = 0.55}. The at

tractor of the IPS is [0, 1]. 

Let M denote the associ

ated Markov operator. Let 

fl-oE P([O, 1]) be the uni

form measure on [0, 1]. 

The successive iterates 

M(/1-o), M 02 (/1-o), (a) 

Mo3(/1-o), and Mo4(J1-o) 

are represented in parts 

(a),(b),(c), and (d). Each 

measure is represented by 

a collection of rectangles 

whose bases are contained 

in the interval [0, 1]. The 

area of a rectangle equals 

the measure of the base of 

the rectangle. 

(b) 

(c) 

0 

lo 
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Figure IX.258. (d) 
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Let M denote the 3 x 3 matrix here. Explain how M is related to M, and show that 
the invariant measure of the IFS can be described in terms of an eigenvector of M. 
6.8. Let 

{X; WI, Wz, ... , wN; PI, pz, ... , PN} 

be a hyperbolic IFS with probabilities. Let J-L denote the associated invariant mea
sure. Let A denote the attractor of the IFS. Let f-LoE P(X) be such that J-Lo(A) = 1. 
By considering the sequence of measures {J-Ln = Man (J-Lo)}, prove that 

for all i, j, ... , k E { 1 , 2, ... , N} . 

Show that if the IFS is totally disconnected then the equality sign holds. 

Theorem 6.2 Let (X, d) be a compact metric space. Let 

{X; WI, wz, ... , wN; PI, pz, ... , PN} 

be a hyperbolic IFS with probabilities. Let J-L be the associated invariant measure. 
Then the support of 1-L is the attractor of the IFS {X; WI, w2, ... , w N}. 

Proof Let B denote the support of f-L. Then B is a nonempty compact subset of 
X. Let A denote the attractor of the IFS. Then 

{A; WI, Wz, ... , wN; PI, pz, ... , PN} 

is a hyperbolic IFS. Let v denote the invariant measure of the latter. Then v is also an 
invariant measure for the original IFS. So, since 1-L is unique, v =f-L. It follows that 
Be A. 

Let a EA. Let 0 be an open set that contains a. We will use the notation of 
Theorem 2.1 in Chal\ter IV. Let I; denote the code space associated with the IFS 
and let a E I; denote the address of a. It follows from Theorem 2.1 in Chapter IV 
that limn-+oo t/>(a, n, A)= a, where the convergence is in the Hausdorff metric. It 
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follows that there is a positive integer n so that <f>(a, n, A) c 0. But 

J.L(<f>(a, n, A))~ Pa1Pa2 •• ·Pan > 0. 

It follows that J.L(O) > 0. It follows that a is in the support of J.L. It follows that 

a E B. It follows that A c B. This completes the proof. 

Theorem 6.3 The Collage Theorem for Measures .. Let 

be a hyperbolic IFS with probabilities. Let J.L be the associated invariant measure. 

Lets E (0, 1) be a contractivity factor for the IFS. Let M: P(X)---+ P(X) be the 

associated Markov operator. Let v E P(X). Then 

. d (v ) < dH(v, M(v)). 
H ,J.L- (1-s) 

Proof This is a corollary of Theorem 6.1. 

We conclude this section with a description of the application of Theorem 6.3 to 

an inverse problem. The problem is to find an IFS with probabilities whose invariant 

measure, when represented by a set of dots, looks like a given texture. 

A measure supported on a subset of ~ 2 such as • can be represented by a lot of 

black dots on a piece of white paper. Figures IX.248 and IX.250 provide examples. 

The dots may be granules of carbon attached to the paper by means of a laser printer. 

The number of dots inside any circle of radius t inch, say, should be approximately 

proportional to the measure of the corresponding ball in ~2 . A gray-tone image in a 

newspaper is made of small dots and can be thought of as representing a measure. 

Let two such images, each consisting of the same number of points, be given. 

Then we expect that the degree to which they look alike corresponds to the Hutchin

son distance between the corresponding measures. Let such an image, L, be given. 

We imagine that it corresponds to a measure v. Theorem 6.3 can be used to help to 

find a hyperbolic IFS with probabilities whose invariant measure, represented with 

dots, approximates the given image. Let N be a positive integer. Let w; : ~2 ---+ ~2 

be an affine transformation, for i = 1, 2, ... , N. Let 

denote the sought-after IFS. Let M denote the associated Markov operator. 

Let p;&L mean the set of dots L after the "density of dots" has been decreased 

by a factor p;. For example 0.5&L means L after "every second dot" in L has been 

removed. The action of the Markov operator on vis represented by uf":: 1 w;(p;&L). 

This set consists of approximately the same number of dots as L. Then we seek 

contractive affine transformations and probabilities such that 

uf":: 1 w;(p;&L) ~ L. (1) 
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That is, the coefficients that define the affine transformations and the probabilities 

must be adjusted so that the left-hand side "looks like" the original image. 

Suppose we have found an IFS with probabilities so that equation 1 is true. Then 

generate an image i of the invariant measure of the IFS, containing the same number 

of points as L. We expect that 

(2) 

If the maps are sufficiently contractive, then the meaning of "~" should be the same 

in both equations 1 and 2. These ideas are illustrated in Figure IX.259. 

Examples & Exercises 
1 

6.9. Use the Collage Theorem for Measures to help find an IFS with probabilities 

for each of the images in Figures IX.260, IX.261, and IX.262. 

Figure IX.259. This 
illustration relates to the 
Collage Theorem for 
Measures. The shades 
of gray "add up" in the 
overlapping regions. 
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Figure IX.260. Can 

you find the IPS and prob

abilities corresponding to 

this texture? 

Figure IX.261. Deter

mine the IPS and probabil

ities for this cloud texture. 
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Figure IX.262. Find 
the four affine maps and 
probabilities for this tex
ture. 

6. 10. Estimate the probabilities and transformations used to make each part of 
Figure IX.248. 

6.11. Let 

be a hyperbolic IFS. Let 11- denote the invariant measure. Let A denote the attractor. 
Let :E denote the associated code space on the N symbols {1, 2, ... , N}. Let 1j: 

E--+ :E be defined by Ij(a) = ia, for all a E :E, fori= 1, 2, 3, 4. Let p denote the 
invariant measure for the hyperbolic IFS 

Let ¢ : :E --+ A denote the continuous map between code space and the attractor of 
the IFS intoduced in Theorem 4.2.1. Prove that p(¢-I(B)) = M(B) for all Borel 
subsets B of X. 

6.12. Figure IX.263 depicts the invariant measure for the IFS {[0, 1] C ~;WI (x) = 
aix, w2(x) = a2x + e2; PI, 
P2}, where ai, a2, and e2 are real constants such that the attractor is contained in 

1 
[0, 1]. The measure of a Borel subset of [0, 1] is approximately the amount of black 
that lies "vertically" above it. Find a I, a2, and e2• 
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Figure IX.263. This 

figure depicts the invari

ant measure for the IFS 

{[0, 1] c IR; w 1 (x) = 
a1x, Wz = azx + ez; 
PI· pz}, where a1, az, and 
e2 are real constants such 

that the attractor is con

tained in [0, 1]. The mea

sure of a Borel subset of 

[0, 1] is approximately the 

amount of black that lies 

"vertically" above it. Can 

you find a 1, a2, and ez? 

7 Elton's Theorem 

Both the following theorem and its corollary claim that certain events occur "with 

probability one." Although this has a very precise technical meaning, it is fineto in

terpret it in the same way as you would interpret the statement "There is a 100% 

chance of rain tomorrow." After the statements we mention the mathematical frame

work used for dealing with probabilistic statements. To go further we recommend 

reading parts of [Eisen 1969]. 

The theorem below is actually true when the Pi's are functions of x, the Wi 's are 

only contraction mappings "on the average," and the space is "locally" compact. 

Theorem 7. 1 Let (X, d) be· a compact metric space. Let 

be a hyperbolic IFS with probabilities. Let (X, d) be a compact metric space. Let 

{xn}~0 denote an orbit of the IFS produced by the Random Iteration Algorithm, 

starting at xo. That is, 

where the maps are chosen independently according to the probabilities 

for n = 1, 2, 3, .... 
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Let J-L be the unique invariant measure for the /FS. Then with probability one (that 
is ,for all code sequences a 1, a2, ••• exceptfor a set of sequences having probability 
zero), 

1 n !. lim --L f(xk) = f(x) dJJ-(X) 
n-Hx:; n + 1 k=O x 

for all continuous functions f : X -+ IR{ and all xo. 

Proof See [Elton 1987]. 

Corollary 7.1 Let B be a Borel subset of X and let JJ-(boundary of B) = 0. Let 

N(B, n) = number of points in {xo, XI, x2, x 3, ... , Xn} n B, for n = 0, 1, 2, .... 

Then, with probability one, 

JJ-(B) = lim { N(B, n)} 
n-+oo (n + 1) 

for all starting points x0 . That is, the "mass" of B is the proportion of iteration steps, 
when running the Random Iteration Algorithm, which produce points in B. 

Let's explain more deeply the context of the statement "with probability one." Let 
I: denote the code space on theN symbols {1, 2, ... , N}. Let p denote the unique 
Borel measure on :E such that 

p(C(a1, a2, ... , am))= Pa1Pa2 ···Pam 

for each positive integer m and all a 1, a2, ... , am E {1, 2, ... , N}, where 

Then p E P(:E). This measure provides a means for assigning probabilities to sets 
of possible outcomes of applying the Random Iteration Algorithm. Let us see how 
this works. 

When the Random Iteration Algorithm is applied, an infinite sequence of symbols 
Wt. w2, w 3 , .. . , namely a code w = w 1w2w3 ... E :E, is generated. Provided that we 
keep x0 EX fixed, we can describe the probabilities of orbits {xn} in terms of the 
probabilities of codes w. So we examine how probabilities are associated to sets of 
codes. 

The Random Iteration Algorithm is applied and produces a code w E :E. What is 
the probability that WI = 1? Clearly it is p 1 = p(C(l)). What is the probability that 
WI = a I, w2 = a2, ... , and Wn = an? Because the symbols are chosen independently, 
it is 

p(C(a1, a2, ... , am))= Pa1Paz ···Pam· 
1 

Let B denote a Borel· subset of :E. What is the probability that the Random Itera-
tion Algorithm produces a code a E B? It is at least intuitively reasonable that it is 
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p(B). This can be formalized, see, for example [Eisen 1969]. The measure p pro-

vides a means of describing the probabilities of outcomes of the Random Iteration 

Algorithm. 
Here is a heavy way of stating the central part of Theorem 7 .1. " ... Let x0 E X. 

Let B c I: denote the set of codes a E I: such that 

1 n f. 
lim --L f(xk) = f(x) dJL(x), 

n---'>oo n + 1 k=O x 

for all x0 E X and all continuous functions f : X -+ IR(, where 

Then B is a Borel subset of I: and p(B) = 1." A similar heavy restatement of the 

corollary can be made. 

Examples & Exercises 
7. 1 . This example concerns the IPS 

1 1 1 
{[0, 1]; 2x, 2x + 2; 0.5, 0.5}. 

Show that the invariant measure JL is such that JL([x, x + 8]) = 6. when [x, x + 8] is 

a subinterval of [0, 1]. Deduce that iff : [0, 1] -+ IR( is a continuous function then 

{

1 

f(x) dx = { f dJL. 
lo lro.lJ 

Let f (x) = 1 + x 2
• Compute approximations to the latter integral with the aid of 

Elton's theorem and the Random Iteration Algorithm. Compare your results with the 

exact value ~. 

7 .2. This example concerns the IPS 

{• C IR(
2

; W1, W2, W3, W4; 0.25, 0.25, 0.25, 0.25} 

corresponding to the collage in Figure IX.255(a). Let JL denote the invariant mea

sure. Argue that JL is the uniform measure that assigns "measure" dxdy to an in

finitesimal rectangularcell of side lengths dx and dy. Use Elton's theorem and the 

Random Iteration Algorithm to evaluate approximations to 

L (x
2 + 2xy + 3y2

) dxdy. 

Compare your approximations with the exact value. 

7 .3. This example concerns the IPS 

2. . 1 1 1 
{A C IR( , W1, W2, W3, 3' 3' 3 }, 

where 



7 Elton's Theorem 367 

and A is the attractor of the IFS, our old friend. Let f.L denote the invariant measure 

ofthe IFS. Argue that JL provides a good concept of a "uniform" measure on A. Use 

Elton's theorem and the Random Iteration Algorithm to compute approximations to 

In Chapters II, III, and IV, we introduced the space 'EN of shifts on N symbols. 

It was mentioned in passing in Chapter IV that any invertible mixing function could 

be represented by a baker's transformation with "uneven cutting and stretching." We 

are now in a position to show how this comes about using an example involving two 

simple IFS. The same model with some necessary refinements yields the code space 

mixing model used to justify the representations. It is easier to visualize without the 

refinements, as we present it here. It is one of the most important properties involved 

with the modelling of physical chaos. 

We begin with perhaps the most simple of all IFS with probabilities. On the 

interval [0, 1], we define the just-touching IFS with N maps and with probabilities 

where 

1 
w1(x) = -x 

N 
1 1 

w2(x) = -x +
N N 
1 3 

W3(X) =-X+
N N 

and the probabilities are arbitrary, subject to the usual condition 

Associated with this IFS there is an invariant measure on [0, 1], which we denote 

by v. 
Now we define another IFS on [0, 1], this time without probabilities, using the p; 

from above. On [0, 1] define the IFS 

where 
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vi (x) =PIX 

v2(x) = P2X +PI 

V3(x) = P3X +(PI + P2) 

k-I 

vk(x) = PkX + L Pi 
i=l 

N-1 

VN(x) = PNX + L Pi· 
i=I 

This IFS is also just-touching by construction and, because the probabilities from the 

first IFS sum to one, has as its attractor the interval [0, 1] as well. We are going to 

use it to define an equivalent metric on [0, 1] as follows: 

Each point has a unique address under this IFS in code space, except the points 

vi(A), whose multiple addresses correspond to 

a = iN - 1 = (i + 1 )0. 

These are precisely the points in a base N. expansion of a real number which 

are equated to form the real line. We denote the value of a point x with address 

xix2x3 ... in this new metric space to be the real number with N-ary expansion 

.xix2x3 .. .. In effect we have given each point the numeric value that would corre-

spond to having measured its distance from say 0 with a ruler on which the spacing 

of the tick marks had been made uneven in a very specific way by the IFS. 

With these values, the space is still [0, 1], but we put a metric on it by assigning 

the distance between two real numbers to be the distance measured with a "normal" 

ruler. Another way to put it is that we take the normal interval [0, 1] and assign the 

distance between two points to be the distance between the addresses corresponding 

to their N-ary expansions in the above IFS. Thus if N = 10 for instance, the distance 

between .251 and .137 is not .251 - .137, but rather the distance between the points 

with addresses 2510 and 1370 in the IFS {[0, 1]; v1, v2 , .•. , v10}. We will call this 

space [0, 1]p, and the distance function dp to avoid confusion. 

We have a metric space, so we will now assign a Borel measure to it by defining 

fl,([a, b]) = M((a, b))= dp(a, b), which is uniform for this metric space. And to 

proceed with the example, we need a function, f: [0, 1]-+ [0, 1]p which we define 

by f(x) =(point with value x in [0, 1]p). Because the definition was very careful to 

preserve the ordering of the real line and its conventions about multiple addressing, 

f is both a homeomorphism and a metric equivalence. Because it is continuous, it 

is also what is called a measurable function in that if A E B([O, 1]p) then f-I(A) E 

B([O, 1 ]). 

7 .4. Show that f is measure-preserving with respect to the invariant measure on v 
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associated with 

{[0, 1]; WI, w2, ... , wN; PI, P2, ... , PN}; 

that is, that for any Borel subset A E [0, 1], we have v(A) = M(f(J\)). 

We now have the machinery to cast the Random Iteration Algorithm entirely in 
terms of IFS with no recourse to randomness. It is really a deterministic model, with 
the random part coming in to help when a very simple statement made all the time 
in mathematics turns out to be something a computer cannot do. 

The exact transfer of the Random Iteration Algorithm to the model using the 
space ([0, 1]p, dp) looks like this: define the function g: [0, 1] ~ [0, l]p by 

dp(g(x), 0) = x. 

Define the map h: [0, 1]p ~ {0, 1, 2, ... , N- 1} defined by h(p) = [Np] where 
[ ·] is the greatest integer function. In other words, take the first N-ary digit of the 
value of the point p E [0, 1]p. Define the map y : [0, 1] ~ [0, 1] given by y(x) = 
N x mod N. Then the Random Iteration Algorithm is precisely the iteration of the 
map R: [0, 1] x X given by 

R(p, x) = (y(p), Whog(p)(x)). 

Where does the random part of the algorithm come in? We need it to "pick a real 
number." One can think of the random number at each iteration as a function to get 
the next digit of the real number we "picked." In the above expression, we get a 
random number and find out which function to use via h(g(p)). Then we iterate the 
IFS using whog(p)(x), and in order to have a new "random number" the next time, we 
advance p to the next digit using y(p ). 

Now, consider the space [0, 1]p x [0, 1]. Think of it as a square with coordinates 
spaced unevenly in the x direction and evenly in they direction. Your "usual" point 
in the square (where here usual means with probability one) has anN -ary expansion 
for y in which every digit occurs with equal probability, while the x value has an N

ary expansion in which 0 occurs with probability PI, 1 occurs with probability p2, 
etc. 

7.5. Draw a diagonal from (0, 0) to (1, 1) on this square. Show that this statement 
is still true if we pick a "usual point" from this diagonal. 

7.6. Draw a smooth curve from (0, 0) to (1, 1) on the square. Then the statement is 
still true if we pick a "usual point" from this curve. 

By using the diagonal in exercise 7.5, we can take a point x in [0, 1] and map it to 
a new point x, by putting x along the vertical coordinate and reading the horizontal 
coordinate like a web diagram. In terms of all the functions we have defined, this 
operation is x = f-I (g(i)). Under the original IFS with probabilities, this new point 
will, with probability 1, have an orbit under the shift dynamical system {A; S} with a 
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distribution of dots identical to the one we would get by using the Random Iteration 

Algorithm with probabilities {p1, P2· ... , PNl· 

There seems to be a lot of mileage in this square with the strange coordinates. 

There should be; the uneven coordinates correspond to future cuts and stretches for 

the baker's transformation with uneven stretches and cuts. (A real baker's transfor

mation would not use the just-touching IFS used here, but it's easier to visualize, 

·and for the most general case N is allowed to be infinite.) It is a mixing function, so 

it automatically satisfies the equation that results from Elton's theorem (a property 

called ergodicity). The theorem takes care of how little "hyperbolicity" an IFS can 

have and still retain this property. Alternatively, Elton's theorem can be viewed as a 

set of minimal requirements on the wi such that the baker's transformation as set up 

here accurately reflects the behavior of the IFS on addresses. 

8 Application to Computer Graphics 

We begin by illustrating how a color image of tbe invariant measure of an IFS with 

probabilities can be produced. The idea is very simple. We start from an IFS such as 

{C; 0.5z + 24 + 24i, 0.5z + 24i, 0.5z; 0.25, 0.25, 0.5}. 

A viewing window and a corresponding array of pixels Pij is specified. The Random 

Iteration Algorithm is applied to the IFS, to produce an orbit {Zn : n = 0, 1, ... , 

numits}, where numits is the number of iterations. For each (i, j) the number of 

points, N(Pij), which lie in the pixel Pij are counted. The pixel Pij is assigned the 

value N(Pij)jnumits. By Elton's theorem, if numits is large, this value should be a 

good approximation to the measure of the pixel. The pixels are plotted on the screen 

in colors determined from their measures. 

The following program implements this procedure. It is is written in BASIC. 

It runs without modification on an IBM PC with Enhanced Graphics Adaptor and 

Turbobasic. 

Program 1. (Uses the Random Iteration Algorithm to Make a "Picture" of the Invariant 

Measure Associated with an IFS with Probabilities) 

screen 9 : cls 'Initialize graphics. 

dim s(51,51) 'Allocate array of pixels. 

'IFS code for a Sierpinski triangle. 

a(1)=0.5 b(1)=0 c(1)=0 d(1)=0.5 

a(2)=0.5 b(2)=0 c(2)=0 d(2)=0.5 

e(1)=24 : f(1)=24 

e(2)=0 : f(2)=24 
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a(3)=0.5 : b(3)=0 : c(3)=0 : d(3)=0.5 : e(3)=0 : f(3)=0 

'Probabilities for the IFS; they must add to one! 

p(1)=0.25 : p(2)=.25 p(3)=.5 

mag=l 'Magnification factor. 

'Increase the number of iterations as you magnify. 

numits=5000 

factor =100 'Scales pixel values to color values. 

'This is the number of colors you are able to use. 

numcols=8 

for n=1 to numits 'Random iteration begins! 

r=rnd : k=1 'Pick a number in [0,1] at random. 

if r > p(1) then k=2 

if r > p(1)+p(2) then k=3 

'Map k is picked with probability p(k). 

newx=a[k]*x + b[k]*y + e[k] 
newy=c[k]*x + d[k]*y + f[k] 

x=newx : y=newy 

i=int(mag*x) : j=int(mag*y) 'Scale by magnification factor. 

if (((i < 50) and (i>=O))and((O=<j) and (j<50))) then 

'If the scaled value is· 

s ( i , j ) =s ( i , j ) + 1 

' ... in the array add one to pixel (i,j). 

end if 

pset(i,j) 'Plot the point. 

if instat then end 'Stop if a key is pressed. 

next 
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for i=O to 49 'Normalize values in pixel array, and plot ... 

for j=O to 49 ' ... in colors corresponding to the normalized ... 

' ... values of the numbers s(i,j). 
col=s(i,j)*numcols*factor*mag*mag/numits 

'Plot the pixel (i,j) in the color determined by ... 
pset(i,j),col 

next j ' ... its measure. 

next i 

end 

The program allows the user to zoom in on a piece of the rendered measure 
by altering the value of the magnification parameter mag. The result of running 
an adaptation of this program on a Masscomp workstation and then printing the 
contents of the graphics screen is shown in Figure IX.264. 

Rendered invariant measures for IFS's acting in ~2 are also shown in Fig
ure IX.265. 

By carrying out some simple computergraphical experiments, using a program 
such as the one above, we discover that "pictures" of invariant measures of IFS's 
possess a number of properties. (i) Once the viewing window and color assignments 
have been fixed, the image produced is stable with respect to the number of itera
tions, provided that the number of iterations is sufficiently large. (ii) Images vary 
consistently with respect to translation and rotation of the viewing window, and 
with respect to changes in resolution. In particular they vary consistently when they 
are magnified. (iii) The images depend continuously on the IFS code, including the 
probabilities. Property (i) ensures that the images are well defined. The properties in 
(ii) are also true for views of the real world seen through the viewfinder of a cam
era. Property (iii) means that images can be controlled interactively. These properties 
suggest that IFS theory is applicable to computer graphics. 

We should, if we have done our measure theory homework, understand the rea
sons for (i) and (ii). They are consequences of corresponding properties of Borel of 
measures on ~2 • Property (iii) follows from a theorem by Withers [Withers 1987]. 

Examples & Exercises 
8. 1. Rewrite Program 1, section 8, in a form suitable for your own computer envi
ronment. Adjust numits and factor to ensure that a stable image results. Then make 
experiments to verify that the conditions (i)-(iii) above are verified. For example, to 
test the consistency of images with respect to changes in resolution you should try 
mag= 0.5, 1, and 1.5. Unless you have a very powerful system, do not make ex-
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Figure IX.264. The 
result of running a mod
ified version of Program 
9.8.1 and then printing 
the contents of the graph
ics screen in gray tones. 
A rendered picture of a 
measure is the result. 

treme adjustments. For example, do not choose mag too small, otherwise you will 

need a very large value for numits . 

. Applications of fractal geometry to computer graphics have been investigated 

by a number of authors including Mandelbrot [Mandelbrot 1982], Kawaguchi 

[Kawaguchi 1982], Oppenheimer [Oppenheimer 1986], Fournier eta/. [Fournier 

1982], Smith [Smith 1984], Miller [Miller 1986], and Amburn eta/. [Amburn 1986]. 

In all cases the focus has been on the modelling of natural objects and scenes. Both 

deterministic and random geometries have been used. The application of IFS theory 

to computer graphics was first reviewed in [Demk 85]. It provides a single frame

work that can reach an unlimited range of images. It is distinguished from other 

fractal approaches because it is the only one that uses measure theory. 

The-modelling of natural scenes is an important area of computer graphics. Pho

tographs of natural sceqes contain redundant information in the form of subtle pat

terns and variations. There are two characteristic features: (i) the presence of com

plex geometrical structure and distributions of color and brightness at many scales; 

and (ii) the hierarchical layout of objects. (i) Natural boundaries and textures are not 

_j 
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Figure IX.265. Ren
dered invariant measures 
for IFS 's of two maps. 

(a) 

smoothed out under magnification; they preserve some degree of geometrical com
plexity. (ii) Natural scenes are organized in hierarchical structures. For example, a 
forest is made of trees; a tree is a collection of boughs and limbs along a trunk; on 
each branch there are clusters of leaves; and a single leaf is filled with veins and 
covered with fine hairs. It appears often in a natural scene that a recognizable en
tity is built up from numerous near repetitions of some smaller structure. These two 
observations can be integrated into systems for modelling images using IFS theory. 

Examples & Exercises 
8.2. Examine a good-quality color photograph of a natural scene, such as can be 
found in a Sierra Club calender, or an issue of National Geographic. Discuss the 
extent to which (i) and (ii) are true for that photograph. Be specific. 

1 
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In [Bamsley 1988a] it is reported that IFS theory can be used efficiently to model 

photographs of clouds, mountains, ferns, a field of sunflowers, a forest, seascapes 

and landscapes, a hat, the face of a girl, and a glaring arctic wolf. 

There are two parts to making any computer graphics image: geometrical mod

elling and rendering. Consider an architect making a computergraphical house: first 

she defines the dimensions of the floor, the roof, the windows, the shapes of the 

gables, and so on, to produce the geometrical modeL Traditionally this is specified 

in terms of polygons, circles, and other classical geometrical objects that can be con

veniently input to the computer. This model is not a picture. To make a picture, the 

model must be projected into two dimensions from a certain point of view and dis

tance, discretized so that it can be represented with pixels, and finally rendered in 

colors~n a display device. 
Here we describe brjefly the software system designed by the author, Alan Sloan, 

and Laurie Reuter, which was used to produce the color images that accompany 

Figure IX.265. (b) 
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this section. More details can be found in [Reuter 1987] and [Barnsley 1988a]. The 
system consists of two subsystems known as Collage and Seurat. Collage is used for 
geometrical modelling, while Seurat is used for rendering. 

Collage and Seurat process IFS structures of the form 

where the maps are affine transformations in ~2 . An IFS is represented by a file that 
consists of an IFS code, where each coefficient is written with a fixed number of bits 
Let JL denote the invariant measure of such an IFS and let A denote the attractor. 
The pair (A, JL) is referred to as an underlying model. The attractor A carries the 
geometry while JL carries the rendering information. One can think of the IFS code, 
or equivalently (A, JL), as being analagous to the plans of an architect. It corresponds 
to many different pictures. 

Collage is a geometrical modelling system used to determine the coefficients 
of the affine transformations w 1, w 2 , ... , WN. It is based on the Collage Theorem. 
Seurat is a software system for rendering images starting from an IFS code. An 
image is produced once a viewing window, color table, and resolution have been 
specified. This is achieved using the Random Iteration Algorithm. Its mathematical 
basis is Elton's Theorem. Seurat is also used in an interactive mode to determine the 
probabilities and color values. 

The input to Collage is a target image, which we denote here by T. For example, 
T may be a polygonal approximation to a leaf. We suppose that 

T C • = { (x, y) E ~ 2 
: 0 ::S X ::S 1, 0 ::S y ::S 1}, 

and that the screen of the computer display device corresponds to •· T is rendered 
on the graphics workstation monitor. An affine transformation 

is introduced, with coefficients initialized at a1 = d1 = 0.25, b1 = c1 = e 1 = f 1. The 
image w1 (T) is displayed on the monitor in a different color from T. w1 (T) is a 
quarter-sized copy of T, centered closer to the point (0, 0). The user now interac
tively adjusts the coefficients with a mouse or some other interaction technique, so 
that the image w1 (T) is variously translated, rotated, and sheared on the screen. The 
goal of the user is to transform w 1 (T) so that it lies over part ofT. It is important that 
the dimensions of w1 (T) are smaller than those ofT, to ensure that w1 is a contrac
tion. Once w 1 (T) is suitably positioned, it is fixed, and a new subcopy of the target, 
w2(T), is introduced. w2 is adjusted until w2(T) covers a subset of those pixels in 
T that are not in w 1 (T). Overlap between w1 (T) and w2(T) is allowed, but in gen
eral it should be made as small as possible, for efficiency. New maps are added and 
adjusted until uf= 1 w j (T) is a good approximation to T. The output from Collage is 



8 Application to Computer Graphics 377 

the resulting IFS code. The probability p j is chosen proportional to Ia jdj - b jC j I if 

this number is nonzero, and equal to a small positive number if the determinant of 

A j equals zero. 
The input to Seurat is one or more IFS codes generated by Collage. The view

ing window and the number of iterations are specified by the user. The measures of 

the pixels are computed. The resulting numbers are multiplied by the inverse of the 

maximum value so that all of them lie in [0, 1]. Colors are assigned to numbers in 

[0, 1] using a color assignment function. The default is a gray scale where the inten

sity is proportional to the number, such as 0 corresponds to black and 1 corresponds 

to brightest white. The coloring and texture of the image can be controlled through 

the probabilities and the color assignment function. Although one does not explic

itly use it, Theorem 9.6.3 lies in the background and can help in the adjustment of 

the probabilities. 

Color Plate 21 shows some smoking chimneys in a landscape. We obtained the 

IFS codes for the elements of this image we obtained using Collage. Different color 

assignment functions are associated to different elements in the image. The image 

was rendered using Seurat. 

The consistency of images with respect to changes in resolution is illustrated in 

Color Plate 22, which shows a zoom on one of the smokestacks in Color Plate 21. 

The number of iterations must be increased with magnification to keep the number 

of points landing within the viewing window constant. This requirement ensures the 

consistency of the textures in an image throughout the magnification process. 

Color Plates 23 and 24 show various renderings of leaves produced by Seurat. 

Color Plate 25 shows a sequence of frames taken from an IFS encoded movie en

titled A Cloud Study [Barnsley 1987]. The smooth transition from frame to frame is 

a consequence of the continuous dependence on parameters of the invariant measure 

of the IFS for the cloud. 

Color Plates 26, 27, and 28 were encoded from color photographs. Segmenta

tion according to color was performed on the originals to define textured pieces. IFS 

codes for these components were obtained using Collage. The IFS data base con

tained less than 180 maps for the Monterey seascape, and less than 160 maps for the 

Andes Indian girl. 
The two primitives, a leaf and a flower, in Color Plate 29 were used as condensa

tion sets in the picture Sunflower Field, Color Plate 30. Here we see the hierarchical 

structure: the leaf is itself the attractor of an IFS; and the flower is an overlay of 

four IFS attractors. The leaf is a condensation set for the IFS that generates all of 

the leaves. The flower is a condensation set to an IFS that generates many flowers, 

converging to the horizon. In the pictures Sunflower Field and Black Forest, shown 

in Color Plates 31-34, the primitives were displayed from back to front. The data 

bases for the Sunflower Field and Black Forest contain less than 100 and 120 maps, 
1 

respectively. Notice the shadows behind fhe little trees in the background in Color 

Plate 32. The winter forest pictures were obtained by adjusting the color assignment 
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function. The important point is that once the adjustment has been made, the image 

and the zoom are consistent. 

E/amples & Exercises 

8.3. Use the Collage Theorem to help you find an IFS code for a leaf. Adjust 

your version of Program 1 in section 8 to allow you to render images of associated 

invariant measures. Assign colors in the range from red through orange to green. 

Adjust the probabilities. Obtain a spectacular color picture of the leaf showing the 

veins. Make a color slide of the output. To photograph a picture on the screen of a 

computergraphics monitor, use a telephoto lens. Mount the camera on a tripod, and 

take the photograph in a darkened room, on Ectachrome 64 ASA color slide film, 0.1 

sec exposure, f-stop 5.6. For possible publication, submit the color slide, together 

with a letter of copyright assignment, to Michael Bamsley, Iterated Systems, Inc., 

5550-A Peachtree Parkway, Suite 650, Norcross GA 30092 USA. Include a self

addressed envelope. 

8.4. Obtain a very powerful computer with good graphics. Find the heirarchical 

IFS codes for the Sunflower Field. Replace the sunflowers by roses. Fly into your 

picture, to explore forever that scent-filled horizon. You are on your own. 



Chapter X 

Recurrent Iterated Function 
Systems 

Fractal Systems 

The goal of this chapter is to describe some general systems that can be used to con

struct deterministic fractals. We are concerned with the invention of mathematical 

machines for designing and controlling fractals. 
We use the name "recurrent iterated function systems" loosely to encompass the 

systems introduced in this chapter. Examples include "IFS's" in which the applica

tion of transformations to points depends on the "addresses" of the points. Other 

examples include "IFS 's with probabilities" which have invariant measures that can 

be computed by means of algorithms of the "Chaos Game" type, wherein, instead 

of each transformation being applied with a fixed probability, there are different 

probabilities that depend on which transformation was applied previously. A unified 

framework for presenting IFS, recurrent IFS, and future developments in the theory 

of deterministic fractals is provided by the idea of fractal systems. 

In this section we introduce fractal systems, their associated fractals, and the 

objects or models which they can be used to approximate. We do this in such a 

way as to help the reader understand how to invent a fractal system appropriate to 

the type of model she or he is describing, without having first to develop a new 

theory from the bottom up. The ideas are loosely stated in order to convey most 

simply the underlying principles, which seem to be of general applicability and to 

be very powerful. From this author's experience, it seems that any framework for a 

fractal system, once decided upon, can be readily fleshed out with the appropriate 

definitions and logical ~nfrastructure to provide a full and clean theory. 

Roughly speaking, a fractal system consists of a means for generating determin

istic fractals, associated with an underlying space%, and a set or space of objects or 

379 
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models, V, which these fractals can be used to approximate. Throughout this chap-

ter we use o to denote a closed bounded subset of ~2 such as {(x, y) E ~2 : 0 :s x, 

y :s 1}. 

Already in this book we have looked at several very different fractal systems, as 

described in the following examples. 

Example (i). One example of a fractal system is defined by IFS's of contractive 

affine transformations acting on A\= DC ~2 : the underlying space is o; the fractals 

of the system are attractors of all of the IFS's; and the space of models, V, which 

these fractals can be used to approximate, consists of all (compact) subsets of o, 
namely V = 1t(%). In this example the models may represent monochrome pictures, 

with the sets representing the black parts of the pictures, and their complements 

representing the (background) white parts. The fractal system itself is a device for 

approximating the models by means of the fractals that it generates. 

Example (ii). Another example of a fractal system is defined by the IFS's of 

contractive affine transformations on DC ~2 , with probabilities. The fractals of this 

system are the attractors of the associated Markov operators, as described in Chapter 

IX. They lie in the space V = P(o), the set of all normalized Borel measures on 

o c ~2 • Here the underlying space A\ is D c ~2 ; its points do not belong to the 

fractals of the system because they are measures, not sets of points. In this example 

the models may represent grayscale pictures, with the amount of light reflected by a 

subset of the picture represented by the measure of that subset. Again, the fractal 

system provides a means for approximating the models, using the fractals that it 

generates. 

Example (iii). A third example of a fractal system involves the space A\= 

[0, 1] c ~2 , with V = C[O, 1], the continuous real valued functions on [0, 1]. In this 

system the fractals are the fractal interpolation functions on [0, 1] that can be gener

ated by affine transformations, as described in Chapter VI; and the the models may 

represent time series data or stock market prices. 

Further examples of fractal systems are introduced in this chapter, and involve 

recurrent iterated function systems. Yet others, involving local iterated function sys

tems and appropriate to the modelling of real world images, are described in [BH]. 1 

All of these fractal systems use the same basic ingredients, which we describe next. 

(1) An underlying metric space(%, d) needed to define the fractals and the mod

els in the system. For example, A\ may be ~ 2 , ~ 3 , or a subset of one of these 

spaces, such as o c ~2 • Typically(%, d) is complete, and bounded subsets of 

it are compact. 
(2) A space of models V = V(%). Each point of Vis a model, and models are de

fined with the aid of the space %. The fractals generated by the fractal system 

1 M. F. Bamsley and L. P. Hurd, Fractal Image Compression, ( 1993), A. K. Peters, Welles

ley, Massachusetts. 
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also belong to Y. Examples of Y include spaces of sets, function spaces, and 

measure spaces. We also need a metric h on the space Y, such that (Y, h) is a 

complete metric space. Examples of (Y, h) include (1l(%), the Hausdorff dis

tance generated by d), (C[O, 1], h(f, g)= max{lf(x)- g(x)!: x E [0, 1]}), 

and ('P(%), dh) where dh is the Hutchinson distance between measures. 

(3) A contractive operator 0 which acts on the space (Y, h). That is, the operator 

0 is such that there exists a real number s with 0 :=: s < 1, and 

h(O(</>), 0(1/J)) :=: s · h(Q>, 1/J) for allQ>, 1/J E V. 

Typically, the operator 0 is constructed with the aid of elementary contractive 

functions that act upon the underlying space%. 

For the examples of fractal systems, (i), (ii), and (iii) begun above, the operators 

0 are set up as follows: 

Example (i) (continued). % = o c ~2 , wi: o-+ o is a contractive transfor

mation for each i = 1, 2, ... , N, Y = 1t(%), and 0: Y-+ Vis defined by 

O(Y) = W(Y) = U{wi(x): x E V}. 

Remark that 0 is built up using contractive transformations acting on the underlying 

space. 

Example (ii) (continued). %=oc ~2 ,{%;wl, ... ,wN;pl,····PN} are 

IFS 's with probabilitie~. as in section 6 in Chapter IX, with the wi 's as in (i) above, 

and V = P(%); we can then define a corresponding fractal system by taking 0 to 

be the associated Markov operator as defined in section 6 in Chapter IX; that is, 

0: Y-+ Vis defined by 

O(v) = M(v) = P1V o w! 1 + p2v o w2 1 + · · · + PNV ow-;/. 

We know from the theory of Chapter IX that 0 is contractive in the Hutchinson 

metric. Again, remark that 0 is built up using contractive transformations, the wi 's, 

acting on the underlying space. 

Example (iii) (continued). In this example fractal interpolation functions, as 

described in Chapter VI, are used.%= [0, 1] c ~.and V = :F = C[O, 1]. Then 0: 

V-+ Y is the operator T: :F-+ :F defined in the proof of Theorem 2.2 in Chapter 

VI. In the notation of section 2 in Chapter VI, this is, for f E :F, 

O(f) = (Tj)(x) = Cnl;; 1(x) + dnf(l;; 1(x)) + fn 

for X E [Xn-1• Xn], for n = 1, ... , N. 

Then 0 is a contraction mapping with respect to the supremum distance on C[O, 1]. 

Again, notice how the operator 0 is built up from contractive transformations acting 

on the underlying spac~. 

In practice, the contractive operator 0 is constructed from finite collections of 

contractive affine transformations; for example, affine transformations acting in two 
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dimensions. Furthermore, the coefficients of these constituent functions can be re
stricted to lie in finite sets, defined for example by rounding. Then 0 itself can be 
described by finite sets of discrete coefficients, the full set of which represents the 
"code" for the operator 0. 

The consequences of having the ingredients 1, 2, and 3 can be summarized in the 
following Theorems and Expections: 

Theorem 1.1 Existence of Attractors. Since 0 is contractive, and the metric 
space "¥ is complete, there exists an unique attractor 4> E "¥ such that 

0(4>) = 4> 

Proof See Theorem 6.1 in Chapter III. 

Expectation 1 . 1 Fractal Character of Attractors. We anticipate that 
4> is a fractal: that is, we expect that 4> has a resolution-independent, infinitely
magnifiable character. This is because of the contractivity of the functions from 
which 0 is constructed: the whole invariant set is the same as a sum or union of 
contractions applied to it, and thus it is made of shrunken copies of (parts of) itself 
Depending on the way in which the contractions act, the focus may be on contrac
tivity of various spatial dimensions, and/or measure theoretic contractivity, and we 
expect that the attractor 4> will inherit corresponding fractal characteristics. 

Theorem 1.2 Computation of Attractors. To compute 4>, we can use the 
fact that if 1/f E "¥ then the result of repeatedly applying 0 to 1/f converges to the 
attract or 4>; that is, 

lim oon(l/f) = lj>. 
n~oo 

Moreover, if there exists a real constant C such that h(l/>1, l/>2) < C for all4>1, 4>2 E V, 
then we have the error estimate 

Proof See Theorem 6.1 in Chapter III. 

The latter equation tells us that the fixed point, or attractor, can be computed 
by algorithms of the "Photocopy Machine" type. The error estimate allows one to 
predict the number of iterations required to achieve a given accuracy. 

Theorem 1.3 General Collage Theorem Estimate. The distance between 
1/f E "¥ and the attract or 4> of 0 is bounded by the estimate 

h(A. .lr) < h(ljf, 0(1/J')) • 
o/•'P- (1-s) 

Proof See Lemma 11.1 in Chapter III. 

The set 0( 1/f) is called a collage of 1/f, while the distance h ( 1/f, 0( 1/f)) is called the 
corresponding collage error. The theorem says that if we wish to find an operator 
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0 whose attractor ¢ is approximately 1/1, then we have only to solve the problem 

of choosing 0 such that application of 0 to 1/J does not change 1/J very much, as 

discussed in Chapters III and IX. 

This latter simple prescription is of central importance, yet easy to miss. We 

repeat it in slightly different terms. Suppose that we have a fractal system, defined by 

V (>\<) and 0, where 0 is a set of operators 0 as above. We seek an operator 0 E 0 

whose attractor ¢ approximates 1/1 E V. To do so, we adjust 0 so that the collage 

error h(l/1, 0(1/1)) is as small as possible. Then 0 defines our fractal approximation 

¢.To store¢ it suffices to store 0. In the end, one thinks of the controllable family 

of operators 0 as the fractal system. 

Whenever we have the ingredients 1, 2, and 3, we have a fractal system. Afrac

tal system is a mechanism for finding fractal approximations ¢ for models 1/J E 1f. 

Examples (i), (ii), and (iii) above constitute interactively controllable systems for 

fractal modelling applied to diverse problems: in (i), sets of points are approximated 

by fractals made of sets of points; in (ii) measures are approximated by fractal mea

sures; and in (iii), continuous functions are approximated by fractals that are graphs 

of continuous functions. In each case the parameters that control the problem are 

embedded in the operator 0, which is selected and tailored to produce an appara

tus for fractal approximation, a fractal system, appropriate to the modelling problem 

under consideration. 

We note that fractal systems provide deterministic fractals rather than stochastic 

fractals. Once the operator 0 has been selected, its attractor, the fractal that it de

fines, has been fixed once and for all. There is only one fractal associated with each 

operator. These fractals are typically low information content members of a larger 

space, the space of models in which they lie; in much the same way as the rational 

numbers are finite information content members of the information rich space of all 

real numbers. 
In the following sections we develop more elaborate fractal systems, based on 

recurrent IFS. Their introduction was begun in section 1 of this chapter; These gen

eralize earlier systems in an elegant manner. They can be used to design machines 

to do elaborate fractal modelling, and illustrate well the design principles enunciated 

above. 

2 Recurrent Iterated Function Systems 

Recurrent iterated function systems were introduced in [BEH],2 where more infor

mation can be found. 

2 M. Barnsley, J. Elton, D. Hardin, Recurrent Iterated Function Systems, Constructive 

Approximation (1989) 5, 3-31. 
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Table X.l. Example of a recurrent IFS code. Not all transitions are possible! 

W; a; b; C; d; e,. f; P;! pi2 pi3 

1 0.5 0 0 0.5 0 0 0.3 0.7 0 

2 0.5 0 0 0.5 0 128 0 0.6 0.4 

3 0.5 0 0 0.5 128 128 0.5 0 0.5 

Definition 2.1 A recurrent iterated function system consists of an IFS {%;WI, 

w2, ... , WN} together with a matrix {pij E [0, 1]: i, j = 1, 2, ... , N}, such that (i) 

Pil + Pi2 + Pi3 +···+PiN= 1 fori= 1, 2, ... , N 

and ( ii) such that for any i and j, there exists a fmite sequence of integers k, l, ... , 

mE {1, 2, ... , N} so that 

PikPkt · · · Pmj > 0 

The transition probability for a certain discrete time Markov process is Pij , which 

gives the chance, or probability, of moving from state i to state j, given that the 

process is in state i. Condition (i) says that the process is row stochastic: whichever 

state the system is in, a set of probabilities is available that sum to 1, and that 

describe the possible subsequent states to which the system can transition at the 

next step. Condition (ii) says that if the system is in state i then there is a finite 

probability of reaching state j in a finite number of steps, for any pair of integers 

i, j E {1, 2, ... , N}. 

An IFS with probabilities provides a simple example of a recurrent IFS. The IFS 

with probabilities 

is in many ways the same as the recurrent IFS 

{%;WI, W2, · .. , WN; (pij)} 

when Pij = pj for all i, j E {1, 2, ... , N}. 

We will say that a recurrent IFS is hyperbolic if the associated IFS is hyperbolic, 

that is, contractive with contractivity factor 0 .:::; s < 1. We restrict attention to hyper

bolic recurrent IFS. 

Examples of codes for recurrent IFS 's are presented in Tables X.1 and X.2. In 

each case the space is % = ~ 2 , the transformations are affine, and we use the usual 

notation 

Figures X.266 and X.267 provide diagrams of the associated Markov processes. 

We say that the system is in state i if the last transformation to be applied was w;. 

For the the recurrent IFS in Table X.1 it is never possible to apply transfonnation 

l 



Table X.2. 

W; a; bi 

1 0.5 0 
2 0.5 0 
3 0.5 0 

0.3 

0.3 
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Example of a recurrent IFS code. All transitions can occur! 

Ci di e; fi 

0 0.5 0 0 

0 0.5 0 128 

0 0.5 128 128 

0.7 0.4 

0.5 

pi! pi2 

0.3 0.6 

0.1 0.5 

0.4 0.4 

pi3 

0.1 
0.4 
0.2 

0.5 

0.2 

Figure X.266. Markov 
process for the recurrent 
IFS given in Table X.1. 
There is no path from state 
1 to state 3, state 2 to state 
1, or state 3 to state 2. 

Figure X.267. Markov 
process for the recurrent 
IFS given in Table X.2. 
Paths exist between all 
possible states. 

number 3 if the system is in state 1. It is also not possible to make a transition from 

state 2 to state 1. For the recurrent IFS in Table X.2, any transformation can follow 

any other one; that is, the system can transition from any state to any other state, in 

one step. 
A recurrent IFS possesses a unique measure theoretic attractor, [BEH]. This is an 

invariant measure that can be computed by means of a generalized "Chaos Game" 

algorithm. It can also be computed using a wierd "Photocopy Machine." 

Example of the Chaos Game Algorithm for a Recurrent IFS. We 

present this algorithm for the case of the the recurrent IFS codes in Tables X.1 and 

X.2. The algorithm yields an orbit {(xn, Yn): n = 0, 1, 2, ... } that, with probability 

one, describes the unique invariant measure associated with the recurrent IFS. The 

relationship between the orbit and the measure is much the same as that described in 
1 

Chapter IX for the case of standard IFS with probabilities. 

