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Preface

This book describes a variety of techniques in current use for studying the
mathematics of fractals. It is an instructional and reference work for those
researching in fractal geometry and for those who encounter fractals in other
areas of mathematics or science, and it contains material suitable for advanced
courses. The book is a sequel to ‘Fractal Geometry — Mathematical Founda-
tions and Applications’ which was published in 1990, and which contains
central material on the mathematics of fractals. ‘Fractal Geometry’ was
originally aimed at a postgraduate audience, but with the explosion of interest
in the subject it has also been used as the basis of undergraduate courses.

This book presupposes a reasonable competence in mathematical analysis,
and in several places some knowledge of probability theory will be helpful.
Familiarity with the basic material in ‘Fractal Geometry’ is assumed,
particularly that on dimensions and iterated function systems; the main ideas
and notation are reviewed here in Chapters 1 and 2. Specific references to
‘Fractal Geometry’ are often made and these are denoted by FG.

Much of the material presented in this book has come to the fore in the last
few years. This includes a variety of methods for studying dimensions and
other parameters of fractal sets and measures, as well as more sophisticated
techniques, such as the thermodynamic formalism and tangent measures,
which are now used routinely in fractal geometry and have many applications.
The book also includes several ‘big theorems’ from probabilistic analysis, such
as the ergodic theorem and renewal theorem, which have been applied effec-
tively to fractals. As well as general theory, many examples and applications
are described, in areas such as differential equations and harmonic analysis.
Some results appear for the first time, and proofs have often been simplified.

The style of ‘Techniques in Fractal Geometry’ is similar to that of ‘Fractal
Geometry’. The book is mathematically precise, but aims to give an intuitive
feel for the subject without getting unnecessarily involved in formal detail. The
underlying concepts are presented as simply as possible and much of the theory
is developed in detail in fairly specific cases with more general analogues
summarised afterwards. For example, the thermodynamic formalism is
presented for a simple non-linear generalisation of the Cantor set. As in
‘Fractal Geometry’, technicalities of measure theory are played down, with the
existence of ‘intuitively obvious’ properties of measures taken for granted. An
asterisk * indicates parts that can be omitted on first reading without losing

the intuitive development.
-
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No attempt has been made to include the most general results known. The
author believes strongly that it is more important to communicate ideas and
concepts than technical detail. Too often in mathematical writing, simple but
elegant ideas are concealed by excessive generality. Often if the underlying
ideas are understood then it is clear how they can be developed or combined to
give more general results. It is hoped that readers will be able to ‘extrapolate
from the cases discussed here to more general situations.

Each chapter ends with brief notes on the history and current state of the
subject. Given the scope of the topics covered, a comprehensive bibliography
would be enormous, so we merely reference recent and key works for those
interested in pursuing any topics furt®er. Exercises are included to reinforce the
text and to indicate further theory and examples.

With the wide range of topics included it i1s impossible to be entirely
consistent as regards notation. In places a compromise has been made between
standard notation and self-consistency within the book. There are some
differences in notation from that in ‘Fractal Geometry’.

Inevitably errors will have crept into the text during writing and rewriting.
I regret this, and express the hope that such errors are obvious rather than
misleading! I struggled to cope with correcting and revising an electronic
version of the book. From experience with both approaches I can assure
potential authors that the traditional method of correcting a double-spaced
typescript by hand, whilst curled up in an armchair, is far less effort and less
stressful and probably more accurate than working at a computer screen!

I am most grateful to all those who have assisted with the preparation of this
book. In particular, John Howroyd, Maarit Jarvenpidd, Pertti Mattila, Lars
Olsen and Toby O’Neil made very useful comments on early drafts of the
book. Ben Soares produced some of the diagrams and, with Toby O’Neil,
designed and produced the cover picture. I am greatly indebted to Gill Gardner
for converting my almost illegible handwriting into an electronic form, and to
the staff of John Wiley and Sons, in particular Stuart Gale, David Ireland and
Helen Ramsey, for overseeing the production of the book.

Finally, I thank my family for their considerable patience and understanding
whilst I was writing the book.

Kenneth J. Falconer
St Andrews, April 1996

Notes

References to the author’s earlier book ‘Fractal Geometry—Mathematical
Foundations and Applications’ are indicated by FG.

Parts of the book which may be omitted on a first reading are indicated by
an asterisk *.



Introduction

The name ‘fractal’, from the latin ‘fractus’ meaning broken, was given to highly
irregular sets by Benoit Mandelbrot in his foundational essay in 1975. Since
then, fractal geometry has attracted widespread, and sometimes controversial,
attention. The subject has grown on two fronts: on the one hand many ‘real
fractals’ of science and nature have been identified. On the other hand, the
mathematics that is available for studying fractal sets, much of which has its
roots in geometric measure theory, has developed enormously with new tools
emerging for fractal analysis. This book is concerned with the mathematics of
fractals.

Various attempts have been made to give a mathematical definition of a
fractal, but such definitions have not proved satisfactory in a general context.
Here we avoid giving a precise definition, prefering to consider a set E in
Euclidean space to be a fractal if it has all or most of the following features:

(i) E has a fine structure, that is irregular detail at arbitrarily small scales.

(ii) E is too irregular to be described by calculus or traditional geometrical
language, either locally or globally.

(iii) Often E has some sort of self-similarity or self-affinity, perhaps in a
statistical or approximate sense.

(iv) Usually the ‘fractal dimension’ of E (defined in some way) is strictly
greater than its topological dimension.

(v) In many cases of interest F has a very simple, perhaps recursive, definition.

(vi) Often E has a ‘natural’ appearance.

Examples of fractals abound, but certain classes have attracted particular
attention. Fractals that are invariant under simple families of transformations
include self-similar, self-affine, approximately self-similar and statistically self-
similar fractals, examples of which are shown in Figure 0.1. Certain self-similar
fractals are especially well known: the middle-third Cantor set, the von Koch
curve, the Sierpinski triangle (or gasket) and the Sierpinski carpet, see Figure
0.2. Fractals that occur as attractors or repellers of dynamical systems, for
example the Julia sets resulting from iteration of complex functions, have also
received wide coverage.

