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Preface

This book describes a variety of techniques in current use for studying the
mathematics of fractals. It is an instructional and reference work for those
researching in fractal geometry and for those who encounter fractals in other
areas of mathematics or science, and it contains material suitable for advanced
courses. The book is a sequel to ‘Fractal Geometry — Mathematical Founda-
tions and Applications’ which was published in 1990, and which contains
central material on the mathematics of fractals. ‘Fractal Geometry’ was
originally aimed at a postgraduate audience, but with the explosion of interest
in the subject it has also been used as the basis of undergraduate courses.

This book presupposes a reasonable competence in mathematical analysis,
and in several places some knowledge of probability theory will be helpful.
Familiarity with the basic material in ‘Fractal Geometry’ is assumed,
particularly that on dimensions and iterated function systems; the main ideas
and notation are reviewed here in Chapters 1 and 2. Specific references to
‘Fractal Geometry’ are often made and these are denoted by FG.

Much of the material presented in this book has come to the fore in the last
few years. This includes a variety of methods for studying dimensions and
other parameters of fractal sets and measures, as well as more sophisticated
techniques, such as the thermodynamic formalism and tangent measures,
which are now used routinely in fractal geometry and have many applications.
The book also includes several ‘big theorems’ from probabilistic analysis, such
as the ergodic theorem and renewal theorem, which have been applied effec-
tively to fractals. As well as general theory, many examples and applications
are described, in areas such as differential equations and harmonic analysis.
Some results appear for the first time, and proofs have often been simplified.

The style of ‘Techniques in Fractal Geometry’ is similar to that of ‘Fractal
Geometry’. The book is mathematically precise, but aims to give an intuitive
feel for the subject without getting unnecessarily involved in formal detail. The
underlying concepts are presented as simply as possible and much of the theory
is developed in detail in fairly specific cases with more general analogues
summarised afterwards. For example, the thermodynamic formalism is
presented for a simple non-linear generalisation of the Cantor set. As in
‘Fractal Geometry’, technicalities of measure theory are played down, with the
existence of ‘intuitively obvious’ properties of measures taken for granted. An
asterisk * indicates parts that can be omitted on first reading without losing

the intuitive development.
-
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No attempt has been made to include the most general results known. The
author believes strongly that it is more important to communicate ideas and
concepts than technical detail. Too often in mathematical writing, simple but
elegant ideas are concealed by excessive generality. Often if the underlying
ideas are understood then it is clear how they can be developed or combined to
give more general results. It is hoped that readers will be able to ‘extrapolate
from the cases discussed here to more general situations.

Each chapter ends with brief notes on the history and current state of the
subject. Given the scope of the topics covered, a comprehensive bibliography
would be enormous, so we merely reference recent and key works for those
interested in pursuing any topics furt®er. Exercises are included to reinforce the
text and to indicate further theory and examples.

With the wide range of topics included it i1s impossible to be entirely
consistent as regards notation. In places a compromise has been made between
standard notation and self-consistency within the book. There are some
differences in notation from that in ‘Fractal Geometry’.

Inevitably errors will have crept into the text during writing and rewriting.
I regret this, and express the hope that such errors are obvious rather than
misleading! I struggled to cope with correcting and revising an electronic
version of the book. From experience with both approaches I can assure
potential authors that the traditional method of correcting a double-spaced
typescript by hand, whilst curled up in an armchair, is far less effort and less
stressful and probably more accurate than working at a computer screen!

I am most grateful to all those who have assisted with the preparation of this
book. In particular, John Howroyd, Maarit Jarvenpidd, Pertti Mattila, Lars
Olsen and Toby O’Neil made very useful comments on early drafts of the
book. Ben Soares produced some of the diagrams and, with Toby O’Neil,
designed and produced the cover picture. I am greatly indebted to Gill Gardner
for converting my almost illegible handwriting into an electronic form, and to
the staff of John Wiley and Sons, in particular Stuart Gale, David Ireland and
Helen Ramsey, for overseeing the production of the book.

Finally, I thank my family for their considerable patience and understanding
whilst I was writing the book.

Kenneth J. Falconer
St Andrews, April 1996

Notes

References to the author’s earlier book ‘Fractal Geometry—Mathematical
Foundations and Applications’ are indicated by FG.

Parts of the book which may be omitted on a first reading are indicated by
an asterisk *.



Introduction

The name ‘fractal’, from the latin ‘fractus’ meaning broken, was given to highly
irregular sets by Benoit Mandelbrot in his foundational essay in 1975. Since
then, fractal geometry has attracted widespread, and sometimes controversial,
attention. The subject has grown on two fronts: on the one hand many ‘real
fractals’ of science and nature have been identified. On the other hand, the
mathematics that is available for studying fractal sets, much of which has its
roots in geometric measure theory, has developed enormously with new tools
emerging for fractal analysis. This book is concerned with the mathematics of
fractals.

Various attempts have been made to give a mathematical definition of a
fractal, but such definitions have not proved satisfactory in a general context.
Here we avoid giving a precise definition, prefering to consider a set E in
Euclidean space to be a fractal if it has all or most of the following features:

(i) E has a fine structure, that is irregular detail at arbitrarily small scales.

(ii) E is too irregular to be described by calculus or traditional geometrical
language, either locally or globally.

(iii) Often E has some sort of self-similarity or self-affinity, perhaps in a
statistical or approximate sense.

(iv) Usually the ‘fractal dimension’ of E (defined in some way) is strictly
greater than its topological dimension.

(v) In many cases of interest F has a very simple, perhaps recursive, definition.

(vi) Often E has a ‘natural’ appearance.

Examples of fractals abound, but certain classes have attracted particular
attention. Fractals that are invariant under simple families of transformations
include self-similar, self-affine, approximately self-similar and statistically self-
similar fractals, examples of which are shown in Figure 0.1. Certain self-similar
fractals are especially well known: the middle-third Cantor set, the von Koch
curve, the Sierpinski triangle (or gasket) and the Sierpinski carpet, see Figure
0.2. Fractals that occur as attractors or repellers of dynamical systems, for
example the Julia sets resulting from iteration of complex functions, have also
received wide coverage.

Fractal geometry is the study of sets with properties such as (i)—(vi). Many
of the questions that are of interest about fractals are parallel to those that have
been asked over the centuries about classical geometrical objects. These include:

xi
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Figure 0.1 Fractals that are invariant under families of transformations. (a) and (b) are
self-similar, (c) and (d) are self-affine, (e) is self-conformal, and (f) is statistically self-
similar
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(@)

(b)

Figure 0.2 Well-known self-similar sets. (a) The von Koch curve (dimension
log 4/log 3=1.262), (b) the middle-third Cantor set (dimension log 2/log 3=0.631),
(c) the Sierpinski triangle or gasket (dimension log 3/log 2=1.585), (d) the Sierpinski
carpet (dimension log 8/log 3=1.893)

(a) Specification. We seek efficient ways of defining fractals. For example,
iterated functions systems provide one way of specifying fractals of certain
classes.

(b) Local description. Locally a smooth curve looks like a line segment. Whilst
fractals do not have such simple local structure, notions such as densities
and tangent measures provide some local information.

(¢) Measurement of fractals. The usual way of ‘measuring’ a fractal is by
some form of dimension. Nevertheless dimension provides only limited
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information and other ways of quantifying aspects of fractality are being
introduced. For example ‘lacunarity’ and ‘porosity’ are used to describe the
small-scale preponderance of ‘holes’ in a set. For such quantities to have
more than just descriptive use, their definitions and properties need a sound
mathematical foundation.

It may be argued that there is too much emphasis on dimension in fractal
analysis. Certainly, dimension (with its various definitions) tends to be
mathematically tractable and can often be estimated experimentally.
Moreover, the dimension of an object is often related to other features,
for example the rate of heat flow through the boundary of a domain
depends on the dimension of the boundary, and the dimension of the
attractor of a dynamical system is related to other dynamical parameters
such as the Liapunov exponents. However, many fractal aspects of an
object are not reflected by dimension alone and other suitable measures of
fractality are much needed.

(d) Classification. We seek ways of classifying fractals according to significant

©
(f)

()

geometrical properties. One approach is to regard two sets as ‘equivalent’ if
there is a bi-Lipschitz mapping between them (just as in topology two sets
are considered equivalent if they are homeomorphic) and to seek
‘invariants’ for equivalent sets. For example two sets that are bi-Lipschitz
equivalent have the same dimension, but dimension is far from a ‘complete
invariant’ in that, except for certain rather specific classes of sets, there can
be many non-equivalent sets of the same dimension.

Geometrical properties. Properties of orthogonal projections, intersections,
products, etc., are often of interest.

Occurrence in other areas of mathematics. Fractals arise naturally in many
areas of mathematics, for example dynamical systems or hyperbolic geo-
metry. The general theory of fractals ought to relate easily to these areas.
Use of fractals to model physical phenomena. There are many ‘approximate
fractals’ in physics and nature, and these can often be modelled by
‘mathematical’ fractals. Ideally the mathematical theory should then tell us
more about the physical situations.

In some areas the mathematics and physics tie together nicely, for
example, Wiener’s model of Brownian motion gives a reasonable
probabilistic description of the irregular path described by a particle
moving under molecular bombardment. However in other areas there is
often a gulf between the fractals that are encountered in science or nature
and the mathematics that is available. In many instances questions such as
‘Why does an object have a fractal structure?” or ‘If certain fractal features
are present, what can we deduce? have not been entirely satisfactorily
answered. Nevertheless, progress is being made. Increasingly fractals
are being studied in a ‘dynamic’ context, for example phenomena such
as the diffusion of heat through fractal domains are being modelled
mathematically.
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Fractal features are often exhibited by measures rather than just by sets.
‘Multifractal analysis’ reveals a (sometimes very rich) fractal structure of
measures, and a single measure may lead to a whole spectrum of fractal sets.
Many of (a)—(g) above apply to measures just as to sets and multifractal
measures are being studied in ways parallel to those for fractal sets.

This book presents some of the techniques that have been developed for
studying aspects of fractals and multifractals. We briefly outline the material
covered.

Chapter 1 brings together some general definitions and notation which will
be needed throughout the book. Some inequalities involving submultiplicative
sequences and convex functions are discussed. Basic ideas from measure theory
are presented, and some results on convergence of measures are derived for
later reference.

Chapter 2 reviews some standard aspects of fractal geometry which are
discussed in much more detail in the earlier volume, FG. The basic definitions
of dimension (Hausdorff, packing and box dimensions) and methods for their
calculation are reviewed, and there is a discussion on representing fractals by
iterated function systems.

In Chapter 3 we introduce two useful techniques for studying dimension.
Firstly, implicit methods enable properties of certain fractals to be investigated
without the need for a handle on the actual value of their dimension. In
particular, sets that are ‘approximately self-similar’ in a weak sense must
display considerable regularity from the point of view of dimension. Secondly,
we address the relationship between the box dimension of sets of real numbers
and the lengths of the complementary intervals of the set. In a certain sense, the
box dimension describes the complement of a set whereas the Hausdorff
dimension describes the set itself.

The next two chapters take the notion of approximate self-similarity further,
leading to the ‘thermodynamic formalism’. This powerful technique (which has
roots in statistical mechanics) extends the ‘linear’ theory of strictly self-similar
sets to the ‘non-linear’ setting of ‘approximately self-similar’ sets. We develop
the thermodynamic formalism in the special case of ‘cookie-cutter’ sets, which
may be thought of as ‘non-linear Cantor sets’. After deriving the ‘bounded
distortion’ principle for such sets, we obtain a formula for their dimension in
terms of the ‘pressure’ of a certain function.

Chapters 6—8 present three corner-stone results of probabilistic analysis:
the ergodic theorem, the renewal theorem and the martingale convergence
theorem. These results are proved and applied to topics such as average
densities of fractals, box-counting numbers of self-similar sets, and the
classification of fractals under bi-Lipschitz mappings.

Tangent measures, described in Chapter 9, are essentially limits of a
sequence of enlargements of a measure about a point. Tangent measures are not
unlike derivatives, in that they contain information about the local structure
of a set or measure, but they have more regular behaviour than the original
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measures. We give sample applications to densities of sets; in particular we
give a tangent measure proof that sets of non-integral dimension fail to have
densities almost everywhere. We indicate how tangent measures can be applied
to problems in harmonic analysis.

Often it is natural to study fractal properties of measures rather than
sets, indeed many fractal sets, such as attractors of dynamical systems, are
in essence already measures. Chapters 10 and 11 discuss fractal properties
of measures. In particular we consider sets such as E,, the set of x at which
a given measure p has local dimension o, that is where the measure of a
small ball centred at x is (roughly) equal to the radius of the ball to the
power «o. For certain p the sets E, may be ‘large’ for a range of «, and the
‘size’ of E, may be measured by either p or by dimension. In Chapter 10
we consider u(E,), leading to the ‘dimension decomposition’ of u, and
in Chapter 11 we look at the dimension of E,, leading to the ‘multifractal
spectrum’ of y. The thermodynamic formalism is used to extend the theory to
non-linear cases.

Chapter 12 describes several ways in which fractal geometry interacts with
differential equation theory. This is an area where a number of important
methods have been developed and where some of the techniques from earlier in
the book may be applied. We describe a general approach for bounding the
dimension of attractors of dynamical systems and of differential equations.
Then the effect of a fractal boundary of a region on the solutions of partial
differential equations is discussed, in particular the way in which fractality
affects the asymptotic form of the solutions and the asymptotic distribution of
eigenvalues. The final section is concerned with setting up differential equations
on a region that is itself fractal. This chapter is selective and far ranging, and
full proofs are not included.