(1) Choose a starting point (x0 , y0) E ~2 . It is desirable that the starting point lies 
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as close as possible to the attractor. Clearly this lies in [0, 256] x [0, 256]. 
Thus, we might choose (x0 , Yo) = (0, 0). 

(2) Choose a initial state s0 = {1, 2, 3}. Any other state in the set {1, 2, 3} could 
be used. The Markov process associated with the transition matrix (Pij) pos
sesses a unique stationary vector (m 1, m2, m3) with mi > 0, such that 

3 

LmiPij = mj, j = 1, 2, 3. 
i=I 

If one knows this vector, then it is a good idea to choose the initial state to be 
the one corresponding to the largest m j. 

(3) Select s1 E { 1, 2, 3} with probability Psoj associated to the choice s 1 = j. 
(4) Compute (xi, YI) = Ws 1 (xo, Yo). 

(5) Select s2 E { 1, 2, 3} with probability Ps1j associated to the choice s2 = j. 
(6) Compute (x2, Y2) = Ws2 (XI, YI). 

(2n + 1) Select sn E {1, 2, 3} with probability Psn_ 1j associated to the choice 
Sn = j. 

The result of the above calculation is supposed to be a long orbit 

Q(numits) = {(xn, Yn): n = 1, 2, .. , numits}. 

(With probability one) the value of the invariant measure JL E P([O, 256] x [0, 256]) 
of the recurrent IFS is given by the formula 

number of points in {S n Q(numits)} 
lim JL(S) = . 

numitS-HXl nUmltS 

for any measureable subsetS c ~2 . 

In Figure X.268 we illustrate this algorithm for the case of the recurrent IFS in 
Table X.l. In Figure X.269 we give the results of a computation, showing a long 
orbit. The invariant measure can be pictured by observing the density of the points. 

In Figure X.270 we illustrate this algorithm for the case of the recurrent IFS in 
Table X.2. In Figure X.271 we give the results of a computation, showing a long 
orbit. Again, one gets some idea of the invariant measure by looking at the density 
of the points. 

In Figure X.272 we show the structure and the attractor for the recurrent IFS in 
Table X.3. This involves four transformations which take o into itself. The range of 
wi is the quadrant of o labeled i, so that the transformations provide a just-touching 
collage of the square. The transition probability p24 is zero, which means that no 
points on the attractor lie in the subquadrant labeled 24. 
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0.7 0.4 

0.3 0.5 

05 . G Jump each time the clock ticks ... 

IN STATE 1 IN STATE 2 
Jump to State 1 Jump to State 2 
with Prob 0.3 with Prob 0.6 

Jump to State 2 Jump to State 3 
with Prob 0.7 with Prob 0.4 

IN STATE 3 
Jump to State 3 
with Prob 0.5 

Jump to State 1 
with Prob 0.5 

The measure of S 
is the proportion 
of points which 

land inS 

In the (x,y) plane, when the system jumps to State j, apply the map 

wi to the current point (xN,yN) to obtain (xN+1,yN+1) = wi (xN,yN). 

Thus produce a dancing point. 

Figure X.268. Chaos 

Game for a recurrent IFS 
in which not all transitions 

are possible. The recurrent 

IFS code is given in Table 

X.l. 

Figure X.273 shows the attractor for the maps in Table X.3, for six different sets 

of transition probabilities. These sets of transition probabilites used were: 

(1) P11 = 0.3, P12 = 0.5, P13 = 0.1, PI4 = 0.1, 

P21 = 0.1, P22 = 0.5, P23 = 0.4, P24 = 0.0, 

P31 = 0.3, P32 = 0.3, P33 = 0.2, P34 = 0.2, 

P4I = 0.25, P42 = 0.25, P43 = 0.25, P44 = 0.25; 

(2) Pll = 0.3, PI2 = 0.5, PI3 = 0.1, PI4 = 0.1, 

P2I = 0.1, P22 = 0.5, P23 = 0.4, P24 = 0.0, 

P3I = 0.3, P32 = 0.3, P33 = 0.2, P34 = 0.2, 

P41 = 0.25, P42 = 0.25, P43 = 0.5, P44 = 0.0; 

(3) Pll = 0.3, PI2 = 0.5, P13 = 0.1, PI4 = 0.1, 

P21 = 0.1, P22 = 0.5, P23 = 0.4, P24 = 0.0, 

P3I = 0.0, P32 = 0.3, P33 = 0.5, P34 = 0.2, 

P4I = 0.0, P42 ~ 0.5, P43 = 0.5, P44 = 0.0. 

(4) Pll = 0.0, PI2 = 0.5, PI3 = 0.2, PI4 = 0.3, 

P21 = 0.1, P22 = 0.4, P23 = 0.4, P24 = 0.1, 
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Figure X.269. Some 
points on the orbit pro
duced by the machinery in 
Figure X.268. 

YA~ 
256 ,:/ ~' ~,::" ~;,. ~' 

v r ,/' r 

0 

'-' / 

P31 = 0.25, P32 = 0.25, P33 = 0.25, P34 = 0.25, 

P41 = 0.4, P42 = 0.4, P43 = 0.1, P44 = 0.1. 

(5) P11 = 0.25, P12 = 0.25, P13 = 0.25, PI4 = 0.25, 

P21 = 0.25, pzz = 0.25, P23 = 0.25, P24 = 0.25, 

P31 = 0.25, P32 = 0.25, P33 = 0.25, P34 = 0.25, 

P41 = 0.25, P42 = 0.25, P43 = 0.25, P44 = 0.25. 

(6) P11 = 0.0, P12 = 0.34, P13 = 0.33, P14 = 0.33, 

P21 = 0.25, pzz = 0.25, P23 = 0.25, P24 = 0.25, 

P31 = 0.25, P32 = 0.25, P33 = 0.25, P34 = 0.25, 

P41 = 0.25, P42 = 0.25, P43 = 0.25, P44 = 0.25. 

~;,. ~ ,'! 
'r 

.. 
256 ... X 

Can you work out which set of the above transition probabilities corresponds to each 

of the images in Figure X.273? 

Example of the Photocopy Machine Algorithm for realizing the in

variant measure of a recurrent IFS. We illustrate this algorithm for the case of 

the IFS code in Table X.1. It is illustrated in Figure X.27 4. 

The mathematical machine in Figure X.274 corresponds to the recurrent IFS 

in Table X.1, wherein there are three affine transformations w~. w2, and w3, and 

wherein the transition probabilities p 13 , P21. and P32 are all zero. The states of 

the system are represented by the three copy units, one of which is labeled IN

PUT1/COPY1; the others are labeled INPUT2/COPY2 and INPUT3/COPY3. Each 

unit has two lens/filter components. The first copy unit is made of two lens/filter 

components; one of these components applies affine transformation w 1 to INPUTl, 



0.3 

0.4 

Tic, Tic, Tic, Tic ..... . 

IN STATE 1 IN STATE 2 
Jump to State 1 Jump to State 1 
with Prob 0.3 with Prob 0.1 

Jump to State 2 Jump to State 2 
with Prob 0.6 with Prob 0.5 

Jump to State 3 Jump to State 3 
with Prob 0.1 with Prob 0.4 

X 
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0.2 

IN STATE 3 
Jump to State 1 
with Prob 0.4 

Jump to State 2 
with Prob 0.4 

Jump to State 3 
with Prob 0.2 

Figure X.270. Ran
dom walk generator as
sociated with the recurrent 
IFS in Table X.2. 

Apply map wj when system jumps to State j. 

attenuates the brightness of the image by factor p 11 , and directs its output to COPY 1; 

the other of these components applies affine transformation w2 to the input im

age, attenuates the brightness of the image by a factor p 12 , and directs its output 

to COPY2. The second copy unit has two lens/filter components; the first applies 

affine transformation w2 to the input image INPUT2, attenuates the brightness of 

the image by factor p22 , and directs its output to COPY2; the other of these com

ponents applies affine transformation w3 to the input image INPUT2, attenuates the 

brightness of the image by a factor p 23 , and directs its output to COPY3. The third 

copy unit has two lens/filter components; the first applies affine transformation w 3 to 

the input image INPUT3, attenuates the brightness of the image by factor p 33 , and 

directs its output to COPY3; the other of these components applies affine transfor

mation w 1 to the input image INPUT3, attenuates the brightness of the image by a 

factor p3t. and directs its output to COPYl. 

It is important to not~ that the three inputs and the three outputs are set up so that 

they all represent the same subset o of IR?.. 
2• The range of transformation w 1 lies in 

COPY I, the range of w2 lies in COPY2, and the range of w3 lies in COPY3. Thus, 
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Figure X.271. "Pic
ture" of the point-set at
tractor corresponding to 
the fractal system repre
sented in Figure X.270. 

y 

256 

0 

Table X.3. Recurrent IFS code. See Figure X.272. 

W; a; b; C; d; e; /; pi! P;z 

0.5 0 0 0.5 0 0 0.3 0.5 
2 0.5 0 0 0.5 0 128 0.1 0.5 
3 0.5 0 0 0.5 128 128 0.3 0.3 
4 0.5 0 0 0.5 128 0 0.25 0.25 

256 X 

P;3 pi4 

0.1 0.1 
0.4 0.0 
0.2 0.2 
0.25 0.25 

in the first copy unit transformation w2 : 0 ~ 0 in fact takes INPUT! to COPY2, 
whilst in the second copy unit it takes INPUT2 to COPY2. 

The images that are projected onto the copy screens are superposed; places where 
images come in from several inputs add up. For example, the total brightness of the 
image in COPY I is p 11 times the total brightness of the image in INPUT I, plus p31 
times the total brightness of the image in INPUT3. 

Copy images are recorded on "photographic paper" and put back on their respec
tive inputs, as indicated in the figure. The system is cycled numerous times until the 
output images cease to change; then symbolically 

OUTPUT! =PI! ·OUTPUT! + P31 · OUTPUT3 
OUTPUT2 = P12 ·OUTPUT! + P22 · OUTPUT2 
OUTPUT3 = P23 · OUTPUT2 + P33 · OUTPUT3. 



2 Recurrent Iterated Function Systems 391 

Figure X.272. Four 
affine transformations 
provide a just-touching 
collage of o. A recurrent 
IFS (Table X.3) made of 
these transformations is 
such that p24 = 0. As a 
consequence, the attractor 
has no points in the square 
whose address is 24. 

Finally, the images OUTPUT!, OUTPUT2 and OUTPUT3 are superposed. Symbol

ically, 

ATTRACTOR =OUTPUT I + OUTPUT2 + OUTPUT3. 

Color Plate 37 illustrates a measure theoretic attractor of a related Photocopy 

Machine. Color Plate 40 illustrates another way of approaching the computation of 

the invariant measure of a recurrent IFS, using cameras and screens. 
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Figure X.273. All of 
these attractors correspond 
to different choices for the 
transition probabilities in 
Table X.3. 

3 Collage Theorem for Recurrent I FS 

In this section we are concerned with the construction of fractal systems, based on 
recurrent IFS, with an emphasis on point-set attractors, that is, attractors that are sets 
of points rather than measures. Our goal is to describe how a collage theorem and 
associated machinery can be set up to enable fractal modelling using the point-set 
attractors of certain recurrent IFS. 

A recurrent IFS can described in terms of a Markov chain which acts on a code 
space built from the symbols {1, 2, ... , N}, as illustrated in Figures X.268 and 
X.270. The numbers Pij ~ 0, L-7= 1 Pij = 1, give the probabilities of transfer among 
the symbols. One can imagine a particle moving from symbol to symbol following 
the discrete time Markov process. The process is defined, strictly speaking, to be 
recurrent if there is a finite probability of being able to move, on the directed graph, 



3 Collage Theorem for Recurrent IFS 393 

Input 1 Input 2 Input 3 

Copies 1, 2 and 3 are combined (superposed) to create Final Image 

from any given symbol to any given symbol. A good source of information on 

Markov chains is [Feller, Ch. 15].3 

We are concerned with the hyperbolic case, namely, 

d(wi(x), wi(y)) .:S sd(x, y) Vi, Vx, y E ~ 

where d is the distance function on ~ and 0 _:s s < 1. In this case, we know that 

there exists a unique attractive invariant probability measure f..L, which describes the 

random walk on ~ produced for example by the "Chaos Game" algorithm described 

in the previous section. Our focus in this section is on the structure of the support 

of f..L, which we call A E ~. the attractor of the recurrent IFS. This depends only on 

which Pij are nonzero, the connection structure of the Markov chain, and otherwise 

not on the values of the pij 's. 

We begin by recalling how the analysis proceeds in the case of IFS theory; this 

provides the simplest framework for explaining the recurrent case. Let (~. d) denote 

a compact metric space ~. with distance function d. Let 1t denote the set of all 

nonempty compact subsets of ~-

Definition 3.1 d(x, B)= minyEB d(x, y) Vx E ~.VB E H. Note that 

B c C =* d(x, C) .:S d(x, B). (1) 

3 W. Feller, An Introduction to Probability Theory and its Applications (Wiley, London), 

1957. 

Figure X.27 4. Photo

copy Machine for realiz
ing the invariant measure 
of the recurrent IFS in 

Table X.l. 
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Definition 3.2 d(A, B)= maxxeA d(x, B) VA, BE 1/ 

Note that this set distance is not symmetric. It has the following properties 

(i) B c C:::} d(A, C) ~ d(A, B). This follows at once from (1). 

(ii) d(A U B, C)= d(A, C) v d(B, C), where x v y = max{x, y}. This follows 

from the observation that 

d(A U B, C)= max d(x, C)= maxd(x, C) v maxd(x, C). 
xeAUB xEA xEB 

Definition 3.3 For all A, BE 1-i, the Hausdorff distance is defined by 

h(A, B)= d(A, B) v d(B, A). 

We recall that (1-i, h) is a compact metric space. 

Lemma 3.1 For all A, B, C, DE 1-i, 

Proof 

h(A U B, CUD)~ h(A, C) v h(B, D). 

d(A U B, CUD)= d(A, CUD) v d(B, CUD) by (ii) 

~ d(A, C) v d(B, D) by (i) 

~ h(A, C) v h(B, D). 

The same argument yields d(C U D, AU B)~ d(C, A) v d(B, D)~ h(A, C) v 
h(B.D). 

Let{%; Wj, j = 1, 2, ... , N} be a hyperbolic IFS, with d(wjx. WjY) ~ sd(x, y) 

Vx, y E %, and 0 ~ s < 1. Define 

by 

N 

W(A) = u Wj(A). 
j=l 

Theorem 3. 1 W : 1i --+ 1i is a contraction, with contractivity factor s, with 

respect to the Hausdorff metric; that is, 

h(W(A), W(B)) ~ sh(A, B) VA, BE 1-l. 

Proof For any A, BE 1-i, 
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h(W(A), W(B)) = h (Q wj(A), Q Wj(B)) 

N 

:S V h (wj(A), Wj(B)) (by Lemma 3.1) 
j=1 

N 
= v {d(wj(A),wj(B))vd(wj(B),wj(A))} 

j=1 

N 

:S V {sd(A, B) v sd(B, A)} 
j=1 

= sh(A, B) 

We leave it as an exercise for the reader to show that the following extension of 
the above result is true. We will need this fact later on. If (:%1, d1) and (:%2, d2) are metric spaces, then (1-i 

1
, h 1) and (1-l 2 , h 2) are the corresponding spaces of compact 

nonempty subsets, if 

obeys 

then 

defined by 

obeys 

wj::%1-+:%2 forj=l,2, ... ,N, 

N 

W(A) = u Wj(A) 
j=1 

h2(W(A), W(B)) :S sh1(A, B). 

Corollary 3.1 There is a unique set A E 1-l such that W(A) =A. 

A is the attractor of the IFS. 

Corollary 3.2 Collage Theorem for IFS. If B E 1-l obeys 

h(B, W(B)) ::: E > 0 

then 
E 

h(B,A)< --, - (1- s) 

where A denotes the attractor of the IFS. 
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Proof By the contraction mapping theorem 

h(A, B)= h (B, lim won(B)) = lim h (B, won(B)) 
n~oo n~oo 

where W 00 (B) = W(B) and we inductively define 

woCn+l)(B) = W(Won(B)), n = 0, 1, 2, ... 

But, by the triangle inequality, 
n 

h (B, won(B)) ~ Lh (wo(m-l)(B), wom(B)) 

m=l 
n 

= Lh (wo(m-l)(B), wo(m-l)(W(B))) 

m=l 
n 

~ L sm- 1h (B, W(B)) 
m=l 

~ (1 - s)-1h (B, W(B)) 

We are now ready to extend the structure to the case of recurrent IFS. We actually 

make a generalization of the recurrent IFS structure to multiple spaces and set maps, 

suitable for the hyperbolic case where one is concerned with point-set topology is

sues. We are only concerned here with the connection structure of the chain. Let 

(A\ i, d i) be compact metric spaces, j E {1, 2, ... , N}. Let (H j, h j) denote the asso

ciated metric spaces of non-empty compact subsets which use the Hausdorff metrics. 

Let there be defined maps Wij: Hj--+ HiV(i, j) E I where I is some set of pairs of 

indices with the property that for each i E { 1, 2, ... , N} there is a j E { 1, 2, ... , N} 

with (i, j) E I. That is, I (i) = {j I (i, j) E I}# 0 for each i E { 1, 2, ... , N}. Further

more let 

h; (Wij(A), Wij(B)) ~ Sijhj(A, B) 

for some number sij, V(i, j) E I, VA, BE 'Hj· By the remark following Theorem 3.1 

such maps can be built up from point maps taking A\ j to A\;. 

Suppose w; :A\--+ A\ are contractive maps, where A\ is compact metric, and (p;j) 

is row stochastic. Define (A\j, dj) =(A\, d) for each j, and define Wij(S) = {wi(x): 

xES}, i, j = 1, ... , N. Let I(i) = {j: Pii > 0}. This embeds us in the more gen

eral setup that we now study. 

Let 

it= H1 x Hz x 1i3 x · · · x HN, 

and endow it with the metric h defined by 

h ((A1, Az, ... , AN), (B1, Bz, ... , BN)) =max {hj(Aj, Bj)lj = 1, 2, ... , N}. 

Then it is readily demonstrated by the enthusiatic reader that (it, h) is a compact 

metric space. 
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We think of it as consisting of a stack of clipped planes %I, %2 , ••. , %N with a 

point in it being the N -tuple of one image in each plane. This idea is illustrated in 

Color Plate 41. Define 

by 

W(AI, Az, ... , AN)= ( U wlj(Aj), U Wzj(Aj), ... , U WNj(Aj)) 

jE/(1) jE/(2) jE/(N) 

For example, in the case N = 2 such a mapping might be symbolized 

W ( 1~) = ( :,, :~~) ( 1~) -( W21 (A~;'~A;,2(A2)) 
We have now arrived at our goal; we are able to characterize W as a contraction 

mapping on it; we thus have all of the ingredients of a fractal system. 

Theorem 3.2 w : it -+ it obeys 

ii ( W(A), W(B)) ~ sh(A, B) VA, BE 1t, 

where s = max{sij, (i, j) E /}. 

Proof To keep the notation succinct we suppose 

w = (wii W12) 
Wzi Wzz 

Then if A= (AI, A 2 ) and B = (BI, B2 ) we have 

ii (w<A), w(B)) 
= h ((Wll(AI) U Wiz(Az), Wzi(AI) U Wzz(Az)), 

(Wu (BI) U Wiz.(Bz), Wzi (BI) U Wzz(Bz))) 

= max{hi (W11 (AI) U W12(Az), W11 (BI) U W12(Bz)), 

hz(Wzi(AI) U Wzz(Az), Wzi(BI) U Wzz(Bz))} 

~ max{hi(W11(AI), Wu(BI)) V hi(W12(Az), W12(Bz)), 

hz(Wzi (AI), W21 (BI)) v hz(Wn(Az), Wzz(Bz))} (by Lemma 3.1) 

~ max{sllhi(AI, BI) v s12hz(Az, Bz), szihi(AI, BI) v snhz(Az, Bz)} 

~ s(hi(AI, BI) V hz(Az, Bz)) = sh((AI, Az), (BI, Bz)) 

= sh(A, B). 

The fact that W is a contraction mapping on it means that we have a fractal 

system as described in the first section of this chapter. Conditions 1, 2, and 3, of 

section 1 apply. In this case the underlying space is %. Multiple copies of % are 
? -

used to make up a space of models V = 1t. (It may be that we only care about one 

"plane" in it.) A contraction mapping 0 = W on it is built up out of elementary 
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~ 

transformations acting on X. Fixed points of such operators 0 provide the fractal 

approximations to the models. In the present case the specific structure is as follows. 

Corollary 3.3 When s < 1 there is a unique element 

A= (AJ, A2, ... ' AN) E it 
such that 

Ai = UjEI(i) Wij(Aj) fori= 1, 2, ... , N. 

That is to say, W(A) =A. A is the attractor of the recurrent IFS. 

Corollary 3.4 A Collage Theorem for recurrent IFS. If BE it obeys 

h(B,W(B))~E>O 

then 
E 

h(B, A)~ (1 _ s), 

where A denotes the attractor of the recurrent IFS. 

To connect this with the original single-space point-map recurrent IFS, we have 

Corollary 3.5 Let {X; Wj, (pij), i, j = 1, ... , N} be a recurrent IFS with ~ 

compact and the w/ s uniform contractions. Let A be the support of the unique sta

tionary measure JL mentioned in section 2. Then there exist unique compact sets 

Ai c A, i = 1, ... , N with A= U{:1Ai such that 

Ai = Uj:pj;>OWi(Aj), i = 1, ... ' N. 

In terms of the random walk produced by the Chaos Game Algorithm, as illus

trated in section 2, the Ai 's may be characterized as follows: for all x, x E Ai iff for 

every neighborhood G of x, for almost all trajectories x0 , wi,(xo), wi2 (wi,(xo)), ... , 

we have in= i and win<· .. (wi,xo) ... ) E G for infinitely many n. In other words, to 

"see" Ai, just look at the points along a trajectory that end in map wi. 

Let us use the above ideas to construct a simple machine (fractal system) for 

modelling some binary subsets of o. The machine is illustrated in Figure X.275. It 

uses affine transformations wi : o ~ o, i = 1, 2, 3. Place a copy of the subset T co 
on (1), and place adjustable subsets U, V Co on (2) and (3) respectively. Adjust the 

coefficients ai, bi, ci, di, ei, fi and the two subsets U and V, so that 

T:::::: w1 (T) U w2(U) U w3(V) 

U :::::: w1 (T) U w2(U) 

V :::::: WJ (T) U W3(V) 

Assuming that the system can be adjusted so that these equations hold approxi

mately, while the transformations remain suitably contractive, we know that the at

tractor for the system, our fractal model, which will be represented by a vector of 

sets (T, {;, V), will be such that T :::::: T. This simple machine generates an 18 pa

rameter family of fractal models for subsets of o. 



A simple machine for modelling some 
binary subsets of D. 

w.(x) _ (ai bi) (x) (e·) 
1 y - ci di. y + f: 

fori= 1, 2, 3 

CD 
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Figure X.275. Imag

ine that you have control 
knobs so that you can ad
just the affine coefficients. 

Another simple point-set fractal system is suggested by the diagram in Figure 

X.276. This type of machine generates recurrent fractal interpolation functions. The 

coefficients of the transformations are constrained to make sure that the resulting 

attractors are graphs of continuous functions, as follows: 

Wt (xo, Yo)= (xo, Yo), w3(x2, Y2) = (x3, y3), Ws(X2, Y2) = (x4, Y4) 

Wt (x2, Y2) = (Xt, Yt), w3(xo, Yo) = (x2, Y2), ws(x4, Y4) = (xs, Ys) 

w2Cx2, Y2) = (x1, yt), W4(X4, Y4) = (X3, Y3), w6(X4, Y4) = (xs, Ys) 

w2(x4, Y4) = (x2, Y2), W4(X6, Y6) = (X4, Y4), W6(X6, Y6) = (x6, Y6). 

One example of a commercial fractal system, useful for educational purposes and 

for desktop publishing applications, is the Desktop Fractal Design System, [DFDS].4 

This is based on simple recurrent IFS theory using affine transformations in two di

mensions. This can be used to illustrate some aspects of modelling using point -set 

attractors of recurrent IFS built up of affine transformations acting in two dimen

sions. 

4 The Desktop Fractal Design System, Version 2.0, for Macintosh and IBM PC. Published 

by Academic Press, 1992. 
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Figure X.276. A frac
tal system constrained 
so that its attractors are 
graphs of continuous func
tions. 

Consider the IFS for a fern, as introduced in Chapter III. We refer to this as Fern 
1. Its IFS code is given in Table X.4 and it is shown in Figure X.277. 

In Figure X.278 we illustrate how one can create the same picture of Fern 1 by 
using a duplicate copy of the space D with the same IFS acting on that space, and 
allowing a transformation to map from one copy of the space to the other. 

Look closely at the structure of Fern 1. Notice how the main fronds alternate as 
we go up the main stem. As we saw in Chapter III, this same structure is repeated 
at all scales. If we zoom in on the tiniest frond, we will find that all the frondlets 
alternate up their respective stems. 

Now suppose we modify our more complex recurrent system by adjusting the IFS 
for the first copy of the fern, that is we adjust the affine coefficients so that Fern 1 on 
the first copy of o becomes Fern 2, as illustrated in Figure X.279 and Table X.5. 

Notice that the fronds in Fern 2 are opposed instead of alternating. Finally, in 
Figure X.280, we show the effect of the modifications on the attractor as a whole. 
The original copy of the fern now has opposed fronds, some of which are made of 
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Figure X.279. The IFS 
acting on the first copy of 
0 is modified to create a 
new fern, Fern 2. 

Figure X.280. The 
result of the modification 
of the first copy of the fern 
is to fundamentally alter 
the structure of the part of 
the attractor appearing on 
the first copy of o. 
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Table X.4. IFS code for Fern 1. 

w a b c d e f 
1 -0.02 0.39 -0.31 0.30 96 108 
2 0.68 0.17 -0.17 0.68 73 11 
3 0.05 -0.80 -0.22 -0.19 286 131 
4 0.02 -0.36 0.00 0.38 160 97 

Table X.5. IFS code for Fern 2. 

w a b c d e f 
1 -0.02 0.39 -0.31 0.30 64 116 
2 0.64 0.16 -0.16 0.64 67 15 
3 0.00 -0.80 -0.22 0.01 237 147 
4 0.20 -0.33 0.00 0.35 144 96 

smaller ferns with alternating fronds. We are learning to control a recurrent fractal 
model! 

Finally what happens if we feed the first copy back into some of the fronds on the 
second copy? The results of such an adjustment are shown in Figure X.281. In fact, 
in this example, the bottom-most fronds on each fern are affine transformations of 
the other fern. 

Color Plate 36 shows a fern image, and zooms on it, produced by a fractal system. 
In this case the fractal system involves four copies of D and a recurrent structure of 
affine transformations of the type discussed in this section. In this section each of 
three successive zooms on one of the ferns reveals new structure. 

Another example of an attractor, consisting of four point -sets at once, in shown in 
Figure X.282. It is good to think of the vector of sets as a single entity. 

4 Fractal Systems with Vectors of Measures as Their AHractors 

In this section we are concerned with the construction of fractal systems, using 
recurrent IFS, whose attractors are vectors of measures. Our goal is to show how the 
collage theorem and associated machinery can be set up to enable fractal modelling 
using the measure theoretic attractors of certain recurrent IFS. That is, recurrent IFS 
can be used to make fractal systems suitable for modelling measures. 

Recall what happens in the case of an IFS with probabilities: for example, sup
pose ~=DC ~2 , {~; 1.p 1, ... , wN; p 1, ••• , PN} is an IFS with probabilities, as in 
section 6 in Chapter IX, with the wi 's contractive affine, and 'V = P(~); then we 
can define a corresponding fractal system by taking 0 to be the associated Markov 
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Figure X.281. A frac

tal system, based on a 

recurrent IPS structure, 

produces two ferns whose 

structures are woven to

gether. Neither could exist 

without the other! 

·~ ·~.:5· 
.·--

. . 

operator as defined in section 6 in Chapter IX; that is 0 : V ~ V is defined by 

O(v) = M(v) = PtV o w} 1 + p2v o w;_- 1 + · · · + PNV o wN.I. 

Then we know from the theory of Chapter IX that 0 is contractive in the Hutchinson 

metric. 
What is the analagous structure in the case of recurrent IFS? We use the notation 

of the previous section, but restrict attention to the case of measures supported on 

three copies of%.. Instead of using the measure space P(%.), we work with the space 

of normalized Borel measures P that are defined on Borel subsets S of %. x %. x A\ 

of the special form 
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Figure X.282. Affine 
maps, linking four copies 
of o, lead to a recurrent 
structure consisting of 
four linked sets. Adjust
ments of the coefficients 
lead to a wide variety of 
fractal modes in this frac
tal system. 

s = (Sl' S2, S3) E 8(%) X 8(%) X 8(%). 

where 8(%) denotes the Borel subsets of%. A point in Pis described by a vector of 

measures 

where each J.l-i is a Borel measure on %, and 

Then the measure of vector of subsets S = (S1, S2, S3) is 
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jl(S) = 1-t1 (SI) + 1-t2(S2) + 1-t3(S3). 

We define a generalized Hutchinson metric d on P by 

for all jl, v E P, where 

L = { J =(/I. !2. /3): fi: X~~ continuous, 

and 1/;(x)- J;(y)l ~ d(x, y) Vx, y EX, i = 1, 2, 3 }· 

Then, from the fact that (P(X), dH) is a compact metric space whenever (X, d) is a 

compact metric space, it follows that (P, d) is a compact metric space too. 

We are now ready to describe generalized Markov operators M, 

M:P~P. 

that are associated with recurrent IFS. We illustrate the idea for recurrent IFS such 

as the one in Table X.1, which is the subject of Figures X.268 and X.274. We simply 

define 

M(jl(S)) = (~Pili-Li (w11
(SI)), ~Pi2/-Li (w;,-\S2)), ~Pi3I-Li (w31

(S3))) 
I I I 

Our general expectation is that such operators are contractions on (P, d) when the 

transformations w; are contractions. 

We demonstrate that M has contractivity factor s when Pii = pi, and the w; 's are 

contractive with contractivity factor 0 ~ s < 1. We will need the identity 

f. /jd ( M(v)i) = L Pii J. /j (wi(x)) dv;(x), 
)\( i )\( 

which follows from a change of variables. Then 

d ( M(v), M(iJ-)) 

=sup { ~ (J. <JAM([L)j))- J. JAM(V)j)): j E L, 

=sup {f.;:; Pij/j(wj(x)) d~-t;- f.;:; pij/j(wj(x)) dv;: f E L, 

v v 

Let, for x E X, 
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f(x) = (s-1 ~ PJfJ(wJ(x)), s-1 ~ PJfJ(wJ(x)), s-1 ~ PJfJ(wJ(x))). 

J J J 

Then J E L. Let 

i = { J E L : J is of the special form of J above, for some f E L}. 

Then we can write 

d(M(ii), M(it)) =sup { s J J djt- s J J dii: J E L} 
Since i c L, it follows that 

d(M(v), M(fL)) ~ sd(v, fL). 

This completes the demonstration of the contractivity of the recurrent "multilevel" 

Markov operator, in the special case PiJ = p 1. 

However, in the general case where the transition matrix P = (p;1) is not con

strained as above, the contractivity of the Markov operator is controlled not only by 

the contractivities of the w; 's but also by the behavior of the transition matrix. To 

understand this, consider what happens when the space :%. consists of a single point. 

Then P becomes the set 

{jl = (J..LJ, f..L2, J..L3) E IR3 : f..LI + f..L2 + f..L3 = 1, f..LI :::::: 0, f..L2:::::: 0, f..L3:::::: 0}. 

That is, a typical measure jl E P is described by a vector of length three and total 

mass one. The Hutchinson distance between two such vectors is simply the sum of 

the absolute values of the differences between the components as follows: 

d (jl = (J..LI, f..L2, J..L3), v =(vi, v2, v3)) = IJ..LI - vd + IJ..L2- v2l + IIL3- v31. 

Then the Markov operator M : P --* P is given by 

M(jl) = (J..LJ, f..L2, /L3)P = (tLIPII + f..L2P2I + f..L3P31· f..LIP12 + IL2P22 + /L3P32. 

where 

It follows that 

IL1Pl3 + f..L2P23 + f..L3P33), 

[

Pu 
P= P21 

P31 

P12 P13] 
P22 P23 · 

P32 P33 

J ( M(v), M(fL)) ~ Jc:v, fL). 

However we cannot, in the general case, assert a contractivity factor smaller than 

one, as can be seen by considering the considering the case 

E ] E , 

1- 2E 
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where E is very small and positive. For this transition matrix, we find that 

d (M((l, 0, 0)), M((O, 0, 1))) = (1 - 3E)d ((1, 0, 0), (0, 0, 1)). 

However, so long as the Markov operator has a unique fixed point, there always 

exist metrics such that the operator is contractive, in fact, with an arbitrarily small 

contractivity factor. The problem is the identification of such a metric, one that is 

simultaneously intuitively or visually accessible. 

The operator M: P(%)---+ P(%), associated with an IFS with probabilities, 

M(v) = p1v o w1 1 + p2v o w;-- 1 + · · · + PNV o w"NJ, 

is an example of a measure preserving transformation on a metric space, constructed 

from contractive transformations. 

Given a set of spaces, {%k: k = 1, 2, ... , N}, we can construct measure preserv

ing transformations MiJ : P(%;) ---+ P(% j ), according to 

M ( ) -1 + -1 + -1 
ij v = Pij1v o wiji Pij2V o W;j 2 · · · + PijN;iv o wNii' 

where Wijn: '%.;---+ %j for n E {~, 2, ... , NiJ} is contractive between the metric 

spaces('%.;, d;) and (%j, dj) according to 

dj (wijn(X), Wijn(Y)) ~ s · d;(x, y) for all x, y E '%.;, 

and the Pijn 's being positive numbers such that 

LPijn = 1. 
n 

(One can think of{'%.;, %j; Wijn• Pijn. n = 1, 2, ... , NiJ} as being an "IFS" that acts 

between the spaces '%.; and '%. j.) We now introduce an N x N transition matrix 

P = (piJ), that is row stochastic, and gives the probability of transiti n from space 

'%.;to %j. Then we can define a Markov operator M: P---+ P, where P = P(% 1) x 

P(%2) X ... X P(%N ), by 

M(Ji-1, Ji-2, ... ' /1-N) = (4= PilMil (J-L;), 4= P;2M;2(J-L;), ... ' 4= PiNMiN(J-L;)) . 

l l l 

In general we expect such operators to be contractive, and to provide the basis for 

useful fractal systems for modelling vectors of measures, and in particular, grayscale 

photographs. An example of such a system is VRIFS™, 5 which is an interactive image 

modelling system that uses a fractal system built from operators of the type of M 

5 VRIFS™, which stands for Vector Recurrent Iterated Function System, is an interactive 

measure theoretic fractal system for modelling images in two dimensions. It runs on Sun 

workstations and uses four-dimensional vectors of measures under affine control. It is avail

able from Iterated Systems Inc., Commercial Division, 5550-A Peachtree Parkway, Norcross, 

Georgia, 30092, USA, telephone number (404) 840 0633. 



Figure X.283. A spe
cial Markov operator acts 
on a vector of measures. 
Its attractor is a stack of 
images, including a split 
root. Fractal systems of 
this type are good for frac
tal modelling of grayscale 
images. 

above, with all transformations being two dimensional affine transformations. An 

example of an image generated by VRIFS ™is shown in Figure X.283. See also Color 

Plates 37, 38, and 39. 
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Answers to Chapter II, section 1 

11.1.8 The Riemann sphere is not a vector space because of the action of the 'Point at Infinity'. To be a vector space, each 

point must have an additive inverse, that is, another point which summed to it yields the additive identity element 0. Since 

there is no such inverse for oo, the space is not a vector space. Note that the usual check a (x + y) = ax + ay does hold 

however. 
The examples in 1.7 are not vector spaces for the simple reason that they are not closed under algebraic operations. 

That is, multiply any element in X by a large enough scalar, and it will not be in the space. The example in 1.6 has the 

same problem. If one defines multiplication by scalars in codespace in a reasonable way, namely multiply the distances by 

multiplying the codes and 'carrying' one will find a sequence for which there are no codes. (Multiply x = (N- l)(N

l)···by2). 

11.1.9 By definition {x} C X if every element in {x} is in X. The only element in {x} is x which by assumption is in X. 

Hence {x} c X. 

Answers to Chapter II, section 2 

11.2.1 We use extensively the inequality lxl + IYI ~ lx + yl. It is proven by separating it into three cases: a) x, y ~ 0. In this 

case lxl = x, IYI = y, and since the sum of two positive numbers is positive,lx + yl = x + y = lxl + lyl. b) x, y ~ 0. In this 

case lxl = -x, IYI = -y. Since the sum of two negative numbers is negative, lx + yl = -x- y = lxl + IYI· c) x ~ 0, y ~ 0. 

By changing the roles of x, y this proves the other possibility as well. lxl = x, IYI = -y. lx + yl = lx- ( -y)l = llxl- IYII. 

This latter number is either equal to lxl- IYI or its negative, and both are less than or equal to lxl + lyl with equality only 

if one or the other are zero. Hence lx + yl ~ lxl + IYI· We proceed to verify the metric space hypotheses: 

(a) 

(i) d(x, y) = lx- Yl =I- (x- y)l = IY- xi= d(y, x). 

(ii) x- y =I= 0 unless x = y. It is not infinite if x, yare not infinite. Since taking the absolute value does not alter either 

of these properties 0 < d(x, y) < oo. 
(iii) d(x, x) = lx- xl = 101 = 0. 
(iv) d(x, y) = lx - yl = lx - z + z- yl .:::; lx - zl + lz- yl by means of the proof above. 

(b) (i), (ii), (iii) can be verified by multiplying everything in part a) by 2. (iv) d(x, y) = 21x- yl = 21x- z + z- yl::; 

2(1x- zl + lz- yl = 2ix- zl + 21z- yl. 
(c) All properties can be done by a) substituting x3

, y 3
, z3 everywhere in the above arguments. 

11.2.3 d(x, y) = lxyl is not a metric for~. Choose x = 0 andy =I= 0. Then x =I= y, but d(x, y) = 10 · yl = 0, which violates 

property (i). 

11.2.4 On the punctured plane ~2 
\ 0 define d(x, y) = lri- rzl +e. Then for two points X, y, we have 

(l) d (x, y) = I r 1 - r 2 + f) I = 1rz - r 11 + f) = d (y, x) since f) is still the smallest angle subtended by the two rays. 

(2) If x =I= y and lr1- r21 = 0 then f) =I= 0 so d(x, y) > 0 if x =I= y. f).:::; n so that for d(x, y) = oo we must have either r1 
or r2 infinite. But r 1 = xf + x? and r2 = yf + Yi so if either is infinite so is either x or y. Hence 0 < d (x, y) < oo if 

x=f.y. 

416 
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(3) d(x,x) = lr- rl +0=0+0=0. 
(4) d(x, z) + d(z, y) = lr1 - r31 + lr3 - r2l + (}1 + (}2• (} 1 + (}2 > (} if the ray to z is not between. the other two, and 

(}I+ (}2 =(}otherwise, so d(x, z) + d(z, y) 2: lr1 - r31 + lr3- r2l + (} 2: lr1 - r3 + r3- r2i + (} = lr1 - r 2 1 + (} = 
d (x, y) by problem 1 above. 

11.2.5 If x, y are not equal, then there is an X;, y; pair which do not agree. Hence ix;- y;lj(N + 1); i= 0. Since all the 

terms in the sum are positive or zero, there is no cancelling, and therefore d (x, y) i= 0. We can switch the order in each term 

because of the absolute value signs, consequently d (x, y) = d (y, x). The series converges since the numerators are less than 

2N so the series is dominated by 

00 1 

2N. ~ (N + 1)i 

which converges for all N < oo. Because the series converges, the proof of all the metric requirements, except the above, 

follow from problem on each term, and therefore for the whole series. 

11.2.6 The easiest way to show that this equation for a distance measure satisfies metric properties turns out to be that we 

show that it really is a Euclidean metric, in the usual sense. Let x be an element of h the code space on N symbols. Then 

the series 

f; (N: 1); 

converges to a number in [0, 1]. In fact it is the (N + 1)-ary expansion of a real number in this range, having the property 

that it has no digits equal to N, because the code space symbols range from 0, ... , N - 1. For instance, when N = 9 we 

have 

Then the mapping h --+ [0, 1] given by 

- Loo X; 
XI---+ X= 

i=I (N + 1)i 

is a metric equivalence, with constants c 1, c2 in the definition equal to 1. Using this map, let (x, y), (u, v) be two points 

in the space of shifts on N symbols. By the above equivalence, we have corresponding points (i, y), (u, v) in the square 

[0, 1] x [0, 1] c ~2 • Since the series converge, we have 

_ _ 
00 X; 

00 U; 
00 

(X; - U;) 

X - u = ~ (N + 1)i - ~ (N + l)i = ~ (N + l)i 

The metric in the statement of the problem can therefore be written as 

d((x' y), (u, v)) = J (i - u)2 + (y- iJ)2 

which is Euclidean distance in ~2 , and hence a metric. 

11.2. 7 In body space, the shortest distance between two points is the length of the path through the body. The shortest 

distance from a point to itself is then 0. The shortest distance between two points is the length of the path which is also the 

shortest path in reverse order. The length of a path between two distinct points cannot be zero, and a path of infinite length 

inside the body must not be the shortest path between two points. Finally the shortest path between two points in the body 

is less than the path which takes a detour to a third point unless that point is on the shortest path already. Hence d (x, y) is a 

metric. 

11.2.8 For a function d which is not a metric, see for example exercise 2.3. For the annulus to look like a cylinder, we must 

have the distance around any concentric path look the same. This implies that we need the distance around all concentric 
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paths equal. Use the angle subtended between two points to do this. To look like height, we need a linear radial distance, use 

the radius. If we want to look like the surface of a cylinder with Euclidean metric (unrolled), we thus use J (r1 - r2)2 + ()2. 

The proof that this is a metric follows exercise 2.4. 

11.2.9 That a distance measure formed by great circle distance is a metric is true on any two-sphere. We verify the conditions 

as follows: 
(i) The plane defined by the center C of the sphere and any two distinct points x, y on its surface cuts the sphere on the 

great circle path between the two points (that is its definition), so there is one and only one great circle distance between the 

two points. This distance is re where() is the interior angle xCy. Hence d(x, y) = 0 if and only if()= 0 that is x = y. 

(ii) Because we arc dealing with interior angles, the angle xCy and the angle yCx are equal hence d(x, y) = d(y, x) > 0. 

The maximum value of an interior angle is n, hence d (x, y) :::= nr < oo. 

(iii) To prove the triangle inequality, we note first that if x, y, z lie on the same great circle, then if z is interior to 

x, y, d(x, z) + d(z, y) = d(x, y), whereas if it is exterior then since an exterior angle is larger than an interior one, 

d(x, z) + d(z, y) > d(x, y). Consequently, we deal only with z not on the great circle defined by x, y. For this case, the 

~ 3 distance between the points x and z is given by J r~ + r:f - 2r1r2 cos() by the law of cosines. Without loss of generality, 

r 1 = r2 = 1 and the square root is monotonic increasing, so that this distance is proportional to 1 -cos() and hence decreases 

for decreasing e. Consider the plane triangle in ~3 defined by X, y, z. By moving z towards the line xy, we decrease 

the distances between x and z and between z and y (we are moving down the perpendicular from z). Since the above 

law of cosines formula insists that these distances can only decrease if the corresponding angles xCz and yCz decrease, 

the distances on the sphere are also strictly decreasing. This implies that d (x, z) + d (y, z) > d (x, y) in this case. Hence 

the triangle inequality holds for great circle distance on any sphere. When this sphere is interpreted as C, the great circle 

between oo and any other point is along the projection of vertical lines in the complex plane. Hence since 1 + i is above the 

real axis, its distance to infinity is less than that of zero, which is n /2. 

11.2.10 Suppose that we have 

where c1, c2 are positive real numbers. Using the first inequality, we have 

and the second gives 

1 
-d2(x, y) :::= d1(x, y) 
c2 

Let e1 = _!_ and e2 = _!_, and combine the above two inequalities, we get 
c2 CJ 

as desired. 

11.2.11 Yes in both cases. Let d 1 (x, y) be Manhattan metric,d2 (x, y) be Euclidean, and use, for instance c 1 = 1/2, c2 = 2. 

Since the Manhattan metric is at most -J2 times the Euclidean metric (when they lie on a line at a 45o angle) these constants 

will do fine. 

11.2.12 Two metrics are uniformly equivalent if and only if there are constants c1, c2 such that 

c1d1(X, y) :S d2(X, y) :S c2d1(x, y) 

for every pair x, yin the space. To see that the metric d(x, y) = lr1 - r21 +()is not equivalent to the Euclidean metric on 

the annulus, choose d1 to be the Euclidean metric, and d2 to be this one. Let x, y be on the real line x < 0 and y > 0. Then 

d2 (x, y) > () = n. Regardless of the value of c2 by moving x, y towards the origin we can insure that d 1 (x, y) is less than 

any E by letting x = (-E/3, 0) andy= (E/3, 0). Hence c2d1(x, y) < c2E. Then if E < c2fn the inequality fails. Hence the 

two metrics are not equivalent. 
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11.2.13 Use h(x) = x- 1. Then d 1(h(x), h(y)) = 2 ·l(x- 1), (y- 1)1 = 2 · lx- yl. This metric is equivalent to d 1(x, y) 

by using c1 = 1/4, c2 = 1. 

11.2.14 To show that <•.Manhattan) and (•,Euclidean) are equivalent metric spaces, use h (x) = x. It is easiest to see 

the equivalence by making the substitution x' = 0, y' = y- x = y 1 - x 1, y2 - x2. Then the Euclidean distance d(x, y):::::: 

d(O, y') = J y~ 2 + y~2 = r. The Manhattan distance in the same notation is lr cos fl + r sin fll. Maximizing the last expres

sion with respect to(} yields fl = n /2 or cos(} =sin(} = --/2;2. So the maximum difference in size between the two metrics 

is dM = --/2dE. Then 

11.2.15 Using h(z) = h(z 1 + iz2) = (z1, z2), we have d(x, y) = dE(x, y) on IW.2 • The above problem gives the metric equiv

alence for this with the Manhattan metric. 

11.2.16 Suppose they were equivalent. Then there are constants c1, c2 such that 

c1d1(x, y) s d2(x, y) s c2d1(x, y) 

Let x = 1 and y = 2c;+ 1 • Then d2 (x, y) = 2c2d 1 (x, y), a contradiction. Hence they are not equivalent. 

11.2.18 If two metric spaces are equivalent, there is a one-to-one, onto map h : X 1 ---+ X 2 such that 

The second inequality implies that if 

Since h is invertible, we may write the first inequality as 

for points x, y E X 2. Then d 1 (h-I (x), h-I (y)) < E whenever d2 (x, y) < 8 = c1 E. Hence h and its inverse are continuous, so 

h (x) is a homeomorphism. 

11.2.19 Intuitively, these metrics behave similar to base 10 decimals. In fact, if we look at b 10 the symbols are 0--9, and by 

choosing k = N = 10, we get decimal expressions (with some ambiguity). To show that these metrics are topologically 

identical, we must demonstrate that the identity map t (x) = x is a homeomorphism. This is equivalent in epsilon-delta 

format to showing that we need to show that for every x, E > 0 there is a 8 such that for every y in b N the two statemerlts 

~(x, y) < 8 ~ dk2(x, y) < E 

and, 

are true. 
We can simplify matters by breaking the proof into cases and reducing it to a single statement to prove as follows: 

Case 1: k1 =· k2• In this case there is nothing to prove, since a metric is always equivalent to itself. 