Fractal geometry is the study of sets with properties such as (i)—(vi). Many
of the questions that are of interest about fractals are parallel to those that have
been asked over the centuries about classical geometrical objects. These include:

xi
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Figure 0.1 Fractals that are invariant under families of transformations. (a) and (b) are
self-similar, (c) and (d) are self-affine, (e) is self-conformal, and (f) is statistically self-
similar
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(@)

(b)

Figure 0.2 Well-known self-similar sets. (a) The von Koch curve (dimension
log 4/log 3=1.262), (b) the middle-third Cantor set (dimension log 2/log 3=0.631),
(c) the Sierpinski triangle or gasket (dimension log 3/log 2=1.585), (d) the Sierpinski
carpet (dimension log 8/log 3=1.893)

(a) Specification. We seek efficient ways of defining fractals. For example,
iterated functions systems provide one way of specifying fractals of certain
classes.

(b) Local description. Locally a smooth curve looks like a line segment. Whilst
fractals do not have such simple local structure, notions such as densities
and tangent measures provide some local information.

(¢) Measurement of fractals. The usual way of ‘measuring’ a fractal is by
some form of dimension. Nevertheless dimension provides only limited
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information and other ways of quantifying aspects of fractality are being
introduced. For example ‘lacunarity’ and ‘porosity’ are used to describe the
small-scale preponderance of ‘holes’ in a set. For such quantities to have
more than just descriptive use, their definitions and properties need a sound
mathematical foundation.

It may be argued that there is too much emphasis on dimension in fractal
analysis. Certainly, dimension (with its various definitions) tends to be
mathematically tractable and can often be estimated experimentally.
Moreover, the dimension of an object is often related to other features,
for example the rate of heat flow through the boundary of a domain
depends on the dimension of the boundary, and the dimension of the
attractor of a dynamical system is related to other dynamical parameters
such as the Liapunov exponents. However, many fractal aspects of an
object are not reflected by dimension alone and other suitable measures of
fractality are much needed.

(d) Classification. We seek ways of classifying fractals according to significant

©
(f)

()

geometrical properties. One approach is to regard two sets as ‘equivalent’ if
there is a bi-Lipschitz mapping between them (just as in topology two sets
are considered equivalent if they are homeomorphic) and to seek
‘invariants’ for equivalent sets. For example two sets that are bi-Lipschitz
equivalent have the same dimension, but dimension is far from a ‘complete
invariant’ in that, except for certain rather specific classes of sets, there can
be many non-equivalent sets of the same dimension.

Geometrical properties. Properties of orthogonal projections, intersections,
products, etc., are often of interest.

Occurrence in other areas of mathematics. Fractals arise naturally in many
areas of mathematics, for example dynamical systems or hyperbolic geo-
metry. The general theory of fractals ought to relate easily to these areas.
Use of fractals to model physical phenomena. There are many ‘approximate
fractals’ in physics and nature, and these can often be modelled by
‘mathematical’ fractals. Ideally the mathematical theory should then tell us
more about the physical situations.

In some areas the mathematics and physics tie together nicely, for
example, Wiener’s model of Brownian motion gives a reasonable
probabilistic description of the irregular path described by a particle
moving under molecular bombardment. However in other areas there is
often a gulf between the fractals that are encountered in science or nature
and the mathematics that is available. In many instances questions such as
‘Why does an object have a fractal structure?” or ‘If certain fractal features
are present, what can we deduce? have not been entirely satisfactorily
answered. Nevertheless, progress is being made. Increasingly fractals
are being studied in a ‘dynamic’ context, for example phenomena such
as the diffusion of heat through fractal domains are being modelled
mathematically.
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Fractal features are often exhibited by measures rather than just by sets.
‘Multifractal analysis’ reveals a (sometimes very rich) fractal structure of
measures, and a single measure may lead to a whole spectrum of fractal sets.
Many of (a)—(g) above apply to measures just as to sets and multifractal
measures are being studied in ways parallel to those for fractal sets.

This book presents some of the techniques that have been developed for
studying aspects of fractals and multifractals. We briefly outline the material
covered.

Chapter 1 brings together some general definitions and notation which will
be needed throughout the book. Some inequalities involving submultiplicative
sequences and convex functions are discussed. Basic ideas from measure theory
are presented, and some results on convergence of measures are derived for
later reference.

Chapter 2 reviews some standard aspects of fractal geometry which are
discussed in much more detail in the earlier volume, FG. The basic definitions
of dimension (Hausdorff, packing and box dimensions) and methods for their
calculation are reviewed, and there is a discussion on representing fractals by
iterated function systems.

In Chapter 3 we introduce two useful techniques for studying dimension.
Firstly, implicit methods enable properties of certain fractals to be investigated
without the need for a handle on the actual value of their dimension. In
particular, sets that are ‘approximately self-similar’ in a weak sense must
display considerable regularity from the point of view of dimension. Secondly,
we address the relationship between the box dimension of sets of real numbers
and the lengths of the complementary intervals of the set. In a certain sense, the
box dimension describes the complement of a set whereas the Hausdorff
dimension describes the set itself.

The next two chapters take the notion of approximate self-similarity further,
leading to the ‘thermodynamic formalism’. This powerful technique (which has
roots in statistical mechanics) extends the ‘linear’ theory of strictly self-similar
sets to the ‘non-linear’ setting of ‘approximately self-similar’ sets. We develop
the thermodynamic formalism in the special case of ‘cookie-cutter’ sets, which
may be thought of as ‘non-linear Cantor sets’. After deriving the ‘bounded
distortion’ principle for such sets, we obtain a formula for their dimension in
terms of the ‘pressure’ of a certain function.

Chapters 6—8 present three corner-stone results of probabilistic analysis:
the ergodic theorem, the renewal theorem and the martingale convergence
theorem. These results are proved and applied to topics such as average
densities of fractals, box-counting numbers of self-similar sets, and the
classification of fractals under bi-Lipschitz mappings.