Fractal geometry may be studied from many viewpoints, and inevitably the
approach adopted in this book reflects the author’s own background and
experience. The topics included have been selected according to the author’s
interests and whim, but there are many other worthy techniques in use in fractal
analysis, such as wavelet methods and the variants of iterated function systems
used in image compression. Nevertheless, the methods described here are widely
applicable, and, hopefully, will find further applications in the future.

Notes and references

Since the pioneering essays of Mandelbrot (1975, 1982), a wide variety of
books have been written on fractals. The books by Edgar (1990), Falconer
(1990), Mehaute (1991) and Peitgen, et al. (1992) provide basic mathematical
treatments. Federer (1969), Falconer (1985) and Mattila (1995) concentrate on
geometric measure theory, Rogers (1970) addresses the general theory of
Hausdorff measures, and Wicks (1991) approaches the subject from the
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standpoint of non-standard analysis. Books with a computational emphasis
include Peitgen and Saupe (1988) and Devaney and Keen (1989). Several
books, including those by Barnsley (1988) and Peruggia (1993), are particularly
concerned with iterated function systems, those by Barnsley and Hurd (1993)
and Fisher (1995) concentrating on applications to image compression.
Massopust (1994) discusses fractal functions and surfaces, and Tricot (1995)
considers fractal curves. The books by Kahane (1985) and Stoyan and Stoyan
(1994) include material on random fractals. The anthology of ‘classic papers’
on fractals by Edgar (1993) helps put the subject in historical perspective.

Much of interest may be found in the proceedings of conferences on fractal
mathematics, including the volumes edited by Cherbit (1991), Bélair and
Dubuc (1991), Bedford, et al. (1991), Bandt, et al. (1992) and Bandt, er al.
(1995).

A great deal has been written on physical applications of fractals, for a
sample see Pietronero and Tosatti (1986), Feder (1988), Fleischmann, et al.
(1990), Smith (1991), Vicsek (1992) and Hastings (1993).






Chapter 1 Mathematical background

In this chapter we collect together several topics of a general mathematical
nature for future reference. The first section sets out basic terminology and
notation. We then discuss some inequalities that will be especially useful:
the subadditive inequality and some properties of convex functions. The last
two sections are concerned with measure theoretic ideas which play a
fundamental réle in fractal geometry. We sketch the rudiments of measure
theory, and then go into a little more detail on weak convergence, perhaps a
less familiar topic.

1.1 Sets and functions

We remind the reader of some standard definitions and notation that will
frequently be encountered.

We use the usual notation for the real numbers R, the integers Z, and the
rational numbers @, with R*, Z* and Q" for their positive subsets.

We normally work in n-dimensional Euclidean space, R”, where R = R! is
just the real line and R? is the Euclidean plane. Points in R” are denoted by
lower case letters, x, y, etc. We write x + y for the (vectorial) sum of x and y
and Ax for x multiplied by the real scalar A. We work with the usual Euclidean
distance or metric on R"; thus the distance between points x,y € R” is
x—yl= Q00 |x —y,-|2)1/2, where, in coordinate form, x = (x,...,x,) and
Y= V)

We generally use capitals, 4, E, X, Y etc. to denote subsets of R”. The dia-
meter of a non-empty set X is given by |X|=sup{|x—y|:x,y € X} with
the convention that |§] = 0. We write dist(X, Y) = inf{|x —y|:x€ X, ye Y}
for the distance between the non-empty sets X and Y. For r > 0 the r-neigh-
bourhood or r-parallel body of a set X is given by

X, = {y:igglx—yl < r}.

We define the closed and open balls with centre x € R" and radius r > 0 as

B(x,r)={y€eR":|y—x| <r}
and
Bx,r)={yeR":|y—x| <r}
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respectively. Of course balls in R' are just intervals, and in R? are discs. A set
X ¢ R" is bounded if X C B{x, r) for some x and r; thus a non-empty set X is
bounded if and only if | X| < oc.

Open and closed sets are defined in the usual way. A set 4 C R” is open if for
all x € A there is some r > 0 with B(x,r) C A. A set A C R" is closed if it
contains all its limit points, that is if whenever (xx),-, is a sequence of points of
A converging to x € R” then x € 4. A set is open if and only if its complement
is closed. The interior of a set A, written int 4, is the union of all open subsets of
A, and the closure of A, written A, is the intersection of all closed sets that
contain 4. The boundary of A is defined as 94 = A\int 4.

Formally a set 4 is defined to be compact if every collection of open sets
which cover A has a finite subcollection which covers 4. A subset 4 of R” is
compact if and only if it is closed and bounded, and this may be taken as the
definition of compactness for subsets of R”.

The idea of constructing sets as unions or intersections of open or closed sets
leads to the concept of Borel sets. Formally, the family of Borel subsets of R” is
the smallest family of sets such that

(a) every open set is a Borel set and every closed set is a Borel set,
(b) if 41, 45,... is any countable collection of Borel sets then U, A4;, N2, 4;
and A,\ 4, are Borel sets.

Any set that can be constructed starting with open or closed sets and taking
countable unions or intersections a finite number of times will be a Borel set.
Virtually all subsets of R” that will be encountered in this book will be Borel
sets.

Occasionally we use the symbol # to denote the number of points in a
(usually finite) set.

As usual, /: X — Y denotes a function or mapping f with domain X and
range or codomain Y. A function f: X — Y is an injection or is one-one (1-1) if
f(x1) # f(x2) whenever x| # x,, and is a surjection or onto if f(X) =Y. Itisa
bijection or a 1-1 correspondence if it is both an injection and a surjection. If
f:X— Yandg: Z — Wwhere Y C Z we define the compositiongof: X > W
by (gof)(x) = g(f(x)). Forf: X — X we define f* : X — X, the k-th iterate of
£by fO(x) = x,and f¥(x) = £(f* " (x)) fork = 1,2,3,...; thus f ¥ is the k-fold
composition of f with itself. For a bijection f: X — Y, the inverse of f is the
function /' : ¥ — X such that f~'(f(x)) = xforallx € Xand f(f~"(y)) =y
forall y € Y.

For A C X, the function 14: X — {0,1} given by l,(x) =0 if x¢ 4 and
14(x) = 1if x € A is called the indicator function or characteristic function of A;
its value ‘indicates’ whether or not the point x is in the set 4.

Certain classes of function are of particular interest. We write C(X) for the
vector space of continuous functions f: X — R, and Cy(X) for the subspace of
functions with bounded support (the support of f: X — R is the smallest closed
subset of X outside which f(x) = 0). For a suitable domain X C R” we write
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C'(X) for the space of functions f: X — R with continuous derivatives and
C?(X) for those with continuous second derivatives. Of particular interest in
connection with fractals are the Lipschitz functions. We call f: X — R™ a
Lipschitz function if there exists a number ¢ such that

S(x) =S <ex—y| forall x,yeX. (L1)

The infimum value of ¢ for which such an inequality holds is called the Lipsch-
itz constant of f, written Lip /. We also write LipX to denote the space of
Lipschitz functions from X to R™ for appropriate m.

Statements such as limg_,ocar = @ or lim,_q f (x) = a will always imply that
the limit exists as well as taking the stated value.

There are some useful conventions for describing the limiting behaviour of
functions. For f: Rt — R* we write f(x) = o(g(x)) to mean that f(x)/g(x) — 0
as x — 00, and f(x) = O(g(x)) to mean that f(x)/g(x) remains bounded as
x — oo. Similarily, we write f(x) ~ g(x) if f(x)/g(x) — 1, and f(x) < g(x) if
there exists numbers ¢;,c; such that 0 < ¢ < f(x)/g(x) < ¢ < oo for all
x € R*. We occasionally write f(x) ~ g(x); this is used in a loose fashion to
indicate that f(x) is ‘roughly comparable’ to g (x) for large x. We adapt this
notation in the obvious way for functions on other domains and for x appro-
aching other limiting values.

1.2 Some useful inequalities

We now discuss some simple but very useful inequalities.
Subadditive sequences occur surprisingly often, in analysis in general, and in
fractal geometry and dynamical systems in particular. A sequence of real

[e.¢]

numbers (ar),. , is subadditive if it satisfies the inequality
YGeim < A + Gy (1 2)

forall k,m € Z*. The fundamental property of such a sequence is that (ax /k) ;-
converges.

Proposition 1.1

Let (ax),e, be a subadditive sequence. Then limy_.ar/k exists and equals
infg>1ak/k (which may be a real number or —oo).

Proof Given a positive integer m we may write any integer k in the form
k=gm+r where g€ Z and 0 <r<m— 1. Using (1.2) ¢ times gives, for
k>m,

Ak Agmir <qam+ar_a_m+ﬂ

k gm+r~ gm m  qm
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As k — oc, so g — oo, giving

limsup a;/k < ay,/m.

k—oo

This is true for all m € Z*, so limsupy_,ar/k < infrar/k. We conclude that
the limit exists and equality holds. [

Corollary 1.2

Let b be a real number such that (ai)ze., satisfies
Qpym < Ak +am + b

for all k,m=1,2,.... Then a=limy_ar/k exists and ap > ka—b for
all k.

Proof We have (agsm + b) < (ax + b) + (am + b), so applying Proposition 1.1
to the sequence (ar + b)ge, gives that limg .oax/k = limg_o(ax + b)/k =
infy>1 (ax + b)/k. Writing a for this limit, a < (g + b)/k for all k. O

In the same way, we say that a sequence (bi),~, of positive real numbers is
submultiplicative if bym < bib,, forallk,me Z*.

Corollary 1.3

1/k

Let (by)ye, be a submultiplicative sequence. Then limy_. (bi) " exists and equals

inf s (bi) 7%,

Proof The sequence a; = log by is subadditive, so log b,lc/ k= a /k is convergent
by Proposition 1.1, so b,lc/ is convergent. [

Next we consider some inequalities associated with convex functions. Let
X C R be an interval. A function ¥ : X — R is convex if for all x;, x; € X and
all numbers a, ay > 0 with a; + ap =1,

Plonx) + azxz) < oqp(x1) + cw(x2); (1.3)

geometrically this means that every chord of the graph of v lies above the
graph (Figure 1.1). If 1 has a continuous second derivative then 1 is convex if
and only if ”(x) > 0 for all x € X. The function v is strictly convex if the
inequality (1.3) is strict for all x; # x,; this will happen if " (x) > 0 for all
x € X. A function ¢ : X — R is called concave if —1 is convex.

The convexity condition (1.3) implies a similar inequality for more terms;
this extension is known as Jensen’s inequality.
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Proposition 1.4

Let ¥: X — R be convex, let x1,...,xm € X and let ay,...,0 > 0 satisfy
S, ai=1. Then
m m
¢<Z aixi> <> ounp(xy). (1.4)
- =1
If  is strictly convex then equality holds if and only if x, = x, = ... = xp.

Proof For m > 3, we use the inductive step

Y (iam) = w(u — ) )
(1—am) (

by (1.3), so (l1.4) follows from the inequality for m —1, since
S lar (1 —am) ™ = 1.

If « is strictly convex, then equality in (1.5) implies that x, =
S (1 — am) ' g, that is X, = 37, ax;. By renumbering, we could work
with any of the x; as ‘x,,’; thus equality in (1.4) implies x, = > 1, a;x; for
allk. O

—1

3

1(1 — am)Alxi + Olmxm>

i M_

(1 —am)™ i) + amtp(Xm) (1.5)

Note that if ) : X — R is a concave function then the opposite inequality
holds in (1.4).

Suitable choice of ¢ in (1.4) yields the well-known arithmetic-geometric
mean inequality, see Exercise 1.2.

1

x1 opx; + 0yxy X3

Figure 1.1 Graph of a convex function
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The following application will be especially important in Chapter 5 in
connection with entropy. We make the convention that 0log0 = 0.

Corollary 1.5

Let pi,...,pm be ‘probabilities’ with p; > 0 for all i and Y p; =1, and let
q1,-- -, qm be real numbers. Then

Y pi(~logpi+qi) <logy e (1.6)
i=1 i=1
with equality if and only if p; = €% /3 % €% for all i.

Proof Defining 1(x) = xlogx (x > 0),%(0) = 0 gives that ¢ : [0,00) — Risa
continuous strictly convex function, since 10" (x) > 0for x > 0. For convenience,
write s = (3_72, ¢%)”". Applying (1.4) with o; = se% and x; = p;/e% we have

w<s>=w(2<se% p/eqf) 3 setilp/e")

i=1 i=1

that is

slogs <) sefpe %log(p;/e?)

Ms

i=1
m
Z (log p; — g1),

which is (1.6). Since 9 is strictly convex, equality requires that p;/e% = ¢ where
c is independent of i, and 1 =37 pi=c¢> 1 e% [

1.3 Measures

Measures or ‘mass distributions’ have a central place in fractal geometry. They
are a major tool in the mathematics of fractals, but also, measures may exhibit
fractal features which may be studied in their own right. Basically, a measure is
a way of ascribing a numerical size to sets so that the priniciple ‘the whole is the
sum of the parts’ applies. Thus if a set is decomposed into a finite or countable
number of pieces in a reasonable way then the measure of the whole set is the
sum of the measures of the pieces. A measure is often thought of as a ‘mass
distribution’ or a ‘charge distribution’, an interpretation that may be helpful to
those less familiar with formal measure theory.

In general we try to play down the more technical aspects of measure theory.
Since we shall just work with measures defined on subsets of R” many of the
awkward features of measures that can occur in a more general topological
setting may be avoided. We give a formal definition of a measure to ensure
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precision, but it is perhaps more important that the reader develops an intuitive
feel for the basic properties of measures. ‘

Let X ¢ R". We call i a measure on X if y assigns a non-negative number,
possibly oo, to each subset of X such that

(a) /J'(@) =0, (17;

(b) if 4 C B then u(A) < u(B), and (1.8
(c) if A, A,, ... is a countable sequence of sets then

N(U/‘L‘) SiN(Ai)- (1.9)

Thus (a) requires the empty set to have zero measure, and (b) states that ‘the
bigger the set the larger the measure’. Property (c) ensures that the measure of
any set is no more than the sum of the measures of the pieces in any countable
decomposition. For a measure to be useful we require more than this, namely
that equality holds in (1.9) for ‘nice’ disjoint sets A;. This leads to the idea of
measurability.