Case 2: k1 < k2. In this case, by comparing terms of the two series, since k~ > kL dk2(x, y) s dk1 (x, y) for any x, y with 

equality holding only for x = y. Consequently, we may choose 8 = E in the first statement: 

dk1(x, y) < E ~ dk2(x, y) s dk1 <E. 

and we need only prove the second statement, namely 

dk2 (x, y) < 8 ~ dk 1 (x, y) < E 
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Case 3: This case requires only the proof of the first statement for the same reasons as case 2. There is no loss in just 
assuming case 2, and reversing the subscripts for case 3. 

Consequently, all we need to do is show that if k1 < k2, 

dk2 (x, y) < 81 =} dk1 (x, y) < E 

and then take 8 = min(8 1, E). 
Looking at the analogy between decimals and :EN, we can get the distance dk (x, y) arbitrarily small if xi = Yi up to some 

big number i0 . This would correspond in decimal arithmetic to the first i0 decimal places being equal to zero in the distance 
formula. Writing it without the analogy, since the series is less than 

00 1 
C=NL:~ 

i=l kl 

then 

To insure this is less than, say a we only need to choose i0 large enough. This is nice, we can get a set we can describe by 
just using the digits that put us inside a given BE(x). What we don't know is whether it contains a ball inside it (For large 
enough Nit is a ball, but we don't know that). On the other hand, we can look at the smallest possible distance we could get 
if any of the first i0 "digits" were not zero. This would be the distance between an x and a y with only the i0 digits different, 
namely 

and xi = Yi whenever i =j:. i0 • This distance is 

1 
dk(X, y) =--:

k10 

So any ball B8(x) with 8 < 1/ kio is guaranteed to have no elements which disagree on the first i0 places. 
We now proceed as follows: Choose i0 such that the set 

B = {y : Xi = Yi if i :S: io} 

is inside of the dk1 ball BE(x). Now choose 8o such that the dk2 ball Bo0 (x). Since all elements of this dk2 ball have at least i0 

"digits" of agreement with x, everything in the ball is in the dk1 ball of radius E. Therefore, 

dk2 (x, y) < 8o =} dk1 (x, y) < E 

which was all we decided we needed to prove. 

Answers to Chapter II, section 3 
11.3.1 By Definition 3.3, if {xn} is a Cauchy sequence in (X, d) a complete metric space, then it converges to a point x EX. 
This implies that given an E > 0 there is an N such that if n > N then Xn E B (x, E). Since there are infinitely many integers 
greater than any integer N, Xn E B(x, E) for infinitely many integers n. 

11.3.2 We will use the property of (~,Euclidean) that every set bounded above has a Least Upper Bound (LUB). This 
implies that a monotone increasing sequence {In} which is bounded above has a limit. Since the LUB cannot be less than 
ln for any n (the sequence is increasing) and there is no minimum distance to all the ln (since it is the LUB) it follows that 
for any E > 0 there is anN such that Xn E B(LU B, E) for n > N. We use this property to prove completeness of(~. d) as 
follows: Let Ei = 1/2i and Ni be for each i a number such that Ni > Ni-l and d(xn, Xm) < Ei whenever n, m > Ni. It follows 
that there is an interval of length Ei such that all the Xn are in this interval if n > Ni. Let li be the greatest lower bound 
of the set {xn : n > Nd (which exists by subtracting everything from a large number and using the LUB principle). The 
sequence {ld is then monotone increasing, and is bounded above by the LUB of the same set of Xn which we call Lj. Then 
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this sequence has a limit which we will call x. We claim that x is the limit of the Cauchy sequence as well. Given E > 0, 

B(x, E):::)[/;, L;] for some i, hence if n > N;, Xn E B(x, E) which means xis the limit of {xn} and the sequence converges. 

Hence (IR,Euclidean) is complete. 

11.3.3 We show that IR 2 is complete by using the fact that IR is complete. Let { (xn, Yn} be a sequence in IR 2 which converges 

to (x, y). Then {xn} ~ x, {yn} ~ y. The converse is also true in !Rn, since given E > 0 we can find a small rectangle 

B(x, Ex) x B(x, Ey) C B((x, y), E). In tum, we can find Nn Ny such that X11 E B(x, Ex) if n > Nx and Yn E B(y, Ey) if 

n > Ny. Choose N = max(Nx, Ny). Then for n > N, (x11 , Yn) E B((x, y), E) since it is in the small rectangle inside. With 

this in mind, let {(xn, Yn)} be a Cauchy sequence. Then because J(xn- Xm) 2 + (y11 - Ymf < E implies lxn- Xml < E, IYn

Yml < E, {xn} and {Yn} are each Cauchy sequences in IR. By problem 2, these converge, so {(x 11 , Y11 )} converges. Hence IR2 is 

complete. 

11.3.4 There are two ways of approaching this. We can either repeat the arguments in the answers to exercises 3.2 and 3.3 

for •. or we can peek ahead to the definition of a closed set. If (X, d) is a complete metric space, the only way a Cauchy 

sequence in a subset can fail to converge in the subset is if it converges to a limit which is not in that subset, because viewed 

as a Cauchy sequence in X, it has a limit. The limit of this sequence is thus a limit point of the subset, and hence if the set 

is closed, it is in the set. So any closed subset of a complete metric space is complete. • is a closed subset of IR2 so it is 

complete by problem 3. 

11.3.5 The sphere can be thought of as an embedded closed subset of IR 3 • The spherical metric is equivalent to the IR 3 

Euclidean metric. To see this, note that the Euclidean metric, used on the sphere gives to each pair of points x, y the length 

of the chord between them. This length, for a sphere of radius 1 is v'2 - 2 cos f) (by the law of cosines). Using the constants 

2/n and 1/n this is a metric equivalence to the distance measure of great circles. If {x;} is a Cauchy sequence on the sphere, 

it is in IR3 as well by this equivalence, consequently it has some (IR3) limit x. Since the sphere is a closed subset of IR\ it 

contains its limit points, and therefore contains x. Hence the sequence has a limit, and the sphere is complete. 

11.3.6 Let {xa} be a Cauchy sequence on the codespace :E on N symbols. Then given E > 0 there is an M such that if 

ah a 2 > M then d(xa1, Xa2) <E. In particular, if we choose E = (N~l)i then since any of the first i terms must either be 0 or 

contribute more than this value, Xa
1 

, Xa2 must agree on the first i terms. Choose x such that for each i, the first i terms of x 

agree with all those elements of {xa} with a > M;, where M; is the M corresponding to the above choice of E. Then x E :E 

and for each E > 0 there is an M such that d (x, X a) < E if a > M. In other words x is the limit of {X a}. Hence code space is 

complete. 

11.3.7 Let{/;} be a Cauchy sequence on (C[O, 1], D). Then for each s E [0, 1], the sequence {j;(s)} is Cauchy in IR, since 

given E and N guaranteed by the assumptions, d(j;(s), h(s)) in the Euclidean metric is certainly less than the maximum 

value overs. We will anticipate a little and call the limit of each such sequence for each s f (s ). As defined, f (s) is clearly 

a function on [0, 1], we must show that it is continuous. Given E > 0 there is a 8 > 0 such that if d(s 1, s2) < 8 then for any 

i, D(J; (s1), J; (s2)) < E /3. This property, called equicontinuity, is true for bounded functions on a closed interval, such as 

we have. Then there is also anN such that if i > N d(j;(s 1), j(s1)) < E/3 and d(j;(s2), j(s2)) < E/3 since the sequence 

converges. Consequently, for our choice of 8, 

by the triangle inequality, and hence j(s) is continuous. Then f E (C[O, 1], D) and the space is complete. 

11.3.8 Let (X 1, d1) and (X2, d2) be equivalent metric spaces. Then there is a homeomorphism h: X1 ~ X2 such that 

d(x, y) = d2(h(x), h(y)) is equivalent to d1 (x, y) on X1• Let {xn} be a Cauchy sequence in X2, and let E > 0, and N large 

enough that d2(xn, Xm) < E whenever n, m > N. There ex.~sts a sequence {Yn} in X1 such that h(yn) = X11 'Vn, and by the 

metric equivalence, we have that 

dl (yn, Ym) < c2d(yn, Ym) = c2dn(Xn, Xm) < C2E 

Consequently, by specifying 8 = c2E, for any E > 0 there is an N such that d2Cxn, Xm) < 8 which forces d 1(y11 , Ym) < 

E'Vn, m > N, in other words {Ynl is a Cauchy sequence in X1• This has a limit y because X 1 is complete. Since for all 

8 > 0 there is anN such that d 1(y, Yn) < 8 for n > N, then since (d)(y, Yn) < (ljc1)d1(y, Yn) < (ljcJ)8 = E, it follows that 
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d(y, Yn) = d2(h(y), Xn), {xn}---+ h(y) = x and the sequence converges in X2. Hence X2 is complete. In the process, if two 
spaces are metrically equivalent, then a Cauchy sequence in one corresponds to a Cauchy sequence in the other under the 
metric equivalence. 

11.3.9 Given two points x = (x 1, x2), y = (y1, y2 ) in (•,Manhattan), any path which consists of straight horizontal and 
vertical segments, which are monotonic in each coordinate have the same length. Since the sum of these lengths is equal 
to the distance between the two points, they are all shortest paths. 

11.3.10 Suppose {xn}---+ x in the space X. Then given El2 > 0 there exists anN such that d(x, Xn) < El2 if n > N. Choose 
two such points Xn, Xm then by the triangle inequality 

So given E, if n, m > N, d(xn, Xm) < E, in other words, the sequence is Cauchy. 

11 .. 3.11 Suppose {xn}---+ x and {xn}---+ y. Then given El2 > 0 there is an N1 such that d(xn, x) < El2, and an N 2 such that 
d(xn, y) < El2. Choose N = max(N1, N 2). Then for n > N 

d(x, y) .::S d(x, Xn) + d(Xn, y) < E 

Consequently, for any E > 0, d(x, y) <E. In other words, d(x, y) = 0, or x = y. 

11.3.12 Problem is misstated. 0 is the limit regardless, in the second space the sequence does not converge because 0 is not 
in the space. 

11.3.13 Define the sequence {xn} by Xn = aVn. This sequence is clearly Cauchy, d(xn, Xm) = 0 < E for any E > 0 and any 
n, m. It also converges since d(a, xn) = 0 < E for all nand any E > 0. The space contains no limit points since a limit point 
is defined as being the limit of. a sequence but not a member of the sequence. Since this is the only sequence in the space, 
the space contains no limit points and therefore it contains all its limit points (there are none) but is not perfect since a is not 
a limit point. 

11.3.14 {xn = n} does not converge in (IR,Euclidean). Suppose it did. Then by Theorem 3.1 this is a Cauchy sequence .. But 

for any n =1= m d(xn, Xm) ~ 1 and thus is not less than any given E > 0 for any N. For ((spherical), the distance to the 
Point at Infinity is calculated by looking at the tangent of the angle subtended by the real line and the projection through the 
sphere. The radius of the sphere is 1 so this tangent is 1 In. Given E > 0 we may choose N such that 1 IN < E, and therefore 

if n > N d(oo, xn) = 11n <E. Hence the sequence converges in ((spherical). 

11.3.15 Let X be a limit point in xl. Then there is a sequence {xn}---+ X, X =I= XnVn, in XI by definition of a limit point. 
Since h provides a metric equivalence, given E > 0 there is a 8 > 0 such that if n > N, d 1 (x, Xn) < 8 = (1 I c1 )E implies that 
d2(h(x), h(xn)) <E. Hence since his onto {h(xn)}---+ h(x) E x2: Since his 1-1 and onto, h(xn) =I= h(x)Vn. Hence h(x) is a 
limit point in x2. 
11.3.16 (•,Euclidean) is defined as being those points whose x andy coordinates both lie in [0, 1]. The points in this set are 
all greater than 1 in they coordinate, hence are not in •· The set, taken in IR2 has two limit points in • (it does not converge 
as a sequence). These are at (1, 1) and (-1, 1). 

11.3.17 Any point of the set S is the limit of a sequence which converges because eventually all the terms are the same. This 
type of sequence is always possible (see exercise 3.13), however such convergences do not qualify the point as a limit point 
of the set. The only such point would be 0, since this is the only Cauchy sequence converging to point not in the sequence: 
Since this point is not in the space (0, 1], the set of limit points of Sis empty and therefore a subset of S. Hence Sis closed 
in (0, !],Euclidean). 

11.3.18 LetS= [0, 1] c (IR,Euclidean). Let xES, and let a= min(x, 1- x). If a= 0, set a= 1. In other words, a is the 
least distance to an end of the interval. Then the sequence {xn = x + al2n}~ 1 lies entirely in S. Given E > 0 there is an 
N such that E > a 12N. This implies that for n > N, d (x, Xn) = d (x, x - a 12n) = a 12n < E, in other words thiS" sequence in 
[0, 1] converges to x, hence x is a limit point. Since x was any point in the set, the set consists entirely of limit points. It is 
closed, and therefore perfect. 

11.3.19 By reference to exercise 3.17, this set contains its only limit point, 0. It is not perfect since for any n there is no 
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Cauchy sequence (and hence no convergent sequence converging to 1/n which does not contain Ijn. Hence Ijn is not a 

limit point, and the set is not perfect. It is closed, since it contains it's limit point. 

11.3.20 That l: contains its limit points is true because it is the whole space and is therefore closed. We need only verify 

that each point in l: is the limit of a sequence {yn} which does not include it. This is done as follows: Let x = x 1x 2 •.• E l: 

and suppose we have N symbols. For each n let Yn be the point which agrees with x on all symbols except the nth, and is 

equal to the next greater symbol at the nth place unless that symbol in x is N - I in which case use N - 2. Then for each n 

we have 

d ~ lx;- Yn;l lxn- Ynnl 1 
(x,xn) = f:r (N + l)i = (N + 1)" = (N + 1)" 

because there is only one non-zero term in the sum. This sequence is then convergent-given E > 0 there is an M such that 

for n > M d(x, Yn) = 1j(N + lY <E. No term in the sequence is equal to x because it disagrees at the nth term. Since xis 

arbitrary, every point in l: is a limit point and l: is a perfect set. 

11.3.21 If (S, d) is complete, then given a Cauchy sequence inS, it converges to a point inS. Since every limit point is the 

limit of a convergent sequence in S, and hence a Cauchy sequence in S, S contains its limit points and is therefore closed. 

Suppose Sis closed, and let {xn} be a Cauchy sequence in S. Then {xn} is a Cauchy sequence in X as well and there is a 

point x EX such that {xn}-+ x, because X is complete. Hence xis a limit point for S. Since Sis closed, xES: 

Answers to Chapter II, section 4 

11.4.1 In order for X to be closed, it must contain all its limit points. Thus let {x11 } be a convergent sequence in X. By 

definition, there is an x E X such that {xn} -+ x. Hence X is closed. A Cauchy sequence need not converge however. Let 

XC Y, such that Y is complete. Then if {xn}-+ y ¢X, then this sequence does not converge in X, andy is not a limit point 

in X. The sequence is nevertheless Cauchy, and since it does not converge, X is not a complete metric space. An example is 

X=(O,l). 

11.4.2 See the answer to exercise 3.21 (Chapter II). 

11.4.3 By exercise Il.3.15, if xis a limit point of the setS in X1 then B(x) is a limit point of the set B(S) c X2. Suppose 

there is an element in B(S) which is a limit point, namely that there exists a sequence {(8(s))11 }-+ s E B(S). Then given 

E > 0 there is anN such that for n > N, 

di(B- 1(B(s)n), o- 1(B(s))):::: (1/cJ)d2(B(s)n, B(s)) < E 

Letting o- 1(B(s)11 ) = sn we see that B(s) is the image of a limit point inS. Since Sis closed, the image of sis in B(S), thus 

B(S) contains its limit points, and is therefore closed. 

11.4.4 Given x E X, by definition B (x, E) = {y i nX : d (x, y) < E} and hence is a subset of X for any E. Hence X is open. 

11.4.6 Let S be a bounded subset of (IRN,Euclidean). By definition, there is a point a E S and a number R, such that 

d(s, a) < RVs E S. Explicitly, 

N 

L(sn- an)2 < R 
n=l 

The terms in the sum are all non-negative, it therefore follows that (sn - a11 )
2 < R2 or that Is" - a11 1 < R, for each entry. 

This means that Sis contained in the box [a1 - R, a 1 + R] x [a2 - R, a2 + R] x · · · x [aN- R, aN+ R]. To provide a 

finite E -net for S, we subdivide each interval into M intervals such that N j M < E. Then the product of the endpoints of 

each interval is a point in a finite E -net of this N -cube, its intersection with S is also finite and each point of S is less than 

E away from one of the above corners. Hence Sis totally bounded. To show that IRN is complete, it suffices to note that IR 

is complete (exercise 11.3.21) and that a sequence is Cauchy or convergent if and only if it is Cauchy or convergent on each 

of its coordinates. Finally, since IRN is complete, and S is totally bounded if it is bounded, it follows that if S is dosed and 

bounded it is compact. 
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11.4.7 Let (X, d) be a metric space, f: X---+ X be continuous, and A be a compact non-empty subset of X. It follows 

immediately that if a E A, then f(a) E j(A) by definition, so f(A) is non-empty. Let {bn} be a sequence of points in 
f(A). Then each bn is the image of at least one point in A. Let {an} be any sequence in A such that f(an) = bn for each 

n. Because A is compact, there is a subsequence {an) C {an} which converges to some point a EA. The sequence {f(an)} 

is a subsequence of {bn}, we must show that it converges to a point in f(A). In fact, because f is continuous, given E > 0, 

there is a 8 > 0 such that if d (an;, a) < 8 then d (j (an;), f (a) < E. Since this subsequence converges in A, given 8_ > 0 there 
is anN such that i > N implies d(an;• a)< 8 and therefore that d(f(an), j(a)) <E. This subsequence therefore converges 
in f(A), and letting bn; = j(an) we have found a convergent subsequence for the sequence {bn} c f(A). Hence j(A) is a 
compact non-empty subset of X. 

11.4.8 Let S c (X 1, d1) be open. Then it follows that by example 2.4.5, X1 \ S is closed. By exercise 11.4.3, h(X1 \ S) 
is closed in X2 • Let t E h(X 1 \ S). Then it follows that since h is invertible, h- 1(t) ¢ S, hence t E X2 \ h(S). Hence 
h(X 1 \ S) = X2 \ h(S). Hence X2 \ h(S) is closed which means that h(S) is open in X2• Note that the proof depends on 
the invertibility of h. It does not hold even for arbitrary continuous functions. 

11.4.10 Given x E (0, 1) we have 0 < x < 1 so choose E = min(x, 1- x). Then the set B(x, E)= {y EX: d(x, y) < E} is 
a subset of (0, 1). Hence (0, 1) is open in X. Let X E {2}. This is a singleton set, so X= 2. Choose E < 1. Then the set 
B(x, E)= {y EX: d(x, y) < 1} contains only the point 2 and d(x, 2) = 0 <E. Hence {2} is open in X. The two sets are 
both closed: (0, 1) =X\ {2} is the complement of an open set, by 2.4.5 it is closed. By the same token {2} =X\ (0, 1) so 
it is the complement of an open set and is closed. {2} is compact, since given any sequence in {2} all entries are 2, hence 
the sequence converges, and has a convergent subsequence (any subsequence). (0, 1) is not compact, choose the sequence 
{xn = 1ln}. This converges to 0 ¢ (0, 1), so any subsequence must likewise converge to 0. Hence it has no convergent 

subsequence. 

11.4.11 Let s c (X, d). By definition, its boundary as is the set of points s such that any open ball B(s' E) contains points 
in Sand in X \ S. ButS= X\ (X\ S), since it is the set of points which are in X which are not in Xsp \ S. Consequenctly 
if any open ball B(s, E) around a points contains points in both sets it is in the boundary acx \ S, and the two boundaries 
are the same. X is open (exercise II.4.4) hence 0 is closed, and contains it's boundary. Since this implies the boundary of X 

is contained in the empty set, ax= 0. 

11.4.12 Let (X 1, d 1) and (X2 , d2) be equivalent metric spaces and let h : X1 ---+ X2 be the metric equivalence. Let S c X~o 
and lets E as. If h(s) ¢ ah(S) then there is an open ball B(h(s), E) which is either a subset of h(S) or of Xz \ h(S). If 
it is a subset of h(S), then it is the image of an open set in S (see problem 11.4.8), and by definition there is an open ball 

around s in S, which contradicts the statements E as. If it is a subset of X2 \ h(S), then there are no points in B(h(s), E) 
which are the image of points inS. Hence B(h(s), E) is the image of an open set containing s which is contained in X1 \ S. 
Then there is an open ball within this open set, which is centered at s, and contains no points in S. Again this contradicts 
s E as. Consequently, since this is true for all s in as, h(aS) C ah(S). If we do this again for the transformation h-1 with 
the boundary of h ( S) we get that the inverse image of the boundary of h ( S) is contained in aS. Then the two boundaries are 
images of each other, and h(aS) = ah(S). 

11.4.13 S c (IRS., Euclidean) is the set of rational points in the real line. We want to show that the boundary of Sis IRS. itself. Let 
x E IRS., and let E > 0 be given. Suppose a, bare two integers such that b =a+ 1 and a < x <b. Now let N be chosen such 
that 1 12N < E. Since the numbers a + k 12N for k ::::; 2N subdivide the interval [a, b] into 2N equal parts of width 1 12N < E 

it follows that any interval which is greater thanE in width contains at least one of them. But B(x, E)= [x- E, x + E] is of 

width 2E, hence there is a rational number in B(x, E). The number .../2 is not a rational number: Let plq = .../2 and suppose 
the fraction pI q is in lowest terms. Squaring both sides yields p 2 = 2q2 implying that p is even. Hence p 2 is divisible by 4. 
Hence q is even, a contradiction. If c is irrational, so is pI ( cq) for any rational pI q. If not, by simple algebra we may write 

c in fractional form. Now take all the numbers in [a, b] of the form a+ ki(.../22N. Once again these are evenly spaced and 

any interval of width less than E contains at least one of them. Hence there is a number in B (x, E) which is in IRS. \ S. Hence 
X E as. Since X was arbitrary, as= IRS.. 

11.4.14 The only point inC for which every E-ball contains points in ([and points inC\ ([ = {oo} is oo. Hence the boundary 

of ([inC is {oo}. 
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11.4.15 LetS C X be closed. Suppose that there is a point in X such that for every E > 0 B(x, E) contains points inS and 

points in X \ S. Define a sequence { Xn} by Xn E B (x, 1 In), Xn i= x. If this cannot be done, then aS = 0 and the statement is 

true. Then the above sequence makes X a limit point of sand hence XEs. Hence as c S. 

11.4.16 Suppose S is open. Let s E aS. Then for every E > 0 there is a point x E B (s, E) such that x ¢ S. Then there is no 

f > 0 such that B(s, E) c s. Since sis opens¢ s. Hence as n s = 0. 

11.4.17 By definition S0 = S \as. Since S n as= 0, S \as= S. Hence S0 = S. Conversely, suppose S0 = S Then as= 0. 

Consequently for any s E S there is an E > 0 for which B(s, E) contains no points in X\ S. Then B(s, E) c S, and Sis open. 

11.4.18 Since Sis closed, by exercise 11.4.16, as c S. By definition S0 = S \as. We haveS\ as U as= S. 

11.4.19 By exercise 11.4.12, being the boundary of a set is invariant u)l.der metric equivalence. Thus if s E S0 , then s E S 

and s ¢as. Since h(s) E h(S), and h(s) E ah(S) = h(aS) implies that s E as which contradicts hypothesis, h(s) E (h(S) \ 

oh(S)) which means h(s) E (h(S))0 • 

11.4.20 X\ as isS\ as U (X\ S) \as. Since as= a(Xsp \ S) (by exercise II.4.11) X\ as= (X\ S)0 U S0
, which are 

disjoint sets, and by 11.4.17, are open. Note that one or the other or both may be empty, however. For the examples, (a) the 

boundary of the setS= {(x, y) E ~2 : x 2 + y 2 < 1} is the set as= {(x, y) E ~2 : x 2 + y 2 = 1}, since every E-ball around 

a point in this set contains (x, y) E S and as well (x, y) such that x 2 + y 2 > 1. This is a circle of unit radius and divides 

the plane into the open disk interior, and the plane with a circular hole of radius one in it. (b) S = ~2 the whole space, so 

as= 0. The two sets ~2 and 0 are both open as shown in 11.4.1 and II.4.4. 

11.4.21 By problem II.4.20, X \ aS is the union of two disjoint open sets. The union of open sets is open, hence aS is closed. 

11.4.22 We start this problem with an elementary fact about compact sets. Let C be a compact set. Then if A c C is a closed 

subset, let C n be an open cover for A. We can extend this cover to an open cover of C, by adding E -balls in C \ A (which is 

open) we can form an open cover for C. There is therefore a finite subcover {C1, ••• CN}. Since by our choice, all of the Cn 

which cover A are from the original open cover, and they are a subset of this finite subcover, there is a finite subcover for A. 

It follows that any closed subset of a compact set is compact. 
We now tum to the problem at hand. Sis a subset of a compact metric space. By problem II.4.21, as is closed, and also 

a subset of the same compact metric space. Therefore aS is compact. The assertion is best proven by proving the following 

statement which is true for arbitrary subsets S (closed, open, otherwise). Let S be a subset of a metric space (X, d). Then 

A c Sis open in the space (S, d) if and only if we can write A= S n 0 for some open subset of X. If A is open in (S, d) 

then for each a E A and each E > 0 

Bs(a, E)= {yEs: d(a, y) < E} = {y EX: d(a, y) < E} n s = Bx(a, E) n s 

so A = S n 0 where 0 is the union of such balls in X. Conversely, if A = S n 0 for some open set 0 E X then given a E A, 

there is an E > 0 such that Bx(a, E) c 0, and 

Bs(a, E)= {yEs: d(x, y) < E} = {y EX: d(x, y) < E} n s = Bx(a, E) n s 

The latter intersection is in A = S n 0, so A is open. 
The assertion that the interior of the land is open in Z despite the fact that it includes points in the "border" of Z, is true 

by the above statement. The fact that it appears to include border points comes about because these points are points in 

a Z c X, whereas when Z is itself the metric space, the border of the whole space is the empty set. 

Answers to Chapter II, section 5 
11.5.1 The properties of connectedness preserved by metric equivalence: (i) Connectedness. Let (X 1, d 1) and (X2 , d2) be 

equivalent metric spaces and h : X1 ---+ X2 be the invertible function giving this equivalence. It was proven last section 

(problem II.4.8) that if S is an open set, then h(S) is open, and (problem 11.4.3) if S is a closed set, then h(S) is closed. 

Because h-I also establishes an equivalence, the same is true about closed and open sets in X2 under h-I. Let X 1 be 

connected. Suppose S cK2 is both closed and open. Then h- 1 (S) is closed because S is closed, and open because S is 

open. Since X1 is connected, h- 1(S) is either X1 or 0. In the first case, because his onto, S = X2• In the secondS= 0. 

Hence X2 is connected. 
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(ii) By studying the definition of metric equivalence, we see that given E > 0 there is a 8 = (ljc2)E such that d2(h(x), 
h (y)) < E whenever d1 (x, y) < 8. Consequently h is a continuous function. The composition of continuous functions is 
continuous. Suppose X 1 is path wise connected. Given two points x, y E X2 because h is onto, there are a pair of points 
u, v E X1 such that h(u) = x, h(v) = y. Because X1 is pathwise connected, there exists a continuous function f: [0, 1]---+ 
X1 taking f(O) = u, f(l) = v. But then there is a continuous function h(f(y)) taking a pointy E [0, 1] to X2 such that 
h(f(O)) = h(u) =X and h(f(l)) = h(v) = y. Consequently, x2 is pathwise connected. 

(iii) Suppose X1 is disconnected. Then there exist a set A =f. X1 and A =f. 0 which is both open and closed in X1• As in the 
proof of i), since this set is open, h(A) is open in X2, since the set is non-empty, h(A) is non-empty, and since A =f. X1 and 
his onto, h(A) ::j:. X2 . Hence X2 is also disconnected. 

(iv) Suppose X1 is pathwise disconnected. Then there exist points x, y E X1 such that there is no continuous function 
mapping [0, 1] to X1 with f(O) = x, f(l) = y. Suppose there were a continuous function g: [0, 1]---+ X2 such that g(O) = 
h (x), g ( 1) = h (y). Then, because h- 1 is continuous, the function h-I (g ( w)) taking the interval to X 1 would take h-I (g (0) = 
X' h-I (g (1)) = y' a contradiction. Hence x2 is path wise disconnected. 

(v) Suppose X1 is simply connected, and, because h is continuous and onto, let f 1, h: [0, 1]---+ X2 be two paths 
connecting points h(x), h(y) in X2 • Then there exist paths h- 1

(/1([0, 1])), h- 1(h([O, 1]) connecting x, y E X1• There is 
then a continuous deformation g(s' t) transforming h- 1 (f, ([0, 1])) to h- 1 (h([O, 1])). Then h(g([O, 1] X [0, 1])) ---+ x2 is a 
continuous function, and 

while 

hence X2 is simply connected. 

h(g(s, 0)) = h(h- 1
(/1(s))) = /J(s), 

h(g(s, 1)) = h(h- 1(h(s))) = h(s), 

h(g(O, t)) = h(h- 1(h(x)) = h(x), and 

h(g(l, t)) = h(h- 1(h(y))) = h(y), 

(vi) Finally, assume the converse, that X1 is multiply connected. Then there exist two points x, y E X1 and two paths 
f 1, h: [0, 1]---+ X1 with no continuous deformation between them. We again transfer everything to X2 • The points 
h(x), h(y) in X2 have the two paths h(/1 ([0, 1])), h(h([O, 1])) connecting them. If there were a continuous deformation 
g : [0, 1] x [0, 1] ---+ X2 deforming one path to the other, then h-I (g ([0, 1] x [0, 1])) ---+ X 1 would provide a defom1ation in 
X1. Hence there is no such deformation, and X2 is multiply connected. 

11.5.2 The metric space (•,Euclidean) is simply connected: Choose x, y and two functions from [0, 1] ---+ • such that 
f 0(0) = / 1(0) = x and / 0(1) = / 1(1) = y. Let gin the definition be given by g(s, t) = t · f 0 (s) + (1- t) · f 1(s), where 
a(x, y) =(ax, ay). This satisfies the four demands of the definition, we must only check that for all values of (s, t) it 
remains within the square. It would be maximized in, say, the x coordinate by setting f 0(s) = / 1 (s) = (1, y) in which case 
for any t the function would equal t + 1 - t = (1, y). Since this is clearly in the square, there is no problem there. The other 
cases are identical. Hence • is simply connected. 

11.5.3 To show that X= ((0, 1) U {2}, Euclidean) is disconnected, we examine the subset {2}. This set is closed since points 
are closed in metric spaces. It is also open: The ball BE(2) c {2} forE = 1/2 since by definition this ball is the set of all 
points in X which are closer than 1/2 to the point 2 of which there is only the point itself. Consequently, for every point in 
the set {2} c X, there is an open ball around that point in the subset, hence the subset is open. Since this set is both open and 
closed, and not empty or equal to X, the set is disconnected. 

11.5.4 Given the codespace metric we have used, for the space 'E on the N symbols 0, ... , (N - 1), there is a metric 
equivalence to the subset of [0, 1] written in base N + 1 of real numbers with no N + 1-ary digits equal to N. The 
equivalence is generated by the mapping x 1x 2 ••• 1--+ .x1x 2 .... The map has the same distance formula in both cases, and is 
clearly 1-1 and onto. The set of such real numbers is a totally disconnected subset of ([0, 1], Euclidean): Given any closed 
subset of the real line, either that subset is a single point, or an interval (possibly [a, oo) ). If not, we may write the subset as 
the union of two closed disjoint subsets, and there is a distance between them say c. Then for any point in each subinterval, 
an E -ball around that point of radius c j3 contains only other points from the same subinterval, hence each subinterval is 
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open as well as closed and the set is disconnected. Since the set given above contains no intervals of with numbers with the 

digit N it is clearly not an interval, and it clearly contains more than one point. Hence codespace is disconnected. To see that 

it is totally disconnected, suppose there were an interval enclosed in the equivalent subspace of [0, 1]. Then if a= .x1x2 ••• 

and b = .y1y2 ••• suppose they agree to x; :::=:: y;. Then the point .x1x 2 ••. (z; + 1 = N) ... is in the interval [a, b] and not in 

the set. Hence there are no intervals in the set, and it is totally disconnected, by our metric equivalence, codespace is totally 

disconnected. 

11.5.5 Put the annulus in ~2 centered at the origin, take x, y on either side of the origin, and take fo to be a path which goes 

around the upper half of the annulus, f 1 a path which goes around the lower half. Suppose the function g(s, t) exists as in 

the definition. Then for each point f 0 (s), s i= x, y we have f 0 (s) I Y > 0 and the corresponding value for f 1 (s) is negative. 

Holdings fixed the intermediate value theorem says that there is a value oft such that g(s, t)lv = 0. Since we may take the 

annulus as thin as we please, this says that every point must pass through either x or y as it is deformed from one path to the 

other. If some points pass through x and some through y there is a value oft such that g (s, t) is not connected, hence is not 

a path. Hence the annulus is multiply connected. 

11.5.6 Choose the set of nested subsets of ~ 2 given by S; = ~ 2 B; where B; = { (x, y) : -1 :::=:: x :::=:: 1, y :::=:: i}. These sets 

are nested, they are all connected, and the intersection is the plane minus a strip around the y-axis 2 units wide, which 

is disconnected. 

11.5.8 The body space is multiply connected, it has a hole corresponding to the entire gastro-intestinal tract, if not others 

(e.g. pierced ears). 

Answers to Chapter II, section 6 

11.6.1 If x and y are elements of 'H.(X) then by definition they are both non-empty and both compact. Their union is 

therefore non-empty. To see that it is also compact, let C be a covering of x U y by open sets. Then there is a subset of 

C which covers x, say Cx and another Cy which covers y. Because x is compact, there is a finite subset of Cx which covers 

x, likewise for y. The collection of sets formed by taking all the sets in the finite subcover of x and all of those in the finite 

subcover y forms a subcover of x U y, and since its cardinality is the sum of two finite integers, is also finite. Hence C admits 

a finite subcover of xU y which is therefore compact. Since xU y is compact and non-empty, it is in 'H.(X). To see that the 

intersection of two elements in 'H.(X) need not be in 'H.(X), take x and y disjoint. Then x n y is empty and therefore not in 

'H(X). 

11.6.2 The elements of 'H.(X) are compact non-empty subsets of X, while a compact non-empty subset of X is only a single 

point in 'H.(X). An infinite collection of compact non-empty subsets of X is a valid subset of 'H.(X), while it's union may or 

may not be a compact non-empty subset of X. 

11.6.3 Let B, C E 1i.(X) and B C C. Let x EX. Then 

d(x, C)= min(d(x, y)) 
yEC 

= min(min(d(x, y)), min (d(x, y))) 
yEB yE(C\8) 

:::=:: min(d(x, y)) = d(x, B) 
yEB 

11.6.4 The distance from (1, 1) to the closed disk of radius 4 centered at q, 0) is given by the distance to the point on 

the boundary of the disk closest to (1, 1), since this point is not in the disk. The closest point on the boundary is on 

a radius of the disk, by the triangle inequality. This means the distance is the distance from ( 1, 1) to ( 4, 0) minus the 

distance along this chord which is inside the disk, namely 4. The whole distance is J 1 + ( 1 - 1 /2)2 = ,J5f4 so the distance 

d(x,B)=(./5-1)/2. 

11.6.5 In this case, the closed disk of radius 4 looks like a square with corners at (0, 0), (0, 1), (1/2, 1/2), (1/2, -1, 2) 

since this is the set of poiqts equidistant from (1 /2, 0) at a distance 1/2. In the Manhattan metric, the distance to any point 

on the right upper face ofthis square is 1/2 + 1/2 = 1. Since the distance to any other face is larger, d(x, B)= 1. 

11.6.6 The elements of the set B are less than 3 only if n is odd. The sequence { n;-~ 
1 

} increases monotonically towards zero, 
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consequently it has its least value at 1/2. The least value in B then is the value x1 = 3- 1/2 or 5/2. The distance to the 

point x = 1/2 is then d(x, B)= 2. 

11.6.7 It is easiest to provide a counterexample. Let B c A be a proper subset, such that there is an x E A with d(x, B)= 1. 

(For instance two disks centered at the origin one with radius 1 one with radius 2). Then d(A, B) ~ 1. Since B c A the 

minimum distance from any point in B to A is to the point itself, namely 0. Hence d(B, A)= 0. The two are not equal, so 

this is not a metric on H(X). 

11.6.11 Let A, BE 1-l(X), A i= B. Suppose d(A, B)= 0. Then for every x E A, d(x, B)= 0, since we take the maximum 

over these to form d(A, B). This can only occur if minye 8 (d(x, y)) = 0, for every point x E A, which means that for each 

one, there is ayE B withy= x. In other words A c B. By the same argument, if d(B, A) is also 0, then B cA. If A c B 

and B c A then A = B. This is not the case so one or the other distance cannot be 0. The converse of the above is that if 

A c B, then for each point in A, 

d(x, B)= min(d(x, y)) = d(x, x) = 0 
yEB 

so that the maximum over these is 0. Hence if A c B then d(A, B)= 0. 

11.6.12 Using the solution to problem 11.6.3, for each x E A we have d(x, C) :S d(x, B). Suppose d(A, B)< d(A, C). 

Then there is a point x E A such that d(x, C)> d(y, B) for all yEA. This is a contradiction, choosing y = x. Hence 

d(A, C) :S d(A, B). 

11.6.14 We write out the expressions on either side of the inequality. 

d(A, B)= max(mind(x, y)) 
xEA yEB 

On the other side, we have 

d(A, C)+ d(C, B)= max(min(d(x, z))) + max(min(d(w, y))) 
xeA zEC wEC yEB 

Since the maximum over wE Cis greater than or equal to the value if w is replaced by z, we can write 

d(A, C)+ d(C, B)~ max(inin(d(x, z)) + min(d(z, y))) 
xEA zEC yEB 

For any choice of x E A and y E B the sum is greater than the distance d (x, y) by the triangle inequality, including the case 

where z has been chosen to minimize d(x, z) and where y has been chosen to minimize d(z, y). Hence for the choice of y 

the sum of the minima above is greater than d (x, y) for that choice of y and hence greater than the distance d (x, y) which 

is the minimum chosen to minimize d (x, y) directly. We may then write 

d(A, C)+ d(C, B)~ max(min(d(x, y)) = d(A, B) 
xEA yEB 

For the other case, whether or not d(A, B) :S d(C, A)+ d(C, B), we use the case C c B C::: A. Then the right hand side is 

identically zero, while if A # B, the left hand side is not. Hence the expression is not true in general. 

11.6.16 We make extensive use of 11.6.12. To this end, we have 

h(A U B, CUD)= d(A U B, CUD) v d(C U D, AU B). 

If h(A U B, CUD)= d(A U B, CUD) then either h(A U B, CUD)= d(A, CUD) or h(A U B, CUD)= d(B, CUD). 

Choose the former. then by 11.6.12, 

h(A U B, CUD) :S d(A, C) :S h(A, C) :S h(A, C) v h(B, D). 

If we choose the latter, 

h(A U B, CUD)::::: d(B. D) :S h(B, D) :S h(A, C) v h(B, D) 

If h(A U B, CUD)= d(C U D, AU B) then either h(A U B, CUD)= d(C, AU B) or h(A U B, CUD)= d(D, Au B). 
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Choose the former. then by Il.6.12, 

h(A U B, CUD) Sd(C, A) :S h(A, C) :S h(A, C) v h(B, D). 

If we choose the latter, 

h(A U B, CUD) :S d(D, B) :S h(B, D) :S h(A, C) v h(B, D). 

Since this is all the possibilities, the result follows. 

Answers to Chapter II, section 7 

11.7.3 The reasonable assumptions we could make are that each image is a set of points characterized by spatial coordinates 

and color coordinates. The spatial coordinates for a photograph are in two dimensions and form a filled square, they are thus 

compact. If we assume that the colors are a closed and totally bounded region, say grey scales from 1-100, then the product 

space of pictures is compact. We assume some continuity in time, this is backed up by physical assumptions, the tree will 

probably not do something totally disconnected from its motion in the interval before. Finally, we assume that the tree waves 

at finite speed. This implies that the change between photographs in picture space will decrease as the time interval shortens. 

This should yield a Cauchy sequence given that the distance between two photographs is the Hausdorff metric, applied to 

successive pictures as sets of points with (x,y,color) coordinates, and, say a Euclidean metric on this 3-space. A looks like a 

photograph of the tree at 1 second. 

11.7.4 In the space of non-empty compact subsets of the Sierpinski triangle, an example of an infinite set is (among others) 

the set of all singleton sets {x} with x E &. . A Cauchy sequence in this set is given by successive righthand corners of 

triangles with lefthand (lower) comers at the lefthand lower corner of &. . This sequence converges to the lefthand lower 

corner of &., the convergence implies that it is Cauchy. 

11.7.6 If X is complete, then so is H(X). Since this is the case if X is compact, it remains to show that H(X) is totally 

bounded. Let E be given, and let {y1, ••• , yd be an E-net for X. The singleton sets {yi}, ... , {yd are elements of 1i(X) since 

such sets are compact in a metric space. Let A E H(X). The distance h({y;}, A) is given by 

d(yj, A) v d(A, Yi) 

where by definition, the first distance is the distance from Yi to the closest point in A, and the second is given by the 

maximum over points in A of the shortest distance from one of those points to Yi that is the maximum distance of a point to 

Yi so it is clear that this set of singleton sets does not in itself form an E-net of 1-l(X). However, since the collection is finite, 

its power set is also finite (the collection of all possible sets made from the points Yi. Take that union of singletons such that 

the distance from each of the singletons to A is less than E and call this set Y. This certainly exists, since each element of A 

is closer than E to some Yi. Then the first element of the above formula is less than E. So is the second. For every element of 

A the distance to one of the elements in {y;} is less thanE consequently d(a, Y) <EVa EA. Hence H(X) is totally bounded 

and hence compact. 

Answers to Chapter Ill, section 1 

111.1.1 For all x E X we may write 

mcopies 
~ 

Jm o Jn(x) = J(J(. .. j(jn(x)) .. ·)) 

mcopies ncopies 

~~ 

= f(f(· · · f (j(j(- · · j(x) · · ·)) · · ·))) 

m+ncopies 

= Jm+n(x). 

111.1.2 Let f : [PS. ---+ [PS. with f (x) = 2x. Let f (x 1) = f (x2). Then 2x 1 = 2x2 which implies that x 1 = x2 so f is one-to-one. 

Let y E [PS.. Then for any y, 1j2y E [PS., so that f(lj2y) = 2(1j2y) = y. Then f is onto. Since f is both one-to-one and onto, 
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it is invertible. Each iteration multiplies the result of the previous iteration by 2. Hence we have 

fn(x) = 2(2(2 ... (2x) .. ·)) = 2nx. 

ncopies 

Similarly, 

-n 1 1 1 1 -n f (x)=-(-(-···(-x)···))=2 x. 
2 2 2 2 

ncopies 

Thus for any integer, we have fn (x) = 2n X. 

111.1.3 Let f: [0, 1] ~ [0, 1] with f(x) = 1j2x. f is one-to-one since 1j2x1 = 1/2xz ==? x 1 = x2• But f is not onto, since 
f(x) = 1 ==? x = 2 ~ [0, 1]. Hence f is not invertible. 

111.1.4 Let f: [0, 1] ~ [0, 1] with f(x) = 4x(l - x). Taking the first derivative, we have f'(x) = 4- Sx, which has a 
zero at x = 1 /2 which is a maximum. The value of f there is 1. The minimum value must be at one or the other or both 
endpoints. The function takes the value 0 at both endpoints. Hence the function is onto. It is not one-to-one however, for 
example f(l/4) = f(3/4) = 3/4. 
111.1.5 The first thing to show is that f (x) E C if x E C. We demonstrate this by noting that if x E C then x is the endpoint 
of some closed interval of the form either [(2n3m)j(3k), (2n3m + 1)/(3k)] or [(3n - 1)/(3k), (3n)/(3k)]. Hence f raises the 
power of the denominator by 1 and is still of this form. So let f(x) E C. f is one-to-one since xtf3 = x2 j3 ==? x 1 = x2• It 
is not onto, since 1 E C and x /3 = 1 ==? x = 3 ~ C. To find another transformation, note that if x E C then 1 - x E C. So 
f (x) = ( 1 - x) /3 is another such transformation. 

111.1.6 Let f : ~ 2 ~ ~ 2 with f (x 1, x 2) = (2x 1, xi + x 1). f is not invertible because it is not one-to-one. Let y = f (x) = 
f(x 1, x2). Then y = f(x 1, -x2) as well, since x2 appears in the expression for f only in squared form. 

111.1.8 An affine transformation applied to an interval takes it to another interval, possibly reflecting it (transposing the 
endpoints in interval notation), hence 

f([1 2]) = [1 2] + b = {[a+ b, 2a + b] 
' a ' [2a+b,a+b] 

To map into the interval we must have 

if a> 0, and 
if a< 0. 

1:::: a+ b ::=: 2, 1::S2a+b::S2 

The new length of the interval will be a, so that 0 ::=: a ::=: 1, with a = 0 mapping the interval to a single point. 
Iff, g: [1, 21 ~ [1, 2] then f([l, 2]) C [1, 2], hence 

g 0 f([1, 2]) c g([1, 2]) c [1, 2] 

f 0 g([l, 2]) c f([1, 2]) c [1, 2] 

so that the compositions also map [ 1, 2] into itself. 
We now want the conditions such that 

f o g(X) U go f(X) =X 

Let f(x) =ax+ b, and g(x) =ex+ d. We make the simplifying assumption that f o g(X) maps the interval to the lower 
end of itself, and g o f (X) to the upper end, and the two overlap across the middle at at least one point. We write out the 
compositions explicitly: 

f o g(x) = a(ex +d)+ b = aex +ad+ b; 

go f(x) = e(ax +b)+ d = aex +be+ d. 

The contraction of the interval is the same in each case, and is equal to ae. In order for the two maps to overlap, then, the 
length of each interval must be at least 1/2. We therefore have 1/2 ::=: lael ::=: 1. There are two cases: If ae > 0 then fog 



must map the interval to [ 1, 1 + ac] and g o f must map it to [2 - ac, 2]. We have 

ac +ad+ b = 1 

2ac +be +d =2 

ad+ b = 1- ac 

be+ d = 2- 2ac 
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If ac < 0 then f o g must take 1 1--+ 1 - ac and 2 1--+ 1. Similarly g o f takes 2 1--+ 2 + ac and 1 1--+ 2. This gives 

2ac +ad+ b = 1 

ac+ be +d =2 

ad+ b = 1- 2ac 

be +d =2 -ac 

Given two values for a, c satisfying 1/2 ~ lacl ~ 1, these equations allow calculation of b, d such that the above condition 

is satisfied. 

111.1.10 In= fn(/o). Consequently, we have fUn)= f(fn(/o)) = jn+l Uo) =In+ I· We are given that I= U~0 In is a finite 

connected interval, hence 

f(U~0In) = U~0In+1 = U~ 1 In =I\ Io 

Then the length f.,= length(/0) + length(j(J)). The length of f(l) is the amount that it was contrac~ed, hence is equal to 

ai. This is equal to the length of I\ I0 =f.,- b. This gives ai = e- b or f.,= bj(l- a). This yield~/ 

00 b 

Lb. an= (1 -a) 
n=l 

111.1.11 Let f, g: ~---+ ~be polynomial transformations. Then if 

f(x) = ao + a1x + · · · + aNxN; g(x) = bo + b1 + · · · + bMxM 

we have 

f o g(x) = ao + a1g(x) + az(g(x))2 + · · · + aN(g(x))N 

If we expand g(x) in the last term in the expression, the term with the higest power of xis aN(bMxM)N. Since by definition, 

aN, bM #- 0, aNb':t #- 0 so this is a polynomial transformation of degree M · N. Using this, the degree of f'n(x) is Nm. 