Tangent measures, described in Chapter 9, are essentially limits of a
sequence of enlargements of a measure about a point. Tangent measures are not
unlike derivatives, in that they contain information about the local structure
of a set or measure, but they have more regular behaviour than the original
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measures. We give sample applications to densities of sets; in particular we
give a tangent measure proof that sets of non-integral dimension fail to have
densities almost everywhere. We indicate how tangent measures can be applied
to problems in harmonic analysis.

Often it is natural to study fractal properties of measures rather than
sets, indeed many fractal sets, such as attractors of dynamical systems, are
in essence already measures. Chapters 10 and 11 discuss fractal properties
of measures. In particular we consider sets such as E,, the set of x at which
a given measure p has local dimension o, that is where the measure of a
small ball centred at x is (roughly) equal to the radius of the ball to the
power «o. For certain p the sets E, may be ‘large’ for a range of «, and the
‘size’ of E, may be measured by either p or by dimension. In Chapter 10
we consider u(E,), leading to the ‘dimension decomposition’ of u, and
in Chapter 11 we look at the dimension of E,, leading to the ‘multifractal
spectrum’ of y. The thermodynamic formalism is used to extend the theory to
non-linear cases.

Chapter 12 describes several ways in which fractal geometry interacts with
differential equation theory. This is an area where a number of important
methods have been developed and where some of the techniques from earlier in
the book may be applied. We describe a general approach for bounding the
dimension of attractors of dynamical systems and of differential equations.
Then the effect of a fractal boundary of a region on the solutions of partial
differential equations is discussed, in particular the way in which fractality
affects the asymptotic form of the solutions and the asymptotic distribution of
eigenvalues. The final section is concerned with setting up differential equations
on a region that is itself fractal. This chapter is selective and far ranging, and
full proofs are not included.

Fractal geometry may be studied from many viewpoints, and inevitably the
approach adopted in this book reflects the author’s own background and
experience. The topics included have been selected according to the author’s
interests and whim, but there are many other worthy techniques in use in fractal
analysis, such as wavelet methods and the variants of iterated function systems
used in image compression. Nevertheless, the methods described here are widely
applicable, and, hopefully, will find further applications in the future.

Notes and references

Since the pioneering essays of Mandelbrot (1975, 1982), a wide variety of
books have been written on fractals. The books by Edgar (1990), Falconer
(1990), Mehaute (1991) and Peitgen, et al. (1992) provide basic mathematical
treatments. Federer (1969), Falconer (1985) and Mattila (1995) concentrate on
geometric measure theory, Rogers (1970) addresses the general theory of
Hausdorff measures, and Wicks (1991) approaches the subject from the
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standpoint of non-standard analysis. Books with a computational emphasis
include Peitgen and Saupe (1988) and Devaney and Keen (1989). Several
books, including those by Barnsley (1988) and Peruggia (1993), are particularly
concerned with iterated function systems, those by Barnsley and Hurd (1993)
and Fisher (1995) concentrating on applications to image compression.
Massopust (1994) discusses fractal functions and surfaces, and Tricot (1995)
considers fractal curves. The books by Kahane (1985) and Stoyan and Stoyan
(1994) include material on random fractals. The anthology of ‘classic papers’
on fractals by Edgar (1993) helps put the subject in historical perspective.

Much of interest may be found in the proceedings of conferences on fractal
mathematics, including the volumes edited by Cherbit (1991), Bélair and
Dubuc (1991), Bedford, et al. (1991), Bandt, et al. (1992) and Bandt, er al.
(1995).

A great deal has been written on physical applications of fractals, for a
sample see Pietronero and Tosatti (1986), Feder (1988), Fleischmann, et al.
(1990), Smith (1991), Vicsek (1992) and Hastings (1993).






Chapter 1 Mathematical background

In this chapter we collect together several topics of a general mathematical
nature for future reference. The first section sets out basic terminology and
notation. We then discuss some inequalities that will be especially useful:
the subadditive inequality and some properties of convex functions. The last
two sections are concerned with measure theoretic ideas which play a
fundamental réle in fractal geometry. We sketch the rudiments of measure
theory, and then go into a little more detail on weak convergence, perhaps a
less familiar topic.

1.1 Sets and functions

We remind the reader of some standard definitions and notation that will
frequently be encountered.

We use the usual notation for the real numbers R, the integers Z, and the
rational numbers @, with R*, Z* and Q" for their positive subsets.

We normally work in n-dimensional Euclidean space, R”, where R = R! is
just the real line and R? is the Euclidean plane. Points in R” are denoted by
lower case letters, x, y, etc. We write x + y for the (vectorial) sum of x and y
and Ax for x multiplied by the real scalar A. We work with the usual Euclidean
distance or metric on R"; thus the distance between points x,y € R” is
x—yl= Q00 |x —y,-|2)1/2, where, in coordinate form, x = (x,...,x,) and
Y= V)

We generally use capitals, 4, E, X, Y etc. to denote subsets of R”. The dia-
meter of a non-empty set X is given by |X|=sup{|x—y|:x,y € X} with
the convention that |§] = 0. We write dist(X, Y) = inf{|x —y|:x€ X, ye Y}
for the distance between the non-empty sets X and Y. For r > 0 the r-neigh-
bourhood or r-parallel body of a set X is given by

X, = {y:igglx—yl < r}.

We define the closed and open balls with centre x € R" and radius r > 0 as

B(x,r)={y€eR":|y—x| <r}
and
Bx,r)={yeR":|y—x| <r}
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respectively. Of course balls in R' are just intervals, and in R? are discs. A set
X ¢ R" is bounded if X C B{x, r) for some x and r; thus a non-empty set X is
bounded if and only if | X| < oc.

Open and closed sets are defined in the usual way. A set 4 C R” is open if for
all x € A there is some r > 0 with B(x,r) C A. A set A C R" is closed if it
contains all its limit points, that is if whenever (xx),-, is a sequence of points of
A converging to x € R” then x € 4. A set is open if and only if its complement
is closed. The interior of a set A, written int 4, is the union of all open subsets of
A, and the closure of A, written A, is the intersection of all closed sets that
contain 4. The boundary of A is defined as 94 = A\int 4.