Given a measure p there is a family of subsets of X on which u behaves in a
nice additive way: a set A C X is called y-measurable (or just measurable if the
measure in use is clear) if

W(E) = w(ENA) + p(E\A) forall ECX. (1.10)

We write M for the family of measurable sets which always form a o-field, that
isPeM, XeM, and if 41,4,... € M then U 4; € M, NX, 4; € M and
A1\A2 € M. For reasonably defined measures, M will be a very large family of
sets, and in particular will contain the o-field of Borel sets.

Proposition 1.6
Let p be a measure on X and let M be the family of all u-measurable subsets

of X.
(a) If A, Az, ... € M are disjoint then

u(UAf> = u(A)). (1.11)
= =
(b) If A, C A, C ... is an increasing sequence of sets in M then
u(UQJIHmMm) (1.12)
i=1 I—0C

(o) If A1 D A2 D ... is a decreasing sequence of sets in M and 11(A,) < oo then

u(ﬁ&)r@wMJ (1.13)

i=1
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The continuity properties (b) and (c) follow easily from (a). Property (a) is
the crucial property of a measure: that yu is additive on disjoint sets of some
large class M. For all the measures that we encounter M includes the Borel
sets. However, in general M does not consist of all subsets of X, and (@) does
not hold for arbitrary disjoint sets A, A2,... .

( Technical note: What is termed a ‘measure’ here is often referred to as
an ‘outer measure’ in general texts on measure theory. Such texts define a
measure y only on the sets of some o-field M, with (1.7)—(1.9) holding for
sets of M, with equality in (1.9) if the A4; are disjoint sets in M. However, i
can then be extended to all A C X by setting u(A4) = inf {d_, pu(4;) : A C U;A;
and 4; € M}. In work relating to Hausdorff measures, etc., it is convenient
to assume that measures are defined on all sets in the first place.)

In this book we will be concerned with measures on R”, or on a subset of R”,
that behave nicely on the Borel sets. We term a measure p a Borel measure on
X C R” if the Borel subsets of X are u-measurable. It may be shown that pis a
Borel measure if and only if

u(AUB) = pu(A) + u(B) whenever A4,BC X and dist(4, B) > 0. (1.14)

A Borel measure y is termed Borel regular if every subset of X is contained in a
Borel set of the same measure; for such measures we can, for all practical pur-
poses, work entirely with Borel sets.

Virtually all the measures that we will encounter (including Hausdorff and
packing measures) will be Borel regular on R” or on the pertinent subset there-
of. Therefore, to avoid tedious repetition, we make the convention throughout
this book that the term ‘measure’ means ‘Borel regular measure’. Thus, for our
purposes, a measure is a set-function that behaves nicely with respect to Borel
sets. To avoid trivial cases we also assume that u(X) > 0 for all measures pu.

A measure p on X with p(X) < oo is called finite; if ;1(A) < oo for every
bounded set A it is locally finite. We call u a probability measure if u(X) =1
(this standard terminology does not necessarily mean that y has probabilistic
associations).

If v is a locally finite (Borel regular) measure, we can approximate the
measure of sets by compact sets and open sets, in the sense that

wu(U) = sup{u(4) : 4 C U with A compact} (1.15)
for every non-empty open set U, and
w(E) =inf{u(U) : E C U with U open} (1.16)

for every set E, see Exercise 1.5.
The support of p, written spt , is the smallest closed set with complement of
measure 0, that is

sptp =X\ U{U: Uis open and u(U) = 0}.
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Measures 9
We list below some basic examples of measures.

For each 4 C R” let u(A4) be the number of points in A (which may be oo);
this is the counting measure on R”".

For givena € R let u(A4) =0ifa¢ A and pu(4) =1ifa € A. Then pis a
measure with support {a} that we think of as a unit point mass
concentrated at a.

Lebesgue measure on R” is the natural extension to a large class of sets of
‘n-dimensional volume’ (‘length’ if n =1, ‘area’ if n =2 and ‘volume’ if
n = 3). We define the n-dimensional volume of the ‘coordinate parallele-
piped” 4 = {(x1,...,x,) € R" : a; < x; < b;} by

VOln(A) = (b] — (l])(bz — 612) e (bn - a,,).
Then n-dimensional Lebesgue measure L" is defined by

o0

L"(A4) = inf{Zvol"(A,-) tAC DA,-},

i=1

where the infimum is over all coverings of 4 by countable collections of
parallelepipeds. With some effort it may be shown that £" is indeed a
(Borel regular) measure on R” such that £"(4) equals the n-dimensional
volume of A4 if 4 is a parallelpiped or any other set for which the volume
can be calculated using the usual rules of mensuration.

Let 4 be a measure on X and let E C X. The restriction of u to E, denoted
by |, is defined by

ulg(4) = u(4 N E) (1.17)

for all 4 C X. It is easy to check that every pu-measurable set is
| p-measurable and, provided E is measurable and u(E) < oo, then pis a
(Borel regular) measure.

A very useful method of defining a measure is by repeated subdivision,
see Figure 1.2. For m > 2 we take a hierarchy of subsets of R” indexed
by sequences {(i,...,i): k>0 and 1 <i; <m for each j}. For every
(i1,...,0) let X; _; be a bounded non-empty closed subset of R”, and
write £ for the family of all such sets. We assume that these sets are nested
so that

X i O X i (1.18)

.....

w(Xi i) = ZN(XI‘,,.”,I}(,;‘) (1.19)
i:I

w(X;, . 4) < oo is defined for X;,_, € £ in such a way that
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Figure 1.2 Construction of a measure by repeated subdivision. The measure on each
set of & is divided between its subsets in the hierarchical construction

for each (if,...,i), that is the ‘mass’ p(Xj, ;) is subdivided between
the subsets Xj, ;. (1 <i<m). We assume that for every sequence
(i1,4,...) both the diameters of the sets |X; ;| and their measures
w(X;,. ;) tend to 0 as k — oo. We write Ey = U;, ., X, for each k, and
E = N, Ex, so that E is the intersection of a decreasing sequence of closed
non-empty sets, and is therefore closed and non-empty. For 4 C R” we
define

w(A) :inf{Zp(V,») cANEC UV, and V; € E}. (1.20)

It is not hard to show that u is a measure with support contained in E, such
that u(Xj,. ;) is the preassigned value for all (i1, ..., &). Thus if 4 is defined
by this ‘repeated subdivision’ procedure it may be extended to a measure
on E.

For a simple instance of this procedure, let m =2 and for each & let
X, ..;, comprise the set of 2* closed binary subintervals of [0, 1] of length
2% nested in the obvious way. Taking w(Xi, 2) = 2% for each such
interval, (1.19) is readily verified and (1.20) then defines the restriction of
Lebesgue measure to [0, 1].

We say that a property holds for almost all x or almost everywhere (with

respect to a measure y) if the set for which the property fails has y-measure 0.
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For example, with respect to Lebesgue measure, almost all real numbers are
irrational.

Occasionally we need the following density result, to the effect that almost
all points of a set E are, from the point of view of measure, ‘well inside’ E. A
point x at which (1.21) holds is called a density point of E.

Proposition 1.7

Let p be a locally finite Borel measure on R". Then, for every p-measurable set E,
we have that

lim (£ (1 B(x, )/ B(x, 1)) (121)
exists and equals 1 for p-almost all x € E and equals 0 for p-almost all x¢ E.

Proof Since this is a local result, we may assume that y is a finite measure.
Take ¢ < 1, and define

A={x€ E: u(ENB(x,r)) < cp(B(x, r)) for arbitrarily small r};
we will show that p(4) = 0. Given € > 0 there exists an open set U D 4 such
that u(U) < p(A) + e. Define a class V of balls by
V = {B: Bhas centre in 4, with B C Uand u(EN B) < cu(B)}.
Then V is a Vitali cover for A, which means that for all x € 4 and § > O there is
a ball in V with centre x and radius less than 6. The Vitali covering theorem

asserts that there is a sequence of disjoint balls By, B,... in V such that
/,I,(A\ U; B,) = 0. Then

w(A) = (A NUB) + u(A\U; B;)
=Y WANB)+0<cd u(B)

— cu(UiBy) < cu(U) < c(u(A) + o).

This is true for all €> 0 so u(A4) < cp(4), implying that u(4) =0. We
conclude that for all ¢ <1, for p-almost all x € E we have cu(B(x,r))
< u(ENB(x,r)) < u(B(x, r)) for all sufficiently small r. Thus for p-almost all
x € E the limit (1.21) exists and equals 1.

Applying this with E replaced by R\ E now gives that the limit (1.21) equals
0 for py-almost all x¢ E. [

Sometimes we will work with several measures on the same set. We say that
the measures y and v on X are equivalent if there¢xist numbers ¢;, ¢; > 0 such
that T

e (A) < V(A) < capu(4) (1.22)
forall 4 C X.
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Integration with respect to a measure i on X is defined using the usual steps.
A simple function f: X — R is a function of the form

k
flx) = ZailA,.(x)

where a;,...,ar € Rand A4,,..., A; are u-measurable sets, with 14, the indi-
cator function of A4;. We define the integral of the simple function f with
respect to u as

k
/fd/,l, = Z ai(A;).

Integration of more general functions is defined using approximation by simple
functions. We term f: X — R a measurable function if for all ¢ € R the set
{x € X :f(x) < ¢} is a measurable set (in particular for a Borel measure p all
continuous functions are measurable). We define the integral of a measurable
f: X — RYU{0} by

/fdp:sup{/gdu:gis simple, Ogggf}

(this value may be infinite). Finally, for a measurable function f: X — R we
write /1 (x) = max{ f(x),0} and f_(x) = max{—f(x), 0}, and define

/fdu:/f+du—/f—du,

provided both [f, dpand [f_ du are finite. This happens if [ |f|dx = [f; du
+ [ f- dp < oo; such functions are called p-integrable. All the usual properties
of the integral hold, for example [(f+g)du = [fdu+ [gdu and [(X f)dp
= X [fdu for real \.

For a measurable set 4 we define the integral of f over A by [, fdu
= [f1ladu.

Some basic convergence theorems hold, that is conditions on a sequence of
functions fi: X — R with limg_o fi(x) = f(x) for almost all x that guarantee
that

lim fkdp:/fdp. (1.23)

This is the case if (f;) is a monotonic sequence of non-negative functions
(the monotone convergence theorem), or if u(X) < oo and for some ¢ we
have |fi(x)] <c¢ for all £ and x € X (the bounded convergence theorem).
The limit (1.23) is also valid if there is a function g: X — R* U {0} with
Jgdp < oo and |fi(x)| < g(x) for all k and x (the dominated convergence
theorem).
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Closely related is Fatou’s lemma, that for any sequence ( f) of measurable
functions

/ liminf fidu < liminf | fedp.

We will often wish to interchange the order of integration in a double
integral, and this is generally permitted by versions of Fubini’s theorem. If y
and v are locally finite measures on subsets of Euclidean space then

J( o) ao = [ [rwna Jae

for continuous f/: X x ¥ — R*" U {0}. (This also holds if fis a Borel function,
that is if {(x, ) : f(x,») < ¢} is a Borel subset of X x Y for all real numbers c.)

As usual integration is denoted in a variety of ways, such as [fdy, [for
Jf(x x) depending on the emphasis required. When p is n- dlmensmnal
Lebesgue measure L, we usually write [ fdx or [f(x)dx in place of [fdL"(x

We write L!'(y) for the vector space of p-integrable functions, that is
functions f: X — R with [|f]du < oo, and L'(R) for the Lebesgue integrable
functions, that is /: R — R with [|f]|d£ < co.

*1.4 Weak convergence of measures

We collect together here some properties of weak convergence of measures that
will be needed mainly in Chapter 9. This section may be deferred until the pro-
perties are needed. Alternatively, the proofs may be omitted on a first reading
with little loss of feeling for the subject.

Let g, g1, 2, - . . be locally finite measures on R”. We say that the sequence
(pk)se converges weakly to p if

jim [ fam = [ rau (1.24)

for every f '€ Co(R") (i.e. for every continuous f of compact support), and we
denote this by pi — g or limg o = pt.

For a simple example on R, if yux(A4) = ; {#i € Z : i/k € A}, so that y; is an
aggregate of point masses of 1/k, then p — L.

Although weak convergence does not imply that . (4) — p(A) for every set
A, some useful inequalities hold for open or compact sets.

Lemma 1.8

Let (pi) e be a sequence of locally finite measures on R” with p — p. Then if A
is compact

1(A4) > limsup px(A4) (1.25)

k—oo
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and if U is open
w(U) < lilrcn inf 1 (U). (1.26)
—0C

Proof Writing A9 = {x:dist(x,4) < §} for the open é-neighbourhood of
a compact set 4, we have that 49\, 4 as 6§\, 0 so pu(4%) — u(4) by
(1.13). Thus, given ¢ >0 we may take § > 0 such that p(49) < p(4) +e.
Let f€ Co(R") be any function satisfying 0 < f(x) <1 with f(x) =1 for
x€A4 and f(x) =0 for x¢AY (f(x) =max{0,1 -6 "dist(x,4)} will do).
Then

u(A4) + € > p(Ag) > /fdu = lim [ fdpy > limsup i (4);
—00 k—o0

since this is true for arbitrarily small ¢, (1.25) follows. Inequality (1.26) is
similar using (1.12). [J

The importance of weak convergence lies in the following compactness
property which allows us to extract weakly convergent subsequences from
general sequences of measures.