111.1.12 For n > 1 a polynomial function f : ~ ---+ ~ of degree n is generally not invertible. A quick example is. any 

polynomial having a; = 0 for all odd i. More precisely, suppose that f (x) is invertible. Then there is exactly one number b 

such that 

because the function must be one-to-one. This polynomial must then factor into the two terms 

(x - b)(co + C1X + · · · + Cn-JXn-l) = ao + · · · + aNxN 

The polynomial c0 + c1x + · · · + cN_ 1xN-l either has no zeroes or it has only one at x =b. Assume not. Then by adding or 

subtracting from c0 , we can force it to have a zero, thus creating a new function with two roots. Such a function is then not 

one-to-one and therefore not invertible. 

111.1.13 For large enough x, lxNI » lxN-ll »···.So for large lxl, f(x) looks like aNxN which, for lxl > 1 is expanding, 

since lx~- x~l > lx1 -~2 1. If I is an interval {x: lx- al ~ b} for fixed a, bE~. then if M > 0, i(j(l))jj(l) > M for 

b > {3. Let I = [a - b, a + b ]. Construct the polynomials and subtract. 

111.1.15 Parabolae opening up or down will work. For example f (x) = a (x - 1 )2 where a ~ 2. 
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~· 

111.1.16 The function is continuous. f;. (0) = 0 for all A. It is maximized by setting the derivative equal to zero, as follows: 

J;.._(x) = 2Ax- AX2 = A(2x- x 2) 

f{(x) = A(2- 2x) 

so that J; (x) = 0 when x = I. This is a maximum, since the second derivative is negative, and has the value J;.._ (1) = A. 
Hence if A E [0, 2] then J;.._(x): [0, 2]--+ [0, 2]. The fold occurs at (1, A). 

111.1.17 To be a fold point of j(x), x must be a local maximum or minimum. If f(x) is differentiable, the condition for 
this is f' (x) = 0 and f" (x) ¥= 0. Polynomial transformations are differentiable. If f" (x) = 0 we have an inflection for some 
functions, (for example f (x) = x 3

) so no fold exists at x. 

111.1.21 To show that the Mobius transformation is invertible, we show that it is one-to-one and onto, as follows: 
one-to-one: 
Let j(xd = j(x2). Then we have 

ax 1 + b ax2 + b 

ex 1+d ex2 +d 

which yields 

or, bex2 + adx 1 = bex1 + adx2. That is 

(ad- be)x1 =(ad- be)x2 

Since the 'determinant' ad- be is assumed to be non-zero, x 1 = x2 and the function is one-to-one. 
onto: 
Let y E ~. we need to find x such that 

We have 

ax +b 
v=--
. ex +d 

exy + dy =ax + b 

eyx- ax= b- dy 

(ey - a)x = b- dy 

-dy+b 
x= 

ey -a 

Since ad- be¥= 0 we have (-a)( -d) -be# 0 so this is another Mobius transformation, and f is onto. 

111.1.22 We want to show that if f 1, h are Mobius transformations then f 1 o h is. Writing 

we make the necessary substitutions: 

a1x+b1 ·f _a2x+b2 
!1= , 2----

elx + d1 e2x + d2 

a1 (a2x + b2) + b1 (ezx + dz) 

e1 (a2x + b2) + d1 (e2x + dz) 

(a1a2 + b1ez)x + (a1b2 + b1dz) 

(e1a2 + d1ez)x + (bzel + d1dz) 
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which has the form of a Mobius transformation. We need to check: 

(a1a2 + b1c2)(b2ci + d1d2) - (a1b2 + b1d2)(cJa2 + d1c2) 

= (a1a2b2cl + a1a2d1d2 + b1c2b2c1 + b1c2d1d2) 

- (a1b2c1a2 + a1b2d1c2 + b1d2c1a2 + b1d2d1c2) 

= (a1a2d1d2 + b1c1b2c2)- (a1d1b2c2 + a2d2b1cd 

= b2c2(b1c1 - a 1d1) + a2d2(a1d1- b1cl) 

= (a2d2- b2c2)(a1d1 - b1c1) =j:. 0 

because / 1, h are Mobius transformations by assumption. 

111.1.23 The action of the transformation f (z) = 1 j z on the Riemann sphere is to flip it over. It takes 1 f-+ 1, -1 f-+ -1 so 

there is no rotation, and 0 f-+ oo, oo f-+ 0 which inverts the two poles. 

111.1.24 When f(oo) = oo then ajc ~ oo, since a < oo we have c = 0. Conversly, if c = 0 then f(oo) = oo by definition. 

Hence if oo f-+ oo then the transformation looks like 

ax+ b a b 
f(x) = -- = -x +-

d d d 

which is an affine transformation. 

111.1.25 f : ~ ~ ~ takes 1 f-+ 2, 2 f-+ 0 and 0 f-+ oo. So we have d = 0 and the function looks like 

ax +b 
f(x)=--

cx 

1 1-+ 2 implies (a+ b)jc = 2. 2 f-+ 0 implies 2a + b = 0 orb= -2a. This yields -ajc = 2 so that f(oo) = 2. We can 

only determine the transformation up to a constant (that is, multiplying top and bottom by the same constant yields another 

identical transformation) so set c = 1. This gives a = -2, b = 4 so the Mobius transformation 

will do it. 

Answers to Chapter Ill, section 2 

-2x +4 
f(x)=---

x 

111.2.1 Let the affine transformation be denoted, as usual, by 

Since (0, 0) is mapped'to (4, 5), we have e = 4, and f = 5. From the relation (0, 1) f-+ (-1, 2) we have 

or, 

which gives b = -5 and d = -3. Finally, using (1, 0) f-+ (3, 0), we have 

or, 
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which gives a = -1 and e = -5. The function then is 

111.2.2 The affine transformation will be invertible if the matrix A is invertible, since if y = Ax + t, then A -i (y - t) yields 
x again if A-! exists. Let A and A -I be denoted by 

Then we have, by definition, 

or, 

Solving the first two for e, f, 

or 

Solving the second two for g, h, 

or 

Putting these together, we get 

A=(~ ~) 

A-1=(; {) 

(; {) (~ ~) = ( ~ ~) 

ea + fe = 1 

eb + fd = 0 

ga +he= 0 

gb + hd = 1. 

-fd 
e=--

b 

-fad+ fbe=b 

-b d 
j---·e--

- det A ' - det A 

-he 
g=

a 

-hbe +had =a 

-e a 
g=--;h=--

det A det A 

1 1 ( d -b) 
A- = det A -e a 

Consequently, A -I exists if and only if det A =/:. 0. If it does, then if (x 1, x2) 1--+ (y1, y2) we have 

(x1 ) 1 ( d -b) ( Y1- e) 
x2 = det A -e a Y2 - f 



111.2.3 Let f 1, h : ~2 --+ ~2 with 

and 

Then we have 

Letting 

then, 

which is affine, as desired. 

111.2.4 Let 

Then we have 
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= (aa'+be' ab'+bd') (x) + (ae'+bf'+e) 
ea'+de' eb'+dd' y ee'+df'+f 

a" =aa' +be' 

b" =ab' +bd' 

e" = ea' +de' 

d" = eb' + dd' 

e" = ae' + bf' + e 

!" = ee' + df' + f 

(x) (a" b") (x) ( e") h y = e" d" y + f" 

A=(~ ~) 
B = (; {) 

AB = (ae b) ( e f)= (ae + bg af + bh) 
d g h ee+dg ef+dh 

The products subtracted to form the determinant det(AB) are given by 

Subtracting these yields 

as desired. 

(ae + bg)(ef + dh) = aeef + aedh + bgef + bgdh 
(af + bh)(ee + dg) = aeef + afdg + bhee + bgdh 

det(AB) = aedh + bgef- af dg- bhee 
= ad(eh- fg)- be(eh- fg) 

=(ad- be)(eh- fg) 

= det A· det B 
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~ 
111.2.5 The easiest way to visualize this is to break the desired transformation into two transformations, one which takes the 
triangle to the line between (0, 0) and (1, 1) and one which takes this line to the line between (2, 2) and (1, 1). The second 
transformation is an inversion and translation: 

which gives e = f = 2 and 

which gives a + b - 2 = 1 and c + d - 2 = 1, which by letting b = c = 0 gives a = -1 and d = -1. The first transformation 
takes the triangle to the line between (0, 0) and (1, 1). (0, 0) ~---+ (0, 0) so that e = f = 0. We have 

so that b = d = 1, and 

(~)=(~ !)(~) 
so that a = c = 1. Multiplying the two together, we have 

( -1 0)(1 1)(Xi)+(2)=(-1 -1)(Xi)+(2) 0 -1 1 1 xz 2 -1 -1 xz 2 

To put this in scaling ratios and rotation angles, let 

Then the needed rotation angles are 

which gives el = e2 = ¥-. 
111.2.6 We start with the hint. Let 

-1 
cos th =sin 81 =cos e2 =sin e2 = ,./2 

Since (; ) is a translation term, and translation does not affect the area of any transformed polygon, without loss of 

generality e = f = 0. As well, it does not change anything to assume that one vertex of the triangle is at the origin. A 
triangle is then determined by specifying two points (x1, x2) and (y1, y2) such that (Y~> y2) =f. a· (x1, x2) (which makes them 
non-collinear), and neither is the origin (which makes less than three distinct vertices, hence no area). First, show that the 
area of the parallelogram in figure 2.6 is given by 

area = lx1Y2 - XzYII 

(this is the length of the vector in a vector (cross) product). To see this, rotate the parallelogram until (y1, y2) becomes 
(y;, 0). Then if the new coordinates for (x 1, x2) are given by (x;, x~) the area of the parallelogram is the base times the 
height, or y;x~. The rotation is -e with 

YI . Y2 cos e = ; sm e = ---==== 
Jy? + YI Jy? + YI 



y 

y1,y2 .•... 
. x1,x2 

• .. 
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Figure 2.6. Getting 

the area of a triangle from 

a parallelogram 

0,0 ~-----------+--------___. 
X 

We have: 

so that 

( 
cosO 

-sinO 

( 
cosO 

-sinO 

sinO) (x1 ) = (x1 cos0 +x2 s~n0) 
COSO Xz XzCOS0- X1 sm0 

sin 0 ) ( YI ) = ( YI cos 0 + Yz s~n 0 ) 
cosO Yz yzcosO- Y1 smO 

y~x; = (YI cos 0 + Yz sin O)(xz cos 0- X! sin 0) 

(y~ + Yi)y~x; = Y1X2Y~- YIXJYIYz + YzXzYIXz- X1Y2Yi 

= y~(XzYI - XIYz) + Yi(xzYI - X1Y2) 

yielding ly~x~ I= lx1y2 - y1xzl as desired. The area of the desired triangle is then ~ lx1yz- y2xd. Apply the transformation 

w ( ~:) = ( ~ .. ! ) ( ~: ) 
to each of the two vectors. Then the new area is derived by 

yielding 

x; = ax1 + bxz; 

x; = CXt + dxz; 

y~ =ayJ + byz 

y; = cy1 + dyz 

1 
21aCXtYJ + adx1Y2 + bcxzyJ + bdxzyz - aCXJYI - bcx1Y2 - adxzyJ - bcxzyzl 

1 = 21(ad- bc)XtYz- (ad- bc)x2yd 

1 
= 21 det AllxiY2- XzYtl 

A polygon (and many other surfaces) can be broken into triangles on each of which this formula applies, which finishes the 

proof. To see that det A i 0 corresponds to reflection, write 
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Note: The vector/cross/wedge product used to do the proof this way can be generalized to be applicable on other types of 
surfaces and hypersurfaces. The generalized version preserves the form I det A !·("area") to such surfaces and volumes. 
111.2. 7 Let w (x) = Ax + t be an IR 2 similitude. Then w has one of the forms: 

The first can be rewritten as 

w (~~) 
w (~~) 

= (r cos() 
r sin f) 

= (r cos() 
r sin f) 

-r sin f)) (xi) + (e) 
r cos f) x2. f 

r sin f) ) (xi) ( e ) 
-rcosB x2 + f 

-sin f)) (XI) + (e) = r Re (XI) + (e) 
cos() x2 f x2 f 

By making the substitution¢= -B the transfmmation 

R Re = ( ~ ~ 1 ) ( ~~: ~ 

( 
cos f) - sin f) ) 

- - sin f) - cos f) 

= (cos¢ - sin¢ ) 
sin¢ cos¢> 

-sin f)) 
cos f) 

so with this substitution, the second form for a similitude becomes 

w ( ~~ ) = r R R~ ( ~~ ) + ( ; ) 

which has the proper form. 

111.2.9 There are many possible ways to write a similitude w (x) = Ax + t which will take the Sierpinski triangle to a subset 
of itself, and we give the simplest one. To take the triangle to the subtriangle with comer (0, 0) we note that by taking 

(0, 0) f-+ (0, 0) 

1 
(1' 0) f-+ ( 2' 0) 

1 1 1 
(2, 1) f-+ (4, 2) 

we have completely determined w. The first transformation implies that 

t=(;)=(~) 
For the other two, 

(~ ~)(~)=(~)=(!) 
so that a= ~ and c = 0. 

so that b = 0 and d = ~. Then w looks like 

W (XI)= (4 ~)(XI) 
X2 0 2 X2 
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111.2.10 The simplest way to show this decomposition is to multiply it out. 

( ci. 0) (cosO 
r2 sin 0 

-sinO) ( r3 
cosO 0 ~) 

= (r1 cosO 
r2 sin 0 

-r1 sinO) ( r3 
r2 cosO 0 ~) 

= ( r1r3cos0 
r2r3 sin 0 

-r1r4 sin 0) 
r2r4 cos 0 

This is a general affine transformation because the four terms r1r3, r1r4 , r2r3 , and r2r4 are linearly independent. This means 

that none of these can be written as a linear combination (sum with constant coefficients) of the other three, hence any 

arbitrary value can be written this way. It is more important to understand what is going on geometrically, which is done 

by looking at the action of this transformation on the coordinate axes. The transformation by r3 , r4 rescales the coordinates, 

that is stretches or shrinks each coordinate and possibly reflects one or both. The rotation matrix rotates the coordinates 

by some angle 0, leaving the rescaled coordinates off axis. The action of the second rescaling has two functions. It further 

stretches or shrinks the rotated axes, but because they are no longer lined up with horizontal or vertical, it also changes 

the angle between them. This has the effect of skewing the new map of the plane. We are left with a transformation which 

translates, rotates, rescales, reflects and skews. This is the most general affine transformation, and requires all three parts of 

the decomposition to accomplish it. 

111.2.12 We multiply the two matrices to get the identity matrix: 

which proves the statement. 

111.2.13 Let 

By exercise 111.2.12 we have 

Then we have 

(~ b) ( de~A 
d -=.£_ 

detA 

-b ) 
de~ A 

detA 
(

ad-be 
_ detA 
- cd-dc 

detA 

( 

detA 

= d~A 

= (~ ~) 

B=(~ !) 
A=(; ') 

B-1 __ 1 (d -ab) 
- det B -c 

= ( d::B -c 
det B 

-b ) 
de~ B 

det 8 

ba-ab ) 
detA 

-bc+ad 
detA 

de~A) 
detA 
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which gives 

B A B -
1 
= ( ~ ! ) (; { ) ( :~c: -b ) 

de~B 

detB 

= ( ac b ) ( e:e~ ~ c d gd-hc 
detB 

( 

aed-a[c+bgd-bhc 
_ detB 
- ced-[c2+gd2-dhc 

detB 

a[-eb) 
detB 

ah-gb 
detB 

a
2

-aeb+bah-gb2 ) 
detB 

caf -ceb+dah-dgb 
detB 

1 
tr(BAB- 1) = --(aed- afc + bgd- bhc + caf- ceb + dah- dgb) det B 

1 
= -- (ade - bee + adh - bch) 

det B 

det B 
=--(e+h)=trA 

det B 

The other equation is somewhat simpler: 

det(BAB- 1) = det B det A det B- 1 = det B det B- 1 det A= det(BB- 1) det A 

Now B B -I = I the identity matrix, and det I = 1, so 

det(BAB- 1) = det(BB- 1) det A= det A. 

111.2.14 We simplify the problem by noting that if q is any scalar, 

1 
/A(qx)/ = ( (aqx1 + bqx2)2 + (cqx 1 + dqx2)2) 2 

/qx I q2(xf +xi) 
1 

= (q 2(ax 1 + bx2)2 + q2(cx1 + dx2) 2) 2 

q2(xf +xi} 

/Ax/ 

/X/ 

consequently, it suffices to maximize over x such that /xI = 1, that is, over the unit circle. For the Euclidean metric then, we 
let x 1 = cos 8 and x2 = sin 8. Then recognizing that the derivative will be zero only if the derivative of the quantity inside 
the square root sign is zero, we maximize 

d . 2 • 2 0= -((acos8 +bsm8) + (ccos8 +dsm8)) d8 
= 2(a cos 8 + b sin8)( -a sin 8 + b cos8) 

+ 2(c cos 8 + d sin 8)( -c sin 8 + d cos 8) 

= -a2 sin 8 cos 8 + ab cos2 8 - ab sin2 8 + b2 sin 8 cos 8 
- c 2 sin 8 cos 8 + cd cos2 8 - cd sin2 8 + d 2 sin 8 cos 8 

b2- a2 d2 + c2 
= --

2
- sin 28 + ab cos 28 + --

2
- sin 28 + cd cos 28 

0 = 2(ab + cd) cos 28 + ((b2 + d2)- (a2 + c2
)) sin 28, or, 

((a2 + c2) - (b2 + d2)) 
tan 28 = ---------

2(ab + cd) 
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This last equation has (in general) four solutions. Two are minima, two are maxima, and the norm exists. The unit circle has 

been transformed to an ellipse, the semi-major axis of which is the norm of A. 

For the Manhattan metric, we again can restrict to the unit circle which in this metric is the set of points (x1 , x2) such that 

lxt +x2l = 1, and is a diamond centered at the origin, with vertices on the axes at (±1, 0) and (0, ±1). By looking at the 

Euclidean case, we can see that the transformed version of this figure under A will contain two maxima and two minima. 

From exercise 11.2.9, this transformation is a composition of a coordinate rescaling, a rotation, and another coordinate 

rescaling (and possibly a reflection). The result is again a parallelogram centered at the origin. The triangle inequality will 

now tell us that the maximum is at one pair of vertices. These are the images of the original vertices, hence one of these two 

images is the maximum. We have 

A(xt, x2) = (ax1 + bx2, CXt + dx2) 

at the vertices we have /AI= max((a +c), (b +d)). 

Answers to Chapter Ill, section 3 

III.3.1 (i) The most general Mobius transformation such that j(oo) = oo is of the form j(z) = az +b. To show this we 

need to show that if j(oo) = oo then c = 0. Suppose not. Then for c # 0 we have j(oo) = ajc # oo because a is finite. We 

thus have 

f 
_ az + b _ adz + bd 

(z)- d - id/2 

Define a'= ad/id/2 and b' = bd/id/2. then j(z) = a'z + b' as desired. 

(ii) Suppose f : ~ 2 ~ ~ 2 is a two dimensional similitude without reflection. The we may write f as 

f ( x ) = ( c?s e - sine ) ( x ) + ( e ) 
y sme cose y f 

Let z = x + iy, b = e +if and a= a 1 + ia2. We have az = (a1x- a2y) + i(a 1y + a2x) which we can write using real 

coordinates and matrix notation as 

Letting det A= r2 (det A is positive since we presumed no reflection) and e = cos-\a1/r) we have our result. Since we 

divided out det A the determinant is 1 and with a= d and b = -c, the new determinant must read cos2 e + sin2 e = 1, as a 

check that the new values match up. 

111.3.2 We wish to prove that the operation f (z) = .! can be expressed as mapping the complex plane with infinity, to a 
z 

sphere of radius 1, with equator at lzl = 1, rotating the sphere by n around the real axis (the axis between -1 and 1), and 

mapping the result back to the plane. We first establish that for at least some points this is correct. 

(i) The results of this mapping on the points () and oo would be to exchange them. The map f (z) = ~ does indeed 

exchange these two points. 
~ 

(ii) The result on the equator is to flip it about the real line, and map it back to itself. Thus every point on the equator 

/z I = 1 is mapped to the equator. If we were to look down from above, the result of the rotation would be to exchange the 

halves of the equator above and below the real line, that is, each point on lz/ = 1 should go to it's complex conjugate. We 

have 
1 z 

j(z) = ~ = ~ 

For points on the equator, t\le denominator of the last expression is 1 and each point does indeed move to it's conjugate. We 

note in passing that having specified the action on these many points, as well as that we are using a Mobius transformation 

is in fact enough to prove the assertion, but we will perform the explicit map. 
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~ 
(iii) We need a coordinate system-to represent points on the sphere. Since the map used to generate the Riemann sphere is 

to map each point to the point on the surface where a line connecting the north pole to the plane point intersects the sphere, 
we choose the angle¢ between this line and the diameter of the sphere connecting the poles (interior angle). This gives us 
a "latitude" coordinate, for a longitude, we take the polar coordinate angle of the plane point, with respect to the positive 
real line. Expressing the point z in the plane as re;e, this amounts to choosing(). We need the coordinate transformation for 
¢. The line from the north pole to the point z forms the hypotenuse of a right triangle, the side adjacent is the radius of the 
sphere to the north pole, and the side opposite is the plane vector to z. Consequently, we have 

r = lzl =tan¢ 

We may thus express the coordinate transformation as 

z = z 1 + i Z2 = tan ¢ cos () + i tan ¢ sin () 

or more simply as 

z = tan¢e;e. 

How do these coordinates change when we rotate the sphere? As with the equator, the() coordinate becomes the negative 
angle with the positive real line, that is () 1-+ -B. For ¢ we need some plane geometry. First, we note that if we have a 
diameter of a circle in the plane, and a point not on that diameter, the triangle formed by the chords between the endpoints 
and the third point is a right triangle. To see this, add the radius to the third point to divide the triangle into two isoceles 
triangles, and sum up the angles at the center of the circle. Second, we take the same planar circle, and draw the lines 
connecting a point on the perpendicular bisector of the diameter to the endpoints. If we now draw a line from one of the 
ends of the diameter to the point at which the line from the other end to the bisector intersects the circle, the triangle so 
formed is similar to the two triangles formed by the lines previously drawn to the bisector. Consequently, given that the 
tangent of the angle from the north pole to a point on the sphere is tan¢, the tangent of the angle formed by the south pole 
is cot¢. 

When we rotate the Riemann sphere around the real line, we have exactly this situation, namely that the angle ¢ of the 
original point on the sphere is now the angle measured from the south pole. Consequently, the tangent of the new angle to 
the north pole is cot¢. We now look at the action of f(z) on z =tan ¢e;e. We have 

f(z) = ~ = --
1
-. = cot¢ei(-eJ 

z tan ¢e'0 

so the spherical coordinates have taken () 1-+ -e and tan¢ 1-+ cot¢ as desired. 
111.3.3 Iff (z) is not a similitude then, by problem 1, c =I= 0. We may thus let 

This writes j(z) in the proper form as we now check: 

a 
e=

c 

ad -be 
f=---c2 

d 
g=-

c. 

J (ad-be) 
e+--=~---c2_ 

z+g c z+~ 

az+%a- (ad~bc) 

cz + d cz + d 
az +b 

cz +d 
= f(z) 
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as desired. 

111.3.6 We wish to show that a Mobius transformation f : C ~ C is always invertible. We divide the problem into it's two 

cases: Let 

/(z) = az + b 
cz +d 

(i) Suppose c = 0. Then the Mobius transformation can be rewritten as j(z) = a'z + b'. Let w = j(z). Then the inverse is 

given by 

w-b 
z=-

a 

(ii) Suppose c f. 0. Then the transformation can be rewritten in the form 

Let w = f(z). Then the inverse may be written 

f 
f(z)=e+ --

z+g 

f 
z=g+-

w -e 

111.3.7 See answer to exercise 1.22 in Chapter III. 

111.3.8 We wish to transform the real line to the unit circle in C. This means taking z = z1 + iz2 such that z2 = 0 to lzl = 1. 

Looking at the Riemann sphere, this can be accomplished by rotating the north and south poles to the equator. Specifically, 

we take oo 1--+ i and 0 1--+ -i. Since we need one more point to define the transformation, we may do this by insisting that 

we rotate about the axis between 1 and -1 by taking 1 1--+ 1. We have 

From this we get 

Choose a = 1. Then we have 

. a . 
00 1--+ l ::::} - = l 

c 
b 

0 1--+ -i ::::} - = -i 
d 
a+b 

1 1--+ 1 ::::} -- = 1 
c+d 

a= ic 
b= -id 

a+b 
--=1 
c+d 
a+b=c+d 

ic- id =c +d 

(1-i) 
d = -c 1 + i 

= -c ( 1 - 2i + i
2

) 

1- i 2 

d=ic 

z + i iz- 1 
f (z) = -i z + 1 = z + i 
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111.3.9 We do out the first few terms of fn (z) to see what we are dealing with: 

f 0 (z) = z 

fi(z)=1:z 

f2(z) = -1 _1_I_ 
+ I+z 

1 
fn(z) = 1 I +--

I+."·t 

This object is known as a continued fraction and is usually written as 

[a0,ai, ... ,ak]=ao+ I 
ai + _ ___;_,,.

a2+-I-

. I 
"7if 

There is a whole body of mathematics to deal with these interesting creatures, they can be used to represent numbers, 
functions, traces of matrices, and other things. We need only the following relations: Let p0 = a0 , PI = aiao + 1, Pk = 
akPk-I + Pk-2 and qo = 1, qi =a~. qk = akqk-I + qk-2· Then the following relation holds: 

For our function, we have 

Pk 
[a0 , ai, ... , ad= -

qk 

fn (z) = [0, 1, 1, ... , 1, z] 

with n one's implied. If we look at the growth of the terms p; they represent (for terms before the n1h term, the terms in a 
Fibonacci series. That is, let F0 = 1, FI = 1, Fn = Fn-I + Fn_2. The first few terms look like 

1, 1,2,3,5,8, 13, ... 

Since Po= 0, PI= 1, P2 = 1, P3 = 2, and so forth, we may write Pk = Fk-I· fork< n. Similarly, we may write qk = Fk for 
k < n. Then fn(z) may be written, using the above relations, 

For the inverse transformations, we look at 

Writing out the first few iterations, we have 

fn(z) = zFn-2 + Fn-3 
zFn-I + Fn-2 

1 1 
w=--=}z=-1+-

1+z w 

-I 1 f (w)=-1+-
w 

-2 1 f (w)=-1+--I 
-1 +;;; 

Again we have the form of a continued fraction, this time 

f-n(w) = [-1, -1, -1, ... , -1, w] 



Using exactly the same kind of analysis as before, we have 

Po= -1 

PI =2 

P2=-3 

which gives 

lll.3.10 We want the geometrical interpretation of the map 

qo = 1 

qi =-1 

q2=2 

1 
f(z) =i + -. 

z -l 

To get this we first note that by rewriting 

f(z) = i + _1 __ = iz + 1 :- 1 = iz + 2 
Z-l Z-l z-1 
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we have f(oo) = ajc = i, f(i) = oo. This suggests we first translate the plane to bring the point ito the origin. For this we 

have 

(}(z)=z-i 

(}-I(z) = Z + i 

eo f o e-I(z) = (; + ~ . ) - i = ~ 
z +l -l z 

Consequently we can describe the mapping as translating the plane up by one unit, mapping the plane to the Riemann 

sphere, rotating the Riemann sphere about the real line, and mapping back. The net effect is a translation and an inversion. 

Answers to Chapter Ill, section 4 

111.4.2 To be correct inverse functions for f(z) we must verify that f(f"-I(z)) = z. For points in the upper half plane, we 

have 

f(a(xi, x2) + ib(xi, x2)) 

= (a2 
- b2 

- 1) + 2iab 

J (1 + XI)2 + xi + 1 +XI 
2 

Jo +xif+xi-1-xi 2 

+ 2i J (1 + XI)2 +xi + 1 +XI 
2 

2 2 

j(l + XI)2 +xi- 1 -XI 

2 

=XI+ 2i 
(1 + XI)2 +xi - (1 + XI)2 

4 

=xi +ix2 =z 

so that WI does indeed inveh f(z) there. w2 differs from WI in the above derivation only in the imaginary part which replaces 

2iab with 2i(-a)(-b) and hence also inverts f(z). Finally, for the lower half of the plane, we notice that we are in need 

of a negative sign preceding the imaginary term, since the positive square root is indicated. This is provided by replacing a 
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~ 

by -a. This has no effect on the real part, because a appears there only as an a 2 term, completing the test for the inverse of 
f(z). 

111.4.3 Let j(z) = z2 + 1. The critical points are those values of z such that f'(z) = 0, that is, the first derivative vanishes. 
J'(z) = 2z = 0 when z = 0 so this is the critical point of j(z). The critical values of j(z) are by definition the range values 
at which f' (z) vanishes, that is f (z) such that z is a critical point. This occurs at f (0) = 1 so 1 is a critical point for f (z). 

111.4.5 We determine the local approximate affine transformations for these functions by expanding about zo in a Taylor 
(Laurent) series for j(z), and restricting to the first two coefficients a0 and a 1• 

(a) j(z) = z2 and zo = 1. a0 = j(l) = 1. For the linear coefficient, we have 

a
1 
= j'(l) = 2 

1! 

Letting w (z) be the linear approximation, we have 

(b) f(z) = t and zo = 1 + i. We have 

Using the same notation as in (a), we have 

w(z) = 1 + 2(z - 1) = 2z- 1 

1 
ao = f (zo) = 1 + i 

-1 -1 
a,= j'(zo)-= z5 = (1 + i)2 

1 -1 
w(z) = 1 + i + (1 + i)2 (z- (1 + i)) 

1 -z 1 + i 
= 1 + i + (1 + i)2 + (1 + i)2 

2 z 
----
1 + i 2i 
i 2 

=2z+ 1+i 

(c) j(z) = (z- 1)3 and zo = 1- i. We have 

ao = f(zo) = ((1- i)- 1)3 = (-i) 3 = i 
a,= f'(zo) = 3(zo- 1)2 = 3(-i)2 = -3 

Putting these together gives 

Answers to Chapter Ill, section 5 

w(z) = i + -3(z - (1 - i) 

= i + 3- 3i- 3z 
= -3z + 3- 2i 

111.5.3 Let X I be the fixed point of j(x) =Ax+ t. Let 8(x) =X -X!· Then e-' (x') = x' + Xf, and we have 

e 0 e-'(x') = A(x' + Xj) +t-Xt 

=Ax'+ Axt + t- xr 

=Ax' +x1 - x1 
= Ax' = j' (x') 
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as desired. 

111.5.4 Using the coordinate change notation(): X-+ X we have ()(x) = 2x- 1, which yields e- 1(x') = (x' + 1)/2. We get 

the transformed f' in the new space by 

J'(x') = () o J o e- 1(x'): X'-+ X' 

which we get from 

f o o-'(x') = ( ( x'; 1) - l) 
2 

+ 1 = ( x ~ 1) 
2 

+ 1 

giving us, 

J 
1 ((X'- 1 )

2 

) 1 1 2 
() 0 f 0 e- (x) = 2 -2- + 1 - 1 = 2(x - 1) + 1 

111.5.5 We first find the fixed points of the Mobius transformation 

Multiplying through we get 

or 

which factors into 

(z + 2) 
f(z) = (4- z) = z 

z + 2 = 4z- z2 

z2
- 3z + 2 = 0 

(z- l)(z- 2) = 0 

There are two fixed points, at z = 1 and z = 2. 

Make the coordinate transformation which takes 1 f---+ 0 and 2 f---+ oo. The transformation 

z - 1 
()(z) = --

z-2 

will work. We need the inverse of this: 

z- 1 
w=--

z-2 

(z- 2)w = z- 1 

zw- 2w = z- 1 

wz- z = 2w- 1 

2w- 1 
Z = ()- 1(w) = -

W -1 

We make the composition f'(w) =()of o e- 1 (w) as follows: 

so that, 

2:::~) + 2 
Jo()-i(w)= 4-~ 

w-1 

2w- 1 + 2w- 2 

4w- 4- 2w + 1 

4w- 3 

2w- 3 

4w-3 _ 1 
() f e-i(w)- ....,.2w_--=3 __ 

0 0 - 4w-3 -2 
2w-3 

4w- 3- 2w + 3 2 
------=-w 
4w- 3- 4w + 6 3 
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This map shrinks the sphere by a factor of 2/3. The whole process can be written by expanding the real line from 1 to 2 to 
the the whole positive real line, then shrinking the resultant Riemann sphere, then reducing the positive real line to the line 
between 1 and 2 again. The net result is shrinking the sphere in a non-uniform manner. 

111.5.6 Let W (x) = Ax + t which we express as usual. The fixed point of this transformation is 

which we rewrite as 

x fJ = ax fJ + bx h + e ; x h = ex h + dx h + f 
We solve this as a system of linear equations: 

which gives 

yielding 

A nearly identical derivation gives 

0 =(a- 1)x 11 + bx h + e 

0 =ex h + (d- 1)x h + f 

0 = e(a- l)xfJ + bexh + ee 

O=e(a -l)xh +(a -l)(d -1)xh +e 

0 =((a- 1)(d- 1)- be)x h +(a - 1)/- ee 

0 = (det(A -l))xh +(a- l)f- ee 

ee-(a-1)/ 
X-----~ 

h- det(A- /) 

bf- (d- l)e 
X------

IJ - det(A- /) 

Notice that these equations do indeed become invalid if det(A - /) = 0, when the "fixed point" tends to infinity. To 
transform coordinates so that x 1 is the origin, choose the transformation (} (x) = x - x 1. The inverse of this, letting w = () (x) 
is just x = w + x 1. The whole coordinate transformation is then 

(} 0 f 0 e- 1(w) = (A(w +xt) + t)- Xf 

= A w + Ax 1 + t - x 1 

= A w + (Ax 1 + t) - x 1 

=Aw+x1 -x1 

=Aw 

So that the effect, in the transformed system is just the action of the linear transformation Ax. 

111.5. 7 By exercise III.2.13 we know that 

det D = )... 1 )... 2 = det A 

and 

tr D = )... 1 + )...2 = tr A 

Then by multiplying ()... - )... 1 )()... - )... 2) each A; is a solution to the equation 

)...
2

- ()... 1 + )... 2 ))... + (AJAz) = 0 



or 

Now 

'A 2 
- tr A 'A + det A = 0 

det ( e ~'A h ~'A) = (e- 'A)(h- 'A)- fg 

= eh - e'A - h'A + 'A 2 
- f g 

= 'A 2 
- (e + h )'A + eh - fg 

= 'A 2 
- tr A 'A + det A 
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as desired. The above equation is called the eigenvalue equation for A, the numbers 'A 1, 'A2 are called eigenvalues, and have 

the property that there exist lines in IR1. 2 such that for any v on those lines 

Av = 'Av. 

The lines are called the eigenvectors of the matrix A. 

111.5.8 To make the transformation h(z) = f for analyzing the behavior at the point at infinity, we first note that h- 1(w) = ± 
has the same functional form. Composing, we have 

1 w 
() 

0 f 0 ()-J = 7( _!_) + 1 7 + w 
w 

The point at 0 is of interest, and is now a fixed point. Locally we may expand 

w 
--~ao+a1 w 
7+w 

where, a0 = 0 and a 1 is given by the Taylor expansion 

aJ = !!.__ (~) (0) = (7 + w)- w I - }__ 
dw 7 + w (7 + w)2 w=O- 49 

so that near zero, this looks like f' ( w) = (1 j7) w which is a contraction. 

111.5.9 We have 

gA(x) = 'Ax(l - x) 

and we want to reexpress f as /JL(A)· f is a parabola opening up, centered at they-axis with vertex at -p.,, g is a parabola 

centered at x = 1/2 opening down, with zeroes at 0, 1. Consequently, we need to reflect f, and stretch it so that it's zeroes 

are one unit apart, and shift it to the right by 1/2. First, the transformation 8(x) = -x will reflect the parabola as follows: 

()of o ()- 1(x) = () o j( -x) =- f( -x) 

which for any value of p., is 

- f(-x) = -((-x)2
- p.,) = -x2 + p., 

a parabola pointing down with vertex p., centered on the y-axis. The transformation which will move the vertex to x = 1/2 

is given by () (x) = x - 1/2. Combining these yields () (x) = - x - 1/2, or, 

()of o ()- 1(x) = -x2 + x- 1/4 + p.,- 1/2 = -x2 + x + (p.,- 3/4) 

We now need to adjust this so as to produce a multiplication by 'A and remove the constant term. We use the transformation 

O(x) = xj'A. Once again qomposing, we now have 

-X 1 
()(x) =---

'A 2 
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so that 

We have 

-1 A () (x) =-AX+ -
2 

I I I A () o f 11 o g- (x) = () o / 11 (-AX + 2 

= tJ(A2( ~ - xl + xl2)- JJ-) 
4 

1 I 12 j1- 1 
= -A( 4 - X +X ) - "): - 2 

12 1 A 1 Jl-= -AX +AX - (- + - + -) 
4 2 A 

This is identical to the expression for g;,.(x1
) except for the constant term, we now find JJ-(A) by setting this term to zero and 

solving for{(,. 

We have 

A 1 JJ-
0=4+2+"i 

-{(, A+ 2 
A 4 

-1 -1 
JJ-=-A2+-A 

4 2 

1 X 
()(x) =---

2 A 

-1 -1 
JJ-(A) = -A2 + -A 

4 2 

111.5.10 We want the behavior of g(x) = x 2
- 1/2 near the fixed points. We have 

2 1 
Xj=XJ-2 

2 1 
XJ-Xf-2=0 

1 ± v'3 
Xj= --2-

and we show the behavior around these points using two methods. 
Analysis by moving the fixed points to the origin: 

Let 

Then we have 

1 + v'3 
tJ(x) =x -xfJ =x- (--

2
-) 

I 1+v'3 g- (x)=x+xfJ=x+(-
2
-) 

go g-l(xl) = xl2 + (1 + .J3)xl + 1 + 2v'3 + 3 - ~ 
4 2 

= xl2(l + .J3)xl + 1 +2 v'3 

g1(x1) = () o go ()- 1(x 1
) = X12 + (1 + .J3)x

1 



which has a fixed point at the origin. Very close to the origin, since x'2 « x', we have 

g' (x') ~ (1 + -J3)x' 

which is an expansion. For the other fixed point, take 

which gives us 

1- v'3 
B(x) =x- xh =x- (---) 

2 

1- v'3 e-1(x) =X +xh =X+ (--
2
-) 
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1 2 r,; 1 - 2v'3 + 3 1 g 0 e- (x') = x' + (1 - v 3)x' + - -
4 2 

2 1-v'3 = x' (1 - J3)x' + -
2
-

g'(x') =(I 0 g 0 e- 1(X 1) = X12 + (1- J3)x' 

Again looking at behavior near the origin, we have 

g'(x') ~ (1 - J3)x' 

Since the coefficient is less than zero, there is a reflection, and since 11 - v'31 < 1, it is composed with a contraction. 
Analysis by expanding g(x) in a Taylor series: 

The derivatives needed to expand g(x) in Taylor series up to the linear term, at the fixed points are 

At the first fixed point, x fJ we have 

and the expansion to the linear term looks like 

1 
g<o\x) = x2- -

2 

(0) I 1 + v'3 ao = g (x) I+J3 = ---
-2- 2 

a1 = g<0 (x)I 1+J3 = 1 + J3 
-2-

1+v'3 1+v'3 1+v'3 -- + (1 + J3)(x- --) = (1 + J3)x + (--- 2- J3) 2 2 2 
which is an expansion. For the fixed point x h we have 

and the expansion to the linear term looks like 

(0) I 1- v'3 
ao = g (x) I-2J3 = --2-

ai = g<1>(x)I 1-J3 = 1- J3 
-2-

\ - v'3 [;; 1 - v'3 [;; 1 - v'3 [;; ~- + (1- v3)(x- --) = (1- v3)x + (--- 2 = v3) 2 2 2 
which is a reflection and contraction as before. In general, it depends on the nature of the function which method is easier. 
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~· 

If it can be transformed by inspection, transforming the fixed points to the origin is preferable. In general, the Taylor series 

expansion method is more straight forward and simpler. 

111.5.11 In exercise 111.5.7 we showed that the entries of the diagonal matrix D satisfy the eigenvalue equation 

:A 2 
- tr A :A + det A = 0 

Using the quadratic equation, the solutions to this equation are 

tr A± j(tr A)2 - 4det A 
:Ai= 2 

and the condition stated in the problem is that the discriminant of this equation be greater than zero, in order to have two 

real solutions to the equation. If the discriminant is less than zero, then the solutions are complex conjugates of the form 

)..k = x ± iy = re±ie. The matrix defines a transformation which contains a rotation by() and therefore cannot be put into 

diagonal form, although it can be written as a rescaling and a rotation. 

Turning to the problem of finding the matrix B, we separate out for a moment the normalizing factor of 1 j det B for the 

inverse of B, which will tum out not to matter, and write 

Letting 

we have 

which yields 

det B · B A B -I = det B · D = det B · ( ~1 ~2 ) 

B=(~ ~) 

det B. BAB-I = (aed- afc + bgd- bhc a
2

- aeb +bah- gb
2 

) 

ced- fc2 + gd2
- dhc caf- ceb + dah- dgb 

ade - af c + bdg - bch = det B · ).. 1 

adh + af c - bdg - bee = det B · :A2 

a 2 f- b2g- abe+ abh = 0 

d2 g - c2 f + cde - cdh = 0 

The first two equations when subtracted or added, merely return to us the result of exercise 111.2.13, that the trace and 

determinant are invariant under this kind of coordinate change. Since only these are dependent on the det B term in front, 

we can safely ignore it in what follows, which is why it was carried separately. Rewriting the last two equations as 

a2 f- ab(e- h)- b2g = 0 

c2 f- cd(e- h)- d2g = 0 

we may solve either one, solving the last one for c, we have 

d(e- h)± Jd2(e- h)2 + 4fd2g 
c = -------------

2! 
d (e-h)±j(e-h)2 +4fg 

= y< 2 ) 

d trA±j(e-h)2 +4fg 
=y< 2 -h) 
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Examining the discriminant, we have 

(e- h)2 + 4fg = e2 + h2
- teh + 4fg = e2 + h2 + 2fg- 2det A 

= e2 + h 2 + 2 det A + 2 f g - 4 det A = e2 + h2 + 2eh - 4 det A 

= (e + h)2
- 4det A= (tr A)2

- 4det A 

which is the discriminant of the eigenvalue equation. Putting this in, we have 

d tr A± j(tr A)2 - 4detA d 
c = f ( 2 - h) = f ()..j - h) 

or 

c(-1-)=d; a(-1-)=d. 
Aj- h ).i- h 

Since det B =P 0 the columns are independent, so we must choose a different Aj for each of the above equations. Only the 
ratios are important here, so we choose a = c = 1, and have 

(A. 1 - h)(A.2 - h) ( 1 
B = ( ) 

j(A.1 - A.2) 1 ~) 
>..2-h 

In closing, we note that the eigenvectors of A are the solutions to the pair of equations 

ex1 + fxz = A.x1 

which appears to yield the two solutions 

gx1 + hxz = A.xz 

(A.- e) 
--

1
-xi=Xz 

These are actually identical, since by the eigenvalue equation 

). - e g 
t=A.-h 

To solve for the eigenvectors, simply let x 1 = 1 and use one of the corresponding values for x2• Hence the rows of the matrix 
B found above are precisely the eigenvectors of A. This is true in general, (for N x N matrices the eigenvalue equation will 
have N real roots if it is diagonalizable ), and depending on the problem presents another way to find a useful transformation. 

111.5.12 To solve this problem, we make use of the methods developed in exercise 111.5.11. We have 

Solving for the fixed point, we may rewrite this as 

so there is a necessary translation by (0, -1 /2) to bring the fixed point to the origin. To diagonalize the matrix we have 

A=(~ ~) 
i 

so that tr A = 4 and det A = -1. This gives us the eigenvalue equation 

). 2 - 4). - 1 = 0 
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yielding 

We may now write down immediately the final form of the transformation, we want B and the above translation to produce 

J'( ') = (2 + -J5 0 ) 
X 0 2--JS 

whi:ch is indeed a coordinate rescaling. A matrix for B is then given in exercise 111.5.11 by 

or to write out the whole expression for the coordinate transformation (}(x), 

l:_21) (~1) + (~) 
~+1 2 2 

111.5.13 Let f be a transformation f: X--+ X. We want to show that {fn}~0 is a semigroup, which requires showing that 

fn o fm: X--+ X is in this set of transformations. But 

so the set of iterates of f is indeed a semigroup. 

111.5.14 Let T: ~ --+ ~ be a left shift transformation on code space, i.e. 

X= x 1x 2x 3 .. . 

T(x) = X2X3X4 .. . 

Since each application of T sl1ifts the sequence to the left and drops the initial term, we have 

The fixed points of T 3(x) = x4x 5 ••. must therefore obey 

Listing out the first few equalities, we have 

which yields 

XI =X4 

x2 =xs 
x3 =x6 
X4 =X7 

X1 = X3n+1 

X2 = X3n+2 

X3 = X3n+3 

In other words, any fixed point of T 3(x) must repeat the first three symbols indefinitely. Explicitly, the fixed points of T 3(x) 

are 

ooo, 001.010. OTT, 100. TOT, TIO, TIT. 
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111.5.15 We need to show that the Mobius transformations on @. form a group under composition. To check closure, we let 

The composition is then 

ax+ b ex+ f 
w 1(x) = --; Wz(X) = --

cx+d gx+h 

a(ex+f) + b 
gx+h 

WJ o Wz(X) = ex+f 
c(gx+h) + d 

aex + af + bgx + bh 

cex +cf +dgx +dh 

(ae + bg)x + (aj + bh) 

(ce + dg)x + (cf + dh) 

which has the proper form. We check 

(ae + bg)(cf + dh)- (ce + dg)(af + bh) 

= aecf + adeh + bcgf + bdgh- aecf- bceh - adgf- bdgh 

=(ad- bc)eh - (ad- bc)gf 

=(ad- bc)(eh - gf) i= 0 

so the Mobius transformations on@. form a semigroup. They are invertible as follows: Let 

ax +b 

We have 

which has the proper form, with 

w=--
cx +d 

wcx + wd = ax + b 
wcx - ax = b - wd 

-dw+b 
X=---

cw -a 

dw -b 

-cw+a 

da- (-b)(-c) =ad- be# 0 

so there is an inverse for each element, and they form a group. 

111.5.16 This problem is identical in algebraic manipulations to exercise 5.12, with the replacement of a, b, c. d, z. wE C 
instead of in @.. 

111.5.17 Let f(x) =Ax+ t, and g(x) = Bx + u be invertible affine transformations on ~1 . Then if w = {Cr:). we have 

w - t = Ax ; A-! ( w - t) = x = k- 1 w - A- 1 t = f -1 
( w). 

Similarly, g- 1(w) = B- 1w- B- 1u. 