Formally a set 4 is defined to be compact if every collection of open sets
which cover A has a finite subcollection which covers 4. A subset 4 of R” is
compact if and only if it is closed and bounded, and this may be taken as the
definition of compactness for subsets of R”.

The idea of constructing sets as unions or intersections of open or closed sets
leads to the concept of Borel sets. Formally, the family of Borel subsets of R” is
the smallest family of sets such that

(a) every open set is a Borel set and every closed set is a Borel set,
(b) if 41, 45,... is any countable collection of Borel sets then U, A4;, N2, 4;
and A,\ 4, are Borel sets.

Any set that can be constructed starting with open or closed sets and taking
countable unions or intersections a finite number of times will be a Borel set.
Virtually all subsets of R” that will be encountered in this book will be Borel
sets.

Occasionally we use the symbol # to denote the number of points in a
(usually finite) set.

As usual, /: X — Y denotes a function or mapping f with domain X and
range or codomain Y. A function f: X — Y is an injection or is one-one (1-1) if
f(x1) # f(x2) whenever x| # x,, and is a surjection or onto if f(X) =Y. Itisa
bijection or a 1-1 correspondence if it is both an injection and a surjection. If
f:X— Yandg: Z — Wwhere Y C Z we define the compositiongof: X > W
by (gof)(x) = g(f(x)). Forf: X — X we define f* : X — X, the k-th iterate of
£by fO(x) = x,and f¥(x) = £(f* " (x)) fork = 1,2,3,...; thus f ¥ is the k-fold
composition of f with itself. For a bijection f: X — Y, the inverse of f is the
function /' : ¥ — X such that f~'(f(x)) = xforallx € Xand f(f~"(y)) =y
forall y € Y.

For A C X, the function 14: X — {0,1} given by l,(x) =0 if x¢ 4 and
14(x) = 1if x € A is called the indicator function or characteristic function of A;
its value ‘indicates’ whether or not the point x is in the set 4.

Certain classes of function are of particular interest. We write C(X) for the
vector space of continuous functions f: X — R, and Cy(X) for the subspace of
functions with bounded support (the support of f: X — R is the smallest closed
subset of X outside which f(x) = 0). For a suitable domain X C R” we write
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C'(X) for the space of functions f: X — R with continuous derivatives and
C?(X) for those with continuous second derivatives. Of particular interest in
connection with fractals are the Lipschitz functions. We call f: X — R™ a
Lipschitz function if there exists a number ¢ such that

S(x) =S <ex—y| forall x,yeX. (L1)

The infimum value of ¢ for which such an inequality holds is called the Lipsch-
itz constant of f, written Lip /. We also write LipX to denote the space of
Lipschitz functions from X to R™ for appropriate m.

Statements such as limg_,ocar = @ or lim,_q f (x) = a will always imply that
the limit exists as well as taking the stated value.

There are some useful conventions for describing the limiting behaviour of
functions. For f: Rt — R* we write f(x) = o(g(x)) to mean that f(x)/g(x) — 0
as x — 00, and f(x) = O(g(x)) to mean that f(x)/g(x) remains bounded as
x — oo. Similarily, we write f(x) ~ g(x) if f(x)/g(x) — 1, and f(x) < g(x) if
there exists numbers ¢;,c; such that 0 < ¢ < f(x)/g(x) < ¢ < oo for all
x € R*. We occasionally write f(x) ~ g(x); this is used in a loose fashion to
indicate that f(x) is ‘roughly comparable’ to g (x) for large x. We adapt this
notation in the obvious way for functions on other domains and for x appro-
aching other limiting values.

1.2 Some useful inequalities

We now discuss some simple but very useful inequalities.
Subadditive sequences occur surprisingly often, in analysis in general, and in
fractal geometry and dynamical systems in particular. A sequence of real

[e.¢]

numbers (ar),. , is subadditive if it satisfies the inequality
YGeim < A + Gy (1 2)

forall k,m € Z*. The fundamental property of such a sequence is that (ax /k) ;-
converges.

Proposition 1.1

Let (ax),e, be a subadditive sequence. Then limy_.ar/k exists and equals
infg>1ak/k (which may be a real number or —oo).

Proof Given a positive integer m we may write any integer k in the form
k=gm+r where g€ Z and 0 <r<m— 1. Using (1.2) ¢ times gives, for
k>m,

Ak Agmir <qam+ar_a_m+ﬂ

k gm+r~ gm m  qm
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As k — oc, so g — oo, giving

limsup a;/k < ay,/m.

k—oo

This is true for all m € Z*, so limsupy_,ar/k < infrar/k. We conclude that
the limit exists and equality holds. [

Corollary 1.2

Let b be a real number such that (ai)ze., satisfies
Qpym < Ak +am + b

for all k,m=1,2,.... Then a=limy_ar/k exists and ap > ka—b for
all k.

Proof We have (agsm + b) < (ax + b) + (am + b), so applying Proposition 1.1
to the sequence (ar + b)ge, gives that limg .oax/k = limg_o(ax + b)/k =
infy>1 (ax + b)/k. Writing a for this limit, a < (g + b)/k for all k. O

In the same way, we say that a sequence (bi),~, of positive real numbers is
submultiplicative if bym < bib,, forallk,me Z*.

Corollary 1.3

1/k

Let (by)ye, be a submultiplicative sequence. Then limy_. (bi) " exists and equals

inf s (bi) 7%,

Proof The sequence a; = log by is subadditive, so log b,lc/ k= a /k is convergent
by Proposition 1.1, so b,lc/ is convergent. [

Next we consider some inequalities associated with convex functions. Let
X C R be an interval. A function ¥ : X — R is convex if for all x;, x; € X and
all numbers a, ay > 0 with a; + ap =1,

Plonx) + azxz) < oqp(x1) + cw(x2); (1.3)

geometrically this means that every chord of the graph of v lies above the
graph (Figure 1.1). If 1 has a continuous second derivative then 1 is convex if
and only if ”(x) > 0 for all x € X. The function v is strictly convex if the
inequality (1.3) is strict for all x; # x,; this will happen if " (x) > 0 for all
x € X. A function ¢ : X — R is called concave if —1 is convex.