Proposition 1.9

Let pi, iz, ... be locally finite measures on R" with supgp(A4) < oo for all
bounded sets A. Then (u)re, has a weakly convergent subsequence.

*Proof We note that Co(R") has a countable dense subset of functions ( fi )z,
under the norm || f]| , = max{|f(x)| : x € R"}. (For example, setting g,,(x) =
max{0,m — | x|}, the set of functions { pg,, : p is a polynomial with rational
coefficients and m € Z"} is easily seen to be countable and dense using the
Weierstrass approximation theorem.) A diagonal argument, using induction on
k, gives sequences (p;)iy with po; = p; and with (u ), a subsequence of
(1) for k=1,2,..., such that [fidue; — ai as i — oo for some g, € R.
Thus, [ fidp;; — ax as i — oo for all k. Since the (f;) are dense it follows that
for all f € Co(R")

for some a(f) € R. Moreover, a is linear, that is a(f+ g) = a(f) + a(g) and
a(Af) = Aa(f), and bounded, that is |a(f)| < (supgu(4))||f||,, if spt £ C 4.
The Riesz representation theorem states that under these conditions there

is a locally finite measure p such that a(f) = [fdp for all f€ Co(R"); thus by
(1.27) piy — ., with (p;;), a subsequence of (ug)pe,. U

It is sometimes convenient to express weak convergence of measures in terms
of convergence with respect to metrics. For R > 0 we define dz on the set of
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locally finite measures on R” by

drsv) = sup{ ‘ [ rau- [ rav

where here Lipr denotes the set of Lipschitz functions f: R” — [0, 00) with
spt fC B(0,R) and with Lip f<1 (that is with |f(x)—f()| < |x—y|
for x,y € R"). Then for each R we have that dg is a pseudo-metric (that is,
it is non-negative, symmetric and satisfies the triangle inequality). However,
dr(p,v) = 0 need not imply p = v. Nevertheless, dr is a metric on the set of
locally finite measures with support contained in the open ball B%(0, R), see
Exercise 1.10. Clearly, if Ry < R; then dg, (i, v) < dg,(u, v).

fe LipR} (1.28)

Lemma 1.10

Let jy, i, ... and p be measures on R". Then p, — p weakly if and only if
dr(pue, 1) — 0 for all R > 0.

*Proof Suppose first that dg(u, 1) / 0 for some R. By passing to a sub-
sequence and renumbering, there exists ¢ > 0 and functions f; € Lipg such that
| [fidpk — [fidp| > € for all k. By the Arzela-Ascoli theorem there is a
subsequence of (f¢), which by renumbering we may again take to be the whole
sequence, such that f; — funiformly for some f which must be in Lipg, using
that the f; vanish outside B°(0, R). Then

Jram = [rou=( [ram— [am)+ ( [sam— [san)
(- frw)

As k — oo, the first term of this sum tends to 0 (since f;y — f uniformly and
(i (B0, R)))p, is bounded by (1.25)), the third term tends to 0 (as f; — f
uniformly), but the absolute value of the middle term is bounded below by
€, SO L /> p weakly.

For the converse suppose that dg(py, ;1) — O forall R > 0. Let f: R — Rbe
continuous, with spt f C B(0, R). Then given € > 0, there exists a Lipschitz
g:R" — R with sptg C B(0, R) that approximates f in the sense that | f(x)—
g(x)] <€ for all x € R". (Using the mean value theorem, g can be any
sufficiently close approximation to f that is continuously differentiable.) Then
using the triangle inequality and that g has Lipschitz positive and negative parts

‘/fduk—/fdu‘S/%f—glduk+ [scu— [sauls [1g-710n

< et (B(0, R)) + 2(Lip g)dr(p, 1) + eu(B(0, R))
< 3eu(B(0, R)) + 2(Lipg)e

if k is sufficiently large, using (1.25). Hence u; — p weakly. [
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The other property we need is that the dr are separable, that is there exists a
countable set of measures that is dense in these pseudo-metrics.

Lemma 1.11

There is a countable set of locally finite measures uy, i3, . . . on R" such that, for
every locally finite measure y on R” and all R,n > 0, there exists k such that

dr(py ) <.

*Proof It is enough to show that such a set of measures exists for each
R =1,2,... and use that a countable union of countable sets is countable. For
J=1,2,...let Cj1,...C;m be the (half-open) binary cubes of side-lengths 2/
which meet B(0, R), and let §;; be a unit point mass at the centre of C;;. Let
(1 )5, be an enumeration of the set of all measures of the form "7, g;; 8,
where for each j and i the sequence (gj,1,4;2,...) is an enumeration of the
non-negative rational numbers.

Given p, let v; = 5277, u(C;)6;;; by choosing j large enough we may ensure
that dr(p,v;) < %7]- Now choose iy = Z:’L qj,ip0;; so that dr(v), px) < %7],
which may be achieved by taking g;;, sufficiently close to p(Cj;) for each i.
Then dg(u, ue) < 7, as required. O

1.5 Notes and references

Most of the material in this chapter may be found in much more detail in any
basic text on measure theory, for example Doob (1994) or Kingman and
Taylor (1966). The treatments in Falconer (1985) and Mattila (1995a) are
specifically directed towards fractal geometry, and also include more details of
Vitali covering results and density properties.

Exercises

1.1 Letf:[0,1] — [0,1] be a differentiable function. Show that the limit limy_.,, b}c/ k
exists, where by = supo<x<i| £ f%(x)| and f* is the kth iterate of /. (Hint: use the
chain rule to show that (&) is submultiplicative.)

1.2 Use (1.4) to prove the arithmetic-geometric mean inequality: that (]}, x)!™
< IS xi where xi,..., X, > 0. (Hint: —logx is convex.)

1.3 Let @=(qi,q2,...) be an enumeration of the rational numbers. For 4 C R
define p(4) =3, 427" Verify that p is a measure with all subsets of R
measurable. Show that spty = R, even though p(R\Q)=0, that is u is
‘concentrated’ on Q.

1.4 Let x4 be a measure on R” such that for all x € R” there is a ball B(x,r) with
w(B(x,r)) < co. Show that p is locally finite.

1.5 Verify (1.15) and (1.16) from the definition of a locally finite (Borel regular)
measure and Proposition 1.6.



1.6

1.7

1.9

1.10

Exercises 17

For each k, let {Xj;,_; : i = 1 or 2} be the set of 2¥ k-th level intervals of length 3%
that occur in the usual construction of the middle-third Cantor set E, nested in the
usual way. Verify that setting u(X;, ;) = 27 and using (1.20) leads to a measure
on E. Show that the same is true setting u(X;,,.. ;) = (1/3)"(2/3)™ where n; and n,
are the number of occurrences of the digits 1 and 2 respectively in (ij,. .., ).
Let f: [0,1] — R* be continuous, and define g on [0, 1] by u(4) = [, f(x)dx.
Show that p is equivalent to £, where £ is Lebesgue measure. (Note that
0 < ¢ <f(x) < e forall x € [0, 1] for some ¢, ¢;.)

Let ux be the measure on R that assigns unit mass to the point 1 + 1/k. Find the
weak limit p of the sequence of measures (). Does ([0, 1]) — p([0,1])?
Show that if y — g and if 4 is a bounded set with p(04) = 0, where 94 is the
boundary of A4, then ui(A4) — p(A4).

Verify that dr defined by (1.28) is a pseudo-metric on the locally finite measures
and a metric on the measures with support in B°(0, R).






Chapter 2 Review of fractal
geometry

In this chapter we review some of the basic ideas of fractal geometry that will
crop up frequently throughout this book. We first discuss fractal dimensions,
and in particular the definitions and properties of Hausdorff, packing and box-
counting dimensions. We then review iterated function systems which provide
a convenient way of representing many fractals and fractal measures.

These basic definitions, properties and notation are collected together here
for convenient reference; almost all of this material is discussed in much more
detail and with full proofs in FG.

21 Review of dimensions

The notion of ‘fractal dimension’ of a set is central to nearly all fractal
mathematics. We shall usually be interested in the dimensions of subsets of R”,
though essentially the same definitions hold in general metric spaces.

Most definitions of dimension depend on a ‘measurement at scale r’ of a set
E, which quantifies the irregularity of the set when viewed at that scale. The
dimension is then usually defined in terms of the power law behaviour of these
measurements as r \, 0. '

We shall mainly be concerned with the Hausdorff, packing and box-
counting dimensions of sets; these are by far the most common definitions of
dimension in use, although a variety of other definitions have been proposed. It
should be emphasised that the value of the dimension of a set may vary
according to the definition used, although the usual definitions often give the
same values for ‘reasonably regular’ sets. Thus it is important to be clear about
the definition of dimension in use in any particular context.

Box-counting dimension

Box-counting dimension (also variously termed entropy dimension, capacity
dimension, logarithmic density, etc.) is conceptually the simplest dimension in
use, see FG, Section 3.1. For E a non-empty bounded subset of R” let N,(E) be
the smallest number of sets of diameter r that can cover E. (Recall that the
diameter of a set U is defined as |U| = sup{|x — y|: x,y € U}, that is the
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20 Review of fractal geometry

greatest distance apart of any pair of points in U.) The lower and upper box-
counting (or box) dimensions of E are defined as

log N,(E
dimyE — lim inf 28 (E) (2.1)
r—0 —logr
and
_ log N, (E
dimyE = limsup & (E) (2.2)
r—0 _log r

respectively. If these are equal we refer to the common value as the box-
counting dimension or box dimension of E

dimpE = lim 28N (E)

r—0 —logr (23)

Thus the least number of sets of diameter r which can cover E is roughly of
order r~° where s = dimgkE.

There are a number of equivalent forms of these definitions which are often
useful. The value of the limits (2.1)—(2.3) remain unaltered if N,(F) is taken to
be any of the following:

(i) the smallest number of sets of diameter r that cover E,
(ii) the smallest number of closed balls of radius r that can cover E,
(iii) the smallest number of cubes of side r that cover E,
(iv) the largest number of disjoint balls of radius r with centres in E,
(v) the number of r-mesh cubes that intersect E, hence the name ‘box-
counting’.

(An r-mesh cube is a cube of the form [myr, (m + D)r) x -+ x [myr, (m, + 1))
where m, ..., m, are integers).

The equivalence of these forms of the definition follows on comparing the
values of N,(E) in each case, see FG, Equivalent definitions 3.1.

An equivalent definition of box dimension of a rather different nature
involves the n-dimensional volume of the r-neighbourhood or r-parallel body E,
of E, given by

E, ={xeR”:|x—y|<r forsome y € E}.
Then for E C R”

_ logL'(E,
dimgE =n— lim supM (2.4)
r—0 log r
. log £"(E,
dimpE = n— liminf 28X E) (2.5)
r—0 logr
and
dimgE = n — lim 225 (Fr) (2.6)

r—0 logr
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if this limit exists, where £” is n-dimensional volume or n-dimensional
Lebesgue measure. In the context of this definition, box dimension is
sometimes referred to as Minkowski dimension.

Hausdorff and packing dimensions

Hausdorff and packing dimensions are more sophisticated than box dimen-
sions, being defined in terms of measures. A finite or countable collection
of subsets {U;} of R” is called a §-cover of a set E C R" if |U;] < 6 for all
i and EC U U;. Let E be a subset of R" and s> 0. For all §>0 we
define

HY(E) = inf{z |Uif* : {U;}is a 8-cover of E} (2.7)
i=1

As 6 increases, the class of §-covers of E is reduced, so this infimum increases
and approaches a limit as § \, 0. Thus we define

HYE) = (lsin(l)Hfs(E). (2.8)
This limit exists, perhaps as 0 or oo, for all E C R”. We term H*(E) the s-dimen-
sional Hausdorff measure of E.

It may be shown that H*(E) is a Borel regular measure on R” (see (1.14)), so
in particular

w([’j E) < S B 29)
i=1 =1

for all sets Ej, E,, ..., with equality if the E; are disjoint Borel sets.
Hausdorff measures generalise Lebesgue measures, so that H'(E) gives the
‘length’ of a set or curve E, and H?(E) gives the (normalised) ‘area’ of a region
or surface, etc. In general, £L" = 27"y, H", where v, is the volume of the n-di-
mensional unit ball.
We often wish to consider the Hausdorff measure of the image of a set under
a Lipschitz mapping. For a Lipschitz /: E — R” such that

[f(x) =f(») <elx—y|l forall x,y€E, (2.10)
we have
H(f(E)) <c*HE). (2.11)
Similarily, if f: E — R™ is bi-Lipschitz, so that for some ¢;,¢; >0
clx =y <|f(x)—fW| < el x—y|forallx,y € E,
then
A H(E) SH(S(E)) < ey HY(E). (2.12)
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A special case of this is when f is a similarity transformation of ratio r, so
|f(x) —f(»)| = r|x — y| for all x,y € E, in which case

HYf(E)) = r* H¥(E). (2.13)

This is the scaling property of Hausdorfl measures, which generalises the
familiar scaling properties of length, area, volume, etc.

It is easy to show from (2.7) and (2.8) that for all sets £ C R”" there is a
number dimy E, called the Hausdorff dimension of E, such that H*(E) = oo if
s < dimyE and H*(E) =0 if s > dimgE. Thus

dimyE = inf{s: H*(E) =0} = sup{s: H*(E) = oo},

so that the Hausdorff dimension of a set £ may be thought of as the number s
at which H*(E) ‘jumps’ from oo to 0, see Figure 2.1. When s = dimy £ the
measure H*(E) can be zero or infinite, but in the nicest situation (Which occurs
in many familiar examples) 0 < H*(E) < oo, in which case E is sometimes
termed an s-set.