We have 

f o g(x) = A(Bx + u) + t = ABx +(Au+ t) 

which is an affine transformation. We need to check whether it is invertible both because it needs to he in our set of 

transformations, and to prove group structure. Let 

w=ABx+(Au+t) 

w- (Au+ t) = ABx 

A- 1(w- (Au+ t)) = Bx 

B- 1A- 1(w- (Au +t)) =x 
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Rewriting the left hand side, we have 

f- 1(w) = B- 1A- 1w- B- 1A-\Au + t) = B-1A-1w- (B- 1u + B-1A- 1t), 

which is affine. The inverse matrices B- 1
, A -I must exist because by assumption J, g are invertible. Hence the set of 

invertible affine transformations is a group under composition. 

111.5.18 Suppose f(A) c A. This implies fn(A) c A, as follows: It is certainly true for n = 1. Suppose for every 0 < 

i < k, the statement holds. Since by hypothesis fk- 1(A.) cA., and f(A) cA. if A cA., we have f(fk- 1(A.)) cA.. But 

f(fk-I(A)) = Jk(A) so the claim is true by induction. To show that this implies that {fn} is a semigroup, recall that 

fn o fm = Jn+m which is in the collection. Hence {fn} is a semigroup of transformations. 

111.5.19 Let w(x) =Ax+ t where 

A=(: ~) 
and ac # 0. This transformation is invertible with x =A - 1(w- t), as long as A - 1 exists. This is the case since det A= 

ac # 0. To show that the set of transformations of this form are a group under composition, we need to show that if B, A are 

of this form then B A is as well, and, if A is of this form then A - 1 is as well. 

Let 

A = (: ~) and B = (; ~) 
Then 

which is also of the proper form. We have 

ae · cg = (ac)(eg) # 0 

so the transformation is in the set. Furthermore, 

A_ 1 __ 1 ( c 0) 
- detA -b a 

which is of the correct form. ca = ac, so the inverse is in the set. Hence the set of all such transformations w (x) on IR 2 forms 

a group. 

111.5.20 Given f(z) = Az2 + Bz + C, we want O(z) = az + b such that 

Since 

we have 

Composing O(z) with this yields 

(j 0 j 0 e-1(Z 1
) = (Z 1

)
2 + C 

e-1(z1
) = .!.(z1

- b) 
a 

A B 
j 0 e- 1(Z1

) = 2(Z
12

- 2bz1 + b2
) + -(Z1

- b)+ C 
a a 

A 12 2bA I Ab2 Bb 
= -z + (B- -)z + (-~ - - - +C) 

a2 a2 a 2 a 

I A 12 bA I Ab2 

0 of o e- (z) = -z + (B- 2-)z + (-- Bb + Ca +b) 
a a a 
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We must have A/a= 1 and B- 2(bAja) = 0 for the desired transformation, meaning a= A and b = B/2. Using these to 
simplify the constant term we have 

B 
t9(z) = Az + 2 ; 

Answers to Chapter Ill, section 6 
111.6.1 

(a) sup( -oo, 3) = 3; inf( -oo, 3) = -oo. 
(b) sup(C) = 1; inf(C) = 0. 
(c) sup{ I, 2, 3, 4, ... } = +oo; inf{l, 2, 3, 4, ... } = 1. 
(d) sup(~+)= +oo; inf(~+) = 0. 

- B B2 

C=CA+---
2 4 

111.6.2 Let f: X--* X be a contraction mapping on (X, d), and let s0 = inf{s E ~: s is a contractivity factor for f}. Then 
s0 is a contractivity factor for f. 

Proof: Clearly 0 ~ s < 1 since if s is any contractivity factor for f, then 0 ~ s < 1 so that 0 ~ s0 ~ s < 1. As well, the 
infimum is taken over a non-empty set since there is at least some s which is a contractivity factor for f by definition. 
Consequently, we need only show that s0 satisfies 

d(f(x), f(y)) ~so· d(x, y) Vx, y EX. 

Suppose not. Then there is a pair x, y E X such that 

d(f(x), f(y)) >so· d(x, y). 

But this says that 

d(f(x), f(y))- so· d(x, y) > 0 

and since 

d(f(x), f(y))- d(x, y) < 0 

by the intermediate value theorem, there is an s' with 1 > s' > s0 such that 

d(f(x), f(y)) __:. s' · d(x, y) = 0 

Hence s' is less than all valid contractivity factors, and there is an interval (s0 , s') which contains no values which are valid 
contractivity factors for f. This is a contradiction of the assumption that s0 is the infimum of the contractivity factors for f. 
111.6.3 Let f : X --* X and g : X --* X be contractions with contractivity factors s, t respectively. Then the contractivity 
factor off o g is st. 

Proof" For all x, y E X we have 

d(g(x), g(y)) ~ t · d(x, y)::::} s · d(g(x), g(y)) ~ st · d(x, y) 

But we also have 

d(f(g(x)), f(g(y))) ~ s · d(g(x), g(y)) ~ st · d(x, y) 

which by definition makes st a contractivity factor for f(g(x)) = f o g(x) as desired. 

111.6.4 Let w(x) =Ax+ t: ~2 --* ~2 with fixed point x1 and det(A- I) =j:. 0. Let h(x) = x- x1 = x'. Then h- 1(x') = 
x' + x 1. Represent 
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and 

Then we have 

because x 1 is a fixed point. Then 

Inverting this we have 

woh- 1 (x')=(~ !)(~l:~;:)+(;) 
= ( ax~ + ax h + bx~ + bx h + e ) 

ex~ + ex h + dx~ + dx h + f 
= (ax~ + bx~ + x h ) 

ex~ +dx~ +xh 

how o h-I(x') =(ax}+ bx~ + xh)- (xh) 
ex1 +dx2 +xh xh 

(
ax'+ bx') _ I 2 

- ex~+ dx~ 

= Ax' = w' (x') 

h- 1 ow o h(x) = h- 1 o w'(x- x1) = h- 1(A(x- X f))= A(x- X f) +xt 

Finally, we check that A(x - x 1 ) + x 1 =Ax + t. Since 

we have 

To prove the next claim we have 

and 

Suppose that 

=Ax+t 

w2 (x) = A(w(x)- x1) + Xf 

= A((A(x- x1) + x1)- x1) + Xf 

= A(A(x- x1)) + x1 

=A2(x-x1)+x1 



Then we have 

so the result follows by induction on n. 

wn+I(x) = A((An(x- Xj) + Xj)- Xj) + Xj 

= A(An(x- Xf)) +xf 

= An+1(x- X f)+ Xf 

Selected Answers 459 

We now describe the conditions on A under which the map is contractive for the Euclidean metric. We want d(w(x), 

w(y)) ~ s · d(x, y) for some 0 ~ s < 1. This means, 

or 

(ax1 - ax h + bx2 - bx h + x h - ay1 +ax fJ - by2 + bx h - x fJ ) 2 

+ (ex1 - ex fJ + dx2 - dx h + x h - ey1 +ex fJ - dy2 + dx h - x 12 )2 

= (ax1 - ayi + bx2 - by2)2 + (ex1 - ey1 + dx2 - dy2)2 

= (A(x - y) 1)
2 + (A(x - y)2) 2 

Using the notation of exercise 111.2.14 we need 

or 

IA(x- y)l ~ s · lx - Yi 

IA(x- y)l 
----~sVx,yEX 

lx- Yi 

This is certainly true if we maximize over lx- yl so we have as a condition that !AI~ s < 1 for w(x) to be contractive. The 

proof is identical with the Manhattan metric substituted and the appropriate changes made. 

111.6.6 Let f : IR -----+ IR be given by f (x) = 1 j2x + 1/2. Then f is a contraction mapping as follows: 

1 1 1 1 
d(f(x), f(y)) =d(2x + 2, 2y + 2) 

1 1 1 1 
=l2x+2-(2y+2)l 

1 1 
=l2x-2yl 

1 
=21x-y1 

1 
~ 2d(x, y) 

so that s = ~ is a contractivity factor. To find the fixed point, we write 

or x f = 1. Rewriting in the form f(x) = A(x - x f)+ x 1 , we have 
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With X= 0, fn(x) = 1 - 1j(2n). 

Writing the original, 

If 

then 

1 
f(x) = 2(x- 1) + 1 

1 
fn(x) = -(x- 1) + 1 

2n 

1 
lim fn(x) = lim -(x- 1) + 1 

n---+oo n---+oo 2n 

= 1 =Xj 

2 11 1 1111 
f (x) = -(-x +-) +- =- +- + -x 

22 2 2 2 4 4 

n 1 n I . 1 Ln 1 1 
f (x) = -(f - (x)) +- = --:- + -x 

2 2 . 21 2n 
l=l 

n+l 1 Ln 1 1 1 f = -( --:- + -x) +-
2 . 21 2n 2 

l=l 

so the formula for fn (x) follows by induction. In the limit, 

independent of x. 

111.6. 7 Let (X, d) be compact, and f : X --* X be a contraction with contractivity factor s and fixed point x 1. Then 
j(X) c X, j(X) #X. 

Proof (X, d) is compact so it is bounded. In particular, since the function g(x) = d(x1, x) is a continuous function from 
(X, d) to~. it has a maximum M, and a point XM EX such that d(x1, xM) = M. Then for all x EX, 

d(f(x), f(x f))= d(f(x), x f) 

:S d(j(XM), Xj) 

::Ss·M<M 

hence there is no x such that f(x) = XM, and j(X) #X. 

111.6.8 The set of contraction mappings on (X, d) are a semigroup under composition. To see this, we only need to know 
that iff, g are contractions then so is f o g. By problem 3, if the contractivity factors for f, g are s, t respectively, then so 
is f o g with contractivity factor st. 



111.6.9 Let w (x) = Ax + t where 

(
!cos 120° 

A= 2 
~sin 120° 

-~sin 120°) 
~cos 120° 
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and t = ( 
1 ~2 ). The easiest way to see that w takes the equilateral Sierpinski triangle to a subset of itself, and is a 

contraction is to break the transformation apart. The equilateral Sierpinski triangle is expressed by the following IFS: 

Each transformation shrinks the triangle towards one of its vertices by a factor of 2, the vertices are (0, 0), (1/2, -JJ/2), and 
(1, 0) respectively. Looking at w we may rewrite it as 

w (xi) =~(cos 120° 
xz 2 sin 120° 

- sin 120° ) (xI ) + ( ~ ) 
cos 120° x2 0 

= ( t 4 ) ( ~~:: ~g: ~~~n1 ~~~o ) ( ~~ ) + ( 6 ) 

= 0 n (Ru ( ~;) )+ ( t) 

where R9 is a rotation by()= 120°. For the whole attractor A, the map therefore rotates A by 120° about its left lower vertex 
(0), by an angle equal to the exterior angle of an equilateral triangle, depositing it as an equilateral Sierpinski triangle on the 

left side of they-axis with vertices (-1, 0), (0, 0), and (-1/2, -JJ/2). The next action is a contraction, since it is identical 
to WJ, and creates, setwise, a mirror image of WI (A) on the left side of they-axis. Finally, there is a translation to the right 

by 1/2 bringing the image to a half-sized equilateral triangle with vertices (0, 0), (1/2, 0), and (1/4, -JJ/4). In other words, 
it lies exactly (setwise) on the image WI (A). So the map does indeed contract the triangle, and take it to a subset of itself. 
The fixed point of w can be calculated by 

which yields 
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5 v'3 1 
-x1 + -x2- - = 0 
4 4 2 

v'3 5 
-x 1 - -x2 =0 
4 4 

v'3 
5x' =x2 

10 
x, = 3t 

2v'3 
X2=31 

111.6.10 Let 'E be a code space on the two symbols {0, 1} and f(x) = 1x = 1x1x2 .••. Then using the metric 

we have 

d( )=~lx;-y;l 
X, y L..,; 3i 

n=l 

d(f(x), f(y)) = f lx;3~_;;1 + 11; 11 
n=l 

= ~ lx;- y;l 
L..,; 3i+l 
n=l 

1 = "3d(x, y) 

so that f is a contraction mapping with contractivity factor 1/3 and fixed point T. 
111.6.11 Let (X, d) be a compact metric space, and f: X---+ X be a contraction mapping. Then {/n(X} is a Cauchy 
sequence in ('H(X), h) and limn-.oo fn(X) = {x1 } where Xf is the fixed point of f(x). 

Proof: We first verify that {/(X)} is in fact a sequence in 'H(X). Since f is a contraction mapping, f is continuous, and 
the continuous image of a compact set is compact. Hence f (X) is compact. By induction, fn (X) is compact. Furthermore, 
since x 1 EX and fn(x 1 ) = x 1 E fn(X), fn(X) is non-empty. Hence, fn(X) E 'H(X) for all n, so this is indeed a sequence 
in 'H(X). We next verify that the sequence is Cauchy. If so, since X is compact, X is complete, and therefore so is 'H(X). 
Hence if the sequence is Cauchy, it has a limit in 'H(X). Lets be a contractivity factor for f(x), and let E > 0 be given. 
Since s < 1, we may choose N such that for any n > N, sn < o where o is a number of choice less than 1. Let n, m be 
chosen n < m, and n, m > N. Since m > n, we have fm(X) C fn(X), so that 

But this must be smaller than the diameter of fn (X) defined by 

We have 

diam (fn (X)) = max d (x, y) 
x,yEr(X) 

since sis a contractivity factor for f. By choosing N such that sN diam(X) < E, we guarantee that 
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because all the distances considered for the maximum are less than diam(jn(X)). Hence the sequence is Cauchy and has a 

limit in H(X). 
We now show that that limit is x 1 . We know that x f E limn_.. 00 fn (X). We need only show that 

lim diam(jn(X)) = 0 
n-+00 

But this limit is bounded by 

lim diam(fn(X)) _::::: lim sn diam(X) = 0 
n~oo n-+oo 

Hence, if y E limn-+oo fn (X) then d (y, x f) = 0, but d is a metric, so this implies y = x 1 . Hence 

as desired. 

111.6.13 We are asked to show that if A= (: ! ) is strictly positive definite (that is a, b, e, d > 0) then the transformation 

j(()) defined on the first quadrant by 

is a contraction mapping, where A is some positive number. Since we may scale A to fit the matrix A, we first check the case 

where det A = 0. This happens if the rows or columns of A are multiples of each other, and we have f (()) = () 1 a constant, 

so in this case the function f converges on the first application. Otherwise, by rescaling A this will work for any strictly 

positive definite A so long as it works for a strictly positive definite A such that det A = 1. We need to have real eigenvalues, 

so that tr A = a + d ~ 2. We have ad - be = 1 or be = ad - 1 and be > 0 so that ad ~ 1. Suppose ad = 1. Then d = 1 j a 

and we have a discriminant 

The expression 

has derivative 

d 2 1 2 
-(a + -) = 2a - -
da a2 a3 

showing zeroes when a4 = 1 which since a > 0 occurs when a = 1. This is a minimum, and yields a discriminant of 0, but 

because the determinant is 1, this would yield be = 0, which it can not be, so that we do indeed have such a A, and one 

choice is greater than zero. 
To show that f is a contraction mapping, we must show that 

The sine of an angle is an increasing function in the first quadrant, so writing 
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sin(f(81) - f(82)) =sin f(81) cos f(82)- cos f(81) sin j(82) 

e cos 81 + d sin 81 a cos 82 + b sin 82 a cos 81 + b sin 81 e cos 82 + d sin 82 
=( ).. )( ).. )-( ).. )( ).. ) 

= : 2 (ae COS 81.COS ()2 +be COS ()I sin ()2 +ad sin ()I COS ()2 + bd sin ()2 sin ()I) 

- : 2 (ae cos 81 cos 82 + ad cos 81 sin 82 + be sin 81 cos 82 + bd sin 81 sin 82) 

= :
2 

(ad(sin81 cos82 - cos81 sin82)- be(sin81 cos82- cos81 sin82) 

detA . . 
= -v ( sm 81 cos 82 - cos 81 sm 82) 

detA . 
= --;:z- sm(81 - 82) 

so that, to get a contraction mapping, we need 

sin(f(81)- j(82)) det A 
-~--_;__ __ = -- = s < 1 

sin(81 - ()2) )..2 

To test this, recall that assuming det A = 1, we have tr A > 2 and 

tr A J (tr A)2 - 4 
'}..=-±----

2 2 
indicating).. > 1. So f is a contraction, implying that {fn(B)}-+ e1 as desired. The fixed angle is in fact the angle of the 
eigenvector, yielding 

'}..-a 
e1 = arctan(-b-) 

Answers to Chapter Ill, section 7 

111.7.1 We have w1 (x) = 1j3x and w2(x) = 1j3x + 2/3. We compute the contractivity factor for the IFS. 

1 1 1 1 
d(w 1(x), wi(y)) = l3x- 3YI = 3lx- Yl = 3d(x, y) 

1 
SJ = 3 

1 2 1 2 1 1 
d(w2(x), w2(y)) = 1(3x + 3)- (3y + 31 = 3lx- Yl = 3d(x, y) 

1 
S2 = 3 

1 1 1 
s =max(s1,s2) =max(

3
, 3) = 3 

We prove that the attractor of this IFS is the Cantor set by proving by induction that the action of W(B) is to remove the 
middle third of each interval in B. To this end, our hypothesis is: Let [a, b] be a component of Bk with k < n. Then 

1 1 
[a, a+ 

3
(b- a)] U [b-

3
(b- a), b] c Bk+1 

and 

1 1 
(a+ 

3
(b- a), b-

3
(b- a)) n Bk+ 1 = 0 
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We establish that this is true for the first case: Let B0 = [0, 1]. Then 

1 2 
B1 = W(Bo) =WI (Bo) U w2(Bo) = [0, -] U [ -, 1] 

3 3 

Now suppose that [a, b] C Bn is a component of Bn. Then there is a component [a', b'] c Bn-I whose image is [a, b] under 

some W; (i = 1, 2). By hypothesis, the component [a', b'] has had its middle third removed in Bn. Then [a, b'] is replaced in 

Bn+ 1 by the set 

I 1 I I I 1 I I 1 1 
w;([a + 3(b -a)] U [b - 3(b -a)])= [a+ 3(b- a)] U [b- 3(b- a)] 

since under W; the length b'- a'~----* b- a and clearly the two points a', b' ~----*a, b respectively. Hence this operation is a 

removal of middle thirds, and the induction goes through. Then the attractor of the IFS is the classical Cantor set. 

111.7.2 We have w1(x) = s1x and w2(x) = (1- s1)x + s1. Let B0 = [0, 1]. Then 

B1 = W(Bo) 

=WI ([0, 1]) U w2 ([0, 1]) 

= [0, sd U [sJ. 1 - s 1 + sd 
= [0, sd U [s1, 1] = [0, 1] = B0 

Hence B0 = [0, 1] is the attractor of the IFS. 

111.7.3 Let w 1(x) = ~x and w2(x) = ~x +~·Let B0 = [0, 1]. Then 

B1 = W(Bo) 

= w 1 ([0, 1]) U w2([0, 1]) 

1 1 
=[0,3]U[z,1] 

We have, at least on the first iteration, an operation which removes an interval of length i from an interval, with this removed 

interval being just to the left of the center of the interval. We test this by applying the induction hypothesis as in problem 1. 

Assume that for each k < n, any component interval in Bk has a i slice taken out to the left of the halfway mark, specifically, 

[a, b] goes to 

1 1 
[a, a+ 3(b- a)] U [b- z(b- a), b] 

and 
1 1 

(a+ 3(b- a), b- Z(b- a)) n Bk+1 = 0 

Then if [a, b] is a component of Bn, then it is the image under one of the maps, say w,. of some interval [a', b'] c Bn-I· In 

Bn this interval has been replaced by 

[a', a'+ ~(b'- a')] U [b'- ~(b'- a'), b'] 

the image of which under w; is 

1 1 
[a, a+ 3(b- a)] U [b- Z(b- a), b] 

which says that that Bn+ 1 is derived from Bn by taking out the i slice. A is a Cantor set, with uncountably many points, and 

no intervals. To see this last, if [a, b] were a component interval of A, then since W(A) =A, this operation does not change 

[a, b] but the above proof says it must lose a slice, hence [a, b] c A=> a= b. 

III. 7.5 Let w 1 (x) = ax + b and w2 (x) = ex + d as in the statement of the problem. The attractor A of the IFS is compact, 

hence it is bounded, and acheives its bounds. Then there is a closed interval [a, b] c IR such that a= min{x: x E A} and 
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b = max{x: x E A}. Suppose 

Then since [a, b] is connected, and thew; are continuous, WI ([a, b]) and w 2([a, b]) are connected, their intersection is non
empty, hence WI ([a, b]) U w2([a, b]) is connected. Furthermore, there are points ai, bi E A c [a, b] whose image in one or 
the other map is a, b respectively. If there were any points in one of the images which were outside the interval [a, b ], then 
the image of either a or b under one of the maps would lie outside of [a, b] and therefore not be in A which it is. Hence this 
image, WI ([a, b]) U w2([a, b]) is mapped to itself exactly by Wand is therefore the attractor A itself. Thus A is connected if 
WI([a, b]) n w2([a, b]) =I 0. Suppose WI([a, b]) n w2([a, b]) = 0. Then it follows since A c [a, b] that WI(A) n w2(A) = 0, 
as well. Let [a', b'] be the longest connected component of A. Since WI (A) n w2(A) = 0, there is ani E {1, 2} and an interval 
[a", b"] (connected component of A) such that 

w;([a", b"]) =[a', b'] 

Let s; < 1 be a contractivity factor for wi. Then 

d(a', b') :S: sid(a", b") 

which says that either [a", b"] is longer than [a', b'] or the length of each is zero. The first contradicts the statement that 
[a', b'] is the longest connected component of A, consequently a'= b', and the only connected components of A are points. 
Hence A is totally disconnected. 

111.7.6 No. The reason for this is as follows: Because each map must have a contractivity factor of less than one, each map 
must take the proposed attractor A, that is the union of two disjoint intervals, to a subset of either one interval or the other. 
The image of each map will be the union of two disjoint intervals itself. Consequently, let WI take A into the first interval, 
and w2 take A into the second. This situation must arise (possibly by renumbering the maps. It is possible to generate a 
single connected interval of either of these two images with w 3 , constructing one of the intervals of A. It is not possible to 
cover the gap in the other, since the image of w 3 must lie entirely in one interval or the other. (Note that the attractor could 
be constructed from four maps). 

111.7.7 Let {~2 : WI, w2} be an IFS with wi given by 

Let the attractor of the IFS be A. Then (x, y) E A implies that x = y, and x, y E [0, 1]. 
Proof' Let B = {(x, y) E ~2 : x = y, x, y E [0, 1]} Then 

Since by supposition, x, y =:: 1, 1j2x, 1j2y :S 1/2 so adding 1/2 to each remains in [0, 1]. Furthermore, if x = y then 
1j2x = lj2y and 1j2x + 1/2 = 1j2y + 1/2 so the image of B is contained in B. The image of B under WI is {(x, y) E 

B : x, y E [ 1/2, 1]} exactly. This is because 0 1-+ 1/2 in each coordinate, and 1 1-+ 1 in each coordinate. The image of B 
under w 2 is {(x, y) E B: x, y E [0, 1/2]} exactly as well. Hence the image W(B) = B, and since the attractor is unique, 
B=A. 

III. 7.8 We show that the attractor is the point { 1}, together with the images w~ (0). That these points are in the attractor of 
the IFS follows from the fact that the two fixed points 0, 1 must be in the attractor, and therefore all forward images of them 
must be as well. Let 

A= {x E ~: x = 1 or x = w~(O); n = 0, ... oo} 
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Let x EA. Then w1 (x) = 0 = w~(O), if x = 1 then w 2(x) = 1, and otherwise there is a k such that w~(O) = x so that w 2(x) = 

w~+ 1 (0). Hence W(A) cA. Furthermore if x = 0 then there is an element of A (for instance 0) such that x = w1 (0), if x = 1 

then x = w2(1), and otherwise if x = w~(O) then x = w2 (w~- 1 (0). Consequently W takes A onto itself as well. Therefore 

W(A) =A. A is a countable sequence of increasing points by definition. We want the geometric series for Xn. Writing 

Wz(x) = 2j3(x - 1) + 1 we have w~(x) = (2/3Y(x - 1) + 1. Substituting x = 0, we have Xn = 1 - (2/3Y. To put this in 

the form of a geometric series, 

2 2 
Xn- Xn-l = 1- ( 3 Y- 1 + ( 3 )n-l 

2 2 = (1 __ )( _ )n-l 

3 3 
1 2 

= 2. <3t 

We may thus write the terms Xn as the partial sums of the geometric series 

1 00 2 
- 'L<-t 
2 n=l 3 

Answers to Chapter Ill, section 8 

There are no answers to section 8, all the exercises are programming experiments. 

Answers to Chapter Ill, section 9 

111.9.2 We assume that w 0(B) = C for any B E H(X). We have 

To show that {~2 : w0 , wd we need only establish the contractivity factor for w1• We may rewrite w1 using multiplication 

by a scalar as 

d(w 1(x), w 1(y)) = .j(.75x1 + .25- .75y1 - .25)2 + (.75x2 - .75y2)2 

= .j(.752((xi- YI)2 + (x2- Y2)2)) 

= .75.j(xi- Yt)2 + (x2- Yz) 2 

= .75d(x, y) 

so the contractivity factor for w1 is 0.75, the map is contractive and this is a hyperbolic IFS with condensation. Let Ao =C. 

We calculate w~ ( A 0 ) by using the A (x - x 1) + x 1 form of the transformation. First the fixed point. 

xh = .75xh + .25::::} .25xh = .25::::} xh = 1 

X fz = .75x fz::::} X h = 0 

Rewriting w~ as 

w1 (~) = (0.75Y ( x; 1
) + ( ~) 
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fc 
we see that w7(A0 ) is C shrunk by (0.75)n and moved to 1 - (0.75)n. In other words, as the figure shows, the trees get 
smaller, closer together, and closer to 1. By example 1, 

with 

AI= c u WJ(C) 

A2 = C U w1(C U w1(C)) = C U w1(C) U wi(C) 

Suppose that fork :::; n we have 

k 

Ak = U w;(c) 
i=O 

then 

An+!= C U WJ(An) 

= CU W 1 (~w:(C)) 
n+I 

=cuUw;(c) 
i=l 

n+I 

=Uw;(c) 
i=O 

Counting the number of transformations of C for An produces n + 1 trees as desired. Let C be the trunk of the tree. That is 
w0 (B) = C for any B E 'H.(X). We define w1 , w 2 so as to form the two branches off the trunk, as follows: 

_ (r cosO 
- r sin 8 

( 
r cos 8 

- -r sin 8 

- r sin 8 ) + ( 0 ) 
r cos 8 1 

r sin 8 ) + ( 0 ) 
r cos 8 1 

In other words, w1 rotates the trunk by 8, shrinks it by rand moves its base to (0, 1). w2 rotates the trunk by -8, shrinks it 
by rand moves its base to (0, 1). Successive applications of either of these transformations rotates the trunk by ±nO,shrinks 
it by rn, and moves the base to the top of the last piece. The figure becomes disconnected if the translation moves the piece 
above the top of the last trunk, it becomes not simply connected if r is close to 1 and 8 is large. 

111.9.8 Without the 'cis' instruction we get effectively the union of W applied to the initial set. By example 1, this is the 
attractor of an IPS with condensation, the condensation set being the initial set chosen. 

Answers to Chapter Ill, section 10 
111.10.10 We make reference to the general form of the affine transformation expressed in terms of the fixed point derived 
in exercise III.6.4. That is, for a contractive affine map, we have 

f (x) = Ax + t = A (x - x 1) + x 1 

fn(x) = An(x- Xj) + Xf 



which we regard as the canonical form of a contraction mapping. We have, in this case 

W;(z) = S; + (1 - S;)a; = S;(Z- a;)+ a; 

Regarding multiplication by a complex number as an IR 2 transformation, namely 

S;Z = S; 1z1 + is;1Z2 + is;2Zt- S;2Z2 

= (s;1Zt- S;2Z2) + i(s;1Z2 + S;2Zt) 

this transformation is equivalent to the IR2 transformation 
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from which we can read off the fixed point as a;. Note that s; is a rotation and scaling, making the whole operation a 

similitude. 

Answers to Chapter Ill, section 11 

111.11.3 In order that the attractor of an IFS be two lines joined at the origin, and variable with a parameter p, we may pick 

three maps as follows: Let w 1(x, y) shrink the angle towards the origin with no rotation. This creates the angle again, with 

smaller clock hands. To get the hands back to the same length, create two maps which map the whole attractor to the tip of 

each hand, that is to a line at the same angle as each hand, with a fixed point at the end of the hand. Consequently, choose 

Wt to be 

(
.9 

Wt(X, y) = Q .~) 
which shrinks the clock face slightly. To collapse the attractor to a line of slope 8, we need 

such that 

w(x, ) =(a b) (x) =(ax+ by) 
y c d y ex+ dy 

ex +dy 
--- =tane V x,y 
ax +by 

This is most easily accomplished by starting with the relations 

for which one solution is the matrix 

c d 
-=-=tane 
a b 

A= (cosO c?se) 
sme sme 

This matrix has det A= 0, and generates the proper slope. Now suppose we want the length of the new line to be less than 

1. The clock hands can be any set of lengths, we will take the minute hand to be length 1, and the hour hand to be length 

1/2. Choosing the minute hand itself, we have 
1 

A (cosO)= (cos
2

8 +sine cosO) 
sin e sin 2 e + sin e cos e 
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so that the right hand side is of length less than two. Add to this the possibility of the whole other hand, which must be less 
than one, and we have to divide this matrix by 3 to assure that it fits within the given hand. So let 

A= (~cos& 
~sin& 

~cos&) 
~sin& 

Now we arrange to put the fixed point at the end of the hand. 

or 

cos2 8 sin 8 cos 8 
e =cos 8 - -- - ----

3 3 

sin2 8 sin 8 cos 8 f = sin 8 - -. -
3

- -
3 

We now let gh = n /2 - (n /6) p be the hour angle, which increases clockwise from n /2 so that it reaches 2n when p = 12. 
We let Om = n /2 - (2 j n) p which travels the same direction but reaches 2n every hour. Having arranged that 

will be the map to the minute hand. The map to the hour hand is similar, but we must shorten the hand by a factor of 2. So, 

where Ah = ~A and 

cos2 8 sin &h cos &h 
e=cos&h- -------

6 6 

. sin2 8 sin &h cos &h 
f = sm gh - -6- - 6 

Answers to Chapter IV, section 1 

IV.l.l The addresses are a= 2121122, b = 333, and c = 12231222. the height, and half the width, and then, depending on 
the map, moves it to the appropriate comer of the square. To shrink the square by one half on each side, we define the map 

and assign the symbol 0 to an iteration of this map. To get the quarter labelled 1, we must do the same shrink, and move the 
lower left comer over by 1/2 in the x direction, which gives the map 

An iteration by w2 corresponds to an address symbol of 1. The third map must move the lower left comer to (1/2, 1/2), 
consequently we define 
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An iteration by w 3 corresponds to the address symbol 2. Finally, the last map moves the lower left comer up by I /2, giving 

and an iteration by this map gets the address label 3. 

IV.1.4 The easiest way to see this problem is to look for a subset of the IFS maps which have as their attractor one of the 

sides of the Sierpinski triangle. Consider the IFS {IR\. 2; w1, w2} giving rise only to addresses which contain no 3's. If a point 

is on the x -axis, neither of the two IFS 

Either of these two will return a point on the x-axis to the x-axis, and their attractor is the line between 1 T and 22. On the 

other hand, any point with a y component not equal to zero will on a single iteration have a new y value equal to half the 

original, which is still non-zero. Hence this edge of the Sierpinski triangle consists of all points whose addresses contain 

only 1 and 2. 
We may use identical arguments to verify that the points along the left edge of the triangle have addresses containing only 

1 's and 3 's. The final edge contains all addresses containing only 2 's and 3 's. 

IV.1.6 One scheme is to use the Cartesian product of the two codespaces. Let the IFS with condensation be {X; w0 , w 1, ••• , 

wN} and the IFS whose attractor A is used for the condensation set {X; v1, v2, ... , vM}. The attractor B for the IFS with 

condensation is then the union of the successive iterates 

Any point on B may be described by giving the sequence of iterates done on A to get to the particular image on B of A, 

combined with the address on the image, which corresponds to an address on the attractor A. Consequently, we have two 

code space strings, possibly on two code spaces, which give the whole address. Any address can occur. 

IV.1.8 This is part of the proof of Theorem 1 of section 4.5. Let {X; w 1, ... , wN} be the IFS in question, let its contractivity 

be s, and let its attractor be A. Consider the images of A for two points which are near by in code space. That is let some 

small E > 0 be given, and let x = x 1 x 2x 3 •.• and y = y1 y2y3 ••• be two code space points d (x, y) < E. The points in A having 

these addresses are contained in the images 

X E Wx 1 0 Wx2 0 · · · Wxn(A) 

y E Wy 1 o Wyz o · · · Wyn(A) 

Now, for E small, we may find a number n such that 

1 
----<E 
(N + l)n 

which means that x,- = y,- for all i < n. Then both points x, yare contained in 

since the contractivity iss this image must be smaller than sn · diam(A). Hence the closer the addresses in code space, the 

closer the points having those addresses are on the attractor. 

IV.1.12 The scheme which is used in Figure IV.99 is the following: Write the numbers with the same denominators in 

horizontal lists beginning with the denominator 1, and putting each successive denominator under the list before. Starting at 

the upper right hand comer, go down if we have just arrived at the left edge, go right if we have just arrived at the top edge, 
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~ 

go up and to the right if we are leaving the left edge, or have just gone right and up, go down and to the left if we are leaving 
the top edge or have just gone down and left. This winds us through the rationals as shown below: 

I 2 
--* l 1 --* 

5 
I I I I I 
~ /' / /' / 
I 2 3 4 5 
2 2 2 2 2 

/ /' / 
I 2 3 4 5 
3 3 -3 3 3 
~ /' / 
I 2 3 4 5 
4 4 4 4 4 

There are two things to note: The scheme works regardless of the entries as long as every rational is in some horizontal 
list, with the lists ordered in a countable manner, and, all redundant terms are not in lowest terms. Since any horizontal list 
becomes 'shorter' but still infinite if such terms are removed, we may use the same scheme if we agree to write down only 
those numbers in lowest terms in each horizontal list. To get the negative rationals, put the negative list corresponding to 
each positive one in below it. That is, the second row is numbers with denominator -1 the fourth with -2 and so forth. This 
method of converting the rationals to a linear list indexed by the counting numbers was invented by Cantor. 

IV.1.13 The triangles in the Sierpinski triangle can be labelled by size: There is 1 triangle of size 1, 3 of size ~ and in 
general 311 triangles of size f., since on each iteration of W(A) we generate 3 times as many triangles of~ the size. Suppose 
we label each of the triangles with size f., with the labels 

Since this last term is 2 · 311 < 3n+l, each is a unique label, there is a label for each triangle, and the collection of labels is a 
proper subset of the positive integers. The number of triangles is therefore countable. 

Answers to Chapter IV, section 2 
IV.2.1 The IFS { ~; ~ x, ~ x + ~} is just touching. Let A be the attractor, and let 0 be the set 

Then we have 

which are disjoint. By construction 

Unw;(O) c 0 
i=l 

Furthermore, 0 is open because it is the finite union of open intervals. The IFS is not totally disconnected because it has the 
attractor 

1 1 
A= [0, 1] = [0, 21 U [ 2, 1] = w 1(A) U w2(A) 

and w 1 (1) = w2 (0). 



IV.2.2 The attractor of the IPS { ~; 4 x, ~ x + ~} is [0, 1] as follows: 

1 
W1 ((0, 1]) = (0, Z) 

1 
w2([0, 1]) = [ 4, 1] 

Wt([O, 1]) U W2([0, 1]) = [0, 1) 
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Since there is a unique attractor with the property that W(A) =A this is.it. Furthermore, there is an open set(~. 4) interior 

to the overlap between the images, that is 

so the IPS is overlapping. 

IV.2.3 The first thing to show is that the attractor of this IPS is [0, 1], as follows: For any affine transformation j(x) = 

ax + b on ~. an interval transforms to either 

[ d] {[ac+b,ad+b] 
c, ~---+ [ad+ b, ac + b] 

if a> 0 
if a< 0 

For each Wn here, a = rt, > 0, so we have, 

Thus the union of these is 

n- 1 n 
Wn([O, 1]) = [ ~· 

10
] 

10 1 9 
W([O, 1]) = ~ Wn([O, 1]) = [0, 10] U · · · U ( 10, 1] = [0, 1] 

Since the attractor A is unique, this is it. The IPS is clearly not totally disconnected because wn([O, 1]) n Wn+t ([0, 1]) = { fo }. 
However, let 

10 n- 1 n 
V=U<- -)cA 

n=l 10 ' 10 

Then 

and for any i # j 

i-1 i j-1 j 
w;(O) n wj(O) c w;((O, 1)) n w;((O, 1) = (to' 

10
) n ( ~· 

10
) = 0 

So the attractor is just-touching. 

IV.2.4 Our IPS is {[0, 1]; w1 = ~x, w2(x) = ~x +~}.The attractor A is a subset of [0, 1], and w1([0, 1]) = [0, iJ and 

w2([0, 1]) = [~. 1] so that Wt([O, 1]) n w2([0, 1]) = 0 Then 

w 1(A) n w2(A) c wJ([O, 1]) n w2([0, 1]) = 0 

so the IPS is totally disconnected. 

IV.2.6 We have w 1 (x) = q and w2 (x) = 4. The attractor is clearly A = f4}. The images of the two maps intersect, so the 

IFS is not totally disconnected. Furthermore, since the entire attractor is in the intersection there is clearly no open set 0 

satisfying the conditions for a just-touching IPS. Consequently the IPS is overlapping, by default. 
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IV.2.8 The smallest number with no non-zero entries in its decimal expansion is .I. Any other choice, with non-zero entries, 
must have at least one digit which is greater than 1. Reducing this digit to 1 produces a smaller choice. Hence reducing all 
of them to 1 produces the smallest. 

IV.2.10 Let {X; w 1, w 2 , ••• , wN} be our IFS with attractor A. We first prove I{::::::::} I I. Let x be a periodic point. Then by 
definition there exists a finite sequence of transformations wa1, ••• , Wan such that 

Wa 1 O···OWan(x)=x 

If we define f (x) to be this transformation, we have 

f(x) = fm (x) =X= (Wa 1 o · · · o Wan) o · · · o (wa 1 o · · · o Wan)(x) 

consequently x has the address a 1 ···an, which is a periodic address. Now suppose that x has the periodic address a 1 ···an. 

Then x is given by 

¢(a,··· an)= X= ¢(a,··· ana!··· an) 

= Wa 1 0 · · · 0 Wanc/>(ai ···an)= Wa 1 0 · · · 0 Wan(X) 

sox is periodic. We next prove I {::::::::} I I I. The semigroup of transformations generated by { w1, ••• w N} includes all finite 
compositions of the maps for the IFS. In particular since Wa1 o · · · o Wan is a finite composition of these maps, it is an element 
of the semigroup. It's fixed point is x. Now suppose that x is a fixed point of an element of the semigroup of transformations 
generated by these maps. Then by definition of the semigroup, there is an element of the form wa,· o · · · o Wan with the 
property that 

Consequently x is periodic. 

IV.2.11 We wish to show that any periodic point of the IFS {[0, 1]: 4x, 4x + 4l is ofthe form pj(2n- 1). This is certainly 
the case for the two fixed points 0, 1. Choose any point x in [0, 1]. Then we claim that after any sequence of k operations, 
we have 

1 
Wa 1 o · · · o Wak(x) = 

2
kx + C 

for some number C. This is true since each iteration multiplies x by 4 and multiplies any constant term by the same factor, 
and possibly adds another part to the constant term. If x is k periodic then we have 

1 C2k 
X= 

2
k X+ C Or X= (

2
k _ 

1
) 

Now C is composed by taking the constant term from the last iteration and multiplying it by 4 and either adding a half or 

adding 0. Thus the binary expansion of C contains at each digit a 1 if 4 was added on that iteration, and a 0 if it was not. 
Hence C has a binary expansion of length k, which, multiplied by 2k gives any possible number from 0 to 2k - 1, as desired. 

IV.2.14 The IFS {[R{; w 1 (x) = 0, w 2(x) = 4x + 4} is an IFS with condensation, the condensation set is {0} and consequently 
the attractor A is given by 

00 

A = U w~ (0) U { 1} 
n=O 

Any point p E A is periodic since there is some k for which p = w~ (0) unless p = 1 which is a fixed point and therefore 
periodic. But this means tha£ 

p = w~(w 1 (p)) = w~(p) o w 1(p) 

so p is k + 1 periodic. a totally disconnected IFS is invertible, it follows that the cardinality of A is the same as that of 
its related code space. But code space on more than one symbol is uncountable by Theorem 1.1 in Chapter IV. Hence the 
attractor is too. 
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IV.2.16 Any uncountable attractor which is overlapping has uncountably many points with multiple addresses. This is 

because it contains an open set of points with multiple addresses which maps to an open set in code space by ¢-1. Any 

open set with non-empty interior in code space on more than one symbol is uncountable. 

IV.2.17 One example of such an IFS is any overlapping IFS of two maps on the interval [0, 1] such that the end points of 

the overlapping region w 1 (A) n w 2(A) are 3-periodic. This causes some of the sets of 4 symbols in any given position to 

map to the same point on the attractor, allowing uncountably many addresses for some points. 

IV.2.18 The set of interval end points in C is equal to exactly twice the number of intervals used in the derivation. Following 

the proof of the countable number of triangles in the Sierpinski triangle, (exercise 1.13 in Chapter IV), we have at each 

subdivision, 2n intervals added, and we number them 3n + 1' 3n + 2, ... ' 3n + 2n < 3n+ I. Since this numbering scheme 

produces an integer in order for each interval without repeating, the intervals have been put into correspondence with 

the positive integers. Then their end points can too, since we may give all the left-hand end points the negative integer 

corresponding to the right hand end point labelled as above. Since the integers are countable so are the endpoints. 

Answers to Chapter IV, section 3 

IV.3.10 We first show that the point 1212 is a periodic point of period 2. 

f(1212) = 212 = 2121 

f 2 (1212) = /(2121) = 121 = 1212 

so this is a periodic point of period two, and the other element of the cycle is 2121. Next we show that it is repulsive. Let 

x1 = 1212, andy E :E. Then 

= 9 · d(x !• y)- (311 - yd + 12- Y2l) 

If we choose ~ > E > 0 then for y E BE (x 1) we have y1 = 1 and y2 = 2, so for any such E 

and the point is repulsive, the cycle is therefore repulsive too. 

IV.3.11 The dynamical system {[0, 1]; 2x(l- x)} has an attractive fixed point at x 1 = i· f(O) = 0 so that 0 is also a· fixed 

point of the system. To examine the behavior near 0, we first notice that if x =j; 0 then as x ---+ 0 we have ( 1 - x) ---+ 1. 

Consequently, as we approach 0 the function approaches f (x) ---+ 2x. Since for any x > 0 we have d (2x, 0) = 2d (x, 0) > 

d(x, 0) it is easy to find an E such that the function is repulsive on an E-ball around 0. For example, let E = .1. Then 

d(O, f(x)) 2: 1.8d(O, x) for any x E BE(O). 

IV.3.14 We want the behavior of the dynamical system { ~ U { oo}; f (x) = .Ax} in four cases: 

(i) .A = 0 gives us f (x) = 0 which makes 0 the only fixed point, and attractive. 

(ii) 0 < I.A. I < 1. oo is a repulsive fixed point since If (x) I < lx I, likewise, 0 is an attractive fixed point. 

(iii) .A = -1. 0 is a neutral fixed point, as is oo. Every other point is period 2, and neutral. 

(iv) 1 <.A< oo. Since lf(x)l > x for any x =f:. 0, oo, 0 is a repulsive fixed point, and oo an attractive one. 

IV.3.17 We have 

f(x) = { x + 1 
-x + 1 

if X::; 0 
if X 2: 0 
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~· 

If x = 0 then f (x) = 1 and f 2(x) = 0 so that {0, 1} is a cycle of period 2. For any other x split x into its integer part and 
fractional part, that is 

x=n+i Iii< 1, n E 7!.. 

Then if x < 0, fn(x) = x which is between -1 and zero, and jn+ 1(x) = 1 + x which is between 0 and 1. Applying f to this 
number gives f ( 1 + x) = - x, which is again greater than zero, and 

f 2(1 +x) = f(-x) = 1 +x 

which is a cycle of period 2. Consequently for any x < 0, x is eventually periodic of period 2. For x > 0, we have 

j(x) = f(n + x) = -(n - 1)- x 
so that redefining n := -(n- 1) and x := -x gives us the case just examined, and these points are eventually periodic of 
period 2 as well. 

IV.3.18 If {X; w1, ... , wN} is a hyperbolic IFS, we may assume a contractivity s < 1. By Theorem 7.1 in Chapter III, the 
dynamical system {1t(X); W} possesses a unique fixed point A E 'H.(X). Also by Theorem 7.1, for any B, C E 'H.(X) we 
have h(W(B), W(C))::::: s · h(B, C). Consequently, 

d(W(A), W(B)) = d(A, W(B))::::: s · d(A, B) 

and the fixed point A is globally attractive (globally attractive means E may be chosen any size). 

IV.3.20 We need a small lemma to proceed. If a space is compact, then for any E > 0, there is an E-net {yd7~~/ of points 
such that every point in the space is less than E from some element of the net. We need to produce a sequence of such nets. 

Lemma: Given E1 > E2 and an E1-net {y;}~~~r there is a minimal E2-net {z;}~~?l such that {y;} c {z;}. 

Proof: There is always some E2-net which has the E1-net as a subset, since given any E2-net {z;}~~?). the finite collection 
of points 

is an E2-net containing the E 1-net. Now taking the collection of all E2-nets containing this particular E 1-net, there is an 

n(E2) ::::: n(E 1) which is the minimum size of any of the nets in the collection. Let {zd7~7) be one of these. 
Now suppose that our code space has the metric 

d(x, y) = f lx; ~ Y;l 
i=l k' 

with some k > 1, perhaps k = N + 1. Let E; = f;, and, with the help of the above lemma, construct a nested sequence of 
E;-nets, 

{ }
n(EJ) { }n(~2) { n(€3) 

Yl; i=l C Y2; i=l C Y3;}i=l C · · · 

We build a sequence of points {x1}j:1 by letting 

By construction, x 1 visits each E 1 ball around each element of the E 1 net by repeated applications of the shift transformation 
T. But code space is compact, and therefore the sequence {x1}j:1 must have a convergent subsequence, which converges to 
a point x which visits every neighborhood in code space. Hence x has a dense orbit under the shift transformation. 

IV.3.21 Let A, B be two open sets in code space. Choose an E > 0 and points a A E A, and a 8 E B, such that B~(aA) cA. 
Then if the metric for I: is 

d ~ lx; -y;l 
(x, y) = f:: (N + 1)i 
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there is an M such that for any a E I: such that 

we have a E B€(aA) cA. Then we only need to choose 

which is in A, but TM(a) = a 8 E B. Since by choosing the sequence of a's which agree on M, M + 1, M + 2, ... first 
symbols with a A, followed by a 8 , as above, we get-that for allm > M there is an element of A such that rm(a) E B, Tis 
mixing on code space. 

Answers to Chapter IV, section 4 

All the problems are examples or figure exercises. 

Answers to Chapter IV, section 5 

IV.S.l Let {X1; fd and {X2 ; /2} be equivalent dynamical systems with the equivalence provided by the homeomorphism 
():XI~ x2. Let {XJ, X2, ... , Xp} be a cycle of period pin XJ. That is ft(xi) =Xi, and 

Then 

and 

if i # p 
ifi =p 

f{(xi) = () o !I o ()- 1 o () o · · · o f 1 o ()- 1 o ()(xi)= 8(xi) 

so that { () (x 1), ... () (x P)} is a cycle of period p. To show that the statement holds in reverse, define the homeomorphism 
82: X2 ~ X1 by 82 = ()- 1, and repeat the above argument. 