The convexity condition (1.3) implies a similar inequality for more terms;
this extension is known as Jensen’s inequality.
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Proposition 1.4

Let ¥: X — R be convex, let x1,...,xm € X and let ay,...,0 > 0 satisfy
S, ai=1. Then
m m
¢<Z aixi> <> ounp(xy). (1.4)
- =1
If  is strictly convex then equality holds if and only if x, = x, = ... = xp.

Proof For m > 3, we use the inductive step

Y (iam) = w(u — ) )
(1—am) (

by (1.3), so (l1.4) follows from the inequality for m —1, since
S lar (1 —am) ™ = 1.

If « is strictly convex, then equality in (1.5) implies that x, =
S (1 — am) ' g, that is X, = 37, ax;. By renumbering, we could work
with any of the x; as ‘x,,’; thus equality in (1.4) implies x, = > 1, a;x; for
allk. O

—1

3

1(1 — am)Alxi + Olmxm>

i M_

(1 —am)™ i) + amtp(Xm) (1.5)

Note that if ) : X — R is a concave function then the opposite inequality
holds in (1.4).

Suitable choice of ¢ in (1.4) yields the well-known arithmetic-geometric
mean inequality, see Exercise 1.2.

1

x1 opx; + 0yxy X3

Figure 1.1 Graph of a convex function
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The following application will be especially important in Chapter 5 in
connection with entropy. We make the convention that 0log0 = 0.

Corollary 1.5

Let pi,...,pm be ‘probabilities’ with p; > 0 for all i and Y p; =1, and let
q1,-- -, qm be real numbers. Then

Y pi(~logpi+qi) <logy e (1.6)
i=1 i=1
with equality if and only if p; = €% /3 % €% for all i.

Proof Defining 1(x) = xlogx (x > 0),%(0) = 0 gives that ¢ : [0,00) — Risa
continuous strictly convex function, since 10" (x) > 0for x > 0. For convenience,
write s = (3_72, ¢%)”". Applying (1.4) with o; = se% and x; = p;/e% we have

w<s>=w(2<se% p/eqf) 3 setilp/e")

i=1 i=1

that is

slogs <) sefpe %log(p;/e?)

Ms

i=1
m
Z (log p; — g1),

which is (1.6). Since 9 is strictly convex, equality requires that p;/e% = ¢ where
c is independent of i, and 1 =37 pi=c¢> 1 e% [

1.3 Measures

Measures or ‘mass distributions’ have a central place in fractal geometry. They
are a major tool in the mathematics of fractals, but also, measures may exhibit
fractal features which may be studied in their own right. Basically, a measure is
a way of ascribing a numerical size to sets so that the priniciple ‘the whole is the
sum of the parts’ applies. Thus if a set is decomposed into a finite or countable
number of pieces in a reasonable way then the measure of the whole set is the
sum of the measures of the pieces. A measure is often thought of as a ‘mass
distribution’ or a ‘charge distribution’, an interpretation that may be helpful to
those less familiar with formal measure theory.

In general we try to play down the more technical aspects of measure theory.
Since we shall just work with measures defined on subsets of R” many of the
awkward features of measures that can occur in a more general topological
setting may be avoided. We give a formal definition of a measure to ensure
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precision, but it is perhaps more important that the reader develops an intuitive
feel for the basic properties of measures. ‘

Let X ¢ R". We call i a measure on X if y assigns a non-negative number,
possibly oo, to each subset of X such that

(a) /J'(@) =0, (17;

(b) if 4 C B then u(A) < u(B), and (1.8
(c) if A, A,, ... is a countable sequence of sets then

N(U/‘L‘) SiN(Ai)- (1.9)

Thus (a) requires the empty set to have zero measure, and (b) states that ‘the
bigger the set the larger the measure’. Property (c) ensures that the measure of
any set is no more than the sum of the measures of the pieces in any countable
decomposition. For a measure to be useful we require more than this, namely
that equality holds in (1.9) for ‘nice’ disjoint sets A;. This leads to the idea of
measurability.

Given a measure p there is a family of subsets of X on which u behaves in a
nice additive way: a set A C X is called y-measurable (or just measurable if the
measure in use is clear) if

W(E) = w(ENA) + p(E\A) forall ECX. (1.10)

We write M for the family of measurable sets which always form a o-field, that
isPeM, XeM, and if 41,4,... € M then U 4; € M, NX, 4; € M and
A1\A2 € M. For reasonably defined measures, M will be a very large family of
sets, and in particular will contain the o-field of Borel sets.

Proposition 1.6
Let p be a measure on X and let M be the family of all u-measurable subsets

of X.
(a) If A, Az, ... € M are disjoint then

u(UAf> = u(A)). (1.11)
= =
(b) If A, C A, C ... is an increasing sequence of sets in M then
u(UQJIHmMm) (1.12)
i=1 I—0C

(o) If A1 D A2 D ... is a decreasing sequence of sets in M and 11(A,) < oo then

u(ﬁ&)r@wMJ (1.13)

i=1



8 Mathematical background

The continuity properties (b) and (c) follow easily from (a). Property (a) is
the crucial property of a measure: that yu is additive on disjoint sets of some
large class M. For all the measures that we encounter M includes the Borel
sets. However, in general M does not consist of all subsets of X, and (@) does
not hold for arbitrary disjoint sets A, A2,... .

( Technical note: What is termed a ‘measure’ here is often referred to as
an ‘outer measure’ in general texts on measure theory. Such texts define a
measure y only on the sets of some o-field M, with (1.7)—(1.9) holding for
sets of M, with equality in (1.9) if the A4; are disjoint sets in M. However, i
can then be extended to all A C X by setting u(A4) = inf {d_, pu(4;) : A C U;A;
and 4; € M}. In work relating to Hausdorff measures, etc., it is convenient
to assume that measures are defined on all sets in the first place.)