The definition of packing dimension parallels that of Hausdorff dimen-
sion. Here we define a §-packing of E C R” to be a finite or countable collection
of disjoint balls {B;} of radii at most § and with centres in E. For § > 0 we
define

PS(E) = sup{z |B|* : {B;} is a 6-packing ofE}.

i=1

HE)

0 ! 1 s
0 dimyE n

Figure 2.1 The Hausdorff dimension of F is the number s at which H°(E') jumps from
oo to 0
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Then P3(E) decreases as 6 increases, so we may take the limit
PH(E) = %irré”Pg(E).

Unfortunately P§ is not a measure (it need not be countable subadditive); to
overcome this difficulty we define

i=1 =1

which is a Borel measure on R”, called the s-dimensional packing measure of E.
Again P', P2, give the length, area, etc. of smooth sets, but for fractals H* and
P* can be very different measures.

Packing measures behave in the same way as Hausdorff measures in respect
of Lipschitz mappings, and (2.11)—(2.13) remain valid with H* replaced by
P*. It may be shown that H*(4) < P*(A4) for all sets 4.

As for Hausdorff dimension, there is a number dimpE, called the packing
dimension of E, such that PS(E)= oo for s < dimpE and P*(E) =0 for
s > dimpE. Thus

dimpE = inf {s : P*(E) =0} = sup{s: P*(E) = o0}.

It is sometimes convenient to express packing dimension in terms of upper
box dimension. For E C R” it is the case that

dimpE = inf{supﬁBEi cEC UE,}
i i=1

(the infimum is over all countable covers {E;} of E), see FG, Proposition 3.6.

Basic properties of dimensions

We will have frequent recourse to certain basic properties of dimensions. The
following properties hold with ‘dim’ denoting any of Hausdorff, packing, lower
box or upper box dimension.

Monotonicity. If E; C E, then dimE| < dim E;.

Finite sets. If E is finite then dimE = 0.

Open sets. If E is a (non-empty) open subset of R” then dimE = n.

Smooth manifolds. If E is a smooth m-dimensional manifold in R” then
dimE = m.

Lipschitz mappings. If f: E — R™ is Lipschitz then dimf(F) < dimE. (For
Hausdorff and packing dimensions this follows from (2.11) and its packing
measure analogue, for box dimensions it may be deduced from the
definitions.) Note in particular that this is true if £ C X for an open set X
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on which f: X — R” is differentiable with bounded derivative, using the
mean value theorem.
Bi-Lipschitz invariance. If f: E — f(E) is bi-Lipschitz then dim f(E) = dim E.
Geometric invariance. If f is a similarity or affine transformation then
dimf(E) = dim E (this is a special case of bi-Lipschitz invariance).

Hausdorff, packing and upper box dimensions are finitely stable, that is
dim UX | E; = max <;<x dim E; for any finite collection of sets {Ei,..., Ex}.
However lower box dimension is not finitely stable.

Hausdorff and packing dimensions are countably stable, that is
dim UL, E; = Sup <;coo dim E;. (This may be deduced from the count-
able subadditivity of Hausdorff and packing measures). Countable stability is
one of the main advantages of these dimensions over box dimensions;
in particular it implies that countable sets have Hausdorff and packing
dimensions zero.

We also recall that dimgE = dimgE and dimgE = dimgE where E is the
closure of E. In fact this is a disadvantage of box dimensions, since we often
wish to study a fractal E that is dense in an open region of R” and which
therefore has full box dimension n.

There are some basic inequalities between these dimensions. For any non-
empty set E

dimpE < dimpE < dimgE and dimgE < dimgE < dimpE (2.14)

(for the inequalities involving box dimensions we assume E is non-empty and
bounded). In practice, most definitions of dimension take values between the
Hausdorff and upper box dimensions, so if it can be shown that
dimy E = dimg £ then all the normal definitions of dimension take this
common value.

Calculating dimensions

We frequently wish to estimate the dimensions of sets; usually it is harder to
get lower estimates than upper estimates. There are various approaches to
finding the dimension of a set, but most methods involve studying a suitable
measure supported by the set (other methods can usually be reduced to this
process). One basic but very useful technique is termed the ‘mass distribution
principle’.

Propesition 2.1 (mass distribution principle)

Let E C R” and let p be a finite measure with u(E) > 0. Suppose that there are
numbers s > 0, ¢ > 0 and by > 0 such that

pU) < cUf
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Sor all sets U with |U| < 8. Then H*(E) > u(E)/c and

s < dimgE < dimgE < dimpE.

Proof We recall the very simple proof from FG, Principle 4.2. If {U;} is any
cover of E by sets of diameter at most &y then

W(E) < pUil) <Y p(U) < ey |UI,
so that u(E) < ¢ Hi(E) for 6 < 6. The result follows on letting § — 0. [

Developing this idea we can estimate the Hausdorff and packing measures
and dimensions of a set £ if we can find a measure p satisfying certain ‘local
density’ conditions on E. Observe the (near) symmetry between Hausdorff
and packing measures and lower and upper estimates in the following
propositions.

Proposition 2.2

Let E C R” be a Borel set, let i1 be a finite Borel measure on R" and 0 < ¢ < 00.

(a) If limsup, o u(B(x,r))/r* < ¢ for all x € E then H*(E) > p(E)/c.
(b) If limsup, o u(B(x,r))/r* > ¢ for all x € E then H*(E) < 2u(E)/c.
(¢) If iminf, o u(B(x,r))/r* < c for all x € E then P*(E) > 2°u(E)/c.
(d) If liminf,_o u(B(x,r))/r* > ¢ for all x € E then P*(E) < 2°u(E)/c.

Proof Parts (a) and (b) are proved in FG, Proposition 4.9; part (a) requires
little more than the definition of Hausdorff measure, whilst (b) requires the
Vitali covering lemma. The packing measure analogues are proved in a very
similar way, with (d) following easily from the definition of packing measure
and with (c) requiring a covering lemma. [

We shall more often be interested in the dimension rather than the
measure of sets, so we give a version of Proposition 2.2 for dimensions.
This may be conveniently expressed in terms of local dimensions of mea-
sures. We define the lower and upper local dimension s of p at x € R” (also
called the pointwise dimension or Holder exponent) by

. .. logu(B(x,r))
dim o0 p(x) = llrrribnf ~logr (2.15)
dim joc p£(x) = limsup lo_g;M. (2.16)

r—0 10g r

These local dimensions express the power law behaviour of u(B(x,r)) for small
r. Note that dimge u(x) = dimge 1(x) = 00 if p(B(x,r)) = 0 for some r > 0.
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Proposition 2.3

Let E C R be a Borel set and let i1 be a finite measure.

(@) If dim o p(x) > s for all x € E and p(E) > 0 then dimyE > s.
(b) If dim o p(x) < s for all x € E then dimyE < s.
(¢) If dimyoe pu(x) > s for all x € E and p(E) > 0 then dimpE > s.
(d) If dim e u(x) < s for all x € E then dimpE < 5.

Proof This follows from Proposition 2.2 noting that the hypothesis in (a)
implies that lim sup,_ou(B(x,r))/r* ¢ =0 for all € > 0, and similarly for (b),
(¢)and (d). O

We remark that in (@) and (c) of Proposition 2.3 it is enough for the
hypothesis to hold for x in a subset of E of positive y-measure.

We record the following partial converses to these results which stipulate
that a set of given dimension carries a measure with corresponding local
dimensions.

Proposition 2.4

Let E C R" be a non-empty Borel set.

(a) If dimy E > s there exists p with 0 < p(E) < o0 and dim o u(x) > s for all
x€E.

(b) If dimyE < s there exists p with 0 < u(E) < oo and dimocps(x) < s for all
xcE

(¢) If dimpE > s there exists p with 0 < p(E) < 0o and dimecps(x) > s for p-
almost all x. B L

(d) If dimpE < s there exists p with 0 < p(E) < 00 and dim o p(x) < s for all
x€eE.

Proof Part (a) is FG, Corollary 4.12 (‘Frostman’s Lemma’) expressed in local
dimension form. Parts (b), (¢) and (d) require similar delicate arguments, and
the technical details may be found in the literature. [

Note that, in Propositions 2.3 and 2.4, it is the lower local dimensions that
relate to the Hausdorff dimension of a set, and the upper local dimensions to
the packing dimension of a set.

Propositions 2.3(a) and 2.4(a) may be ‘integrated’ to get potential theoretic
criteria which are often useful when calculating Hausdorff dimensions and
measures. For s > 0 we define the s-energy of a measure y on R” by

= [ [ s = duauts).
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Propesition 2.5

Let EC R".

(@) If there is a finite measure p on E with I,(p) < oo then H*(E) = oo and
dimyE > s.

(b) If E is a Borel set with H*(E) > O then there exists a finite measure y on E
with I,(p) < oo for all t < s.

Proof See FG, Theroem 4.13. [

Densities and rectifiability

Densities have played a major role in the development of geometric measure
theory. Although it is possible to define the densities of any finite measure, we
restrict attention here to densities of an s-set, that is a Borel set E C R” with
0 < H'(E) < o0, where s =dimygE. The lower and upper (s-dimensional)
densities of E at x are given by

D*(x) = D*(E, x) = liminf H*(EN B(x,r))/(2r) (2.17)
and
D’(x) = D*(E, x) = limsup H*(E N B(x,r))/(2r)° (2.18)
r—0

(we write D(x) rather than D*(E, x) when the set E under consideration is
clear). When D*(E,x) =D’(E, x) we say that the density D(E,x) of E at x
exists and equals this common value. (It is possible to define the densities of a
more general measure p by replacing H* by p in (2.17) and (2.18).)

We remark that if X is an open subset of R and f: X — R is a C! mapping,
then for £ C R we have

D*(E,x)=D*(f(E), f(x)) and D*(E,x)=D'(f(E),f(x))  (2.19)

for all x where f”(x) # 0. Intuitivily this is because f may be regarded as a local
similarity of ratio |f’(x)| near x, scaling the diameter of B(x,r) by a factor
|/'(x)| and the H*-measure of B(x,r) by a factor |f’(x)|’, using the scaling
property (2.13), see Exercise 2.6. In fact (2.19) also holds for a differentiable
conformal mapping f: X — R" where X C R". (The mapping f'is conformal if
S'(x), regarded as a linear transformation on R”, is a similarity transformation
for all x € R".)

The classical result on densities is the Lebesgue density theorem. This states
that if E is a Lebesgue measurable subset of R” then for £”-almost all x

1 if xeE

0 if x¢E ° (2.20)

i £7(E0 B(x, )/ £"(B(xr) = {
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this is a special case of Proposition 1.7 taking u as £". Expressed in terms of
densities this is

(2.21)

D"(E,x) = lim H"(EN B(x,r))/(2r)" = { 1 if xeE

0 if x¢E

for H"-almost all x, since £" = 27"y, H", where v, is the volume of the
n-dimensional unit ball. It is natural to ask to what extent analogues of (2.21)
hold for general values of s.

For E C R” an s-set, it is easy to show that D*(E, x) = 0 for H*-almost all
x ¢ E. Moreover, 27 < D*(E, x) < 1 for almost all x € E, see FG, Proposition
5.1. A rather deeper property is that unless s is an integer D(E, x) < D*(E, x)
for H*-almost all x € E. We will prove this in Corollary 9.8 using tangent
measures; a special case is given in FG, Proposition 5.3. In some ways, this
non-existence of densities is a reflection of fractality.

The situation when s is an integer is more involved. In this case an s-set
E C R" may be decomposed as E = Eyp U Ej, where ER is regular, that is, with
D3(Eg, x) = D*(Eg,x) = 1 for H*-almost all x € Eg, and E; is irregular, with
D$(Ey, x) < ¢cD%(Ey, x) for H¥-almost all x € Ej, where ¢ < 1 depends only on n
and s, see Figure 2.2.

Regular and irregular sets have geometrical characterisations in terms of
rectifiability. If E is regular then E is rectifiable, which means that almost all of
E may be covered by a countable collection of Lipschitz pieces Ej, E», ... such
that H(E\UZ, E;) = 0. (A set Ey is a Lipschitz piece if Ey = f(A) where

Figure 2.2 Decomposition of a 1-set E into a regular part Fr and an irregular part Fi
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A CR*and f: A — R" is a Lipschitz mapping.) Thus a rectifiable set is built
up from a countable number of Lipschitz pieces which look like subsets of
curves, surfaces or classical s-dimensional sets.

On the other hand, if E is irregular then E is totally unrectifiable. This means
that H*(EnN Ep) =0 for every Lipschitz piece Ey, so that E has negligible
intersection with rectifiable s-dimensional sets. Thus, irregular s-sets might be
considered to be fractal and the regular, or rectifiable, sets non-fractal, with
non-existence of the density being a characteristic fractal property for sets of
integer dimension. The relationship between the metric or density properties of
s-sets and the geometric or rectifiability structure of sets is difficult, and has
been central in the development of geometric measure theory; see FG, Chapter
5 for more details.

2.2 Review of iterated function systems

Iterated function systems (or schemes) provide a very convenient way of
representing and reconstructing many fractals that in some way are made up of
small images of themselves. We work in a non-empty closed subset X of R”,
often X = R”. An iterated function system (IFS) consists of a family of

contractions {Fi,...,F,} on X, where m > 2. Thus for i=1,...,m we have
F;: X — X and
|Fi(x) — F;(y)| <ridx—yl forallx,ye€X, (2.22)
where r; < 1. We write
Fmax = lmglag(n ¥ (2.23)

SO Fmax < 1.

The fundamental property of an IFS is that it determines a unique non-
empty compact set E satisfying E = U7 Fi(E); these sets are frequently
fractals. For example, with F, F; : R — R given by

Fi(x)=1x and F(x)=3ix+12 (2.24)

theset satisfying E = Fi(E) U F»(E) is the middle-third Cantor set, see Figure 2.3.
To establish this fundamental property, we work with the class § of non-
empty compact subsets of X. We may define a metric or distance d on S by

d(4,B)=inf{6: A C B; and BC As} (2.25)

where A is the 6-neighbourhood of 4. Thus d satisfies the three requirements
for a metric ((i) d(4,B) >0 with equality if and only if 4 =B, (ii)
d(A,B) = d(B, A), (iii) d(4,B) < d(4,C)+d(C,B) for all 4,B,C), and is
termed the Hausdorff metric on S.