The second statement, regarding attractive fixed points, is highly dependent on the restricted definition of the term given 
in the text, and, since it is not preserved by homeomorphism must be dependent on the metric. Choose two copies of the real 
line, (IR{, d1) and (IR{, d2) where d1(x, y) is the usual metric, and d2(x, y) is given by 

d ( ) = { 13x - 3yl 
2 x, y lx- Yl 

if X S 0 
if X 2: 0 

The identity map is then a homeomorphism between these spaces. Now choose the function f (x) = - ~ x for both systems. 
In (IR{, d1), 0 is an attractive fixed point. For (IR{, d2), no matter what the size of theE ball is around 0, it will include points 
on the positive side that, because the ball is shrunken on the negative side (for example, B 1 (0) = ( -1/3, I)), fail to land 
back in the ball on one iteration. Hence this is not an attractive fixed point, even though the two systems are equivalent. 

IV.5.2 An eventually periodic orbit is has the orbit {x1 , x 2, ... , Xn, Xn+i• ... Xn+p = Xn+i}, for some nand some period p. 

As in exercise IV.5.1, we write 

The argument is then identical to that in IV.5.1. 

if i # n + p 

ifi =n + p 

IV.5.3 We modify the example in IV.5.1. Let (IR{, d1) and (IR{, d2) be as in the solution to problem IV.5.1. Let the homeo
morphism () : IR{ ~ R be () (x) = x. Then if f 1 (x) = - 2x, under our homeomorphism we have h (x) = - 2x. However, in 
(IR{, d1) 0 is a repulsive fixed point, but given any E > 0 a point x < 0 such that x E B€(0) moves under 1 iteration to a point 
which is closer to 0 under the d2 metric than it started. 
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~· 

IV.5.4 8 is a homeomorphism, which means that 8 and 8- 1 are continuous. This implies that 8- 1(0) is open if 0 is open 
and ( 8 ·· · 1) - 1 ( 0) = 8 ( 0) is open if 0 is open. Consequently, if there is an open neighborhood of x 1 in X 1, then 8 ( 0) is open 

in x2 and 8(x j) E 8(0) implies that there is a neighborhood c of 8(x f) in x2 such that c c 8(0). Suppose that for any 

y E 0 we have 

lim ft(y) = x !· 
n_,.oo 

Then since 8 is continuous 

lim f{(8(y)) = lim 8(ft(y)) = 8(xf) 
n_,.oo n_,.oc: 

for all 8(y) E 8(0), in particular for all elements of C. Then x 2 1 
= 8(x 1) is an attractive fixed point of h· Note that this is 

the standard definition of an attractive fixed point. We will use the more restrictive version given in the text, however. 

IV.S!S The solution above to IV.5.4 shows that this definition of attractive fixed points is preserved under equivalence and 
conjugacy. (and in fact does not require that the spaces be metric spaces). All that is needed is to give a similar definition 
of a repulsive fixed point. For invertible maps, this is done by saying that x 1 is a repulsive fixed point if x 1 is an attractive 

fixed point of the map f- 1, that is, there is a neighborhood 0 of x 1 such that for every y E 0, lim11 _. 00 f-n(y) = x 1. For 

non-invertible maps, this is extended by saying that there is a neighborhood 0 of x 1 such that for every y E 0 there is ann 

such that fn (y) tf 0. This is likewise preserved under equivalence and conjugacy, a moment's reflection says that if this is 
true for 0, then it is true for any neighborhood 0 1 c 0. 

IV.5.7 We want to show that if 8, a homeomorphism establishing the equivalence of{~; f} and{~; g} is a diffeomorphism, 
then the definition of an attractive fixed point given in the text is preserved under the equivalence. Let .X 1 be an attractive 
fixed point of{~; f}. The definition here establishes that a fixed point is attractive if and only if it is a contraction on some 

E-ball around x1 . We let 8(x1 ) = x8 be the corresponding fixed point of{~; g}, and we will show that g is also locally 
a contraction. Choose E > 0 such that f is a contraction on BE (x 1). Then for y E BE (x 1), there is an s, 0 :::: s < 1 such 
that If (xr) - f (y) I :::: s lx 1 - y 1. Since 8' (x 1 ) # 0, there is an E small enough (the derivative is continuous by assumption) 
such that for any y E BE (x 1 ), the following expression is well-defined (i.e. none of the fractions are equal to zero in the 

denominator) for y # x 1 : 

1

8(f(xf))-8(f(y))ll x!-Y I 

f(x J)- f(y) 8(xr) - 8(y) 

In the limit as y ~ x 1 , the two fractions on the right approach, respectively, 18'(x 1) lie'(~ Jl I = 1. But since f is a contraction 

close enough to x 1 , we have 

I 

Xj- y I 1 >- > 1 
f(xr)- f(y) - s 

which implies that 

I 
8(j(Xj))- 8(f(y)) I< s 

8(x f)- 8(y) -

Then forE > 0 close enough to 8(x 1), we have 

so that lg(xg)- g(z)\:::: slx8 - zl for z close to x8 , and the fixed point is attractive because it is a local contraction. 

IV.5.8 Assume { ~; f} is a dynamical system such that f is differentiable for all x E ~. A web diagram for a given initial 

condition x0 starts at the pointy= x0, and successive points are then taken from (X11 , X11 ) 1--+ (X11 , Xn+l) 1--+ (xn+I• Xn+d where 
Xn+ 1 = f (xn), and the points of the form (xn, Xn+ 1) are on the graph of the function f (x). It follows that if a point is fixed, 
X11 = Xn+ 1 = f (x11 ) so that this is a point of intersection of the graph of f (x) with the line (x, x) or y = x. 

To prove the second assertion, we note that for our definition of attractive fixed points we have an E > 0 such that for any 
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y E BE(x 1 ), we have a constant 0 ~ s < 1 such that lf(y) - f(x 1 )I ~sly - x 1 1. Then for y f. x 1 we may write 

lf(y)- f(xJ)I =I f(y)- f(xf) I< s 
ly-xtl y-xf -

Since this is true for all y E BE (x 1), it is certainly true as y ~ x 1, yielding 

lim I f(y)- f(xf) I= lf'(xJ)I ~ s < 1 
Y----*Xf y- Xt 

To go the other way, if the derivative is continuous in a neighborhood of x 1 , and If' (x 1) I < 1, it follows that for some 8 > 0 

there is a neighborhood B8(x 1) such that for any y E B8(x 1 ), lf'(y)l < 1. We may then find an 0 < E < 8 and a number 

s < 1 such that If' (y) I < s for all y E BE. Then the map is a local contraction since 

lim I f(y)- f(Yo) I~ s 
Y----*Yo Y- Yo 

implies that close enough to y0 , we have 

lf(y)- f(Yo)l ~sly- Yol 

in particular, lf(y)- f(x 1 )I ~sly- x 1 1, as desired. 

Finally, to generalize to cycles, let x 1, x 2 , ••• , Xp be a cycle of period p, and suppose that the cycle is attractive. By 

definition, this implies that xi is an attractive fixed point of the dynamical system {lR; fP}, for some xi in the cycle. By the 

result above, we have I (f P)' (xi) 1 < 1 for this point. This says that 

Notice if this condition holds at xi it holds at any x j in the cycle since the expression is the same product. If this product is 

less than 1, it follows that for at least one of the elements in the product If' (x j) I < 1, but it can also be the case that some of 

them do not satisfy this condition, only their product must. 

IV.5.9 Since we would like our IFS to have an assodated shift dynamical system equivalent to 

{ 
1 - 2x X E [0, 4J 

f(x) = 
2x-1 XE[4,1] 

we look at an IFS which is the inverse off (x) on the regions in: question. Consider the IFS 

1 1 1 1 
{[0, 1]; 2x + 2' -2x + 2} 

The attractor of this system is [0, 1] as follows: 

1 1 1 1 
W([O, 1]) = 

2
([0, 1]) + 2 U -2([0, 1]) + 2 

1 1 1 1 
= [O, 2] + 2 u [- 2' O] + 2 

1 1 
= [2' 1] u [0, 2] = [0, 1] 

That this IFS is just-touching results from the intersection above containing the point 4, and the fact that CJ = (0, 4) U ( ~, 1) 

suffices for the open set. The points of multiple addresses are the images of this point. Defining the associated shift 

dynamical system, we have 
1 

'{ w! 1
(a) if a E (4, 1] 

S(a) = _1 • 1 
w 2 (a) 1f a E [0, 2) 
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The point of intersection yields 

so we define 

and there is no conflict. This explicitly gives S(a) as 

{
2a-1 aE[!,1J 

S(a) = 1 - 2a a E [0, !J 

which is clearly equivalent to f(x) with the homeomorphism being the identity on [0, 1]. 

IV.5.10 When p = 0 we have 

If we let y = 0, then 

1 
w 1(x, 0) = (4x, 0) 

1 3 
w 2(x, 0) = (4x + g' 0) 

1 1 
w 1(x, 0) = (4x + 4, 0) 

so that for any point on the x-axis, w;(x, y) is also on the x-axis. We now consider the image of the set [0, 1]. This maps 

to three subintervals, each of length ~ and arranged with their left endpoints at 0, ~ and ~, respectively. The set formed by 

repeated iteration removes two subintervals from each interval formed by the previous iteration, and the attractor must be 

limn~oo wn([O, 1], 0). Thus for p = 0, the attractor is a Cantor set. 

For p = 1 we have 

which is a just-touching Sierpinski triangle. 
We next prove that for fixed a E I:, the map ¢(p)---+ A(p) is continuous in p, for p E [0, 1]. We may write the three 

transformations in matrix notation as w; (x) = Ax + t;, where 



so that we have 

in general, we have 

-(I¥ 0 ) A- 0 I+p 
4 

i = 1 

{ 

(0, 0) 

ti = ( ~' f) i = 2 
cq. o) ; = 3 

Wa 1 o Wa2 o · · · o Wan(x) 

= Anx + An-Itan + An-2tan-I + ... + Ataz +tal 

so that 

n oo 

c/J(p) = }l~ Anx + L Aitai+I = L Aitai+I 

i=O i=O 

Writing this out for fixed a, and letting 

we have 

( 
"00 (.!±E)i ) 

A.. ( ) = Li=O 4 eai+I 
'f/a P "oo ( .!±£ )i f" 

Li=O 4 Jai+I 
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which are continuous functions of p with a fixed (they are, for fixed a, differentiable in p, being a form of Taylor series 

expansion). 
That the set J(x) = {y E A(O): 8(y) = x} where 8(x) = ¢(1)(¢(0)- 1(x) is the set of y whose paths meet at xis true by 

construction. 

Answers to Chapter IV, section 6 

IV.6.3 The three points in question have addresses 13 = 31, 12 = 21, and 23 = 32. Defining S(a) = w! 1(a) forces the point 

a to become 12, which is eventually periodic since T(12) = 2, a fixed point. Similarly, if we define S(a) = w:2 1(a) we force 

the point a to become ii which since T(21) =I is also eventually periodic. The points b, care analyzed similarly, being 

forced to either of the two addresses, which after one iteration land on the fixed points 2 or 3. 

IV.6.4 If we create an IFS for the equilateral Sierpinski triangle in which we rotate the subtriangle corresponding to w2 (~) 

by 240° and that corresponding to w 3(£) by 120° we get a just-touching Sierpinski triangle in which the multiple address 

points correspond to equating the addresses 

3I =2I 12=22 

Since these points, regardless of which map is used in the equation S(a) = wi-
1(a) map to the points 3, I, and 2, on one 

application of the map, S(a) may be chosen without conflict. Specifically, the IFS in question is 
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w.(;) =0 D G) 
w2(~) 
W3 (~) 

(
.!. cos240o 

- 2 
- ~sin 240° 

(
.!.cos 120° 

- 2 
- ~sin 120° 

-.!. sin 240° ) ( x ) ( .!. ) 
~ 

2

cos 240° y + 0 
-.!. sin 120° ) ( x ) ( .!. ) 
~ 

2

cos 120° y 0 
IV.6.6 The IFS {1:; t1, ... tN} where tn = na has by definition an associated shift dynamical system defined by S(a) = 
t~ 1 (a) where a= a 1a2 ···.Then S(a) = a2a3 ···,which is exactly T(a). To see whether two such dynamical systems can 
be equivalent for different values of N, we use exercise IV.5.1, namely iftwo dynamical systems are equivalent, then a cycle 
of period p maps to a cycle of period p. Given N 1 > N2 , we have for either that any of the cycles of period 1 are given by n 
where 0 :::: n :::: N;. These are distinct, and if() were the homeomorphism establishing the equivalence, would map to distinct 
fixed points. But this system for 1:N

2 
has N2 such points, which is less than N 1• Thus 

() : bN! ---+ bN2 

either does not map fixed points to fixed points or is not one-to-one, in other words there is no such equivalence. 

IV.6.14 First we prove, as claimed in the text, that 

A= {(¢(a), a): a E I:} 

is the attractor of the lifted IFS. To do this we need to confirm hyperbolicity, in order to assert the existence of a unique fixed 
point in 'H(X x I:). Let the metric on X be denoted by dx and that on I: be denoted d'£. To make things simple, we use a 
Manhattan metric on the product space, namely, 

We have, by definition, 

wJ(x, a))= (w;(x), ia) 

and we must show that this is a contraction. w; are the maps of the original IFS, and we may assume that that system has a 
contractivity of s. Then 

1 00 Ia, . - a2 .1 
d(w;(x 1 , a!), w;(x2, a2)) = dx(w;(x,), w;(x2)) + --~ 1 1 

N + 1 f-;:t (N + 1)1 

1 
< sdx(x,, x2) + --d'£(a,, a2) 
- N + 1 

Let m = max(s, N~l ). Then 0 < m < 1 and 

d(w;(x 1, a 1), w;(x2, a2)):::: md((x1, a 1), (x2, a2)) 

so each map w; is contractive, and the IFS is hyperbolic. Consequently since X and I: are complete, and therefore so is 
X x I:, we have the attract or A is the unique fixed point in 'H (X x I:) of the map 

N 

W(B) = U u\(B) 
i=l 

for B a compact, non-empty subset of X x I:. We now verify that the attractor A is as given in the text. For any element of 
the set A= {(¢(a), a): a E I:} and some w; we have 

w;(A) = {(w;(</>(a)), ia): a E I:} 



but ia = ¢- 1(w;(¢(a))) so the image W(.A) is in A. Let a EA. Then a is given by 

a= (W171 (T(a)), a 1T(a)) 
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so a is in the image of an element of A under W-171 • Hence W (A) = A and this is the unique attractor of the lifted IFS. Finally, 

to complete Lemma 1, we have 

w1(A)={aEA:a=(x, 1a)} 

w2(A) ={a E A: a= (x, 2a)} 

These sets are points with mutually exclusive sets of second coordinates, so their intersection is empty. Hence A is totally 

disconnected. 

IV.6.15 Let {xn} be any orbit of the associated shift dynamical system {A; S}. Then by definition, S(xn) = Xn+l = w,:- 1(xn) 

for some w,.. Thus, regardless of the rule for assigning S(a) on overlapping regions, there is a rule of assignment which 

assigns either w} 1 or w;- 1 to each application of S to the orbit. Let r be the address such that if S(xn) = w;- 1(xn+l then 

rn = i. Let 

Then ¢(an)= Xn, an+ I= T(an), so that the orbit {(¢(an). an)} of the shift dynamical system {A; S} has the desired property. 

IV.6.16 By definition, the lift is (a1 , a2) ~----+ (Ta1, a 11 a2) which looks like the shift automorphism: it takes the symbol off 

the first element and puts it on the second. The suitably defined inverse would then be to take a symbol off the second 

element and put it back on the first. This defines a system on :E x :E, as the space of shifts, which is identical to the shift 

automorphism. 

Answers to Chapter IV, section 7 

IV.7.2 .i0 = 212 consequently the true orbit of .i0 is given by 

.io = 212 

Tn(.io) = 2 
T(.i0) = 12 

for n ::=: 2 

By contrast, we have .in = 12 after the first iteration, so that d (.in, Tn (.i0)) = 1/3 after the second iteration, under the code 

space metric for two symbols. We wish to find a shadowing orbit. Taking () = 1/3 and s = 1 j3 we need 

s() 1 
d(.in, Xn) :S -.- = -

1- s 6 

Any real orbit which has the symbol 2 in it will eventually be separated from 12 by at least 1/3 so the only possible choice 

for a shadowing orbit is T. Computing the distance yields 

-- 1~ 1 1 1 
d(l2 1) = - ~- = -- - 1 = -

' 3 n=l 3n 1 - ~ 6 

which satisfies the shadowing theorem. 

Answers to Chapter IV, section 8 

IV.S.l It suffices to show that the positive rationals are dense in the positive reals, since the function () (x) = - x will show 

that the negative rationals are then dense in the negative reals. To this end let r E ~. and let its decimal expansion be 

.r1rzr3 .... Then the sequence of rationals 

1 

converges to r. Hence every number r E ~ is a limit point of the rationals, and since the closure of a set contains its limit 

points, the closure of the rationals is the reals. Hence the rationals are dense in ~. 
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~· 

IV.8.2 The sequence in question is an enumeration of the rationals in [0, 1], i.e. Q n [0, 1]. Since Q is dense in IR, Q n [0, 1] 
is dense in [0, 1]. 

IV.8.3 The function f (x) = 2x mod 1 can be viewed as follows: On the circle of radius 1 j2n, that is, of circumference 
1, define x(O) to be the distance along the circumference in the counterclockwise direction from the positive x-axis. Then 
taking the usual equation of angles !9 = e + 2n = e mod 2n, the function e ~---+ 2!9 gives us our function on [0, 1]. If e is not 
a rational number times 2n, it cannot be return to itself under this map, since 2ne = e implies that 2ne = e + mn for some 
integer m. Hence any irrational number times 2n for e results in a dense orbit on the circle. 
IV.8.4 The dynamical system {[0, oo); f(x) = 2x} is sensitive to initial conditions as follows: Choose 8 = 1, and for any 
E > 0 let y-=/= x, andy E BE(x). Then since d(f(x), f(y)) = 2d(x, y), we have d(fn(x), fn(y)) = 2nd(x, y). Choose n, 
given y such that 2nd(x, y) > 1. In particular, for any n > N where 2N > 1, d(fn(x), fn(y)) > 8. 

The dynamical system { [0, oo); f (x) = .5x} is not sensitive. In this case, we have d (f (x), f (y)) = 0.5d (x, y) so that for 
any E > 0 and any 8, there is anN such that for any y E BE(x) d(fn(x), fn(y)) = (0.5)nd(x, y) is less than 8. 
IV.S.S Let :E be the code space on two symbols, and letT be the shift operator. Then {:E; T} is sensitive to initial conditions: 
Choose 8 < ~. Then if x, y E :E and x -=/= y, there is an n such that Xn -=/= Yn. Then since 

Tn(x) = Tn(XJX2 .. . ) = XnXn+i · · · 

Tn(y) = Tn(YIY2 .. . ) = YnYn+i · .. 

it follows that 

d(Tn(x), Tn(y)):::: lxn; Ynl > 8 

Hence whatever E is chosen, we may find a y and ann satisfying sensitivity to initial conditions. 
{:E; T} is transitive as well: Let U, V c :E be open sets. Then we can choosey E V and 8 > 0 such that B8(y) c V, and 

x E U and E > 0 such that BE (x) c U. Choose n such that ~ < E. Then any v E :E such that 

V = X1X2 ... XnV1V2 ... E BE(x) C U 

Similarly, choose M such that for any m > M, 

U = Y1Y2 · · · YmU1U2 · · · E B8(y) C V 

Then any a E :E of the form 

is in v. Tn(a) = XIX2 ... XnC!JCf2 .. . , which is in u. Hence Tn(V) n u -=1= 0, as desired. 
IV.8.6 Suppose that {X; f} and {Y; g} are equivalent under the homeomorphism e: X~ Y. Let U, V c Y be open sets. 
Then because e is continuous, e-1(U), e-1(V) are open sets in X. Since {X; f} is transitive, there is ann such that 

e-1(U) n fn o e-1(V)-=!= 0 

Let X be a member of this non-empty intersection. Then e (x) E u and X E fn 0 e -I (V) implies 

e o e -I (U) n e o fn o e -t (V) = U n gn (V) -=!= 0 

so that {Y; g} is also transitive. Reversing the roles of e and e -i, which we may do because e -I is also continuous, yields 
the converse. 

Answers to Chapter V, section 1 
V.1.3 Let (X, d) be a metric space, A c X with A= {a, b, c}. We wish to calculate the fractal dimension of A. Let 
r = minx.yEA(d(x, y)). Then for any E < r/2, we have N(A, E)= 3. Hence the fractal dimension is 

ln3 
D(A) =lim-- = 0. 

E---+0 ln(ljE) 
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V.1.6 Using the Box Counting Theorem to cover the classical Cantor set C with boxes' of size 1 13n, we will get 

D = lim (lnN(C)) . 
n--+oo ln 3n 

We need to calculate N'nCC). It takes 1 = 2° box when n = 0, subdividing and deleting the middle third gives 2 = 21 boxes 

when n = 1. On each subdivision and deletion of a set of middle thirds, we divide each interval covered by a box of size 

1/3" in thirds and retain two of these thirds, so that it will take 2n+l boxes of size 1/3n+l to cover the set at the next step. 

Hence Nn (C) = in, and we have 

. ln(2n) . nln2 ln2 
D(C=lzmn_,. 00-- = hm -- = -. 

ln 3n n--+oo n ln 3 ln 3 

V.l. 7 Use boxes of side length 1 12n. For each quartering of the figure, and its subdivisions, we divide each box into 4 parts, 

and one part contains none of the fractal subset points. Consequently, on each subdivision, the number of boxes increases 

threefold. There is one box of side length 1/2° hence 

ln 3n In 3 
D(Figure) = lim -- = -. 

n--+00 ln 2n ln 2 

V.l.S One way to choose the boxes is to take side lengths 1 j2n, with the first subdivision running horizontally from just 

below the bottom of the caption, the vertical running vertically from the lefthand 'tip' of the bottom piece. Do it with a ruler 

to assure yourself that this divides the figure into three congruent pieces, and leaves the fourth of the four squares empty. 

Following the lead of the previous problem, the dimension is :~ ~. 

V.1.9 We wish to show that using a Caritor set constructed by removing middle thirds on the interval [0, 3] has the same 

fractal dimension as the usual Cantor set. We start with 2° intervals of length 1/3°- 1
• The rest of the procedure is the same, 

except that we now have 

. ln(2n) . n ln 2 In 2 . n ln 2 

D(Big Cantor)= !~IIJo In(3n-1) = }-TJo (n- 1) ln 3 = ln 3 !-TJo n- 1 ln 3 

V.l.lO Let A c ~ 2 be a compact non-empty subset. A has fractal dimension D 1 in the Euclidean metric, and D2 in 

the Manhattan metric. The metrics are equivalent, consequently there is a transformation () : ~ 2 --* ~ 2 which forms the 

equivalence. By Theorem 1.2 in Chapter V then, we have D 1(A) = D 2(0(A)) or D 1 = D2 . 

( 
1/2 0 ) V.l.ll Let B = 
0 112 

, and define two IPS 

with attractor A 1, and 

with attractor A 2• 

These are two Sierpinski triangles, one with right angle at the origin, and hypotenuse between (1, 0) and (0, 1 ), the other 

with right angle at (1, 1) and hypotenuse between the origin and (0, 2). We rotate one into the other, expanding by a factor 

of two, to generate an equivalence between the two systems. This requires an invertible affine map. One which works is 

The two attractors are metrically equivalent, and therefore have the same fractal dimension. 
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Answers to Chapter V, section 2 

V.2.3 Let B be given by 

Then we can use the following IFS to generate •: 

Wt=Bx 

Wz = Bx + ( 1 ~2 ) 
w 3 = Bx + ( 1~2 ) 

-------------

Wz = Bx + ( ~j~) 
Each map has a contractivity factor of 1/2, so the fractal dimension by Theorem 2.3 in Chapter V is given by 

1j2D + 1j2D + 1j2D + 1j2D = 1 

This yields 1j2D = 1/4 or D = 2 as desired. 

V.2.4 We get the fractal dimension of the Cantor set from the IFS 

1 1 2 
{[0, 1]; Wt (x) = 

3
x; Wz(x) = 3x + 3" }. 

Each map has contractivity 1/3 so we have 

1j3D + 1j3D = 1 Or 1j3D = 1/2. 

Then-DIn 3 = -ln 2 or D = :~;.to the equation 3(1/2D) + (2/5)D = 1. Solved numerically, this gives D ~ 1.874. 

V.2.5 The attractor contains 3 images of itself scaled by 1/2, with two of them rotated by n /2 and shifted. Assuming that 
the attractor is centered at the origin, and extends two units in either x-direction and unit in either y direction, the IFS is 
given by 

where B is given by 

Wt =B (;) 

Wz = B (;) + (! {~ 4 ) 

Wz = B (; ) + ( -;~~2 ) 

0 -1/2 
1/2 0 

The scaling factors are all 1/2, leading to the equation 3j2D = 1, or D = :~~. 
V.2.8 This attractor has 6 maps, 3 at 1/2 scale, 3 at 1/4 scale. It is overlapping, we need an upper bound which we get from 
Theorem 3.1 in Chapter V. We have, 

Rewriting this as 

3 · (lj2)2
D + 3 · (lj2)D- 1 = 0 



yields 1/2D = ±(ffi/6)- 1/2 or 

D = lln(ffi/6- 1/2) I 
ln2 

V.2.9 Let wi : !W. 7 -+ !W. 7 for i = 1, 2, be an IFS with scaling factors s1, s2 respectively. 
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That the new maps are similitudes follows from the general fact that the composition of similitudes is a similitude. To see 

this write the two similitudes as 

r1R 1Re1 o r2R2Re2(x) 

Since reflections are diagonal, they commute with the other matrices, the scalars commute as well. The composition of 

rotations is a rotation, the composition of reflections is a reflection, multiplying scalars together is a scalar. We are left with 

r1r2R1R2Re1 Re2 

which is a similitude. 

The new contraction factors are 

Using the original system in Theorem 3.1 in Chapter V, we have 

\s 1\D + \s2 \D = 1 

The new system yields 

\s~\D + 2\s,s2\D + \si\D = (\s1\D + \s2\D)2 = I 

The calculation of dimension remains unchanged, since the first equation is a solution of the second. 

Answers to Chapter VI section 3 

The exercises in Section 3 are all experimental in nature. 

Answers to Chapter VI section 4 

V.4.1 The fact that M(A, p, E) is a non-increasing function of E is proved by looking at the sums over which the infimum is 

taken. Suppose E1 < E2 and that M(A, p, E 1) < M(A, p, E2). Since any sequence {A;} which qualifies for E 1 is a sequence 

of sets with diameters less than E2 , it follows that by taking the same sequence in the computation of M(A, p, E2), the 

infimum must be less than or equal to the sum generated by this sequence. But this is a contradiction. 

V.4.2 Let A= {a, b, c, d, e, f, g} be a subset of (IW.2,Euclidean). Let 2r be the minimum distance between points in A. By 

choosing E < r, we must, for any E cover the set with at least 7 sets A 1, ... A7 • We can also cover A exactly with 7 sets of 

any epsilon of this size. Consequently, the infimum is generated for any p by the limit of the finite sum as E -+ 0 which is 0 

for any p > 0. When p = 0 the sum is exactly 7. 

V.4.3 Let A be a bounded countably infinite subset of !W.2, under the Euclidean metric. Let p: z+-+ A be a rule of 

assignment which takes each positive integer i to an element ai E A, where p is I-I and onto. Such a function exists by 

definition of countabiiity. Then the sequence of subsets Ai = {ai} of A is in A, since their union is the set A. But the diameter 

of any singleton set in !W. 2 is zero, so that for any p > 0 

00 

l)diam({a;}))P = 0 
i=l 

Hence for any p > 0, M(0, p, E)= 0 for any E > 0, consequently, M(A, p) = 0. On the other hand, if p = 0, then for any 

non-empty subset of A, (diam(Ai ))P = 1. For each n > I, there is an E > 0 such that there are more than n disjoint subsets 

of A, hence M(A, 0) = oo. 
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V.4.4 For p = 0, given E < -jn, there are at least 2n subsets in any sequence of subsets of diameter less thanE which cover 
C. To see this, the endpoints of 2n disjoint intervals of diameter -{n are elements of C, and can not lie in the same subset. 
Hence as E--+ 0, M(C, 0, E)--+ 00. Since M(C, 0) is the supremum of these numbers, it is also infinite. For p = 1, given 
E > 0, we may choose the smallest n such that -jn < E, and cover C with exactly 2n subsets with diameter < E, by taking the 
intersection ofC with subintervals of [0, 1]. The infimum for any E > 0 is the value of the sum as n--+ oo, which is 

2n 
lim- =0 

n--->00 3n 

Since M(C, p, E)= 0 for any E > 0 we have M(C, 1) = 0. 
V.4.5 The limit scheme forces a minimization of the number of sets by the diameter of sets. Suppose we attempt to find 
M (A, p) such that this number is less than infinity, but non-zero (this is not always possible). For the Sierpinski triangle, we 
may proceed by using a sequence of E values that are the diameters of the subtriangles. That this is sufficient is guaranteed 
by problem 1. For any p then, the values calculated for exactly the sequence of subtriangles leads to the infimum desired. 
We know that calculating on the subtriangles, we can minimally cover A with 3n triangles of diameter d. 2-n where d 
is the diameter of A. Then we have, for each n, p a value of d · 3n · 2-np as a candidate for the infimum. Notice that as 
n --+ oo for p small, this is an increasing sequence, consequently our infimum at fixed n, pis the value at n. For p large, the 
sequence converges to 0, so that we have one infimum for all E values. These p values correspond to infinite or zero values 
for M(A, p, E). The value at which we will get a finite nonzero number is when, independent of n, we have 2np = 3n. This 
value is p = log2 3 =(In 3)/(ln 2). At this value.fue terms in the sequence are identically d, the diameter of the Sierpinski 
triangle. 

V.4.6 As the following proof will indicate (exercise V.4. 7), to get strict inequality one must have a situation where it takes 
more sets which are box shaped to cover A than if another, better shape is chosen. 
V.4. 7 We have by definition, 

1
0 N: 

D(A)= 1m 1 E--->0 -
E 

for the fractal dimension, where the diameter of each box is E times some fixed constant. Fixing E > 0 and rearranging this 
formula, we have 

D(A) In ( ~) =InN: 

1 
ED(A) =N: 

N 
1 =N:ED(A) = L ED(A) 

i=l 

Since for A; chosen such that A;= B; n A, that is the intersection of each box with the set A, we have diam(A;) :::: B;, it 
follows that for this choice of E, M(A, D(A), E)< oo, since it must be less than or equal to this choice of A;. Since D(A) 
converges, this must then be the case for every choice of E, and we have that 

00 

lim L(diam(A;))P:::: 1 
E--->0 

i=l 

for p = D(A). If this sum is zero, then DH(A):::: D(A), if it is not, then DH(A) = D(A). Notice that if M(A, D(A)) = 0, 
we cannot automatically conclude that these two are unequal, if it is non-zero then they are equal. 
V.4.10 Let A 1, A 2 E (~m.Euclidean), be two metrically equivalent sets, and let e: A 1 --+ A 2 be a metric equivalence. Then 
for any B c A 1 , we have diam(B(B)):::: C1diam(B) and diam(B):::: C2diam(8(B)) for some constants C1, C2• Conse
quently, if M(A 1 , p) = oo, then for any choice of subsets, and E > 0, we must have L:~ 1 (diam(B;))P--+ oo. Thus for 
any choice of subsets on A 2 this sum for the images of B; is equal to .L~, (C2diam(B;))P which is therefore also infinite. 
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Hence M(A2, p) = oo. Conversely, iffor some p, we have M(A~o p) = 0, then the infimum over E values for all choices 

of subsets of A 1 is zero. Consequently, for any 8 > 0, we may find a set of subsets satisfying diam(C;) < E for which 

M(A, p, E) < 8 for every epsilon by choosing a sequence of subsets whose sum is less than 8/ C1 and using the metric 

equivalence to generate the sequence in A2• Consequently M(A2, p) = 0 as well. Obviously by using 8- 1, and reversing 

the role of the constants, we can do the same, given a value on A2• Since the two sets agree on infinite and zero values for 

M(A, p), then the point at which the two values change are the same. Hence DH(A 1) = DH(A2). 

V.4.11 Proving that a metric equivalence generates the same Hausdorff-Besicovitch dimension, is identical to exercise 

V.4.10. The second statement, that the Hausdorff D-dimensional measure M(A, DH(A)) is not preserved may be shown 

by example: Looking at example V.4.8, we may take a Sierpinski triangle with vertices at (0, 0), (2, 0), and (0, 2). Then for 

each step n in the example, we cover the triangle with 3n closed disks of diameter 2~ · -:]n, and the example proceeds as in 

the text, except that 

Consequently we may take the original Sierpinski triangle, with the metric d2 (x, y) = 2 · d (x, y), or twice the Euclidean 

metric, and obtain a different value for the Hausdorff p-dimensional measure. 

V.4.12 They should be (inches) 1.391 . 

Answers to Chapter VI, section 1 

VI.1.2 The Taylor expansion for sin(x) near 0 is given by 

oo (-l)nx(2n+l) 1 1 
sin(x)=L =x--x3 +-x5 +··· 

n=O (2n + 1)! 3! 5! 

giving a linear approximation of f.(x) = x. Let E > 0. Then a linear coordinate transformation from [0, E] x [0, E] to 

[0, 1] x [0, 1] is given by 8 ( (x, y)) = (;, ; ) . With the change of coordinates we still get f.' (x') = x', and the graph of this 

function, Lis (x, x) E [0, 1] x [0, 1]. Transforming the function y = f(x) = sin(x), gives us 

y' = j'(x') = 8 0 j 0 8- 1(x') = Slll(EX) 
E 

so the graph G is the set (x, sin~EX)) E [0, 1] x [0, 1]. 

The Manhattan metric distance between a point g = (x, sin~EX)) on G and a point l = (y, y) on L is given by 

sin( Ex) 
d(g, l) = lx - y I + 1-- - y I 

E 

The shape of an E ball in Manhattan metric is a square with vertical and horizontal comers. So to get the point on L closest 

to a given point g E G, we look for the intersection of the smallest isosceles right triangle with right angle at g intersecting 

L, which since the slope of L is 1, intersects from (x, x) to (sin; EX), sin; EX)) at the same Manhattan distance. Hence for any 

g E G the Manhattan distance to L is 

sin( Ex) 
d(g,L)=x--

E 

The derivative of sin~EX) is decreasing, and this function is always less than x in this domain, hence the distance from G to L 

is given by the maximum, reached when x = 1, or 

d(G, L) = 1 - sm(E) 
E 

Going the other way, we base an isosceles right triangle with the right angle at (y, y) and look for the smallest such triangle 

intersecting G. Once again, since the slope of G is decreasing, this will touch when we take the first coordinates equal, 



490 Selected Answers 

hence 

d(f, G)= y- sm(Ey) 
E 

and this is maximized at ( 1 , 1). Hence 

d(L, G)= 1 - sm(E) = d(L, G)= h(L, G) 
E 

Noting that this is indeed decreasing as E -+ 0 since 

we calculate 

or E less than approximately .1. 

. sin(E) 
hm--=1 
E--+0 E 

h(L, G)= .01::::} .99E = sin(E) 

Answers to Chapter VI, section 2 

VI.2.2 Let 
X -Xi-1 

f(x) = Fi-1 + (Fi - Fi-1) 
Xi -Xi-1 

The first step is to show that if (x, y) E G then so is wi(x, y). Let (x, y) E G, that is (x, y) = (x, j(x)). Then (x, y) goes to 

(
aix) + (ei) 
CjX jj 

or 

To compute f (x) for the transformed x we do 

Dividing by xi -Xi- I yields 

Xi - Xi- 1 XNXi-i - XoXi 
---x+ -xi 
XN- Xo XN- Xo 

Xi - Xi- 1 XNXi-1 - XoXi Xj- 1XN- Xj-1XO = x+-----
x N - Xo X N - Xo X N - Xo 

= Xi - Xi- 1 + Xj_ 1Xo- XoXi 

XN- Xo XN- Xo 

=(X- Xo) (Xi- Xi- 1 ) 
XN- Xo 

X -Xo 

XN -Xo 

and multiplying by (Fi - Fi_ 1) and adding Fi- 1 yields 

(Fi - Fi_,)(x- xo) Fi-1XN- Fi-1Xo 
--------------+------

XN- Xo XN- Xo 

- (Fi- Fi-1) Fi-1XN- FjXQ-
- X+ - CjX + jj 

XN- Xo XN- Xo 
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hence 

N 

Uw;(G)cG 
i=I 

To show equality it suffices to show that the endpoints of the graph map to the endpoints of the i'h interval under wi hence 
showing that the map is onto. We substitute x0 , xN for x above to get 

so that the union of the wi is onto. Hence 

N 

Uwi(G)=G 
i=I 

as desired. 

VI.2.S For this exercise we are asked to find an IFS whose attractor is a parabola passing through the points (0, 0), (1, 1), 
and (2, 4). There is only one such parabola of the form y = Ax2 + Bx + C, which we will find, and its equation is 
f (x) = x 2

• The IFS is of the form 

~I)(;)+(~:) 
~)(;)+(~) 

which we can insure passes through the interpolation points by using the equations for the various terms given in the text. 
To insure that this IFS has the parabola y = f (x) as its attractor, we substitute a point from this graph into the equation to 
yield 

so that in both cases, 

We calculate 

yielding 

WI (f;x)) 

w2 (f;x)) 

ei = ~=~ = 0 

e2 = ~=~ = 1 

fi = ~=~ -di ~=~ = 0 

h = ~=~ -d2 ~=~ = 1 

1 2 1 2 (2x) = ("2- 2di)x + dix 

1 
(2x + 1)2 = (1- 2d2)x + d2x 2 + 1 
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These are solved by equation of coefficients: 

and 

This leaves c1 = 0, and c2 = 1. We have 

1 

1 
- =dt 
4 

-- 2dt =0 
2 

1 
dt=-

4 

1 2 3 2 4 X + X + 1 = 2 X - 2d2x + d2x + 1 

1 
- =d2 
4 

3 
1 =-- 2d2 

2 

VI.2.10 By exercise 11.2.11, the Euclidean and Manhattan metrics on IR 2 are equivalent, so it suffices to show that the metric 

in Theorem 2.1 in Chapter VI is equivalent to the Manhattan metric OQ IR2• We do this by looking at the three possible cases: 

If B = 1 the two metrics, d from Theorem 2.1 in Chapter VI and dM the Manhattan metric, are identical and therefore 

equivalent. 
If B > 1, then since t91Yt - Y2l 2: IYt - Y2l we have d((xJ, YJ), (x2, Y2)) 2: dM((xJ, YJ), (x2, Y2)), and since t lx1 - x21 .::::: 

lx1- x2l we have 

1 
{jd((xt, Yt), (x2, Y2)) ::S dM((Xt, YJ), (x2, Y2)) ::S d((Xt. YJ), (x2, Y2)) 

and the metrics are equivalent. 
Finally, if t9 < 1 then we have, by the same argument 

t9dM((Xt. Yt), (x2, Y2)).::::: d((Xt, Yt). (x2, Y2)).::::: dM((xJ, Y1)Ax2, Y2)) 

so they are equivalent in this case as well. 

VI.2.13 If we look at any IFS of the form {IR2
; w 1 (x, y)}, then if this IFS is hyperbolic, by definition w 1 is a contraction 

mapping, and the attractor of the IFS is a single point. But for N = 1, the curve we are attempting to interpolate has 

two interpolation points. Hence the attempt will always fail. Another way to look at it is that by exercise Vl.2.5, these 

interpolations can always be arranged to be quadratic, a quadratic interpolation always requires at least 3 values. 

Vl.2.14 By definition, we have 

(TJ)(x) = Cnl;;- 1(x) + dnf(l;;- 1(x)) + fn 

where fn(x) = anx +en, on each subinterval [Xn-1• Xn]. We need to show that for f E :F, T f is an interpolation function. It 

is shown in the text that T f E :F and hence does the proper job at the endpoints. What is necessary is to show that T f takes 

each function f to a function which agrees with fat the internal interpolation points. By definition, t;;- 1 takes Xn-I to x0 and 

Xn to xN. Because f E :F, f takes Xo to F0 , and XN to FN, and we have 

(Tf)(xn-d = CnXo + dnFo + fn 

(Tf)(xn) = CnXN + dnFN + fn 



into which we substitute the definitions of Cn, dn, and fn, to get 

1 
(Tf)(xn-1) = ---(FnXo- Fn-1Xo- dnFNXo + dnFoxo 

XN -Xo 
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=quad+ dnFoXN- dnFoxo + XNFn-1- XoFn- dnxNFo + dnxoFN) 

= Fn-1 
1 

(Tf)(xn) = ---(FnXN- Fn-1XN- dnFNXN + dnFoXN 
XN -Xo 

+ dnFNXN- dnFNXo + XNFn-1- XoFn- dnxNFo + dnxoFN) 

=Fn 

as desired. Since T f interpolates the data for any f E F if f is a fixed point of the transformation, then by definition, the 

graph off is the attractor of the prescribed IFS, and f is an interpolation function to begin with. 

VI.2.15 We wish to construct an interpolation using quadratic scaling, in which the Wn (x, y) take the form 

As before, we need to take the data pairs (x0 , F0) to (xn-t. Fn_ 1) and (xN, FN) to (xn, Fn). Since the transformation in x, is 

the same, we may define an, en as before, namely 

and 

This will insure that the first coordinates of the data pairs are mapped properly. For the second coordinates, we must satisfy 

the equations 

Fn-1 = CnXo + dnFo + KnFl + fn 

Fn = CnXN + dnFN + KnF~ + fn 

Notice that Cn and fn must coincide with the linear case when Kn is zero. This gives 

where we need to fill in for X 8 , and 

There are no quadratic terms in the equations to be satisfied, consequently, these must cancel at x0 , xN, giving us 

Dividing out Kn• and subtracting these yields 

KnFl = KnXcXo + KnXf 

KnF~ = gnXcXN + KnXf 

F~- Fl = (XN- Xo)Xc 

Xc = F~- FJ 
XN -xo 

Putting this back into the first equation after dividing out Kn• yields 
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so that we have 

2 F~- FJ 
X 1 = F0 - x0 

XN- Xo 

xNFJ- xoFJ- F~xo + FJxo 

XN -Xo 

XNFJ- XoF~ 
XN -Xo 

Fn-Fn-i FN-Fo F~-FJ 
Cn = - dn - gn ___;_;__---=._ 

X N - Xo X N - Xo X N - Xo 

xNFn-i- xoFn XNFo- XoFN XNFJ- xoF~ 
fn = - dn - gn ---=---_.:..;_ 

XN- Xo XN - Xo XN - Xo 

to complete the coefficients for the quadratic case. 

VI.2.16 Consider the integral 

[

XN 

I= f(x)dx 
xo 

which here is well defined, since f (x) is continuous and of bounded variation. We assume that f is the fixed point of the 

fractal interpolation transformation, i.e. T f = f, where (F, d) is the metric space of functions which match the endpoint 

data, and are continuous. Then we have 

where 

and 

We need to show that under the standard assumptions, Ia I < 1, we have 

N N 

lal =I Landnl :S L landnl 
n=i n=i 

and 

and 

The Xn are ordered, consequently anXo +en < anXN +en which implies an> 0, hence landnl = anldnl, and therefore 

N 

lal :S Lanldnl 
n=i 

which implies Ia I < 1. To show that 

[

XN 

fo(x)dx = f3 
xo 

we merely note that f3 is independent of dn, and the result follows from above. 
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VI.2.17 We want the integral 

1
XN 

/1 = xf(x)dx 
xo 

under the same assumptions as in exercise VI.2.16. Once again since T f = f, we have 

{XN N {xn 
/1 = lxo x(Tf)(x)dx = ~ lxn-l x(Tf)(x)dx 

so we transform variables. 

and we replace x with x~:n to write the same integral as 

The first integral can be written as 

The other half looks like 

which using the notation /0 for the integral I in exercise VI.2.16 yields 

We now let 
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Then we have 

/1 = y + E/1 - (¢/o + 8) 

y- (¢/o + 8 

1-E 
y - 8- (¢{3/(1 -a) 

1- E 

where we have used the notation of VI.2.16 for the integral /0 . We therefore must restrict the dn such that E =f. 1. Once again, 
y, 8 are independent of dn, and we arrive at the integral / 1 = y- 8 in the case that dn = 0 for all n. 

Answers to Chapter VI, section 3 

The exercises in Section 3 are all experimental in nature. 

Answers to Chapter VI, section 4 

VI.4.1 Define the metric on ~ x Y by 

where a= max{ai: i = 1, ... , N}. 

dy(Mn(a, y), Mn(b, y)) :S cia - bl 
dy(Mn(X, a), Mn(b, y)):::; sdy(a, b) 

and(}= 1:;ca. c, s > 0, and under the usual assumptions about the ordering of xi, 1 >a > 0. We wish to show that under 
these assumptions, the IFS is hyperbolic with respect to the metric d. Under each map, (x, y) r+ (Ln(x), Mn(X, y)) so that 

d(wn(XJ, YJ), Wn(X2, Y2)) = d((Ln(XJ), Mn(XJ, YJ)), (Ln(X2), Mn(X2, Y2))) 

= ILn(XJ)- Ln(X2)1 + (}dy(Mn(XJ, YJ), Mn(X2, Y2)) 

= lanXJ - anx21 + (}dy(Mn(XJ, YJ), Mn(X2, Y2)) 

= lanllxi- X2l + (}dy(Mn(XJ, YJ), Mn(X2, Y2)) 

:S alx1 - X2l + (}dy(Mn(XJ, YJ), Mn(X2, Y2)) 

The second half of this expression can be decomposed using the triangl~ inequality to read 

dy(Mn(XJ, YJ), Mn(X2, Y2)) 

:S dy(Mn(XJ, YJ), Mn(X2, YJ)) + dy(Mn(X2, YJ), Mn(x2, Y2)) 

:::; clx1 - x2l + sdy(yJ, Y2) 
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Putting this together with the statements above, we have 

d(wn(Xt, Yt), Wn(Xz, Yz))::::: alxt - Xzl + t9clxt- Xzl + st9dr(Yt, Yz) 

2a+1-a 
::::: 

2 
lxt- Xzl + st9dy(y1, y2 ) 

l+a 
::::: -

2
-lxt- xzl + st9dr(YJ, y2) 

Since 0 <a < 1, we have 1 +a < 2 so lets'= max( 1"ia, s) < 1 then 

d(wn(XJ, Yt). Wn(Xz, yz))::::: s'lxt- Xzl + s't9dy(yJ, Yz) = s'd((xt, Yt), (xz, Yz)) 

so the IPS is hyperbolic as desired. 