In this book we will be concerned with measures on R”, or on a subset of R”,
that behave nicely on the Borel sets. We term a measure p a Borel measure on
X C R” if the Borel subsets of X are u-measurable. It may be shown that pis a
Borel measure if and only if

u(AUB) = pu(A) + u(B) whenever A4,BC X and dist(4, B) > 0. (1.14)

A Borel measure y is termed Borel regular if every subset of X is contained in a
Borel set of the same measure; for such measures we can, for all practical pur-
poses, work entirely with Borel sets.

Virtually all the measures that we will encounter (including Hausdorff and
packing measures) will be Borel regular on R” or on the pertinent subset there-
of. Therefore, to avoid tedious repetition, we make the convention throughout
this book that the term ‘measure’ means ‘Borel regular measure’. Thus, for our
purposes, a measure is a set-function that behaves nicely with respect to Borel
sets. To avoid trivial cases we also assume that u(X) > 0 for all measures pu.

A measure p on X with p(X) < oo is called finite; if ;1(A) < oo for every
bounded set A it is locally finite. We call u a probability measure if u(X) =1
(this standard terminology does not necessarily mean that y has probabilistic
associations).

If v is a locally finite (Borel regular) measure, we can approximate the
measure of sets by compact sets and open sets, in the sense that

wu(U) = sup{u(4) : 4 C U with A compact} (1.15)
for every non-empty open set U, and
w(E) =inf{u(U) : E C U with U open} (1.16)

for every set E, see Exercise 1.5.
The support of p, written spt , is the smallest closed set with complement of
measure 0, that is

sptp =X\ U{U: Uis open and u(U) = 0}.
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We list below some basic examples of measures.

For each 4 C R” let u(A4) be the number of points in A (which may be oo);
this is the counting measure on R”".

For givena € R let u(A4) =0ifa¢ A and pu(4) =1ifa € A. Then pis a
measure with support {a} that we think of as a unit point mass
concentrated at a.

Lebesgue measure on R” is the natural extension to a large class of sets of
‘n-dimensional volume’ (‘length’ if n =1, ‘area’ if n =2 and ‘volume’ if
n = 3). We define the n-dimensional volume of the ‘coordinate parallele-
piped” 4 = {(x1,...,x,) € R" : a; < x; < b;} by

VOln(A) = (b] — (l])(bz — 612) e (bn - a,,).
Then n-dimensional Lebesgue measure L" is defined by

o0

L"(A4) = inf{Zvol"(A,-) tAC DA,-},

i=1

where the infimum is over all coverings of 4 by countable collections of
parallelepipeds. With some effort it may be shown that £" is indeed a
(Borel regular) measure on R” such that £"(4) equals the n-dimensional
volume of A4 if 4 is a parallelpiped or any other set for which the volume
can be calculated using the usual rules of mensuration.

Let 4 be a measure on X and let E C X. The restriction of u to E, denoted
by |, is defined by

ulg(4) = u(4 N E) (1.17)

for all 4 C X. It is easy to check that every pu-measurable set is
| p-measurable and, provided E is measurable and u(E) < oo, then pis a
(Borel regular) measure.

A very useful method of defining a measure is by repeated subdivision,
see Figure 1.2. For m > 2 we take a hierarchy of subsets of R” indexed
by sequences {(i,...,i): k>0 and 1 <i; <m for each j}. For every
(i1,...,0) let X; _; be a bounded non-empty closed subset of R”, and
write £ for the family of all such sets. We assume that these sets are nested
so that

X i O X i (1.18)

.....

w(Xi i) = ZN(XI‘,,.”,I}(,;‘) (1.19)
i:I

w(X;, . 4) < oo is defined for X;,_, € £ in such a way that
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Figure 1.2 Construction of a measure by repeated subdivision. The measure on each
set of & is divided between its subsets in the hierarchical construction

for each (if,...,i), that is the ‘mass’ p(Xj, ;) is subdivided between
the subsets Xj, ;. (1 <i<m). We assume that for every sequence
(i1,4,...) both the diameters of the sets |X; ;| and their measures
w(X;,. ;) tend to 0 as k — oo. We write Ey = U;, ., X, for each k, and
E = N, Ex, so that E is the intersection of a decreasing sequence of closed
non-empty sets, and is therefore closed and non-empty. For 4 C R” we
define

w(A) :inf{Zp(V,») cANEC UV, and V; € E}. (1.20)

It is not hard to show that u is a measure with support contained in E, such
that u(Xj,. ;) is the preassigned value for all (i1, ..., &). Thus if 4 is defined
by this ‘repeated subdivision’ procedure it may be extended to a measure
on E.

For a simple instance of this procedure, let m =2 and for each & let
X, ..;, comprise the set of 2* closed binary subintervals of [0, 1] of length
2% nested in the obvious way. Taking w(Xi, 2) = 2% for each such
interval, (1.19) is readily verified and (1.20) then defines the restriction of
Lebesgue measure to [0, 1].

We say that a property holds for almost all x or almost everywhere (with

respect to a measure y) if the set for which the property fails has y-measure 0.
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For example, with respect to Lebesgue measure, almost all real numbers are
irrational.

Occasionally we need the following density result, to the effect that almost
all points of a set E are, from the point of view of measure, ‘well inside’ E. A
point x at which (1.21) holds is called a density point of E.

Proposition 1.7

Let p be a locally finite Borel measure on R". Then, for every p-measurable set E,
we have that

lim (£ (1 B(x, )/ B(x, 1)) (121)
exists and equals 1 for p-almost all x € E and equals 0 for p-almost all x¢ E.

Proof Since this is a local result, we may assume that y is a finite measure.
Take ¢ < 1, and define

A={x€ E: u(ENB(x,r)) < cp(B(x, r)) for arbitrarily small r};
we will show that p(4) = 0. Given € > 0 there exists an open set U D 4 such
that u(U) < p(A) + e. Define a class V of balls by
V = {B: Bhas centre in 4, with B C Uand u(EN B) < cu(B)}.
Then V is a Vitali cover for A, which means that for all x € 4 and § > O there is
a ball in V with centre x and radius less than 6. The Vitali covering theorem

asserts that there is a sequence of disjoint balls By, B,... in V such that
/,I,(A\ U; B,) = 0. Then

w(A) = (A NUB) + u(A\U; B;)
=Y WANB)+0<cd u(B)

— cu(UiBy) < cu(U) < c(u(A) + o).