It may be shown that d is a complete metric on S, that is every Cauchy
sequence of sets in S is convergent to a set in S. We use this fact to give the slick



30 Review of fractal geometry
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E
Fy(B) Fy(E)

Figure 2.3 The middle-third Cantor set is made up of two scale § copies of itself; thus
E = Fi(F) U F5(F) where F| and F; are given by (2.24)

‘contraction mapping theorem’ proof of the fundamental property of IFSs; an
alternative proof is given in FG, Theorem 9.1.

Theorem 2.6

Let {F\,...,Fy} be an IFS on X C R". Then there exists a unique, non-empty
compact set E C X that satisfies

E= LmJF,(E) (2.26)
=1
Moreover, defining a transformation F: S — S by
F(A) = ) Fi(A) (2.27)
=1
for A €S, we have that for all A € S
FX(4) - E

in the metric d as k — oo, where F* is the k-th iterate of F. Furthermore, if A € S
is such that F;(A) C A for all i, then

E=[)FX4). (2.28)

using the definition of the metric d and noting that if the é-neighbourhood
(Fi(A)); contains F;(B) for all i then (U™, F;(4)), contains U}, Fy(B) and vice
versa. By (2.22)

d(F(A), F(B)) < (max r;)d(4, B). (2.29)

1<i<m
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Since maxj<;<mr:i < 1, the mapping F is a contraction on the complete metric
space (S, d). By Banach’s contraction mapping theorem F has a unique fixed
point, that is to say, there is a unique set E € S such that F(E) = E, which is
(2.26), and moreover F¥(4) — E as k — oo. In particular, if F;(4) C A for all i
then F(A4) C A4, so that F¥(A4) is a decreasing sequence of non-empty compact
sets containing E with intersection N§2 F*(4) which must equal E. [J

The unique non-empty compact set E satisfying (2.26) is called the attractor
or invariant set of the IFS {Fy, ..., F,}. The IFS may be thought of as defining
or representing the set E.

There are two main problems that arise in connection with IFSs. The first is,
given a fractal E, to find an IFS with attractor E or, at least, a close
approximation to E. In many cases, including many familiar self-similar sets, a
suitable IFS with a small number of contractions can be written down by
inspection, for example (2.24) for the middle-third Cantor set. In such instances
the IFS provides a very efficient way of representing or ‘coding’ the set. This
has led to the more general problem of fractal image compression: how to find
a relatively small family of contractions that represent any given set or picture,
see FG, Section 9.5.

The inverse problem is to reconstruct the attractor E of a given IFS.
Computationally this is very easy, since it follows by iterating (2.29) that

d(F¥(4),E) < (max r,)"d(4,E) (2.30)

1<i<m

for every 4 € S. Thus F*(A4) converges to E at a geometric rate, so plotting
F*(A) = U F; o Fj0---0F,(A) for a suitable k gives an approximation to E
(the union is over the set I, of all k-term sequences (ij,f,...i) with
i; € {1,2,...,m}). These sets F¥(A) are sometimes called pre-fractals for E, see
Figures 2.4 and 2.5 for examples. An alternative, but often effective, way of
reconstructing E is to take any initial point xy, and select a sequence F;,, Fy,, . ..
independently at random from {Fy,..., F,}, say with equal probability. Then
the points defined by

xp=Fi(xe1) for k=1,2,... (2.31)

are indistinguishably close to E for large enough &, and also appear randomly
distributed across E. A plot of the sequence (x;) starting, say, with k& = 100,
may give a good impression of E. In some instances better results will be
obtained by weighting the probabilities of choosing the F;. The reason for the
name ‘iterated function system’ should be obvious from these reconstruction
procedures.

An IFS provides a natural way of coding the attractor E and the
components of the pre-fractals for E, analogous to the way in which the
points of the middle-third Cantor set may be identified with the numbers whose
base 3 expansions contain only the digits 0 and 2. Let {Fj, ..., F,} be an IFS
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A
b

E,

Figure 2.4 The usual sequence of pre-fractals in the construction of the Sierpinski
triangle, with E; = F*(A) where A is an equilateral triangle

with attractor E. For k=0,1,2,... we define I; to be the set of all k-term
sequences of integers selected from {1,2,...,m}, that is

D= {(i1, b2, ., ig) : 1< i < m (2.32)

we regard Iy as just containing the empty sequence. We often abbreviate a
sequence of I; by

i= (il,iz,...,ik). (233)

We write
oc
I= U I (2.34)
k=0

for the set of all such finite sequences, and I, for the corresponding set of
infinite sequences, so

Ioo:{(il,i2,~-~) 01 Sl]Sm} (235)
It is convenient to write i, j for the sequence defined by juxtaposition of i and j.
In particular, with i = (i, ..., i), we have i,i = (i1, ..., i, ).
Let A € S be such that F;(4) C A4 for all i, so that F(A4) C A. From (2.28) E
is the intersection of the decreasing sequence of sets

=|JFi o o Fy(a), (2.36)
Iy
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Figure 2.5 An IFS consisting of three affine transformations {F}, F3, F3} which map
the square A onto the rectangles in (a) in the obvious way. The convergence of the pre-
fractals F*(A) to E is apparent in (b)
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with the union over (ij,..., i) € Ir. Moreover, for all (ij,...,i{) we have
F,o0---0F,(A) CF,0---0F, (A) and also that |F; o---0F;(A4)| < rmax
|Fi, o --0 F;_ (A4)|. Thus for all (i, h,...) € I, wehave |F; o-- o F;(4)| — 0
as k — oo with

o @]
Xiir,. = [ Fa oo Fy(A), (2.37)
k=0

the single point of intersection of this decreasing sequence of sets. Since every
point of E is in such an intersection for at least one sequence (ij, i, ...) € I,

E=J{xin} (2.38)

We conclude that E may be constructed using the hierarchy of sets
Fyo0---0F,(A) for (i,...,i) € I, see Figure 2.6; this is analogous to the
usual construction of the middle-third Cantor set.

This coding of the components F; o--- o F; (A4) and of points x;, ; . is very
useful indeed in analysis of attractors of IFSs. For convenience we shall write

Ai=Ai . =F 0. .0F,(A) (2.39)
fori=(ij,...,ix) €land 4 C X.

In the simplest situation the sets Fi(A4),. .., F,,(A4) may be mutually disjoint,
in which case the unions (2.36) will be disjoint and each point of E will have a

[/

Fy 1)
Fy (4
Fy 1)

FZ,Z(A)

Figure 2.6 Notation for iterated function systems. The contractions F; and F, map
the large ellipse 4 onto the regions Fy(A) and Fy(A) respectively. The sets
F¥(A) = UF; o - o F;,(A) decrease to the IFS attractor E
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unique representation as x;, ;, .. In fact, if this happens then Fi(E), ..., F,,(E)
are mutually disjoint, since E C A4 for any 4 with F(4) C A. When the union
E = Ul |F,(E) is disjoint we say that the IFS {F\,... F,} satisfies the strong
separation condition. This is the case with the middle-third Cantor set IFS
(2.24) and with other IFSs with a totally disconnected attractor. However,
strong separation is rather too strong for many purposes, and we often work
with a weaker separation condition. An IFS {Fy,..., F,} satisfies the open set
condition (OSC) if there exists a non-empty bounded open set U C X such that

OmmcU (2.40)

with this union disjoint. The OSC is easily verified for sets such as the von
Koch curve, see Figure 2.7, and the Sierpinski carpet.

In the particularly nice situation when F(X),...,F,(X) are mutually
disjoint, we may define f: U F;(X) — X by

f(x)=F'(x) if xeF(X). (2.41)

(If the F;(X) are not disjoint, but the strong separation condition holds, then
this situation will pertain on replacing X by an appropriate subset, perhaps
even E itself.) For certain purposes it is more convenient to work with this
single mapping f rather than the m mappings F;; we make considerable use of
this approach in Chapters 3 and 4. In particular the attractor E is invariant for
fin the sense that E = f(E) = f"Y(E).

There are many classes of IFS of special interest. If the {F;,...,F,} are
similarities, the attractor E is called self-similar, if they are affine transforma-
tions E is called seif-affine, and if they are conformal transformations (so that
the derivatives F(x) are similarities for all i and all x € X) then E is called self-
conformal: see Figures 0.1 and 0.2 for some examples. In Chapter 4 we shall see

Figure 2.7 The open set condition for the von Koch curve. The open set U is the
interior of the bounding triangle with Fy,..., Fy the obvious similarities
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how ‘cookie-cutter’ sets associated with certain dynamical systems may be
identified with attractors of IFSs.

A great deal of effort has been devoted to calculating the dimensions of IFS
attractors. A variety of estimates are given in FG, Chapter 9, and others will be
obtained in this book. We recall perhaps the most important result, the
dimension formula for self-similar sets.

Theorem 2.7

Let E be the attractor of a family of similarity transformations {Fy,...,Fn}
where F; has similarity ratio r;. If the open set condition (2.40) is satisfied then
dimyE=dimpE=dimg E=dimpE=s and moreover 0< H*(E),P*(E) < oo,
where s is the unique positive solution of

m

=1 (2.42)

i=1

Proof The standard proof of this is given in FG, Theorem 9.3. For an
alternative approach see Example 3.3 later in this book. [

Theorem 2.7 immediately gives, for example, that the von Koch curve has
(box and Hausdorff) dimensions log 4/log 3 and that the Sierpinski carpet has
dimensions log 8/log 3, these sets satisfying the OSC. Of course, Theorem 2.7
holds in particular for systems for which the strong separation condition
applies, giving that the middle-third Cantor set has dimensions log 2/log 3.

The notion of an iterated function system may be extended to define
natural invariant measures supported by the attractor of the system. Let
{Fi,...,Fy} be an IFS on X C R" and let pi,...,p, be probabilities, with
0<p;<1 for all i and > 7 p;=1; such a system is called a probabilistic
iterated function system. At least in the strong separation case, it is not
hard to see how this leads to a measure on E. Here the sets Fi(E),..., F(E)
are disjoint, so that E;,..., E;, are disjoint subsets of E; for all i € I. We
may define a measure p on this hierarchy of sets by repeated subdivision of
the measure in the ratio p; : p2 : ... : pm, so that

/J'(Eil,iz,---,ik) = DPiPi, *** Piy» (243)

and this extends to a Borel measure supported by E in the usual way, see
Section 1.3. In the general case the existence of such measures is assured by the
following result.

Theorem 2.8

Let {F,...,F,} be an iterated function system on X C R" with associated
probabilities { p1,...,pm}. Then there exists a unique Borel probability measure
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w (that is with u(X') = 1) such that
=S pinlF;(4)) (2.44)
=1
for all Borel sets A, and

/ sz / x))du(x) (2.45)

Jor all continuous g : X — R. Moreover, sptu = E, where E is the attractor of
the IFS {F;:1<i<mandp; #0}. If the strong separation condition is
satisfied then (2.43) holds.

Proof The easiest way to prove this is using the contraction mapping theorem.
Let M be the class of Borel probability measures on X with bounded support.

Endow M with the metric
d(vi,1n) = sup{ /gdl/1 —/gduz

where Lip g is the Lipschitz constant of g, see (1.1). It is easily verified that d is
a metric on M, and with a little bit of effort it may be shown that d is a
complete metric. We define a mapping v : M — M by

= 3 pw(FT (4)) 247)
i=1

for all Borel sets A. This implies that

/ gdi(v Zp, / goF)d (2.48)

for every measurable function g : X — R. To see that ¢ is a contraction on M
we note that

atwln). wm) =sup {| [ eawin) - [ gautn)|sLipg <1}
_sup{ Zp,(/gop vy /(gop,.)dyz)
< Zpisup{‘/(goF,-)dul - /(goF})de
si sup{r| [ g Faan= [ 7 (g Fyan
f:mwﬂ/@m—/mw

rmaxd(V17V2)

:Lipg < 1 } (2.46)

:Lipg < 1}

:Lipg < 1}

: Lipg < 1}

IN

: Lipg < 1}

IA
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with r; and ry,, as in (2.22) and (2.23), since Lip(ri'l(g o F;)) < 1for all i. Thus
1) 1s a contraction on M, so by the contraction mapping theorem there is a
unique pu € M satisfying 1(u) = u, that is, satisfying (2.44) and (2.45).

From (2.44) we have that spty = UF;(sptu) where the union is over those i
with p; # 0, so that sptu is the unique non-empty compact attractor of the IFS
{F;:1<i<mand p; # 0}. Finally, if the strong separation condition holds,
then taking A4 as E; _; in (2.44) gives u(E, ;) =pap(E,, ;). so iterating
gives (2.43). O

The probability measure u satisfying (2.44) is called the invariant measure for
the probabilistic IFS. We remark that in the strongly separated case, u is
invariant under the mapping f given by (2.41), in the sense that
w( f~1(A)) = u(A) for all Borel sets A.

There is a random algorithm for constructing the invariant measure p. Let
(i1,i2,...) be a random sequence such that i;=i with probability p;
independently for each j. Fixing x € sptu, we define for each Borel set 4

px(A) = girglo%#{k’ < k such that Fj, o --- o F; (x) € A}. (2.49)

Then for p-almost all x we have u.(4) = p(A4), see Exercise 2.10. Thus on

A
'Ll: 4
.
S 4
B 2
.I
‘(:l.'-.
Lii
.l. s
A

a
“ Lk
‘,l».-'»- 2

a f y
b éf Wi fff{ L ki s

Figure 2.8 A self-similar measure supported on the Sierpinski triangle (the density of
the measure is indicated by the concentration of dots). Here p; = 0.8, py = 0.05,
p3 =0.15
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iterating x under a random sequence of mappings with F; chosen with
probability p;, the proportion of iterates lying in a set 4 approximates u(4).
This property is very useful for computer study of invariant measures.