VI.4.2 By Theorem 4.1 in Chapter VI, the attractor exists. We devise the operator T : :F ---+ :F as in Theorem 2.2 in Chapter 

VI to be 

(Tf)(x) = Mn(f(L;; 1(x))) X E [Xn-J, Xn] 

where :F is the set of continuous functions f : [x0, XN] ---+ Y. Ln is anx + en which is continuous with continuous inverse, f 

is assumed continuous, and Mn is again linear, so that T f is a continuous function on each of the [xn-J, Xn]. We must assure 

that T takes :F into itself. We have 

Xt - Xo XNXO- XoXJ 
Lt(Xo) = a1xo + e1 = ---xo + = xo 

XN- Xo XN- Xo 

XN- XN-J XNXN-J - XNXo 
LN(xN) = aNXN +eN= XN + = XN 

XN- Xo XN- Xo 

Xn - Xn-J XNXn-J - XoXn-J 
Ln(Xn-J) = anXn-J +en= Xn-J + = Xn-J 

XN- Xo XN- Xo 

Xn - Xn-J XNXn-1 - XnXo 
Ln(Xn) = anXn +en= Xn + = Xn 

XN- Xo XN- Xo 

so the endpoints of each segment conincide with the next and last, and x 0 , xN map to themselves. Hence these points are 

fixed under Ln and therefore under L;; 1. By definition, 

(Tf)(xo) = Mn(Xo, Fo) = (Xn-J, Fn-J) 

(TJ)(xN) = Mn(XN, FN) = (Xn, Fn) 

hence T : :F ---+ :F as desired. We now show that T is a contraction mapping. Let f, g E F. Then we have 

(Tf)(x) = Mn(L;; 1, f(L;; 1 (x))) 

(Tg)(x) = Mn(L;; 1, g(L;; 1(x))) 

With the given definition of a metric, and the restrictions imposed on Mn we have 

d(Tf, Tg) = max dv(Mn(L;; 1(x), f(L;; 1(x))), Mn(L;;\x), g(L,;- 1(x)))) 
xE[xn-1 ,xn] 

::::: max sdr(f(L;; 1(x)), g(L,;- 1(x))) 
XE[Xn-J ,Xn] 

::::: d(f, g) 

as desired. 

VI.4.8 We want to show we can generate polynomial graphs with affine hidden variable interpolation. Using the proof given 

in exercise VI.4.2, we hate (T/)(x) = Mn(L;; 1(x), f(L;; 1(x))). Consequently, the attractor of the IPS is given by 

f(x) = MnCL;; 1(x), f(L,;- 1(x))) 



498 Selected Answers 

~· 

where we let f(x) = (y(x), z(x)). We are interested only in fitting the first component, the second component may be 

chosen for ease of manipulation of the equations. We use the notation of the book, namely 

Ln(X) = QnX +en 

From this we get 

(
y(x)) =A (y(L;;-

1
(x))) + (cn(L;;-

1
(x)) + fn) 

z(x) n z(L;;- 1(x)) kn(L;;- 1(x)) + gn 

from which we extract the equation for y (x) to get 

y(x) = dny(L;; 1(x)) + hnz(L;; 1(x)) + fn + CnL;; 1(x) 

Newton proved that it requires N + 1 interpolation points to generate an Nth degree polynomial, so that we assume that we 

have been given these points, and that they fit y(x), and likewise assume 

y(x) = aNXN + aN-lXN-l + · · · + ao 

Since Ln is linear, so is L;;-- 1, so the degree of y(L;;-- 1 (x )) is also N, and we let (for notational convenience) 

y(L;; 1 (x)) = f3NnXN + f3N-lnXN-l + · · · f3on 

Then we have 

aNXN + · · · + ao = dny(L;; 1(x)) + hnx(L;;1(x)) + fn + CnL;; 1(x) 

= dnf3NnXN + · · · dnf3on + hnz(L;; 1(x)) + fn + CnL;; 1(x) 

which gives 

(aN- dnf3Nn)xN + · · · (ao- dnf3on) = hnz(L;; 1(x)) + fn + CnL;; 1(x). 

Now dn, as in the non-hidden variable case, is independent ofthe fitting of the points (xi, Fi), hence on each subinterval, we 

may choose 

Then the left hand side is a polynomial of degree N- 1 so we may choose hn, and let 

z(x) = YN-lxN-I +···+Yo 

in such a way so that if 

then we have 

fori:::: 2 and 

hn8lnX + hn8on + CnL;; 1(x)) + fn =(a!- dnf3IJx + (ao- dnf3on) 

by equation of coefficients. Thus we may generate a hidden variable fractal interpolation function for a polynomial of 

degree N. 
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Answers to Chapter VI, section 5 

VI.5.1 From Theorem 5.1 in Chapter VI, using three maps, we may choose 

w, G)=(~ 
0 

!JG)+G) a! 

C! 

w,G) =G 0 ::HD + (7,) a2 

c2 

w, G)=(~ 
0 

~) (~) + (7,) a3 

C3 

For the Sierpinski triangle, the appropriate values are given by a; = d; = t, b; = c; = 0, and e 1 = f 1 = 0, e2 = ~, h = 0 and 

e3=0, h = ~· 

Answers to Chapter VII, section 1 

VII.l.l Let {IW. 2, f} be given by 

{ 

(2x, 2y- 1) 

f(x, y) = (2x- 1, 2y) 

(2x, 2y) 

if y > 1/2, 
if X> 1/2, 
otherwise. 

If (x, y) > 0 and (x, y) ¢ S, then eventually y > 1/2 since y is doubled if x > 1/2 or if neither x, y > 1/2. Once this 

happens we have 

Given y > 1 /2, we have 

lim 2ny - 2n-! = lim (2y- 1)2n-l = 00 
n-+oo n-+oo 

and x ~ oo, as well. Hence these points escape to infinity. If y < 0, x > 0, then eventually 2n x > 1/2, if x < 1/2. Once this 

happens we have 

lim 2nx- 2n-! = lim (2x- 1)2n-l = oo 
n-+oo n-+oo 

for any point whose x coordinate is larger than 1/2. The y coordinate remains negative, and 2n y ~ -oo. Hence these points 

also escape, in this case in the direction of (oo, -oo). For points y < 0, x < 0, each coordinate remains negative indefinitely 

and these points diverge as 2nx ~ -oo and 2ny ~ -oo, so these points escape to ( -oo, -oo). 

VII.1.3 The condition x 2 + y 2 > R determines the color based on the iteration number. This is passage past a circle of 

radius .JR. Since if f(x, y) = (2x, 2y) we have fn(x, y) = (2nx, 2ny), and 

we have concentric circles of radius '{!. 
VII.1.6 These two functions, 

W 1(z) = rei0z- 1 w 2(z) = rei0 z + 1 

take a disk of radius R, to a disk of radius r R, rotate it by (), and move its center to either ± 1. Consequently, if we can find 

a disk which is mapped iy.to itself by both maps, we know that the attractor of the IFS is interior to the disk (see exercise 

VII.1.8). We thus look for R as a function of r such that this is the case, and restrict it such that its two images do not 

intersect. This will force the attractor of the IFS to be totally disconnected. 
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We make one further simplification: If the rotation were 0, we could examine the transform~tion on the real line, since 
these transformations take circles to circles, this will correctly predict the values of R. This reduces the problem to looking 
at wJx) = -rx ± 1. We look for a cross section of the ball [a, b] such that the images 

w1([a, b]) = [-rb- 1, -ra- 1] w 2([a, b]) = [-rb + 1, -ra + 1] 

both lie within [a, b]. These two intervals are of identical length and orientation, differing only by a shift of two along the 
real line. Consequently, our conditions are 

Solving at equality yields 

a .:=::: -rb - 1 b 2: -ra + 1 

a= -rb- 1 

b = -ra + 1 

a= r 2a- r- 1 

(1 - r 2)a = .,-r - 1 

1 + r 1 
a = - 1 - r 2 = - 1 - r 

Symmetry now dictates that b = 1 ~r, so that a disk of radius R = 1 I ( 1 - r) maps inside itself under each map of the original 
IFS. We now want the condition on r such that these images of the disk BR(O) do not intersect. This happens when a disk 
of radius r R, centered about 1 does not intersect they-axis, namely that 

1 
r·--<1 

1- r 

r<1-r 
2r < 1 

r < 1/2 

Consequently, for the original maps, as long as r < 1/2, the maps 

and the IFS is totally disconnected. We must now define f (z) such that on the attractor, we do this with three maps (letting 
z = Z1 + izz), 

j(z) = W2 if Z1 2: I~r 
{ 

WJ if Z1 .:S- I~r 

rei8 z +A A= z,O-rJ otherwise 
r 

VII.1.7 This is essentially the general case of the preceding problem. Let {A; f} be the associated shift dynamical system 
of a totally disconnected hyperbolic IFS on IR2

, where A is the attractor of the IFS. Then we must have 

Since the IFS is totally disconnected, we have 

ifi f. j 

Furthermore, since the IFS is hyperbolic, wJA) is compact for each i. Consequently, in IR2 this means d(wi(A), w1(A)) > 0 
if i f. j. Then we may extend {A; f} using any function g(x) which smoothly connects the maps wi-I in the intervening 
distance. For example, since there are finitely many maps, we may define 
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Now construct functions which are equal to w;- 1 on w;(A), and decrease to zero at a distance less than E/2 from these sets, 

by taking functions 

W;(X) = kE W, X 
_ { (1 _ d(x,w;(A))) :-1( ) 

0 
if d(x, w;(A)):::; 1 
otherwise 

with k 2: 2. Finally, sum these together to get 

N 

gk(x) = L w;(x) 
i=l 

Because the distance E was chosen to be less than the distance between images of the attractor under w;, these functions are 

continuous, agree with f on the attractor, and since k can be taken at any value greater than 2, there are infinitely many of 

them. 

VII.1.9 We get the iteration formula by generating the teal and imaginary parts of f(z) = z3
- A. Letting z = x + iy, we 

have 

z3 = (x + iy) 3 = x 3 + 3x2iy + 3xi 2i + i 3l 

= x 3 + i3x2y- 3xi- il 

= (x 3 
- 3xi) + i (3x 2 y - l) 

so that the new formulas, letting A= A1 + iA2 are 

newx = x-3 - 3*x*y-2 - lambda! 
newy = 3*x-2*y - y-3 - lambda2 

The choice of R can be derived as follows: Writing z = rei0
, we have z3 = r3ei 30

, which has a distance from the origin of r3 

compared to the distance r of z. Subtracting A will have maximal effect on this distance when z3 and A lie on the same ray 

from the origin, namely when A = peitP and ¢ = 38. Consequently the problem reduces to this maximal case, namely that 

r3 
- IAI 2: r 

or 

The minimum value for lA I is zero, and the inequality acheives equality for this A value when r = 1 + lA I. Choosing this as 

a candidate value for R, we find that 

(1 + IAI)3
- (1 + lA I)- IAI = IAI 3 + 31AI 2 + 31AI + 1 - I - 21AI 

= IAI 3 + 31AI 2 + IAI 2: 0 

so that for any A E <C, choosing R > lA I+ 1 will work in the escape time algorithm. 

Answers to Chapter VII, section 2 

VII.2.1 In this case X = t, we must show the presence of sets such that W (A) = A, where W (A) = w 1 (A) U w2 (A). 

Choose A= {0}, then w 1(A) = w2(A) = 0. Likewise, choose A= {oo}, then w1(A) = w2(A) = {oo}. Consequently, the 

unrestricted IPS in this case does not contain a unique invariant set. In point of fact, neither of these sets above are attractors 

of the IPS. The system is not contractive around these points, which are repellors. The point z = 1 is also a fixed point of 

the system, it is a repellor, and is part of J (f). 

VII.2.2 Let A E (3/4, 5y4) and f(z) = z2 - A. We want to look at solutions to 

z2 + z + (1 -A)= 0. 
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Using the quadratic equation we obtain 

z= 

We let 

-1 ± JI- 4 +4A. -1±~ 
2 2 

ZI = 

Z2 = 

-1+~ 
2 

-1-~ 
2 

The easiest way to examine cycles of period 2 here is to check to see whether f(z 1) = z2 and f(z2) = z1 (different ap
proaches are used for different problems, this avoids quardic equations here). We have 

2 1 J4A.- 3 4A.- 3 1 J4A.- 3 
z1 =4- 2 +-.-4-=(A.-2)- 2 

2 1 J4A.- 3 4A.- 3 1 J4A.- 3 
z2 = 4 + 2 + -4- = (A. - 2) + 2 

Subtracting A. from each of these yields the desired values f (z1) = z2 , and f (z2) = ZJ, hence this is a cycle of period 2. 
To check whether the cycle is attractive, we have 

We can simplify this for each Z; by making use of the period 2 properties: 

giving us 

and 

zi = (Z2 + A)ZJ = Z1Z2 + AZJ 

zi = (ZJ + A)Z2 = Z1Z2 + AZ2 

1 - (4A.- 3) 4- 4A. 
4ZJZ2=4 = -- = 1-A 4 4 

For A. E (3/4, 5/4) we have (1 -A.) E ( -1/4, I /4) so that 

2' 1 If ( Z;) I :::: 4 < 1 

Hence this is an attractive cycle of period 2. 

VII.2.3 Let A. be specified and suppose a · i E JA.. Then -a2 E JA. and a 4 E h are real line points. The set JA. is connected, 
therefore there is an extreme point of this form which maps to the left most extremity of JA., on both sides of the real axis. 
The pair of IFS cut JA. at the negative extremity and map this image to the left and right side, depending on the definition of 
the square root in the two IFS equations. 

VII.2.5 For the dynamical system {<[; f(z) = z2
- A.: A. > 2}, we wish to show that the orbit of the critical point {0} 

converges to the Point at Infinity. We know that the basin of attraction for oo contains at least the points for which 
r > 1/2 + Jl/4 +A. so that if A.> 2, we haver> 1/2 + 3/2 = 2. f 2(0) = f(-A.) which is 2 when A.= 2 and increases for 
increasing A.. Hence limn--+oo fn(O) = oo. By Theorem 2.1 in Chapter VII, the IFS {X= C \ B(oo, E); +Jz +A., -Jz +A.} 
possesses a unique attractor. 
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Answers to Chapter VII, section 3 

VII.3.1 The Newton's transformation associated with F(z) is given by 

F(z) z4 - 1 
f(z) = z- F'(z) = z-~ 

To see that 1 is indeed fixed, we compute 

f(l) = 1-0 = 1 

Taking the derivative with respect to z evaluated at 1, we have 

, (4z3)2 - 12z2(z4
- 1) 16z6 - 12z6 + 12z2 

f(z)=1- (4z3)2 =1- 16z6 

12z6 - 12z2 3 3 

16z6 4 4z4 

evaluated at 1 we have J'(z) = 3/4- 3/4 = 0 so that 1 is an attractive (sometimes called super-attractive because J'(z) = 0) 

fixed point of the Newton's transformation. 

VII.3.2 The Newton's transformation associated with F(z) = z2 + 1 is 

z2 + 1 · 1 1 
f (z) = z - -- = z - - (z + -) 

2z 2 z 

1 1 1 
= -z-- = 1/2(z--

2 2z z 

so that the corresponding IFS is got by taking inverses off (z) to yield 

1 
w = 1/2(z- -) 

2wz = z2
- 1 

z2
- 2wz- 1 = 0 

z 

2w±.J4w2 +4 ~ 
z = = w ± -vw~ + 1 

2 

Consequently, the appropriate IFS is 

w1 (z) = z + Jz2+l and wz(z) = z- Jz2+l 

For any z E lR, z2 + 1 > 0, hence wi(Z) E lR. For z = oo, we have w 1(z)--* oo, and w2(z)--* 0, consequently lR U {oo} ~ 

IR U {oo}, and the map is onto, by virtue of the behavior of w2(z) for large z. Then if A= lR U {oo}, W(A) =A. We must 

make sure we can exclude the fixed points of the transformation. These are given by 

1 1 
-(z--) = z 
2 z 

or z 1 = ±i. The derivative of f (z) at these points is 1 /2(1 + 1 j (z2
)) = 0 so these are attractive. Hence removal of a small 

E-ball around ±i results in a space X c C on which A is a unique invariant set. Therefore A is the attractor of the IFS. 

Vll.3.5 The Newton's transformation associated with F(z) = ez- 1 is given by 

ez- 1 
J(z) = z- -- = (z- 1) + e-z 

ez 

1 A 

It has two fixed points in ([, for we have 

z = (z- 1) + e-z ~ e-z = 1 ~ z = 0 
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indicating that 0 is a fixed point. We also have 

lim (z- 1) + e-z = oo 
z--+oo 

so that oo is also fixed. The derivative of f (z) is given by 

f'(z) = 1 - e-z 

which is zero at z = 0, and approaches 1 at infinity. Hence the attractive fixed point is 0, oo is a neutral fixed point. 

VII.3.7 We wish to find a Mobius transformation h(z) which establishes a conjugacy between f(z) and g(z). This means 

finding h(z) such that 

f o h(z) = h o g(z) 

where 

f(z) = 1(z- 1) g(z) = z2 h(z) = az+b 
2 z cz+d 

We mention at the outset that such a transformation is indeterminate with respect to scaling factors, so there will be choices 

among a, b, e, and d. Writing out the two terms of the conjugacy we have 

az2 +b 
hog(z)=--

cz2+d 

and 

1 (az+b cz+d) 1 ((az+b)
2 -(cz+d)

2) 
f o h(z) = - -- - -- = -

2 cz+d az+b 2 (ez+d)(az+b) 

= ~ (a
2
z
2 + 2abz + b2

- c
2
z
2

- 2ed- d
2

) 

2 acz2 + bcz +adz + bd 

= ~ ( (a2 
- c2)z

2 + 2(ab - cd)z + (b2 - d2
)) 

2 aez2 +(ad+ bc)z + bd 

so that 

ez +d acz2 + (ad + bc)z + bd 

We may eliminate the linear terms in z by setting 

ad + be = 0 ab - cd = 0 

which give us 

be b2e 2 2 

a=--=}--- cd = 0:::::} d = -b 
d d 

be e2b 2 2 

d = -- =} ab + - = 0:::::} a = -c 
a a 

With these equalities assumed, we have 

2az2 + 2b (a2 
- c2)z2 + (b2 + d2) 

cz2 + d aez2 + bd 

Since, as mentioned, we have choices of scale, we set a = 1. This gives us 

cz2 + bd 

/ 
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and comparing denominators leads to b = 1. Then we have 

2 = 1 - c2 and 2 = 1 - d 2 

c = ±i and d = ±i 

and we again have a choice (this time the sign of the scale factor). We choose c = i. Then ab- cd = 0 or 1 - id = 0, and 

d = -i. Consequently we have 

h( ) = z + 1 z . . 
zz -z 

Checking, we have 

1 ( z + 1 iz- i) 
j(h(z)) =- -. -. - --

2 lZ- l Z + 1 

1 z2 + 2z + 1 - (-z2 + 2z - 1) 

2 iz2 - iz + iz- i 

1 2z2 + 2 z2 + 1 
= -2-.-2-. = -. -2-. = h(g(z)) 

lZ -l lZ -l 

as desired. 

Answers to Chapter VII, section 4 

VII.4.1 We analyze this map by first noting that this map is equivalent to the map 

I z2 - 1 
f (z) = z2 - 1 + AZt 

for z1 > 0 
for z1 ~ 0 

where z1 is the real part of z = z1 + iz2• Consequently, for A= 0, and for any open set lying entirely in the right half plane, 

the mapping is open. For A E [-1, 0], a look at a small E-ball about the origin shows why the map is still continuous, namely, 

the action of the term Ax is to shift the points within the ball over towards the right. This produces a closed oval, with points 

to the interior mapping to the interior and the boundary mapping to the boundary. Consequently an interior point is still 

surrounded by an open ball of the image of interior points, and the map remains open. Specifically, given (x, y), if we have 

a point (x 1, y) to the left of (x, y), then since near the origin, x 2 « x, the AX term dominates, and the disk is reversed, 

f(x 1, y) is to the right of f(x, y), and points with the same x value map to the same x value, creating an oval around the 

center (x, y). Then an open set maps to an open set. 

The mapping is not open for A = 1 however. To see this, choose first Eo < 1 /2, so that for points in an Eo-ball about the 

origin, 2x2 < x. Then for points on the boundary of the left half ball x2 + y2 = E5 and the intersection with the y-axis, 

the portion on the axis maps to an interval on the real axis [ -E5 - 1, -1 ]. The rest of the boundary meets this interval at 

-EJ - 1, but lies entirely to the left of it: 

x2 + Y2 = E6 
f(x, y) = (x2 -l- 1 + x, 2xy) 

= x 2
- (E6- x 2

)- 1 + x, 2xy) 

= (-EJ- 1) + 2x2 + x, 2xy) 

Since we have chosen Eo such that the x term dominates the 2x2 term this indeed lies to the left. If we look at this figure 

from E = Eo as E ~ 0, then the envelope of the images of the boundary form the boundary of the image of the ball BE0 ( 0). 

In particular, there are points interior to this ball which map to the boundary of the image. For any such point, a smaller ball 

around that point folds interior to this envelope, exposing it, hence there is no open set around such a point which maps to 

an open set, and the map it not open. 

Finally, by choosing a ball around the origin sufficiently large, for any fixed A, the x 2 and y2 terms will dominate the AX 

term so that j(BR(O)::) BR(O). In fact, as (x, y) ~ oo, the map approaches the analytic map j(z) = z2
- 1. 
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Answers to Chapter VIII, section 1 

VIII.1.3 We must first show that we satisfy the Lipshitz continuity requirement of Theorem 11.1 in Chapter III, namely for 
each wi there is a ki, independent of p, x, such that 

For w1(x) = A1x, we have 

d(AJpx, AJqX) = IA1px- AJqxl = lxiiAJp- AJql = lxldp(p, q) 

which is not independent of x. Similarly, for w2(x) = A2x + 1 - A2, we have 

d(A2Px + 1- A2p• A2qx + 1- A2q) = IA2px + 1- A2p- A2qx- 1 + A2ql = lx- 11dp(p, q) 

also not independent of x. We must restrict the domain as in exercise VIII.l.2. We have -.9 S A1, A2 S .9, and we look for 
an interval [a, b] such that W([a, b]) C [a, b] for all pEP. 

For A 1, A2 > 0, [0, 1] contains all the attractors. To see this, we have 

w 1 ([0, 1]) = [0, AI] w2([0, 1]) = [A2 , 1] w 3([0, 1]) = [1/2, 1] 

When AJ < 0, we have w 1 ([0, 1]) = [A 1, 0] rt [0, 1], and likewise w2([0, 1]) = [1, 1- A2] rt [0, 1]. One pushes the value for 
the necessary lower bound for the interval down, the oth~r pushes the upper bound up. These values reach their minimum 
and maximum when AJ = A2 = -.9. Consequently, we will have found the proper interval [a, b] when 

Writing this out explicitly, we have 

which means that a, b must satisfy 

W(~.9,~.9)([a, b]) C [a, b]. 

w 1 ([a, b]) = [ -.9b, -.9a] 

w 2([a, b]) = [-.9b + 1.9, -.9a + 1.9] 

w 3([a, b]) =[.Sa+ .S, .Sb + .S] 

a S min( -.9b, -.9b + 1.9, .Sa+ .S) 

b :=:max( -.9a, -.9a + 1.9, .Sb + .S) 

Now in order to include the interval [0, 1] needed by the positive values for A1, A2, aS 0, and b :=: 1, which means that 

min( -.9b, -.9b + 1.9, .Sa+ .S) = -.9b 

max( -.9a, -.9a + 1.9, .Sb + .S) = -.9a + 1.9 

Setting the inequalities above to equality to solve we have 

a=-.9b b=-.9a+l.9 b=.18b+1.9 

which yields 

b = .\i; ~ 2.3 a~ -2.1 

so that, for convenience, the interval [ -3, 3] contains all the attractors, and we may prove the continuity on the IFS 

{[ -3, 3]; WJ, W2, W3} 

to get it for all of ~- Looking back to our original x dependencies we now see that by substituting the endpoints of this 
interval for x in the distance expressions, we have the following Lipshitz conditions: 

d(w 1 ~x), w 1q(x)) S 3 · d(p, q) 

d(w2P(x), w2q(x)) S 4 · d(p, q) 

Consequently, the attractor varies continuously with A E P. 
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Answers to Chapter VIII, section 2 
VIII.2.2 We first prove the hint. Let N be the set of all points B E 1i.(X) such that B is disconnected. Suppose B E N. Then 
by definition, there are sets B 1 , B2 c B, such that 

B 1 u B2 = B; B 1 n B2 = 0. 

Furthermore, since these sets are closed in B, they are compact. Then if 8 = h(B1, B2), 8 > 0. Suppose B' E 11.(X) such that 
h(B, B') < 8/3. Then for any x E B', we have d(x, B)< 8j3, and for any y E B, we have d(y, B') < 8j3. Let 

B; ={bE B': d(b, B1) < 8/3} 

B~ ={bE B': d(b, B2) < 8/3} 

Since each point in B' must be close to a point in B, we must have 

B; U B~ = B'. 

Now suppose that x E B; n B~ =f: 0. Then 

28 
d(x, B1) + d(x, B2):::: 3 < 8 

and by the triangle inequality, we would have, for some b1 E B1 and b2 E B2, 

d(b1, b2):::; d(x, b1) + d(x, b2 ) < 8 

which is a contradiction. Hence 

B; n B~ = 0 

and B' is also disconnected. But B' was any set within E = 8/3 of B, so there is an open ball BE(B) c N, and N is open in 
H(X). 

Now let p be a parameter value such that A(p) EN, that is, A(p) is disconnected. Then there is an E > 0 such that 
BE(A(p)) C N. This ball is open, and by the assumptions of the problem, the map A: P--+ 'H(X) is continuous, so 
A- 1(BE(A(p))) is an open set in P containing p such that every element corresponds to a disconnected attractor. Hence 
the set of points in P for which A(p) is disconnected is open in P. The complement isM, which must therefore be closed. 

VIII.2.4 For any value of A. in the parameter space, the attractor A can be written as the set of points of the form 

Since if z E A, then the point 

is also in A, we have 

A= -A= {z: -z E A} 

(in other words the attractor of an element of this family of IFS is itself radially symmetric). Defining 

A.A = {A.z: z E A} 

to make the notation simple, we have 

A= (AA + 1) U (A.A- 1). 

And 

-A.A + 1 =A.( -A)+ 1 = A.A + 1 

-A.A- 1 =A.( -A)- 1 = A.A- 1 
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~ 

in other words, A(.A.) =A( -.A). It then follows that if the attractor of .A is connected, so is the attractor of -.A since they are 

identical, so M is symmetric about the origin. 

VIII.2.5 We have the IFS 

{ ([; .A.z + 1, .A.z - 1} 

where .A= (0, l/-J2). We may rewrite this as the IFS 

where 

{[1~_2; w 1(x, y), w2(x, y)} 

w, (~) = c~~ -l~J2) (~) + (~) = 1/J2( -:) + (~) 

w,C) =C~~ -l~J2)(~)-G)=l/J2(;)-G) 
Suppose we look at the action of these two maps on a rectangle centered at the origin. Each map flips the rectangle along 
the comers, reduces each side by 1 I ,J2, and then translates it either one unit to the left or to the right. We may solve for the 
position of a comer of such a rectangle, symmetric about the origin, such that it went to half the original rectangle. To do 

this, we must have (in absolute value) 

which has the solution x = 2, and y = ,J2. 

X= 1/h(y) + 1 

y = 1/h(x) 

Consequently, if we have the rectangle with comers (±2, ±.J2), Then each map takes this rectangle to one of the 
horizontal halves of the original rectangle, just-touching along x = 0. The attractor is thus the rectangle, which tiles the 

plane. 
VIII.2.7 Suppose that w1 (A) n w2(A) = {z0 }, a single point. We wish to argue that if I is a path which intersects itself, 
then I is a point. Certainly such a path which is not trivial must be contained in either w 1 (A) or w2 (A) or, since it must pass 
through zo this is a point of intersection. Then we may argue the same about the points w 1 (zo) and w2(z0), so these are points 
of self intersection. By induction, such a non-trivial non-self-intersecting path can not exist. 

VIII.2.8 Let e = e1 e2 · · · en · · · be a point in I: a code space on the symbols { -1, 1}. For .A E ([, define 

f(.A.) = e1 + e2.A. + e3.A.2 + · · · 

We want the radius of convergence of f(.A.). f(.A.) is bounded above by 1 +.A+ .A.2 + · · · = l:.A.n (corresponding toe= 
1 I). It is bounded below by -1 - .A - .A 2 • · • = - L .An, corresponding to e = -1-1. These two series have a radius of 
convergence of I.A. I < 1 and diverge at the endpoints. Consequently f(.A.) has a radius of convergence of 1. We show that the 
attractor for each .A is the set of points 

and that the map f(.A.)(e) =¢(e). The attractor is the limit of the sequence in 1t(C) given by {Wn({O})}. This sequence 

yields 

0 1---+ ± 1 1---+ ±.A ± 1 1---+ ±.A 2 ± .A ± 1 1---+ • • • 

By induction, A(.A.) is the set of points 

which is the image of I: under both f(.A.) and¢: I: ~ A(.A.). 

\ 
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Answers to Chapter VIII, section 3 
VIII.3.3 The attractive orbit here is not a cycle, but rather aperiodic. There are other bubbles with periods equal to powers of 
2 multiplied by the various odd numbers out past this point however. Try experimenting with the numbers around A. = 1. 75 
for instance. 

Answers to Chapter VIII, section 4 
All exercises in this section are programming experiments. 

Answers to Chapter IX, section 1 

IX.l.3 p 1 • p3 = 0.03 since the probabilities are independent. 

IX.1.4 The attractor is a Sierpinski triangle with vertices at 0, i, 1. The ball B4 is located at 2 + i and has radius ../2 and 
therefore intersects the attractor only at the point 1. The probability of getting only one string in code space is 0. 

IX.l.S p1 = .275, p 2 = .125, and p 3 = .5. We want to know about the ball B1. B1 includes only w1(A), hence one expects 
a probability of .275. 

IX.1.6 There is a set of random strings (of measure 0 in code space) for which this number will not occur, e.g. 8 2 in the 
above problem with the string 1 T has incidence 0. 

Answers to Chapter IX, section 2 
IX.2.2 X is the set of leaves, which is finite. F = 2x the collection of all subsets of X. 9 is the collection of sets consisting 
of one leaf. Any set in F contains a finite number of leaves, therefore it is the finite union of sets in 9 so by definition, 9 
generates F. 

IX.2.3 In order to prove that S is not in the field F we must show that it can not be written as a finite union of sets in F. 
Suppose that S = U~=l An for some collection of An E F where each An is the union of finitely many suhintervals. Then 
at least one of the An must contain the disjoint union of an infinite number of intervals. But this contradicts the hypothesis 
about An. Hence S f/ F. 

IX.2.4 Let X = [0, 1] x [0, 1] c IRl. 2, and Q be the set of rectangles of the form [pI q, r Is] x [t I u, vI w] that is subrectangles 
with rational comers. Let F denote the field generated by Q. LetS E F. We need to show that S has rational area. i) u:=l An 

has rational area, where the An are subrectangles since the area of the union is given by .L:=i area(An) - LiiJ area(Ai n 
A 1). ii) Similarly for any set of An as above, the complement X\ u:=l An= n:=l X\ An has rational area, because X\ An 
can be written as the finite union of open subrectangles. Consequently any setS E F has rational area. The area of B(O, 1) 
is n which is irrational, consequently B(O, 1) is not in the field. 

IX.2.5 Call the sets in the figure 

a G1 
c 0 
g h 
l m 

G2 b 
e f 

j 
X o 

Then we have the followin~ list of equivalences, where those generated earlier in the list are used to generate the rest (once 
they have been established to be in the field). 



510 Selected Answers 

a =X\ G1 

X=G1Ua 

0=X\X 

c=G1 \ G2 

e =c \ G1 

j =X\e 

i = G1 \ e 

f=cUi 

l=X\f 

m =i Ul 

h=m \e 

o=X\h 

g = G1 \o 
b=X\g 

IX.2.6 Let e be the image of the binary number a= .a1a2 • • • = L ~under the map rr which takes ai + 1 = ei, in other 

words rr(a) =e. The complement of e = rr(a), a irrational, in :E is not the union of a finite number of cylinder sets, which 

under the inverse of this map map to intervals of rational width around rational points in [0, 1]. 

IX.2. 7 X is a space, let :F = zx, the power set of X. Let A E :F. Then since X \ A c X, we have X \ A E :F. Since 

X, 0 c X, 0 E :F. Compliments of subsets of X, and finite unions of subsets of X are subsets of X and are therefore elements 

of :F. Hence :F is a field (in fact the biggest field over X). 

IX.2.8 B is the a-field generated by rectangles with rational comers on the unit square. 'fP.ese rectangles form a countable 

base in the metric topology induced by the Manhattan metric, as evidenced by the fact that the a-field contains all balls of 

radius E for all E in the statement, and by the equivalence of metrics. To show this is the Borel field, the proof of Theorem 2.3 

shows that the a-field generated by a countable base for the topology of X is the Borel field. 

IX.2.9 :E is the codespace on the symbols {0, 1}. The cylinder sets are defined as all the sets, for all n, of the form 

C(el ... en)= {eu E :E : eul = el, ... ' eun =en} 

Let e be a point in :E. Then the cylinder set Cn(e) is precisely the set of elements x E :E such that xi = ei for i ~ n. 

Consequently, 

d( ) = ~ lei - xd = ~ lei -Xi I < 113n 

e' x L....J Ji L....J Ji -
i=l i=n+l 

By choosing e such that ei = ei fori ~ n and ei =j:: ei fori > n, we have that Cn(e) = B -f,r (e). The balls of radius 3-n form a 

countable base for the metric topology on :E, hence, by the proof of theorem 3, they generate the Borel field B on :E. 

IX.2.10 Let A c !R2 be the Sierpinski triangle, and g be the set of connected components of IR2 \A. Notice that since by 

definition of component, this generating set is disjoint. Consequently, one cannot get a subset of a component (other than 

the component itself or the empty set) by union or compliment of the elements in Q.lf :F is the a-field generated by g then 

:F likewise contains no nonempty proper subsets of any component of IR2 \A. Let E > 0 be chosen so small that if xis the 

center of the largest triangle inside the Sierpinski set, BE (x) fits entirely inside this component. Then BE (x) is not in :F, but 

it is in B. Hence :F =j:: B. :F c B however, since any half plane is in B and any triangle is the union of the compliments of 3 

half-planes. 

IX.2.11 Let X be a metric space, g a generating set for the field :F1, and for the a-field :F2• Let :F3 be the a-field generated 

by :F1• Then 
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00 

F3 = F1 u {U An : An E FI} 
n=I 

We must show that this is the smallest a-field containing Q. Suppose not. Then there is an A E F 3 such that A fj F 2• But F 1 

is the smallest a-field containing g so the extra entry must be of the form 

n=I 

But the smallest a-field containing g must contain all of these sets, since it contains F 1. Hence F 2 = F3. 

IX.2.12 Let F be any field of subsets of X. Choose A E F. Then X \ A E F and the union of these two is in F. The union 

is AU X\ A= X. 

Answers to Chapter IX, section 3 

IX.3.3 Let X= [0, 1] c IR F is generated by subintervals, and for a.:::; b we define JJ.((a, b))= JJ.([a, b]) = b- a, and 

JJ.(A) =sum of lengths of subintervals of A. 

(i) JJ.: F-+ [0, oo). By definition JJ.(A) ::::: 0. Since the sum of lengths of disjoint intervals is less than or equal to 

tL([O, 1]) = 1 it follows that JJ.(A) < oo. 
(ii) Let [a, b] be an interval, and let b = limn--HXJan for some sequence {an} such that a 1 E [a, b]. Then the sum of the 

lengths of intervals in the union 

[a, ad U [aJ, a2] U ···=[a, b] 

is 
00 

JJ.([a, ad+ L)an+I -an) 
n=I 

This is a telescoping sum and is therefore equal to 

JJ.([a, aJ] + JJ.([aJ, limn-+ooan] =[a, b] 

Thus since any element in the field which can be written as the union of countably many elements must be unions of this 

form together with finitely many other elements, JJ. is countably additive. 

(iii) LetS be the set of rationals in [0, 1]. Then Sis not in the field F. To see this, we note that neither S nor its compliment 

can be written as the union of finitely many intervals, since both contain countably many components, thus any finite union 

contains an element with countably many components. 

(iv) Let J: be the a-field generated by F. For any field or a-field, since 

A n B = X \ (X \ A U X \ B) 

the finite intersection of elements of a field are also in the field. Thus for any x = p j q where p, q are integers, the set 

{x} =[a, x] n [x, b] E F and we have JJ.({x}) = 0. The rationals (and therefore S) are a countable set, consequently we can 

writeS= U:1 An where {An} are the elements of S. Consequently, S E F. We have 

00 00 

fl(S) = fl(U An = L fl(An) = L jl({x}) = 0 
n=I n=I x=p/q 

IX.3.4 Let 'E be the code space on symbols {0, 1}, and define 0 .:::; p 1 .:::; 1, p2 = 1 - p 1• We define JJ. on cylinder sets by 

JJ.(C(ei ···en))= Pe1 ···Pen 

To define JJ. on other sets!n the field F there is really only one way to be consistent with this definition, and satisfy countable 

additivity. We describe this: 

JJ.(X) = JJ.(C(l) U C(2)) =PI + pz = 1 
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11 (A U B) = 11 (A) + Jl(B) - Jl(A n B) 

where An B is in the field, since it is equal to X\ ((X\ A) U (X\ B)) by de Morgan's rules. The easiest way to see how 
this defines a countably additive measure on the field :F is to note that for any finite set of codes {e1, ••• en} the measure 
defined on the cylinder sets of these codes taken in any order is the same. Notice also that two cylinder sets are disjoint if 
they disagree on any specified symbol. Taken together, the measure of a union of these sets is the product of the codes on 
which they agree, if they are the same length, and this product times the product of the 'tail' of the longer string if they are 
different lengths. There are no elements of the field :F which can be formed which specify values for an infinite number of 
places, since this is the disjoint union of an infinite number of components. Consequently, S = {x: xis odd} is not in :F, and 
Jl({x: x7 = 1}) = p 1• The setS E F since it can be written as a countable intersection (and therefore a countable union) of 
finite unions of cylinder sets. Its measure, as above, is the product of the probabilities on which the elements agree, namely 
all odd places, and is therefore limn-+oo p~ = 0. Notice that since the cylinder sets form a countable basis for the metric 

topology on b, F is the Borel field on b. 

IX.3.5 Since multiplication is commutative, it is easier to define the indices in reverse order. Thus we want the intervals 

Wen 0 · · · 0 We 1 ([0, 1]) 

as a generator for the field :F. Notice that the interval w1 ([0, 1]) has measure p 1 and the interval w2([0, 1]) has measure p2• 

Define Jl(X) = 1. Then we must have 

in order to have even finite additivity, but 

so that, since these are the subintervals of Wen o · · · o We 1 ([0, 1]) the 'middle third' has measure 0. Hence we have Jl(B) = 0 
for any B E :F such that B c X\ A. This implies countable additivity, since every element of :F must be the union of 
closed or open intervals beginning or ending on the boundary of a subinterval of the above form, and each subinterval 
is the countable union of subintervals, and satisfies countable additivity. Hence J1 is a measure on :F. This provides 
Jl(A) = 1, Jl(X \A)= 0, J1([1/3, 2/3]) = 0. 

IX.3.6 We define :F on [0, 1] by using the IPS 

1 1 1 
{[0, 1], WI= 2X, W2 = 2X + 2' PI, P2} 

as in the previous problem. Here the subintervals touch, but the definition from problem 4 of Jl(X) = 1 yields that the 
intersection of two intervals at their boundaries has measure zero. In this case the field is the set of finite unions of 
subintervals which have boundaries of the form kf2n. By expressing the numbers on the interval in binary, since any element 
of the interval is the countable sum .L:I (en - 1) ;2n for ei E {1, 2} we generate all the subinterVals of the interval, hence 
the extension of :F is B([O, 1]). In order to generate the measure which takes the measure of an interval as the length of an 
interval, it is necessary and sufficient to have translation independence. This requires PI = 1/2. 

IX.3.7 Let (X, d) be a compact metric space, J1 a Borel measure on X such that Jl(X) =f. 0. LetS be the support of J1 on X. 
Then J.L(S) = J.L(X) =f. 0, so that S =f. 0. Sis closed which implies that Sis compact. Hence S E 1-l(X). 

IX.3.8 Let J.L be a measure on a -field :F, and let F be the class of sets of the form A U B where A E :F and B c C E :F such 
that Jl(C) = 0. F is a a-field since clearly X\ B =X\ C U C \ B and C \ B is a subset of an element of :F of measure 
zero. The same implies with unions of this form. Define JY(A U B)= JY(A) = Jl(A). Then if we have a countable union of 
sets of this form, we have 

00 00 00 

JY(U(An U Bn)) = JY((U An) U (u Bn)) 
n=I n=I n=I 
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which is the union of an element of :F with a subset of an element of :F of measure zero. Hence 

00 00 

JI(U(An U Bn)) = JI(U An) 
n=l n=I 

and this latter obeys countable additivity by assumption. Hence F is a a -field, and JI is a measure on it. 

Answers to Chapter IX, section 4 

IX.4.1 Let f: [0, 1] ~ IR{ be a piecewise constant function with finitely many discontinuities, located at {x1, ..• Xn c IR{}. 

Let Xo = 0, Xn+I = 1. Then f has a single value on each of the intervals Io = [xo, xd, ... In= [xn, Xn+I], and we let Yi = 
f(x), x E [xi, xi+I]. Then if Xi= X[xi,xi+Il is the characteristic function on the interval /i, we may rewrite 

n 

f(x) = LYiXIi 
i=O 

If fL is the Borel measure on [0, 1] given by J-L([a, b]) = b- a, we have, by definition 

For the Riemann integral off on [0, 1] we have 

1! lXJ 1Xn+! 
f(x)dx = f(x)dx + · · · + f(x)dx 

0 ~ ~ 

1XJ lXn+I 
= Yodx + · · · + Yndx 

xo xn 

= Yo(XI - Xo) + · · · Yn(Xn+I - Xn) 

= [ fd~-t 
1[0,1] 

IX.4.2 We want a measure on (•,Euclidean), defined on the field Q ={A : A is a rectangle}, which corresponds to area. 

This means (assuming a< b, c < d),if A= [a, b] x [c, d] or the equivalent expression using open or half open intervals, 

we define J-L(A) = (b- a)(d- c), and for unions of rectangles define J-L(A U B)= ~-t(A) + J-L(B) - J-L(A n B). Let A E F 

such that A= U:1 An, An E :F with the An disjoint. Then for the union to be in :F we must be able to express it as a 

finite union of rectangles or the compliments of rectangles. Notice that the compliment of a finite union of rectangles is 

expressible on X as a finite union of rectangles. The measure of this region is then finitely additive by hypothesis, therefore 

fL is countably additive. Suppose there were another measure J-L 1 on :F which yielded the area of rectangles in X. Then since 

both measures need to be countably additive, and since they agree on each subrectangle of X, the two measures agree on F. 

Hence ~-t' =fL. The extension of fL to B is also a measure which yields the area of sets A E B, because B contains all open 

sets in X, the infimum represented in the Caratheodory extension theorem can be replaced by an infimum on open sets, and 

is therefore the area of the closure of A. 

To show that & is in B it suffices to note that it is closed. This follows since the compliment is then open, and can be 

covered by open sets in :F. This cover has a finite subcover, which implies that X\ & is a countable union of sets in F, 

hence & E B. 

IX.4.3 The integral is defined on the intersection of two strips with &. To calculate it, we first determine the measure of 

an arbitrary strip [a, b] c [0, 1] intersected with&. The measure is countably additive, so note that given A c A, with the 

measure of A being fL (A), that we have 
i 

J-L(A) = J-L(WI (A) U w2(A)) + J-L(w3(A)) =(PI+ P2)~-t(A) + P3~-t(A) = .5J-L(A) + .5J-L(A) 

Suppose that for n < N J-L([k/2n, (k + l)j2n] x IR{ n &) = 112n for 0 s k s 2n. That is, the measure of A falling within a 
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~ 
strip of length 1/2n positioned on a boundary of [0, 1] subdivided into equal 1/2n intervals is its length. We note that each 
such strip intersected with A is a vertical stack of disjoint Sierpinski triangles. We now subdivide the strip into two parts. 
The left-hand parts contains a stack of twice as many triangles, half the size, while the right-hand is a stack of as many 
triangles, half the size. Each triangle in the original strip is produced by transforming A by some sequence ( wi o · · · wk) 
of transformations, those on the stack in the left-hand portion are either of the form wi o · · · wk o w1 or wi o · · · o wk o w2 

while those on the right have an included transformation by w3• Consequently the measure ofthe 1/2n width strip is divided 
equally on its two halves. By induction, and finite additivity, the measure of any strip beginning and ending on boundaries 
of the form kj2n is its length. By countable additivity, the measure concentrated on any strip [a, b] x IR n A is its length. 

Having demonstrated this, the integral is 1 · 2/3 + ( -1) · 1/3 = 1/3. We will use the above result in further exercises. 

IX.4.4 Let a, f3 E IR, and f, g simple functions. Then we have 

af =a LYiXIi (x) = L(ayi)XIi (x) 

f3g = f3 LZiXJj(x) = L(f3zi)X,j(x) 

are simple functions. By definition, af + f3g is af where g = 0, and f3g where f = 0 and the sum elsewhere. We need to 
write the collection of sets U Ii U U Jj as the union of disjoint sets. This is done by writing 

Kk = h \ U Jj, Km+j = lj \ U li, Km+n+U+j) =lin Jj, Kk = 0 elsewhere. 

Define wi = ayi, wj = /3Zj, wk = ayi + f3zj on the sets defined above. Then w(x) =I: WkXKk is a simple function, and 
equal to af + f3g. The integral of the sum is the sum of the integrals by the above definition of w(x). 

IX.4.6 We need to rewrite the function, as in the above problem, as a simple function with disjoint sets. Writing C = 
A \ B, D = B \ A, E = A n B, we have 

f(x) = Xc + (2.3)XD + (1 + 2.3)XE 

To evaluate the integral, we need the measures on each of these sets. We define them in terms of strings: C is the set of 
strings beginning with 1, and not having a 2 in the second place, i.e., C = C(1, 1) the cylinder set beginning in two 1's. D 
is the set of strings not beginning with 1 which have a 2 in the second place, or, D = C(2, 2). E is the set beginning with 1 
with a 2 in the second place, or, E = C(l, 2). By the definition of J1- we have Jl,(C) = p 1p 1 = (.4)2

, Jl,(D) = p2p2 = (.6)2, 

Jl,(E) = p 1p2 = (.4)(.6). The integral is given by 

l fdjJ, = (.4)2 + (2.3)(.6)2 + (1 + 2.3)(.4)(.6) = 1.78 

IX.4.7 Define the Borel measure 8a by Jl,(B) = 1 if a E Band 0 otherwise. Let f be continuous f: (X, d)~ IR. For each 
n, denote by {Bd::,1 a Borel partition of X into disjoint sets Bi where diam(Bi ~ 1/n. Define {fn} to be a sequence of simple 
functions defined on each partition by fn = LYiXBi with Yi = f(xi) on the sets which do not include a and Yia =a on the 
set in each partition a E Bia. Then since the measure of all the sets is zero with the exception of Bia on which it is 1, we have 

i fnd8a = f(a)Vn. 

Hence the limit as n ~ oo is f(a). Our partition is independent of the choice of xi with the exception of the choice of Yia• 
but the function is continuous, so that as n ~ oo another choice of Xia approaches a as the diameter of Bia goes to zero. 