This is true for all €> 0 so u(A4) < cp(4), implying that u(4) =0. We
conclude that for all ¢ <1, for p-almost all x € E we have cu(B(x,r))
< u(ENB(x,r)) < u(B(x, r)) for all sufficiently small r. Thus for p-almost all
x € E the limit (1.21) exists and equals 1.

Applying this with E replaced by R\ E now gives that the limit (1.21) equals
0 for py-almost all x¢ E. [

Sometimes we will work with several measures on the same set. We say that
the measures y and v on X are equivalent if there¢xist numbers ¢;, ¢; > 0 such
that T

e (A) < V(A) < capu(4) (1.22)
forall 4 C X.
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Integration with respect to a measure i on X is defined using the usual steps.
A simple function f: X — R is a function of the form

k
flx) = ZailA,.(x)

where a;,...,ar € Rand A4,,..., A; are u-measurable sets, with 14, the indi-
cator function of A4;. We define the integral of the simple function f with
respect to u as

k
/fd/,l, = Z ai(A;).

Integration of more general functions is defined using approximation by simple
functions. We term f: X — R a measurable function if for all ¢ € R the set
{x € X :f(x) < ¢} is a measurable set (in particular for a Borel measure p all
continuous functions are measurable). We define the integral of a measurable
f: X — RYU{0} by

/fdp:sup{/gdu:gis simple, Ogggf}

(this value may be infinite). Finally, for a measurable function f: X — R we
write /1 (x) = max{ f(x),0} and f_(x) = max{—f(x), 0}, and define

/fdu:/f+du—/f—du,

provided both [f, dpand [f_ du are finite. This happens if [ |f|dx = [f; du
+ [ f- dp < oo; such functions are called p-integrable. All the usual properties
of the integral hold, for example [(f+g)du = [fdu+ [gdu and [(X f)dp
= X [fdu for real \.

For a measurable set 4 we define the integral of f over A by [, fdu
= [f1ladu.

Some basic convergence theorems hold, that is conditions on a sequence of
functions fi: X — R with limg_o fi(x) = f(x) for almost all x that guarantee
that

lim fkdp:/fdp. (1.23)

This is the case if (f;) is a monotonic sequence of non-negative functions
(the monotone convergence theorem), or if u(X) < oo and for some ¢ we
have |fi(x)] <c¢ for all £ and x € X (the bounded convergence theorem).
The limit (1.23) is also valid if there is a function g: X — R* U {0} with
Jgdp < oo and |fi(x)| < g(x) for all k and x (the dominated convergence
theorem).
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Closely related is Fatou’s lemma, that for any sequence ( f) of measurable
functions

/ liminf fidu < liminf | fedp.

We will often wish to interchange the order of integration in a double
integral, and this is generally permitted by versions of Fubini’s theorem. If y
and v are locally finite measures on subsets of Euclidean space then

J( o) ao = [ [rwna Jae

for continuous f/: X x ¥ — R*" U {0}. (This also holds if fis a Borel function,
that is if {(x, ) : f(x,») < ¢} is a Borel subset of X x Y for all real numbers c.)

As usual integration is denoted in a variety of ways, such as [fdy, [for
Jf(x x) depending on the emphasis required. When p is n- dlmensmnal
Lebesgue measure L, we usually write [ fdx or [f(x)dx in place of [fdL"(x

We write L!'(y) for the vector space of p-integrable functions, that is
functions f: X — R with [|f]du < oo, and L'(R) for the Lebesgue integrable
functions, that is /: R — R with [|f]|d£ < co.

*1.4 Weak convergence of measures

We collect together here some properties of weak convergence of measures that
will be needed mainly in Chapter 9. This section may be deferred until the pro-
perties are needed. Alternatively, the proofs may be omitted on a first reading
with little loss of feeling for the subject.

Let g, g1, 2, - . . be locally finite measures on R”. We say that the sequence
(pk)se converges weakly to p if

jim [ fam = [ rau (1.24)

for every f '€ Co(R") (i.e. for every continuous f of compact support), and we
denote this by pi — g or limg o = pt.

For a simple example on R, if yux(A4) = ; {#i € Z : i/k € A}, so that y; is an
aggregate of point masses of 1/k, then p — L.

Although weak convergence does not imply that . (4) — p(A) for every set
A, some useful inequalities hold for open or compact sets.

Lemma 1.8

Let (pi) e be a sequence of locally finite measures on R” with p — p. Then if A
is compact

1(A4) > limsup px(A4) (1.25)

k—oo
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and if U is open
w(U) < lilrcn inf 1 (U). (1.26)
—0C

Proof Writing A9 = {x:dist(x,4) < §} for the open é-neighbourhood of
a compact set 4, we have that 49\, 4 as 6§\, 0 so pu(4%) — u(4) by
(1.13). Thus, given ¢ >0 we may take § > 0 such that p(49) < p(4) +e.
Let f€ Co(R") be any function satisfying 0 < f(x) <1 with f(x) =1 for
x€A4 and f(x) =0 for x¢AY (f(x) =max{0,1 -6 "dist(x,4)} will do).
Then

u(A4) + € > p(Ag) > /fdu = lim [ fdpy > limsup i (4);
—00 k—o0

since this is true for arbitrarily small ¢, (1.25) follows. Inequality (1.26) is
similar using (1.12). [J

The importance of weak convergence lies in the following compactness
property which allows us to extract weakly convergent subsequences from
general sequences of measures.

Proposition 1.9

Let pi, iz, ... be locally finite measures on R" with supgp(A4) < oo for all
bounded sets A. Then (u)re, has a weakly convergent subsequence.