Certain classes of invariant measures are of particular interest. A measure u
resulting from a family {F,...,F,} of similarity transformations is called a
self-similar measure. For example, taking F| and F, asin (2.24) and p; = p; = %
gives the ‘Cantor measure’, evenly distributed over the middle-third Cantor set.
For an example based on the Sierpinski triangle, see Figure 2.8. In the same
way a measure resulting from a family of affine transformations is called a self-
affine measure.

2.3 Notes and references

The material on dimensions, densities and rectifiability may be found in FG,
Chapters 2-5; for a fuller discussion see the books by Falconer (1985) and
Mattila (1995a). A detailed treatment of the local dimension characterisations
of dimensions, Propositions 2.2-2.4, is given by Cutler (1986, 1995). Interes-
tingly, Hausdorff (1919) introduced the measures bearing his name many years
before Tricot (1982) proposed packing measures.

The idea of representing sets by IFSs is due to Hutchinson (1981), although
much of the theory was given by Moran (1946). For more detailed discussions
of IFSs see, for example, FG, Chapter 9, Barnsley (1988), Barnsley and Demko
(1985) and Edgar (1990). There is a very considerable literature on the
dimensions of sets represented by certain IFSs. Many results on self-similar sets
may be found in these references; for self-affine sets see, for example, Bedford
and Urbanski (1990), Falconer (1988, 1992) and Hueter and Lalley (1995).

Exercises

2.1 Verify the dimension inequalities (2.14).

2.2 Let {F,...,Fy} be an IFS consisting of similarity transformations satis-
fying the open set condition, with attractor E of dimension s. Show that
H(F(E) N E(E)) = 0if i £ .

2.3 Find the Hausdorff and box dimensions of the set {(1/p,1/q) : p,q € Z'} C R%.

2.4 Let E be the middle-third Cantor set. Use Proposition 2.2 to find estimates for
H*(E) and P*(E) where s = log2/ log 3.

2.5 Show that the lower density D*(E, x) is a Borel function of x, that is for all c € R
we have that {x : D*(E, x) < c} is a Borel set. Show that the same is true for the
upper density.

2.6 Verify the mapping properties for densities (2.19).

2.7 Fix 0<A<}and let Fi,F;:R— R be given by Fi(x) = Ax, Fa(x) =31x+1.
Describe the attractor of {F, F>} and find an expression for its Hausdorff and
packing dimensions.
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2.8

2.9
2.10

2.11

Review of fractal geometry

Find IFSs for the fractals depicted in Figure 0.2 and hence find expressions for
their Hausdorff and box dimensions.

Verify that (2.25) and (2.46) define metrics.

Prove that for u-almost all x the random measure pu, given by (2.49) equals the
invariant measure p, in the case where sptu satisifies the strong separation
condition. (Hint: Define f: spty — sptu by (2.41), so that f(x;,;, ) = Xi, 4,...)
Verify that if £ is the attractor of an IFS satisfying the strong separation
condition, then there exist numbers 0 <cj,c; < oo such that ¢ <
H(ENB(x,r)) < cyr® for all x e E and 0 < r < 1. Extend this to the case of
an IFS satisfying the open set condition. (Hint: look for similar copies of E
contained in, and containing, £N B(x,r).)



Chapter 3 Some techniques
for studying dimension

As we have remarked, there are many possible ways of defining ‘fractal
dimension’. Being based on a measure, Hausdorff dimension is particularly
suited for developing general mathematical theory. On the other hand, box-
counting dimension is often rather easier to calculate or estimate in practice,
and a variety of other definitions of dimension only apply to sets of specific
types, for example to curves. Many familiar examples of fractals, including
self-similar sets such as the von Koch curve, have equal Hausdorff, lower
and upper box-counting dimensions. However, other fractals, such as self-
affine sets, may have Hausdorff dimension strictly less than their box
dimensions.

Since almost all definitions of dimension that have been proposed give
values between the Hausdorff dimension and upper box dimension, these
dimensions are perhaps of special interest. It can be particularly useful to
know that a set has equal Hausdorff and upper box dimensions, with the
intermediate definitions also taking this value. In Section 3.1 we give some
‘approximate self-similarity’ conditions on a set that ensure that these
dimensions are equal and that often allow a straightforward evaluation of
the dimension. In Section 3.2 we obtain expressions for the box dimensions of a
set in terms of the geometry of its complement, leading to a criterion for
equality of lower and upper box dimensions. These techniques complement the
more direct approaches to dimension calculation discussed in FG.

3.1 Implicit methods

The usual method for finding the Hausdorff dimension of a set E is to calculate
the s-dimensional Hausdorff measure H*(E) for s > 0 and find the value of s at
which this jumps from infinity to zero. Such calculations, and the correspond-
ing calculations for box dimensions, can be quite intricate. In this section we
discuss a different approach. We give geometrical conditions on a set E that
guarantee that 0 < H*(E) or H*(E) < oo where s = dimy E, without the need
of first calculating s. With this knowledge s can often be found easily. (For
example, given that the middle-third Cantor set has positive finite Hausdorff
measure at the dimensional value, it is very easy to show that its Hausdorff

a
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E

Figure 3.1 A set E satisfying the conditions of Theorem 3.1, with mappings from small
neighbourhoods of E into E satisfying (3.1)

dimension is log 2/ log 3 using the scaling property of Hausdorff measure.) We
give similar conditions that guarantee that dimgE = dimgE = dimgE.
Theorems that enable us to draw conclusions about dimensions without
their explicit calculation are called implicit theorems. We prove two such
theorems here which apply to sets with small parts ‘approximately similar’ to
large parts in a sense that can be made precise in terms of Lipschitz functions.
Theorem 3.1 applies to a set E if every small neighbourhood of £ may be
mapped into a large part of E under a Lipschitz mapping with the Lipschitz
constant controlled by the size of the neighbourhood, see Figure 3.1.

Theorem 3.1

Let E be a non-empty compact subset of R” and let a > 0 and ry > 0. Suppose
that for every set U that intersects E with |U| <ry there is a mapping
g: ENU — E satisfying

alUlx =y < lg(x) —g0)|  (x,y € ENV). 3.1)
Then, writing s = dimyE, we have H*(E) > a* > 0 and dimgE = dimgE = 5.

Proof It is enough to show that for all d > 0, if H(E) < a? then dimgE < d,
and so by (2.14) dimgE < d. By taking d arbitraily close to dimyE this also
implies that dimgE < dimy E, giving equality.

If HYE) < a“, there are sets Uy,... Uy whlch intersect E with |Uj| <
min{la,re} such that EC U2, U; and 3.7, |Ui|* < a“. (Since we may take
the U; to be open in estlmatmg these sums, the compactness of E allows a
finite collection of covering sets.) By taking 7 close to d, we may find 0 < t < d
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such that
m
a U < 1. (3.2)
=1
By hypothesis there exist g;: ENU; — E (i=1,2,...,m) such that
x —yl <a ' |Uil|lgi(x) —g(»)| (x,y € ENUy). (3.3)
We treat the inverses of these functions {gi!,...,g,!} taken on appropriate
domains rather like an iterated function system. Let I = {(i|,... i) :
1 <i;<m} be the set of k-term sequences formed using the integers
{1,2,...,m}, and let I = U2 I;. For each i = (i1, ..., i) € I; define

Un.ir = &, (85" (... (g, (E))...)).
Note that some of these sets may be empty, since we have g7'(4) =0 if

ANg(ENU;) =0, but nevertheless E C Usey, U; for each k. For x,y € Uy,
repeated application of (3.3) gives

x =y <a¥Uy |- |Usllgi o - 0 gi(¥) —gi 0 - 0 gi (Y.
In particular,
lUila-~«yik| < a_k|Ui1| e |Ulk|lE|
Let b=a 'min<i<n|Ui. Given r<|E|, for all x € E there exists
i=(i,...,i) €I such that x € U; and br < a*|U,;|---|U;||E| < r. Hence,
with N(r) denoting the least number of sets of diameter at most r which can

cover E, we have

N(r) < #{ieI:br <a*|U;| - |U,||IE[}

<Y (br) (@ H U] - | U | BN

il

o0
<IEI's~r Y a7 > (U |- U]
k=0 icl;
00 m k
=|EI'D "y (a—’ > |Ui|’>
k=0 i=1
S clr_’
for some ¢ < oo, using (3.2). It follows from (2.2) that dimpE < ¢ < d, as
required. [

The hypotheses of the preceding theorem involves mappings from small
neighbourhoods into large parts of a set. The next theorem is complementary,
in that we require that all small neighbourhoods contain ‘not too contracted’
images of the whole set, see Figure 3.2.
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Figure 3.2 A set E satisfying the conditions of Theorem 3.2, with mappings from E
into small balls satisfying (3.4)

Theorem 3.2

Let E be a non-empty compact subset of R" and let a > 0 and ry > 0. Suppose
that for every closed ball B with centre in E and radius r < ry there is a mapping
g : E— EN B satisfying

arlx - y| < [g(x) —gW)|  (x,y € E). (34)

Then, writing s = dimyE, we have that H*(E) <4'a* < oo and dimgE
= dlmBE = 5.

Proof For the purposes of this proof we take N(r) to be the maximum number
of disjoint closed balls of radius r with centres in E. We suppose that for some
r <min{a~!,ry} we have

N(@) >ar (3.5)

and derive a contradiction. Given (3.5), there exists ¢ > s such that
m=N(r)>a'r (3.6)

thus there are disjoint balls By, ..., B,, of radii » with centres in E.

By hypothesis there exist mappings g; : £ — EN B; (1 <i < m) such that
arlx — y| < |gi(x) — &)|- (3.7)
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Essentially, {g1,...,gn} is a (not necessarily contracting) IFS with an attractor
that is a subset of E. We find a lower bound for the dimension of the attractor,
and thus of E, by a routine method.

Let d = min,; dist(B;, B;) > 0. Using (3.7) (¢ — 1) times, we see that

diSt(giHo 00 gik(E)’gjx -0 gjk(E)) > (ar)q—l diSt(Biq’qu)
> (ar)'d (3.8)

where g is the least integer such that i, # j,, recalling that r < a~'. Let p be
the measure on E defined by repeated subdivision (see (1.19)) such that
u(gi o---ogy(E)) =m* for all (if,...,i). Let U be any subset of R” that
intersects E with |U| < d, and let k be the least integer such that

(ar)'d < |U| < (ar)*d. (3.9)

By (3.8) U intersects g; o---o g, (E) for at most one k-term sequence

(il, ceey lk), SO
u(U) < m™* < (ar)" < (dar)™'|U)

by (3.6) and (3.9). It follows by the mass distribution principle, Proposition 2.1,
that dimgE > t > s.

We conclude that if dimgE = s, then N(r) < a=5r~ for all sufficiently small
r. This implies dimgE < s, so equality of the dimensions follows from (2.14).
Moreover, by using balls of double the radius, £ can be covered by N(r) balls
of radius 2r (otherwise the N(r) disjoint balls of radius r with centres in E
would not be a maximal collection). Hence Hj,(E) < a*r™*(4r)’ = 4a™,
giving H*(E) < 4a°. [

The hypotheses of Theorem 3.2 also imply that P*(E) < oo, see Exercise 3.2.

The middle-third Cantor set E illustrates very simply how these theorems
can be used. If U intersects E and 37%~! < |U| < 37% for k € Z" then there is
an obvious similarity mapping of ratio 3* from UNE into E, so (3.1) is
satisfied with a = % Similarly, if B is an interval (one-dimensional ball) with
centre in E and length 2r with 37% <r< 375!l there is a similarity
transformation of ratio 3% of E into EN B, giving (3.4) with a :%. We
conclude from Theorems 3.1 and 3.2 that, with s=dimyE, we have
dimgE = dimgE = s and 0 < H*(E) < oo. Writing E; and Ex for the left
and right ‘parts’ of the Cantor set E, we obtain

H(E) =H*(EL) + H'(Eg) = 37H*(E) + 37 H(E)

by the scaling property (2.13) of Hausdorff measures, see Figure 2.3. Thus
1 =2 x 37, giving immediately that the dimension of the middle-third Cantor
set is s = log2/log 3.

The next example extends this argument to more general self-similar sets,
providing an alternative proof for Theorem 2.6 under the strong separation
condition.



46 Some techniques for studying dimension

Corollary 3.3 (self-similar sets)

Let E be the self-similar set defined by the IFS consisting of similarities
{F\,...,F,} where F; has ratio r; with 0<r;<1. If dimyE=175 then
H¥(E) < oo and dimgE = dimgE = 5. Moreover if {F,(E)}1., are disjoint sets,
then 0 < H*(E) and s satisfies 3.7 ri = 1.

Proof Write rpip = min|<<,t;. Let x € E and r < |E]. There is a (not
necessarily unique) sequence (i, i,...) such that x € F, o---o F; (E) for all
k. Choose k 50 rpinr < riy---ry|E| <r. Then Fj 0---0 F;, : E— ENB(x,r) is
a similarity of ratio at least rmy|E|™'r so Theorem 3.2 gives equality of the
dimensions and that H*(E) < oc.