IX.4.8 We proceed by first deducing that since f (x, y) is continuous, and the measure on • is defined on rectangles by their 
area, the value of the integral is the Riemann integral of f (x, y). By definition, the Riemann integral is done by taking a 
sequence of rectangular partitions of •. and constructing two sequences of simple functions, choosing Yi, y; by 

Yi = inf{j(x, y): (x, y) E Bd; y; = sup{f(x, y): (x, y) E Bd 

By Theorem 4.1, since f(x, y) is continuous, the two sequences converge to the same limit, namely f. fdJ-l, since they 
converge and converge to the same limit, the Riemann integral is defined and is equal to this limit. The value of the integral, 
by taking the Riemann integral, is 1/2. 
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IX.4.10 Refering to exercise 3.4, the measure of any strip intersecting A is simply it's width. The function f(x, y) = x 2 

is independent of y so we partition the space into strips, their intersection with A produces decreasing diameters. f (x) is 

continuous, hence this partition and the choice of xi are immaterial. Choose xi to be the left-hand boundary of each strip, 

intersecting some point on A. Then the value of the integral is just J~ x 2dx = I /3. Let X be the set of pixels on a computer 

display. For simplicity, define the distance between the pixel (i, j) on the i 1h row and in the ph column and the pixel (k, f) 

as li - kl + li -fl. which is a Manhattan metric. Then X may be related to the subset of IR2 consisting of integer coordinate 

points in the first quadrant of the same size. This set is closed and totally bounded. Hence X is compact. Since there are 

finitely many pixels, we may define the generator for the Borel subsets to be all the subsets consisting of one pixel each. 

This defines the Borel field on X to be the power set of X. Thus any set of pixels is a Borel subset. Suppose there are J rows 

and K columns so that the total number of pixels is N = J x K. Define a Borel measure by J.L(A) =(number of pixels in 

A)/ N. Any function from X--+ IRis continuous because the pixels themselves are open sets, hence the inverse image of an 

open set in IR is always open. 
We will choose the function f(i, j) = i + j. Any function on the finite set of pixels can be described by its value on 

each pixel, hence its value at a pixel times the characteristic function at that pixel, hence the sum of such terms makes any 

function simple. Then the integral of f over X is 

fdJ.L="L-
1 
=- LCi+J) 1 i +. 1 

X X N N X 

where the summation notation indicates summing over all pixels in X. Since there are K pixels with first value i, and J 

pixels with second value j, we have 

_!_ L:u +}) = _!_ (!.... 1 n + !__ K n) 
N X N Ln=i Ln=i 

so the integral is 

Answers to Chapter IX, section 5 

IX.5.1 Let 

and define a metric d : X --+ IR by 

= _!_ (K(J(J + 1)) J(K(K + 1))) 
N 2 + 2 

1 N(J + 1) + N(K + 1) 

N 2 

1 l+K+2 
fdj.t=---

x 2 

X= {(i, j): i, j E {1, 2, 3, ... , K}} 

d((i1, }J), (i2, h))= li1 - i2l + IJ1 -hi 

Then (X, d) is a compact metric space. Define f.1 to be an atomic measure with 

and let v be another atomic measure with 

for every (i, j) EX. 

(( . ')) i+J 
J.L z, J = K3 + K2 

1 
v((i, j)) = K2 
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We wish to calculate the distance in the Hutchinson metric between JJ- and v, given by 

dH(JJ-, v) = sup{L fdJJ-- L fdv: f E C(X, ~), lf(x)- f(y)l::::: d(x, y)Vx, y EX} 

where C(X, ~) is the set of continuous functions from X to ~- Now X is a discrete space under a metric which is the 
restriction of the Manhattan metric on ~ 2, consequently f : X --+ ~ is always continuous. As well, the integrals are the 
integrals of simple functions. Hence for every f, we the integrals can be expressed 

so the difference is, for any function f, 

LjdJJ,= ~J(i,j) K::~2 

{ fdv=Lf(i,j): 2 lx x 

"' .. ( i+j 1) 1"' .. (i+j ) 
Lx'f(z,J) K3+K2-K2 =K27'f(z,J) K+1-1 

Intuitively, one is tempted to pick the function f (i, j) = i + j, which among the set of valid functions is the largest of the 
form 

J(i, j) = ai + {Jj 

However, the range of the term (i + j)j(K + 1)- 1 is from 2/(K + 1) - 1 = -(K - 1)/(K + 1) to 2K j(K + 1) - 1 = 
(K - 1)/(K + 1) which gives a negative coefficient to f(i, j) over almost half of X detracting from the value of the sum. 
We must therefore endeavor to pick f(i, j) as large as we can in absolute value, negative when the measure subtraction term 
is negative, and positive when it is positive. That is, we maximize by choosing the largest value for If I allowable under the 
distance constraint where I ( i + j) I ( K + 1) - 11 = I C ( i, j) I is largest. The interested reader can confirm that this exceeds 
the intuitive result. The value of C(i, j) is constant along each diagonal from (1, n) to (n, 1) and is equal to zero along 
the major diagonal from (1, K) to (K, 1). It is anti-symmetric with respect to this diagonal, negative above it and positive 
below. 

We thus place the largest values for I! I at (1, 1) and (K, K), and since the distance between these is 2K- 2, we set them 
to ±(K - 1). We then proceed outward from these points in Manhattan metric circles. The distance between such circles 
(which are the diagonals where they intersect X) is always the horizontal distance between the extensions of the diagonals, 
thus we end up satisfying the distance constraint by putting f to 

-(K- 1) 
-(K- 2) 

-1 
0 

-(K- 2) 
-(K- 3) 

0 

-1 
0 

(K- 3) 
(K- 2) 

0 

(K- 2) 
(K- 1) 

This may be summed by taking twice the sum above the diagonal, and noticing that there are n entries where (K- n) is the 
absolute value of the entry, yielding 



2 K 
----L:n(K n)2 
K2(K + 1) n=1 

2 K 
= L(nK2 - 2n2K + n3

) 
K2(K + 1) n=1 
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2K2 K 4K K 2 K 

= K2(K + 1) ~n- K2(K + 1) ~n2 + K2(K + 1) ~n3 
2K2K(K + 1) 4K K(K + 1)(2K + 1) 2K2(K + 1)2 

2K2(K + 1) K 2(K + 1) + 4K2(K + 1) 

K -1 
= -

6
- = dH(fl, JJ) 

IX.5.2 Since fl E P(X) the measure of the entire space is /l(X) = 1. This value is identical with the value on the support 

of fl which we will call S, that is, this implies !l(S) = 1. In particular it is non-zero, and since, by Theorem 3.1 in Chapter 

IX statement (3) we have {l(0) = 0, S =f. 0. Then by Theorem 3.4 in Chapter IX, the support of a Borel measure on a metric 

space is closed. Since X is compact, a closed subset of X is also compact, hence S is compact. Since S is compact and 

non-empty, S, the support of fl is an element of 1t (X). 

Answers to Chapter IX, section 6 

IX.6.1 We want to show that the Markov operator is indeed a transformation on P(X), that is, M(v): P(X)-+ P(X). It 

suffices to show that 

lJ 0 W;-
1 

: P(X)-+ P(X) 

since a sum of these operators is a Borel measure if they are, and L; p; = 1 indicates that they are normalized if each 

entry is. 
(i) W;-

1 
: X -+ X, since for hyperbolic IFS these are invertible maps. In addition, if we define w;-

1 
( {x}) = 0 whenever 

x ¢ w;(X) then w;- 1(X) =X. Hence JJ o wj 1(X) = 1, and this is a normalized Borel measure. Hence M(v)(X) = 1. 

(ii) JJ o wj 1 is a map X-+ [0, oo) (actually X-+ [0, 1]). Furthermore, by definition, if {A; })= 1 are mutually disjoint, 

00 00 

lJ 0 wj 1(u Aj) = v(U W;-
1(Aj)) 

}=I }=I 

00 00 

= L v(wj 1
(A;)) = L(JJ o w; 1

)(Aj) 
i=l }=I 

so that v o W;-
1 is countably additive. Since w;- 1 maps open sets to open sets (because w; is a contraction, it is continu

ous),and since w;-
1(X \A)= w;-

1(X) \ w;- 1(A), w;-
1 takes the generators for the Borel subsets into themselves, and pre

serves the operation of set complementation. Hence wj 1 
: B-+ B, and the expression v o w;-

1 is well defined. Hence we 

have JJ o wj 1
: P(X)-+ P(X) and therefore M(v): P(X)-+ P(X), as desired. 

IX.6.2 We define L by 

L = {f E C0 (X, ~): Jf(x)- f(y)J < d(x, y)Vx, y EX} 

and let f E L. Define fi = s- 1 L; p;f; ow;, and we wish to show that ] E L. Since ] is a scalar times the sum of 

compositions of continuous functions, ] is clearly in C0 (X, ~). We must therefore only verify the distance condition. For 

all x, y E X we have 
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Hence] E L. 

lf(x)- f(y)l = ls-1 LIfo Wi(x)- f o Wi(Y)I 
i 

::5 s-1 L pdf o wi(x)- f o wi(Y)I 
i 

::5 s-1 L p;lwi(x)- wi(Y)I since f E L 
i 

::5 s- 1 L pislx- yl since s = m~si 
. I 
I 

:::::s-1 ·slx- yl· LPi 
i 

::5 lx- yl = d(x, y) since L Pi= 1 
i 

IX.6.7 Let X consist of three points: X= {A, B, C}, and let an IFS be defined by 

where 

{X; Wt. Wz; P1 = .6, Pz = .4} 

w1(A) = B w1(B) = B w1(C) = B 

Wz(A) = C Wz(B) =A Wz(C) = C 

Furthermore, let Jlo(A) = Jlo(B) = Jlo(C) = 1/3. We now let Jln = Mn(Jlo) and find constant entries for the Markov transi

tion matrix M, a, b, ... , i, such that 

By definition, 

so that 

and we have 

giving us 

(
Jln(A)) (a b C) (Jln-1(A)) 
Jln(B) = d e f Jln-1 (B) 

Jln(C) g h i Jln-1 (C) 

M(~t) = L Pill o wj 1 = .6(Jt o w}1) + .4(Jt o w21) 
i 

Jln(A) = .6(Jln-1 0 w!1(A)) + .4(Jln-1 0 W2 1(A)) = 0 + A~tn-1 (B) 

Jln(B) = .6(Jln-1 (A)+ Jln-1 (B)+ Jln-1 (C)) + 0 

Jln(C) = 0 + .4(Jtn-1 (A)+ Jln-1 (C)) 

(
0 .4 0) 

M= .6 .6 .6 
0 .4 .4 

For a discrete space like this, M completely determines M: 'P(X) ~ 'P(X), by defining Jln at each point in the space. In 

the limit, .Mn ~ M, an operator which takes every point in 'P(X) to some measure JlJ• and which is therefore necessarily 

singular. By definition Jl 1 = M (Jl 1 ). This is an eigenvalue equation which means that Jl 1 is an eigenvector of the eigen

value 1. 



IX.6.8 We first look at the sequence of measures {JLn}~0 . We have 

1L1 (A)= L Pi/Lo(wj 1(A)) 
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Since the sum after n such iterations is finite, the order is not important and we can write 

JLn(A) = L PiPJ · · · PkJLo(wJ:
1 

o · · · o w_;J o wj\A)) 
i,j, ... ,k 

where the sum indicates a sum over all the indices i, j, ... , k. 
JLo is concentrated on A since, by assumption, JLo E P(X), and JLo(A) = 1 so the support of JLo is a subset of A. If x fj. A, 

all the terms in the above sum are zero because of this, hence the support of ILn is again a subset of A, and we must have 
JLn(A) = 1, because M: P(X)-+ P(X). Now let JL be the unique invariant measure of the operator M, that is M(JL) = JL. 
From the formula just derived with respect to JLo for Mn(JLo), and from the invariance of IL we must have, for any set B, 

JL(B) = L PiPJ · · · PkJL(wJ:
1 

o · · · o wj
1 

o wi-
1
(B)) 

i,j, ... ,k 

Now choose B = wi o w1 o · · · o wk(A). Then we have 

JL(Wi o WJ o · · · o wk(A)) = L PmPn · · · pz(w~ 1 
ow;' o · · · w1-

1(wi o WJ o · · · o wk(A)) 
m,n, ... ,l 

where the sum is over the same number of indices as in the composition for B. Since each element of the sum is positive or 
zero, the sum is greater than or equal to each of its entries, and we have 

JL(Wi o Wj o · · · o wk(A)) 

~ PiPJ · · · Pk(wJ: 1 
o · · · o wj 1 

o wi- 1(wi o w1 o · · · o wk(A)) 

~ PiPJ · · · PkJL(A) = PiPJ · · · Pk 

Equality holds precisely when this is the only contributing term of the sum, that is 

JL(W~ 1 
o w; 1 

o · · · o w 1-
1(wi o Wj o · · · o Wk(A)) = 0 

whenever the ordered set of indices (m, n, ... , l) =j:. (i, j, ... , k), which says for all of these ordered sets the set 

w~ 1 ow;' o · · · o w1-
1(wi o w1 o · · · o wk(A)) 

is at least of measure zero, if not empty. It is empty for the totally disconnected case, hence equality holds when the IPS is 
totally disconnected. 

IX.6.11 The measure p.. has support on A, consequently it suffices to restrict to Borel subsets of A. We first let the IPS be 
totally disconnected. Then the sets of the form 

for all n form a countable basis on the space A. Hence since for the totally disconnected case, these are all both closed and 
open, for any Borel subset B of A we have 
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for some disjoint choice of Wi. But 

00 00 00 

¢- 1(B) = ¢-1(u Wi) = U ¢- 1(Wi) = U Ci 
i=l i=l i=l 

where C; are disjoint cylinder sets in I:. The measure p on I: by observation gives the measure on any cylinder set as 

which is precisely the measure J-t applied to the corresponding basis set Wi on A. Consequently, the measures agree, and we 
have 

When the attractor is not totally disconnected, we have for each Wi finitely many cylinder sets in the image ¢- 1(Wi), which 
are disjoint, and correspond to terms in the sum given in exercise IX.6.8. Consequently the measures agree on Borel subsets 
of A in this case as well. Since the Borel subsets of A are precisely the subsets A n B where B is a Borel subset of X, and 
since the support of the measure is A, the equality holds for any Borel subset of X. 

Answers to Chapter IX, section 7 

IX.7.1 We want to prove that f-t([x, x + 8]) = 8, where J-t is the invariant measure of the IFS 

{[0, 1]; w1 = 1j2x, w2 = 1j2x + 1/2; 1/2, 1/2} 

To do this it suffices to show that this expression holds on any closed interval of the form [kj2n, (k + 1)/2n] c [0, 1], since 
we may then build an approximation of any interval from these, good to any error, by the disjoint union of subsets of this 
form which cover the interval. Since 11 is defined as the infimum of the measures of such covers, we let the error go to zero. 

To show that J.-L([kj2n, (k + 1)/2n]) = 1j2n we note that for each iteration of W(A) the image is 2 times the number of 
subintervals of A of half the length of those of the iteration before. Each of these subintervals is of the form 

Wa1 o · · · o Wak(A) 

where there are k terms in the composition for Wk(A). Consequently, these intervals of length 1j2k have measure 

J.-L(Wai 0 · · · 0 Wak(A) = Pa1 • • • Pak 

Since each term in the product is 1/2, the right hand side is 1/2k as desired. 

IX.7.2 We must prove thef-t applied to any rectangle in • gives the area of the rectangle, where 11 is the invariant measure 
of the IFS 

and the wi are given by 



L 
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that the invariant measure J-L is uniform, that is, that for any rectangle, we have J-L(([a, b], [c, d])) = (c- a)(d- b). We 

argue as in the previous problem: For any square with a side of length :}n of the form 

k k+1 e £+1 
S = ([2n' ~], [2n' ~]) 

we have some sequence i, j, ... , k of digits, of length n such that this square is equal to 

S = W; o Wj o · · · o Wk(A) 

and hence its measure is 

1 2 
J-L(S) = PiPj · · · Pk = (-) 2n 

so that the measure has the uniform property on such squares. These squares form a countable base for the Borel subsets of 

A, consequently any rectangle may be written as 

00 

([a, b], [c, d]) =US; 
i=l 

where the S; have been chosen such that J-L(S; n Sj) = 0, that is, they meet only on the edges. Consequently, by countable 

additivity, we have J-L(([a, b], [c, d])) = (c- a)(d- b), for this rectangle, consequently the measure of any rectangle in A 

is its area. 

IX.7.4 The distance between two points in ([0, 1]p, dp) can be written 

dp(a, b)= ldp(a, 0)- dp(b, 0)1 

We start with the sets in each space corresponding to addresses in a cylinder set in code space, namely 

¢(C(aJ, a2, ... , an)) and c/Jp(C(aJ, a2, ... , an)). 

If the measures agree on the size of these sets, which form a base for the Borel field in each space then since we can rewrite 

f on these as 

f(C(aJ, a2, ... , an))= c/Jp(¢- 1(C(ai, a2, ... an))) 

we will have demonstrated that the measures are equal. On [0, 1], almost by definition, the invariant measure v applied to a 

cylinder set yields 

v(C(aJ, a2, ... , an))= P1P2 · · · Pn• 

that is, the probability of landing in the cylinder set on n iterations. 

On [0, 1]p, the cylinder set corresponds to an interval with endpoints 

.a1a2 · · · anO and .a1a2 ... an(N- 1) = .a1a2 ... (an+ 1)0 

How wide is this interval? Start with n = 1. The interval (.a1, .(a1 + 1)) can be read from the IFS we used to construct 

[0, 1]p, to be of width Pa
1

• A contraction of the same relativt> subdivision of [0, 1] is placed inside it to make our "tick 

marks" by the IFS, so that the portion of this subinterval whicn is also in the interval (.a1a2, .a1(a2 + 1)) is thus Pa1Pa2· 

If this proceeds in this fashion up to ak. then the subinterval which is again divided by the action of the IFS is of length 

Pa1Pa2 · · · Pak' and we take a fraction of this equal to Pak+I times its length. Consequently by induction, the length of the 

image of a cylinder set is 

J-L(c/Jp(C(aJ, a2, ... , an)))= d(.a1a2 ···an, .a1a2 ···(an+ 1)) = Pa1Pa2 ···Pan 

which agrees with the value on [0, 1] for the image of the same set under the invariant measure v. Hence v(A) = J-L(f(A)), 

and f is measure prese.r.ving. 

IX. 7.5 The diagonal of the square forms right triangles with the vertical lines generated by the tick marks on the x -axis, and 

with the horizontal grid lines generated by tick marks on the y-axis. The slope of this line is 1, hence the distance between 
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horizontal grid lines on the diagonal is -J2 times the distance on the x-axis. Consequently, a poin\ picked at random on the 
diagonal has a Pi chance of falling between the i - 1 th grid mark and the ith grid mark, and so forth. With probability 1 then, 
a point on the diagonal will have each digit occuring in proportion to the Pi spacing on the x -axis in its x coordinate, and 
the digits occur with equal frequency in its y coordinate. 

Answers to Chapter IX, section 8 
There are no mathematical exercises in section 8. 



Index 
V , definition, 10 

, definition, 9 

· , definition, 9 
0 . definition, 9 
A , definition, 9 

• , definition, 9 
IAI, definition, 58 
A c X, definition, 9 

address, 2, 115, 122, 125, 141, 149, 274, 300, 

359 
definition, 125 
illustration, 116, 117, 118, 119, 120, 121, 124 
periodic, see periodic address 

affine transformation, 2, 43, 45, 49, 51-55, 53, 
70-74, 77,95,97,98,99, 100,113,118, 
119,130,136,142,145,211,219,225, 
227,233,236,239,243,253,272,332, 
361,376 

definition, 49 
illustration, 45, 48, 51, 52, 56, 57, 72, 98, 100, 

101, 102, 103, 104, 106, 107, 233, Plate 9-11 
see also transformation, affine 

algorithm, see fractals; specific algorithms 
for computing 

analytic transformation, 61-68, 74, 289 
definition, 66 

Andes Girl, 377 
illustration, Plate 27 

Arctic Wolf, illustration, Plate 28 
attractive cycle, 147, 268, 271, 314 

definition, 132 
attractive fixed point, 133, 136, 147, 247 

definition, 132 
illustration, 133-148 

attractive periodic point 
definition, 133 

attractor, 81, 83-84, 85, 87, 88, 90, 91, 92, 93, 
9~95,96,9~99, 1~0, 101,103,111,113, 
115,116,117, 118-119,122, 123, 125-131, 
133, 134, 136, 141, 145, 146, 149, 152, 153, 

154, 155, 156, 158, 159,169,170, 177, 182, 
183,184,185,199,200,202,211,212,214, 
215,218,223,226,232,234,243,246,252, 
253,260,266,271,272,280,282,298,299, 
301,302,305,307,308,309,313,318,319, 
327,331,332,333,343,345,347,359,363, 

367,376,382 
definition, 81 
illustration, 82, 92, 93, 101, 102, 103, 104, 

105,116,121,187,201,231,311 
strange, definition, 81 

A I B, definition, 10 

basin of attraction, 278, 281 
definition, 258 
illustration, 280, 281 

biological modelling, 3, 282 
Black Forest, 377-378 

illustration, Plates 31-34 
Bolzano-Weierstrass Theorem, 22 

illustration, 22 
proof, 20 

Borel field, 340, 341, 342, 343, 345, 347 
definition, 340 

Borel mea~ure, 4, 341, 343, 344, 347, 348, 349, 

365,372 
illustration, Plate 23 

Borel measure, normalized, 349, 350, 404 

definition, 349 
Borel subset, 335, 340, 341, 345, 363, 365, 366 

definition, 335, 340 
boundary,24,54,259,263,266,267,278,296, 

298,301,305,310,314,317,318,324,326 

definition, 23 
illustration, 18, 24, 25, 104, 120, 259 

bounded,21, 171,195,198,201,310 
definition, 20 
totally, 20 

boundedness, 15 
Box Counting Theorem, 175-176, 188, 

190-191,224 
illustration, 175, 178, 179 
proof, 175 

523 
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C, definition, 43, 44 
C, definition, 7 
C, definition, 7 
Cantor set, 140, 155, 165, 180, 259, 279 

illustration, 44 
Caratheodory's Extension Theorem, 4, 342 
proof, 342 
see also Extension Theorem 

Cartesian map, 24 
Cartesian product, 26, 123, 229 

definition, 9 
Castle fractal, IFS code for, 186 

illustration, 185 
o~uchy sequence, 16, 17, 19, 20, 35, 36, 38, 42, 

45, 77, 78,92, 124,171,210,257,288,348, 
definition, 15 
illustration, 18, 29, 35, 39 

Cauchy subsequence, 
extension of, 34, 35 
illustration, 35 

cell,324 
Chaos Algorithm, illustration, 90 
Chaos Game, 2, 3 
for a recurrent iterated function system, 385-388 

chaotic, definition, 167 
chaotic dynamical system, 2, 164, 167-169, 

193,275,278,285 
definition, 167 

characteristic function, definition, 344 
x. definition, 344 
cla!:sical Cantor set, see Cantor set, classical 
closed, 20, 21, 23, 24, 172, 288 
definition, 19 

closedness, 2, 15 
closure, 129 

definition, 19 
Cloud Study (video) 113, 377 

illustration, Plate 25 
code space, 78,84, 119,120,121-123,125, 

126, 127, 128, 129, 130, 140, 141, 146, 149, 
152,160,162,164,167,170,273,274,299, 
308,339,341,343,352,359,363,365 

definition, 18, 120 
Collage,376-378 
Collage Theorem, 2, 94, 95, 97, 100, 101, 186, 

221,275,378,380 
illustration, 96, 97, 98, 102, 103, 107, 108 
proof, 103 
for a recurrent iterated function system, 392-403 

Collage Theorem for Measures, 360, 361 
illustration, 361 
proof, 360-361 

compact, 20, 22, 23, 24, 41, 79, 92, 123, 124, 
125,180,184,215,243,256,258,272,287, 
288,340,342 

definition, 20 

compact metric, 146 
compact metric space, see metric space, com

pact 
compactness, 2, 15, 23, 29, 159, 172, 299 
completeness, 2, 15 

definition, 16 
see also metric space, complete 

Completeness of the Space of Fractals Theo
rem, 35-37 

proof, 36-37 
completion, of a measure, 344 

definition, 344 
computer programs 

Deterministic Algorithm, 85, 87, 210 
Escape Time Algorithm, 249-250, 253, 254, 

277 
see also Escape Time Algorithm, illustration 

hidden variable fractal interpolation function 
with Random Iteration Algorithm, 234-236 

invariant measure of an IFS with probabilities, 
370-372 

illustration, 373 
parameter space coloring, 311-312, 324 
Random Iteration Algorithm, 87-90, 216 
Random Iteration Algorithm with interpola-

tion and vertical scaling factors, 213-215 
illustration, 215 

web diagram, 135-136 
condensation, 218, 276 
condensation set, 91-94 

definition, 91 
condensation transformation, definition, 91 
conformal, 7-8 
connected,26,27,83,257,299,302,303,313, 

314,318,326 
definition, 24 
illustration, 28 

connected, multiply, 26, 27 
definition, 26 
illustration, 28 

connected, pathwise, 26, 27, 238, 243, 256, 261 
definition, 24 
illustration, 109 

connected, simply, 26, 27 
definition, 26 

connectedness, 
see also connected; connection 

connection, illustration, Plate 16 
continuous, 40-41, 62, 79, 103, 104, 106, 110, 

111,124,125,127,128,147,217,221,257, 
268,287-289,347,350,363 

continuous, uniformly, 112-113 
definition, 40-41 

continuous deformation, definition, 26 
continuous function, 6, 229, 233, 237, 238, 242, 

245,349,356,357,370,371 



definition, 14 
illustration, 8 

continuous transformation, 122, 288, 299 
illustration, 150 

Contraction Mapping Theorem, 75, 217 
proof, 73 

contraction mapping, 2, 4, 74-75, 77, 78, 79, 
80,81,83,84, 91,92,95, 102,104,131,217, 
218,357 

definition, 74 
illustration, 76, 218 

contractive transformation, 76, 80, 236 
illustration, 76 

contractivity, 75, 79, 80, 81, 83, 84, 91, 93, 95, 
96,97, 102,111,158,163,218 

contractivity factor, 232, 298, 300, 304 
definition, 74 

convergence,2, 15, 16, 20,124,171,268, 
277,288 

definition 15, 16 
illustration, 39, 46 

convergentsequences,34, 40, 83, 88,276, 
353,354,356 

illustration, 82, 83 243, 244 
coordinate changes, 68-74, 77, 99-109 
illustration, 70, 71 

coordinate space, 68 
illustration, 70 

coordinate system, 68, 69, 71, 72, 176, 190, 
238,294 

illustration, 69 
countable, 22, 84, 122, 125, 318 

definition, 120 
illustration, 124 

countable base, 340 
definition, 340 

critical point, 62, 64, 66, 67, 313 
definition, 47, 66 
illustration, 48 

critical value, 67 
definition, 48, 66 
illustration, 48 

cycle, 170-171,274,276 
definition, 132 
see also attractive cycle; repulsive cycle 

cylinder subset, 339 
definition, 339 

as, definition, 24 
data, 192,193-196,205,208,211,213,215, 

218,219,222,223-224,233 
definition, 208 
generalized, 229, 232 
definition, 229 
illustration, 195 

deformation, bounded, 13-14 
deformation, of space, 47, 52-53, 179 
degree, of transformation, definition, 47 
Ou (B), definition, 348 
delta function, definition, 348-349 
dense, 167,168,170,274 

definition, 165 
Desktop Fractal Design System, 399 
Deterministic Algorithm, 2, 86, 88, 219 
computer program for, 88-90, 210 

deterministic fractals, 379 
deterministic shift dynamical system, illustra-

tion, 166 
DH (A), definition, 201 
dH (J-l, v), definition, 349 
diam(A), definition, 199 
diameter, of partition, definition, 347 
diffeomorphic, 148 
differentiable, 148, 318 
definition, 148 

disconnected, 27, 192, 319 
definition, 24 

disconnected, pathwise, 26 
definition, 24 

disconnected, totally, 29, 83, 115, 117, 127, 
140, 146, 148, 149, 154, 158, 164, 165, 169, 
170,183,186,199,206,253,299,302,303, 
319,320,326,359 

definition, 24, 125 
illustration, 155 

disconnection, illustration, Plate 16 
dynamical system, 2, 81, 130-140, 141-142, 

149,151-152,246,250,252,253,255,266, 
268,271,272,276,297,309,312,313,314, 
317,318,324,326,327 

definition, 130 
sensitive to initial conditions, definition, 167 
stretch, squeeze, and bend, illustration, 131, 

132 
transitive, definition, 167 

see also chaotic dynamical system; set dy
namical system; shift dynamical system; 
slide and fold dynamical system; stretch, 
squeeze, and bend dynamical system; 
transitive dynamical system 

dynamical systems, family of, illustration, 
Plates 17-20 

dynamics, on fractals, 2 

E , definition, 5 
Elton's ergodic theorem, 4, 364-370, 376 
E-net, 20 
definition, 20 

equivalence, 2, 3, 146, 147, 148, 164, 165, 
206,287 
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see also metric space, equivalence; metrically 
equivalent 

Escape Time Algorithm, 3, 246-266,271,272, 
277,282,288,289,292,293,319,324 

computer program, 249-250, 253, 254, 255, 
278 

illustration, 251, 253, 254, 259, 264, 263, 
264-265,267,268,287,290,291,320-324, 
325, 328, 329, Plates 6-14 

Euclidean geometry, see geometry, classical 
eventually periodic point, definition, 133 

see also periodic, eventually 
Extension Lemma, 34-35 
extension of a Cauchy subsequence, 34, 35 
Extension Theorem, Caratheodory's, 4 

'], definition, 337-338 
J-l, definition, 42, 43 
J-l, (A) (for a setA), definition, 65 
family resemblances, 326 
Feigenbaum ratio, 314 
fern, 92, 170, 282 

IFS code for, 85, 90, 91 
illustration, 32, 39, 91, 166, 346, Plate 3 

fern, Black Spleenwort, 97, 126 
IFS code for, 99 
illustration, 102 

field, 338, 339, 342, 343 
definition, 337-338 
illustration, 339 
see also Borel field; sigma-field 

field, generated by §, definition, 338 
fixed point, 72, 73, 75, 76, 77, 78, 79, 81, 97, 

102,103,127,152,218,268,272,280, 
288,352 

definition, 71 
table, 103 
see also attractive fixed point; repulsive 

fixed point 
folds, 46-4 7 

illustratiort, 50 
fon• definition, 43 
fractal dimension, 3, 15, 146, 171, 206, 207, 

212,223,224,224-226,233,247,252,253, 
266,278,302,303,308 

calculating, 173-175 
definition, 171, 173, 180-181 
experimental determination of, 188-195, 227 

illustration, 188, 190, 191, 192, 193, 194, 
196, 197 

table, 189, 191 
idea behind, 172-173 
illustration, 172, 176, 177, 178, 179, 183, 185, 

186,187,201,202,203,204,231 

of fractal interpolation functions, 223, 226 
fractal function, hidden variable, 240-243 
fractal interpolation function, 3-4, 207, 218, 

219,222,223,226,227 
definition, 218 
generalized, 233, 237 

definition, 233 
illustration, 239 

hidden variable, 234, 236, 237-238 
computer program for, 234-236 

illustration, 208, 209, 212, 220, 221, 222, 223, 
224,225,228-229,230,231 

fractal interpolation, 3 
hidden variable, illustration, 237 

fractal systems, 379, 383 
fractal tree, 2, 93 
fractal, deterministic, definition, 79 
fractals, algorithms for computing, 2, 84-91 

see also "Chaos Game"; Deterministic 
Algorithm; Random Iteration Algorithm 

function 
characteristic, definition, 344 
simple 

definition, 344 
see also simple function 

see also specific functions 

generalized data, definition, 229 
see also data, generalized 

geodesics, definition, 10 
geometric series, 46 

illustration, 46 
geometry, classical, 1, 205, 206, 207 

illustration, 114, 206 
geometry, deterministic, 4, 42, 236, 373 
graph,233,234,237,240,243,252,272,345 

definition, 229 
group, 73, 74 

definition, 73 

1t(X), definition, 27 
illustration, 30 

Hausdorff distance, 45, 79, 95, 207, 289, 297 
definition, 32 
illustration, 32 

Hausdorff metric, 33, 79, 80, 85, 95, 111, 207 
219,268,289,326,359 

illustration, 112 
Hausdorff p-dimensional measure, 201 
definition, 200 

illustration, 201 
Hausdorff-Besicovitch, 3 
Hausdorff-Besicovitch dimension, 200, 202, 



203,204,205,295 
definition, 202 
illustration, 205 

hidden variable, 234-235 
definition, 234-235 
see also fractal interpolation function, 

hidden variable 
homeomorphic, 14, 145-146, 299 
definition, 145-146 

homeomorphism, 15, 41, 145, 146, 148, 152, 
165,299 

definition, 14 
illustration, 29, 147 

Hutchinson metric, 349, 351, 406 
definition, 34~ 

IFS,2,81,83,84,85,87,88,90,91,93, 
94-101, 136, 140-145, 146-148, 149, 165, 
169,182-183,203,207,210,211-213,214, 
215-216,218,223,226,232,234,236, 
240-243,245,246,253,266-267,270,278, 
280,282,304-306,352 

definition, 81 
hyperbolic, 149-152, 159-161, 168, 170, 183, 

185, 186, 199, 202, 209, 210-211, 215-216, 
218,219,232,243,252,254,272,274,298, 
299,301,304,313-314,318,350,352, 
360-363 

hyperbolic with condensation, 92-94, 119 
definition, 91 

illustration, 96, 98, 100, 112, 114, 187, 231 
lifted, 154, 168 

definition, 154 
Random Iteration Algorithm applied to 

computer program, 213-214, 234-236, 238 
with condensation, illustration, 92, 93, 94 
with probabilities, 331, 332, 335, 343, 345, 

351,354,359,360,364 
illustration, 362, 363, 364 
invariant measure of, 352 

computer program, 370-372 
illustration, 373 

see also iterated function system 
IFS code, 219, 376, 377, 378 

for a mt><~sure on •· 331, 332, 334 
illustration, 332, 333, 334 

for Black Spleenwort, 99 
for Castle fractal, 186 
for Fern, 86, 90, 102 
for Sierpinski triangle, 85, 89-90 
for.,238,240,24n 
for Square, 86 
for Tree, Fractal, 86 

image animation, 111 

Inf S, definition, 33, 74-75 
infinum, definition, 33, 75 
f xf d~, definition, 348 
integral, 348 
definition, 345, 348 
of a continuous real-valued function, 4 

interior, 25 
definition, 23 
illustration, 24, 25 

interpolation function, 209, 210, 229, 233 
definition, 208, 229 
see also piecewise linear interpolation 

function 
interpolation points, 218, 223, 229 
definition, 209, 229 

interval [a, b), definition, 9 
invariant, 15, 165, 280, 288 
illustration, 16 

invariant measure, 360-363, 365, 366, 372, 376 
definition, 334-335 
illustration, 374, 375 
of IFS with probabilities, 359, 360, 361, 366 
definition, 352 
illustration, 363, 364 

· invertible, 14, 49, 58, 68, 149, 150, 153-154, 
158,184,217,299 

definition, 42-43 
invertible transformation, 65, 73, 159-160 
iterated function system, 2, 330 

definition, 80 
with probabilities, 330-331 

definition, 330 
see also IFS, with probabilities 

see also IFS 
iterates, 4 7 

backward, definition, 43 
forward, definition, 43 

jet exhaust, 3, 205-206, 207 
see also jet flame 

jet flame, 191-193 
illustration, 193, 194 

Julia set, 3, 61, 256, 258, 259-263, 266, 267, 
270,271,272,273,274,275,276,278,280, 
281,282,287,297,310,312,313,314,317 

definition, 256, 275 
hyperbolic, 271 
illustration, 269, 275, 277, 279, 283-286 

318, Plates 13, 16 
Julia set, filled, 255, 258, 259, 260, 263, 266, 

271, 272, 289 
definition, 255-256 
illustration, 259, 260, 261, 262, 315, 316 

just-touching, 116, 117, 125, 126, 142, 149, 
151, 152, 157, 161, 165, 183, 184, 185, 199, 
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200,211,224,238,263,274,319,320 
definition, 125 
illustration, 151 

just-touching collage, 103-106, 113-114 
illustration, 105 

landscape, 377 
illustration, Plates 21, 22 

Leaf and Sunflower, condensation sets, 
illustration, Plate 29 

leaf, 52, 53, 65, 97, 99, 103, 155, 377 
illustration, 52, 96, 103, 336, Plates 23, 24 

Lebesgue measure, definition, 344 
lily, 324 
Lim inf, 177 
limit, 16, 18 
definition, 16 

limit point, 19 
definition, 19 
illustration, 18 

Lim sup, 177, 181, 182 
linear fractional transformation, see Mobius 

transformation 
linear space, 5, 6 
linear transformation, 51, 54, 57, 78 
illustration, 51, 52, 78 

local iterated function systems, 380 

o11, definition, 315 
ol1 (A,p, e), definition, 198 
ol1 (A, p ), definition, 198 
Mandelbrot, B., 1 
Mandelbrot set, 4, 301, 302, 303, 304, 305, 

306,312,313,314,317,318,324,327 
definition, 301, 312 
illustration, 301, 303, 304, 305, 306, 307, 
308,309,310,313,315,316,317,318,319, 
329, Plate 16 

map,3,50,83,97, 128,128,141,152, i54, 
165,183,186,200,203,207,209-211, 
212,233,240,243,263,268,271,272,274, 
278,288,289,294-299,301,302,308,309, 
310,317,319,324,326,361,363,376 

illustration, 56, 57, 59, 60, 65, 295, 296 
Plates 12, 14, 15 

mapping,43,58,59, 62,63,64,147,317 
see also contraction mapping 

Markov chain, 392-393 
Markov operator, 350, 351, 352, 354, 360, 

406--409 
definition, 350 
illustration, 353, 354, 355, 356, 357, 358, 359 

measure,4,332,335,336,341,342,343,344, 
345,347,350,351,352 

definition, 341 
Mercator's projection, 24, 278 
illustration, 280 

metric, 11, 14, 29, 78, 99, 215, 218, 229, 232, 
272,344,349 

compact, 146 
definition, 10 
equivalent, 12, 215-216, 273 
definition, 12 

Euclidean, 11, 12, 14, 45, 58, 77, 173, 
175-176,180,195,198-200,210,215-216, 
219,246,256 
illustration, 18 

illustration, 11, 13, 18 
Manhattan, 11, 12,58, 77,161,180,207 

metric equivalence, 24 
metric space, 2, 3, 10--41, 43, 68, 77, 79, 81, 

92, 111, 147, 148, 165, 167, 171, 172, 173, 
174,177,180,181,195,198,199,213,217, 
219,238,288,297,341,342,343,344,345, 
348,349 

closedness of, 2 
see also closed; closedness 

compact, 4, 38, 75, 77, 78, 84, 122, 146, 272, 
299,340,344,347,348,349,350,351, 
352,359 
illustration, 76 

compactness of, 2, 77 
see also compact; compactness 

complete, 17, 20, 27, 31, 34, 75, 80, 102, 104, 
111,122,123,172,180,216,229,232,237 

completeness of, 2 
see also completeness 

connectedness of, 2 
see also connected; connectedness 

convergence of, 2 
see also convergence 

definition, 15 
equivalence of, 2, 15 
illustration, 21, 29 

equivalent, 12, 13, 14, 18, 19, 21, 22, 
126--129, 145-147 

illustration, Plate 1 
openness of, 2 

see also open; openness 
subsets of, 2, 15 
transformation on, 2 

see also transformation 
metrically equivalent, 145, 146, 165, 171, 

177,200,300 
definition, 145-146 
illustration, 16 

minimal period, definition, 132 
Mobius transformation, 2, 49, 50, 58-61, 72, 



74,75,83-84,131,287 
definition, 49, 58 
illustration, 59, 60, 61, 133, 134 

model, 29, 159, 173, 190, 287, 312, 347, 373, 
376 

Monterey Coast, 377 
illustration, Plate 26 

mountain, illustration, 106 
Myreberg point, 314 

JV(a, e), definition, 172 
natural scene, 374 
nested, 43-44, 279 
Newton transformation, 280, 281, 282, 317 

definition, 276 
illustration, 287, Plate 14 

Newton's method, 4, 276-287 
Non-Wavering Domain Theorem, 278 
norm, of a point, definition, 58 
norm, of the linear transformation, 

definition, 58 
numits, 249, 250, 252, 254, 320, 331, 370 

definition, 248 

one-parameter family, 130, 136, 149, 256, 272 
illustration, 230, 231 

one-to-one, 14, 43, 68, 140, 146, 157 
definition, 42-43 

onto, 14,43, 68,120,124,125 
definition, 42-43 

open set condition definition, 125 
open set, 62, 268, 289, 290 
open,21,23,257,288,340 

definition, 20 
openness, 2, 15 
orbit, 2, 130, 131, 132, 134, 135, 136, 140, 153, 

156,157,158-163,165,167-169,247,255, 
257,258,268,276,277,278,287,288,310, 
313 

chaotic, 164-165, 169 
definition, 130 
illustration, 141, 142, 143, 144, 165, 166, 248 

outer measure, definition, 341 
overlapping 116-117, 119, 125, 126, 149, 151, 

152, 153, 155, 162, 183, 186 
definition, 116-118, 125 
illustration, 121, 152, 155 

+(for set and real numbers), definition, 33 
parameter space, 3-4, 296, 297, 298, 299, 301, 

304,306,308,310,314,317,320,326,327 
illustration, 297, 301, Plates 17-20 

parameter space coloring, computer program 
for, 311-312, 314 

parameters, 23, 104, 106, 212, 233, 234, 271, 
272,300,301,305,306,314 

continuous dependence of fractals on, 2, 
101-114 

continuous dependence of invariant measure 
on, illustration, Plate 25 

partition, definition, 34 7 
partition, diameter of, definition, 347 
path, 24,26 

definition, 24 
illustration, 26 

perfect, 19, 44, 83 
perfection, 15 

definition, 19 
period, definition, 128 
periodic address, definition, 128 
periodic point, 129, 132, 274 

definition, 128, 132 
see also attractive periodic point; repulsive 

periodic point 
periodic, eventually, 133, 136, 141-142, 147, 

152 
definition, 129 

p 1 & L, definition, 360 
Photocopy Machine Algorithm, 382 

illustration Plates 37, 40 
piecewise linear interpolation function, 210, 

212,222 
illustration, 210 

point x, illustration, 6, 7, 18 
Point at Infinity, 255, 257, 258, 268, 272, 

310, 313 
polynomial transformation, 46, 49, 67, 258, 270 

definition, 46 
illustration, 47, 48, 50 

quadratic transformation, 61, 62, 64-65, 67, 74, 
253,257,266,280 

illustration, 63, 64, 65 
quadree 
definition, 118 
illustration, 119 

R, definition, 54 
IR, definition, 5 
R9 , definition, 54 
Random Iteration Algorithm, 84, 85, 87-88, 

89-90,130,165,168,169,213,267,271, 
272,330,332,334,335,347,352,365-366, 
376 

illustration, 113, 267, 268, 269, 332, 333, 334, 
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335,336,337 
Random Iteration Algorithm, computer pro

gram, with interpolation and vertical 
scaling factors, 213-214 

Random Iteration Algorithm, computer pro
gram, 89-90, 210 

random shift dynamical system, 149, 153, 156, 
158, 159, 160, 161, 168, 167-168 

definition, 153 
illustration, 153, 163 

rational numbers, 167 
definition, 122 

rational transformation, 66, 271 
recurrent iterated function systems, 379 

Chaos Game for, 385-388 
Collage Theorem, 392-403 
Photocopy Machine Algorithm for, 388-392 

reflection, 59 
definition, 54 

repelling sets, 3 
repulsive cycle, 2, 141-142, 275 

definition, 132-133 
repulsive fixed point, 132, 141, 147, 247 

definition, 132-133 
illustration, 133-148 

repulsive periodic point, 132-133, 278 
Riemann sphere, 8, 43, 255, 268, 272, 278 

illustration, 8, 256, 270, 273, Plate 14 
Mobius transformations on, 58, 61, 64-65 

rotation, definition, 54 

So, definition, 23 
scaling factor, 183, 184, 186, 199, 238, 263, 

302,318 
definition, 54 
illustration, 56 
see also vertical scaling factor 

semigroup, 73, 74, 77 
definition, 73 

sensitive to initial conditions, definition, 167 
sequence, of intervals, 45 

illustration, 45, 46 
set dynamical systems, definition, 136 
set-valued inverse, definition, 65 
Seurat, 376--378 
Shadow Theorem, 2-3, 154, 156, 157, 158 
illustration, 156, 157 

Shadowing Theorem, 3, 159-160, 161, 162, 169 
illustration, 162, 163, 164 
proof, 160 

shear transformation, 212, 213-215 
definition, 212 
illustration, 212, 226 

shift dynamical system, 2, 140, 142, 146--147, 
148,149-158,159,160,161,162,163,164, 
165,167,168,169-170,246,252,254,273, 
274,276,319,327 

definition, 140 
illustration, 141, 151, 152, 153, 247 
lifted, definition, 154 
see also deterministic shift dynamical 

system; random shift dynamical system 
shift operator, definition, 74 
shift transformation, definition, 140 
Sierpinski space A , definition, 9 
Sierpinski triangle, 9, 38, 49, 54, 62, 65, 77, 84, 

87,91,115-116,118,119-120,122,149, 
152,161,176,184,198,200,243,246--249, 
250,252,259,289,332,336,341,345-347 

IFS code for, 84-85, 88-90 
illustration, 18, 50, 63, 65, 88, 89, 117, 150, 

177,199,245,247,248,335,346 
table, 342 

I, definition, 8, 122 
a-field, definition, 340 
sigma-field, 340--341, 342, 343, 345 
sigma-field, generated by g, definition, 340 
similitude, 54, 58, 59, 60, 62, 65-66, 67, 68, 74, 

75,97,98,99, 113,183,186,199,200,238, 
263,302,318,326 

definition, 54 
illustration, 55, 63, 96, 98, 103, 186 

simple function, 344, 347, 348, 350 
definition, 344 
illustration, 346 

slide and fold dynamical system, 136 
illustration, 138 

space X, 5-10 
definition, 5 
points of, 5 

space, see metric space 
space-filling curves, 238-245 

illustration, 241, 242, 244, 245 
IFS code for, 238, 240, 243 

Square, IFS code for, 86 
strange attractor, see attractor, strange 
stretch, squeeze, and bend dynamical system 

illustration, 131, 132 
Sunflower Field, 377, 378 

illustration, Plate 30 
SupS, definition, 33, 75 
support, of a measure, 344 

definition, 344 
supremum, 200 

definition, 33, 75 



topologically conjugate, 147 
definition, 146 

topologically equivalent, 146, 152 
definition, 145 

topology, 13, 15 
illustration, 13 

totally disconnected, 115 
definition, 125 
see also disconnected, totally 

transformation, 2, 29, 42-114 
affine, 2, 42, 43, 45 

see also affine transformation 
contractive, 75 
definition, 42-43 
illustration, 21 
invertible, 43 
Mobius, see Mobius transformation 
rational, 42 
real line, 42-49 
see also affine; analytic; condensation; 

continuous; invertible; Mobius; Newton; 
one-to-one; onto; polynomial; quadratic; 
rational; and shear transformations 

transitive, 167 
definition, 167 

translation, 45, 51 
illustration, 52 

tree, 38,93 
illustration, 92 

Tree, fractal, IFS code for, 86 
illustration, 93 

turbulent jet, see jet flame 
Twin-Dragon Fractal, 306 

illustration, 310 

uncountable, 120 
definition, 120 

Vector Recurrent Iterated Function System 
(VRIFS TM ), 408-409 

illustration, 409, Plates 37, 38, 39 
vector space, see linear space 
vertical scaling factor, 212-215, 223, 227 
vertical scaling factor, definition, 212 

web diagram, 136, 148, 163-165, 260 
computer program, 135-136 
definition, 135 
illustration, 134, 137, 148, 163, 166 

X, definition, 8 
x f, definition, 71 
lXI. definition, 
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