*Proof We note that Co(R") has a countable dense subset of functions ( fi )z,
under the norm || f]| , = max{|f(x)| : x € R"}. (For example, setting g,,(x) =
max{0,m — | x|}, the set of functions { pg,, : p is a polynomial with rational
coefficients and m € Z"} is easily seen to be countable and dense using the
Weierstrass approximation theorem.) A diagonal argument, using induction on
k, gives sequences (p;)iy with po; = p; and with (u ), a subsequence of
(1) for k=1,2,..., such that [fidue; — ai as i — oo for some g, € R.
Thus, [ fidp;; — ax as i — oo for all k. Since the (f;) are dense it follows that
for all f € Co(R")

for some a(f) € R. Moreover, a is linear, that is a(f+ g) = a(f) + a(g) and
a(Af) = Aa(f), and bounded, that is |a(f)| < (supgu(4))||f||,, if spt £ C 4.
The Riesz representation theorem states that under these conditions there

is a locally finite measure p such that a(f) = [fdp for all f€ Co(R"); thus by
(1.27) piy — ., with (p;;), a subsequence of (ug)pe,. U

It is sometimes convenient to express weak convergence of measures in terms
of convergence with respect to metrics. For R > 0 we define dz on the set of
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locally finite measures on R” by

drsv) = sup{ ‘ [ rau- [ rav

where here Lipr denotes the set of Lipschitz functions f: R” — [0, 00) with
spt fC B(0,R) and with Lip f<1 (that is with |f(x)—f()| < |x—y|
for x,y € R"). Then for each R we have that dg is a pseudo-metric (that is,
it is non-negative, symmetric and satisfies the triangle inequality). However,
dr(p,v) = 0 need not imply p = v. Nevertheless, dr is a metric on the set of
locally finite measures with support contained in the open ball B%(0, R), see
Exercise 1.10. Clearly, if Ry < R; then dg, (i, v) < dg,(u, v).

fe LipR} (1.28)

Lemma 1.10

Let jy, i, ... and p be measures on R". Then p, — p weakly if and only if
dr(pue, 1) — 0 for all R > 0.

*Proof Suppose first that dg(u, 1) / 0 for some R. By passing to a sub-
sequence and renumbering, there exists ¢ > 0 and functions f; € Lipg such that
| [fidpk — [fidp| > € for all k. By the Arzela-Ascoli theorem there is a
subsequence of (f¢), which by renumbering we may again take to be the whole
sequence, such that f; — funiformly for some f which must be in Lipg, using
that the f; vanish outside B°(0, R). Then

Jram = [rou=( [ram— [am)+ ( [sam— [san)
(- frw)

As k — oo, the first term of this sum tends to 0 (since f;y — f uniformly and
(i (B0, R)))p, is bounded by (1.25)), the third term tends to 0 (as f; — f
uniformly), but the absolute value of the middle term is bounded below by
€, SO L /> p weakly.

For the converse suppose that dg(py, ;1) — O forall R > 0. Let f: R — Rbe
continuous, with spt f C B(0, R). Then given € > 0, there exists a Lipschitz
g:R" — R with sptg C B(0, R) that approximates f in the sense that | f(x)—
g(x)] <€ for all x € R". (Using the mean value theorem, g can be any
sufficiently close approximation to f that is continuously differentiable.) Then
using the triangle inequality and that g has Lipschitz positive and negative parts

‘/fduk—/fdu‘S/%f—glduk+ [scu— [sauls [1g-710n

< et (B(0, R)) + 2(Lip g)dr(p, 1) + eu(B(0, R))
< 3eu(B(0, R)) + 2(Lipg)e

if k is sufficiently large, using (1.25). Hence u; — p weakly. [
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The other property we need is that the dr are separable, that is there exists a
countable set of measures that is dense in these pseudo-metrics.

Lemma 1.11

There is a countable set of locally finite measures uy, i3, . . . on R" such that, for
every locally finite measure y on R” and all R,n > 0, there exists k such that

dr(py ) <.

*Proof It is enough to show that such a set of measures exists for each
R =1,2,... and use that a countable union of countable sets is countable. For
J=1,2,...let Cj1,...C;m be the (half-open) binary cubes of side-lengths 2/
which meet B(0, R), and let §;; be a unit point mass at the centre of C;;. Let
(1 )5, be an enumeration of the set of all measures of the form "7, g;; 8,
where for each j and i the sequence (gj,1,4;2,...) is an enumeration of the
non-negative rational numbers.

Given p, let v; = 5277, u(C;)6;;; by choosing j large enough we may ensure
that dr(p,v;) < %7]- Now choose iy = Z:’L qj,ip0;; so that dr(v), px) < %7],
which may be achieved by taking g;;, sufficiently close to p(Cj;) for each i.
Then dg(u, ue) < 7, as required. O

1.5 Notes and references

Most of the material in this chapter may be found in much more detail in any
basic text on measure theory, for example Doob (1994) or Kingman and
Taylor (1966). The treatments in Falconer (1985) and Mattila (1995a) are
specifically directed towards fractal geometry, and also include more details of
Vitali covering results and density properties.

Exercises

1.1 Letf:[0,1] — [0,1] be a differentiable function. Show that the limit limy_.,, b}c/ k
exists, where by = supo<x<i| £ f%(x)| and f* is the kth iterate of /. (Hint: use the
chain rule to show that (&) is submultiplicative.)

1.2 Use (1.4) to prove the arithmetic-geometric mean inequality: that (]}, x)!™
< IS xi where xi,..., X, > 0. (Hint: —logx is convex.)

1.3 Let @=(qi,q2,...) be an enumeration of the rational numbers. For 4 C R
define p(4) =3, 427" Verify that p is a measure with all subsets of R
measurable. Show that spty = R, even though p(R\Q)=0, that is u is
‘concentrated’ on Q.

1.4 Let x4 be a measure on R” such that for all x € R” there is a ball B(x,r) with
w(B(x,r)) < co. Show that p is locally finite.

1.5 Verify (1.15) and (1.16) from the definition of a locally finite (Borel regular)
measure and Proposition 1.6.