Now suppose min;y; dist(F;(E),F;(E)) =d>0. Then we have that
dist(Fj0- -0 Fy(E),Fj0---0 F(E)) >ry---r,_,d if (ji,...,ji) is distinct
from (i},..., ). If U intersects E with |U| < d and x € EN U, we may find
(d1,-..,i) such that x € F; 0---0 F,(E) and dr;, ---r, <|U|<dr;---r;_,.
Thus U is disjoint from F;, o---o F;(E) for all (ji,...,j) # (i1,-.., i) and
so ENUCF,o0---0F gE) Hence (F,0---0 F)"': ENU— E is a simi-
larity of ratio (r;, ---r;)” ' > d|U| ", and Theorem 3.1 implies that 0 < H*(E)
as well as equality of the dimensions again.

Finally, in the disjoint case, the scaling property (2.13) of Hausdorff measure
gives HY(E) =Y 7  H(F,(E))=>_",riH*(E); since 0 < H¥(E) < oo we

get 1 =37 ri, where s =dimyE. []

In fact the conclusion that 0 < H*(E) is true if {Fi,...,F,} satisfies
the open set condition; this may be deduced in a similar manner using a
strengthened version of Theorem 3.1, see Exercise 3.3.

Note that for a self-similar set E we have dimyE = dimgE = dimgE and
H*(E) < oo without any separation condition on the IFS. In particular this is
true even if the sets { F;(E)} overlap substantially enough for the dimension to
be strictly less than the solution of )7, ri=1.

A trivial modification of the last proof allows the implicit theorems to be
applied to many subsets of self-similar sets. The sets in the next corollary might
be termed super-self-similar (3.10) and sub-self-similar (3.11), see Figure 3.3.

Corollary 3.4 (super-self-similar and sub-self-similar sets)

Let {F\,...,F,} be contacting similarities with attractor E.

(a) If A is a non-empty compact subset of E satisfying
m
4> JF(4) (3.10)
i=1

and dimg A = s then dimg A = dimpA4 = s and H*(A) < oo.
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Figure 3.3 Examples of (a) a sub-self-similar set and (b) a super-self-similar set, based
on the Sierpinski triangle

(b) If A is a non-empty compact set satisfying

ACLmJF,-(A) (3.11)
i=1

and dimuA =s then, provided that the sets {F{(E)}{, are disjoint,
dimpA = dimgA4 = s and H*(A4) > 0.
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Proof (a) If x € A C E and r is small enough, the restriction of the mapping
F,o0---0F, : A— AN B(x,r) defined in the proof of Corollary 3.3 satisfies
the conditions of Theorem 3.2, giving the result.

(b) Condition (3.11) implies that 4 C E (see (2.28)). Thus if U is a set of small
enough diameter that intersects A4, the restricted mapping (F, o---o F,)7":
AN U — A from the proof of Corollary 3.3 satisfies the conditions of Theorem
3.1, and the conclusion follows. [

Graph-directed sets, which generalise self-similar sets, provide our next
example. Let V be a set of ‘vertices” which we label {1,2,...,q}, and let £
be a set of ‘directed edges’ with each edge starting and ending at a vertex
so that (V,€) is a directed graph. A pair of vertices may be joined by several
edges and we also allow edges starting and ending at the same vertex. We
write &;; for the set of edges from vertex i to vertex j, and Sf.f ; for the set
of sequences of k edges (e, e, ..., e) which form a directed path from vertex
i to vertex j. We assume a transitivity condition, that there is a positive integer
po such that for all  j there is an integer p with 1 < p < p, such that Eﬁ ;1s non-
empty; this means that there are paths in the graph joining every pair of
vertices.

For each edge ¢ € £, let F, : R” — R”" be a contracting similarity of ratio r,
with 0 < r. < 1. Then there is a unique family of non-empty compact sets
E\, ..., E; such that

E,:qu U F.(E). (3.12)

j=lect;;

(The proof of this is similar to that of Theorem 2.6 for a conventional IFS, see
Exercise 3.6.) The set of contractions {F, : e € £} is called a graph-directed
iterated function system and the sets {E|, ..., E,} are called a family of graph-
directed sets. By iterating (3.12) we see that

E,-:LqJ U  FaoroF(E). (3.13)

J=1(eryy ek)eé'ffj

We assume that the unions in (3.12) are disjoint for all #; this separation
condition may be relaxed to an open set condition.

We shall find the dimension of graph-directed sets in terms of associated
g x g matrices A®) with (i, j)-th entry given by

A=3"r (3.14)
ee&-,j

We write p(A®)) to denote the largest eigenvalue of 4*) (in absolute value)
which must be real; in fact p(4®)) = limy_s || (4©))* ||'/¥, which is the spectral
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Figure 3.4 A pair of graph-directed sets, with its graph labelled by the similarity ratios.

Thus E) comprises a scale % copy of itself rotated by 90° together with a scale % copy of
FE,, and F; comprises a % scale copy of itself rotated by 90° and a :13 scale copy of E;

radius of A®. It may be shown (see Exercise 3.7) that p(4®) is strictly
decreasing in s, so that there is a unique positive s such that p(4®)) = 1. This
value of s turns out to be the dimension of each E;, a fact which follows easily
once we establish (in Corollary 3.5) that 0 < H*(E;) < oo for all .

A pair of graph-directed sets E|, E, is displayed in Figure 3.4. In this case

L\S (1)
49 — ((5)3(5)3)
(3)(3)
It is easy to check that p(4()) = 1, so Corollary 3.5 will imply that dimyE;
=dimgE;=1fori=1,2.

The following analysis of graph-directed sets parallels that of self-similar
sets in Corollary 3.3.

Corollary 3.5 (graph-directed sets)

Let Ey,...,E; be a family of graph-directed sets as above. Then there is a
number s such that dimy E; = dimg F; = dimgE; = s and 0 < H*(E;) < oo for all
i=1,...,q. Moreover, s is the unique positive number satisfying p(A®)) = 1, where
A is given by (3.14).
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Proof A consequence of the transitivity condition is that for each pair
i,j(1 <i j< m) there is a similarity

Fpo---oF, : Ej— E (3.15)

with  (ey,...,ep) € E,{' f and p <pe. In particular, this implies that
dimy E; > dimy E; for all i/, so that there is a number s with dimu £; = s for
all i.

Let rmin = mineeg, .. Given x € E; and r < |E;|, there is an integer j and a
sequence of edges (el, ...,e) € Ek] such that x€F, o---0F,(E), by (3.13).
Choose k so that rrmm|E| < Fotey e, < TE; |"l. By (3.15) we may
find (exs1,...,€k4p) € 6 where p <po, so X€EF,o0--0F,( i). Since
r|E,-|_l > Fe Taley Tey, > rrmm|E| mm, the s1m11ar1ty F,o0---0F,

€k+, :
E; — E;N B(x,r) is of ratio at least rr”!"'|E;|™". By Theorem 3.2, s = dlmHPE
= dimgFE; = dimgE; and H*(E;) < oc.

Now fix  and write d = min dist(F,(E;), Fe/(E )) > 0 where the minimum is

over distinct e and ¢ such that e € £;; and € € &; ;.. Then
dist(Fe, 0 -+ 0 Fo (Ej), Foy 0 -0 Fy(Ey)) > dre - 1o, (3.16)

for distinct edge sequences (er, ..., e) € 6,-1]- and (é,...,€) € £F .. If U inter-
sects E; and |U| < dand x € E; N U, we may by (3.13) find j, k and (e, ..., e)
€ &% such that x € Fp, 0---0 F, (E ) and dro, -1, < |U| < drelo Fop By
(3.13) and (3.16) E:n UC F,o0---oF,(E »), that is (F, 0---0 F,)""
E;NU — E;. Using (3.15) we may ﬁnd Fop0- 0k E—E w1th < po
$0 (Fp, 0---0 Fekﬂ:)(Fel 0.0 F,) ' EENU— E; is a similarity of ratio
(rekn e rek+p)(rel ) rek) > rﬁﬂnd|U|7 By Theorem 3. 1, HS( ) > 0.

The unions in (3.12) are assumed to be disjoint, so for each i

q
D= H(F(E))

j=1 eeé‘,-,j
=> > rnH(E)
j=1 e€&;;
In matrix form
H*(E) HE(Ey)
—A®
H(E,) He(E,)

where A©) is the matrix given by (3.14). By the Perron—Frobenius theorem any
matrix which has non-negative entries has an eigenvector with non-negative
components that is unique to within a scalar multiple and which corresponds to
the unique eigenvalue of largest absolute value. In this case, taking s = dimy E;
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(for all i), we know that (H*(E,),... ,HS(Eq))T is an eigenvector of 4%) with
positive components and eigenvalue 1, which must therefore be the largest
eigenvalue. Thus p(4®)) = 1. Since p(A®)) is strictly decreasing with s (see
Exercise 3.7), s is completely specified by this condition. [

We give an application of these implicit methods to cookie-cutter sets in
Corollary 4.6.

3.2 Box-counting dimensions of cut-out sets

In this section we investigate how the box-counting dimensions of certain
fractals can be found. We will be particularly concerned with fractals that
may be obtained by removing or ‘cutting out’ a sequence of disjoint regions
from an initial set. All compact subsets of R can be obtained in this way.
For example, the middle-third Cantor set may be obtained from [0,1] by
removing the sequence of open intervals (3,3),(3,3),G.%),.3), .-
Similarily, in the plane, the Sierpinski triangle is obtained by removing a
sequence of equilateral triangles from an initial equilateral triangle. We treat
subsets of R in some detail, and then briefly discuss higher-dimensional
analogues. We shall see that the box dimensions of a subset of R depend only
on the size of the complementary intervals and not on their arrangement. Thus,
in a sense, box dimension describes the complement of a set rather than the
set itself.

Let 4 be a bounded closed interval in R, and let 4|, 4>, ... be a sequence of
disjoint open subintervals of A4 with [4] = >"0| |4,|. (Of course |4, is just the
length of 4;). Let E= A\UX®, A; so that E is a compact set of Lebesgue
measure (or length) zero, with complementary intervals A;. We call such a set a
cut-out set when we wish to emphasise its construction by cutting out a
sequence of intervals. We write a; = |4;| for the length of A4;, and assume that
these intervals are ordered by decreasing length, so that a; > ay > a3 >.. ., see
Figure 3.5(a).

Whilst we could work with any of the equivalent definitions of lower and
upper box dimension (see Section 2.1) it is convenient to use the Minkowski
definition in terms of the size of the r-neighbourhood E, of E, see (2.4)—(2.6).
We write ¥(r) = L'(E,) for the 1-dimensional Lebesgue measure (or length) of
E,. It is easy to express V(r) in terms of the lengths of the intervals A4;.
Assuming r < %al, let £ be an integer such that a;,; < 2r < a;. Then E,
consists of all the intervals 4; with { > k + |, together with two intervals of
length r inside each 4; with 1 < i < k, and an interval of length r at each end of
the set E, see Figure 3.5(b). Thus

Vir)=2(k+ 1)r+ Zai where a; ) < 2r < g. (3.17)
k+1
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Figure 3.5 (a) The gap lengths of a cut-out set E. (b) The r-neighbourhood E, of E

In principle, this formula in conjunction with (2.4)—(2.6) enables us to
find the box dimensions of E from a knowledge of the lengths a. In
particular, the dimensions depend only on these lengths and not on the
arrangement of the corresponding disjoint intervals A4; within 4. The next
proposition bounds the box dimensions of E in terms of the limiting behaviour
of the a;.

We will need the following inequality. If (a);, is a decreasing sequence
convergent to 0 and 0 < o < | then

Za ai—aip) < (1—a) 'al™® (3.18)

To see this, note that the left-hand side is a lower sum for the integral of x=
over the interval [0, ax].

Proposition 3.6

Write
| . I
a= —llggf looggak and b= —lll’]:l‘illp loogga]f'
Then 1 < b<aand
1/a < dimgE < dimgE < 1/b. (3.19)

Proof Since ka; < |E|, we have | < b < a. Using approximation it is enough
to deduce (3.19) from the assumption that

k™ < ap < 2k (3.20)
for all sufficiently large k where 0 < ¢, ¢ < oo. If r is small enough and

ey L2r < a (3.21)
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then (3.17), (3.20) and (3.21) give
V(r) > 20k + D)r > 2¢//%a 1% > 2¢/*2 12!~ Ve,

Using (2.4) it follows that 1/a < dimgF.
For the upper bound we can assume b > 1 in (3.20). If  is small enough and
k is chosen to satisfy (3.21), identity (3.17) gives

Vir)=2(k+ r+ iai

= (k4 1)(2r — a1) + i(H— 1)(ai — aiy1)

k+1

< 4kr + 2Zi(a,- - a,-H)

k+l
<4, 176, _l r~|—2cl/b2a a — aiyy)
k+1
S4cé/b2—l/brlfl/b+2cé/b( —1/b)” 1 llc+i/b
1-1/b

< Cc3r

for a constant c3, using (3.20), (3.21) and (3.18). The estimate dimgE < 1/b
follows using (2.5). [

Of course (3.19) remains true for b = oo, where ‘1 /00 = 0.

It is immediate from Proposition 3.6 that dimgE = —1/lim(log ax /log k) if
this limit exists, a formula which allows the box dimension of many sets to be
found. For example, if E is the middle-third Cantor set, the lengths (ai);2,
of the complementary intervals are given by a; = 3~™~! where m is the integer
such that 2" <k <2mt! — . Then we have that limy . loga/logk =
lim, .o — (m+ 1) log3/mlog2 = —log3/log2, so dimgE =log2/log 3.

Similarly, for the ‘convergent sequence sets’ defined by E(» = {0,1,27,
377,477 ...} for p>0, we have axy =k ? — (k+1)" ~ pk 7! (using the
mean value theorem), so limy ..olog ax/logk = limy o log pk 7! /log k =
—(p+ 1), giving dimgE(®» = 1/(p +1).

The following partial converse to Proposition 3.6 indicates what we may
deduce about the complementary interval lengths (ax);., given the box
dimensions.

Proposition 3.7

Suppose
t=dimgE and s=dimgE (3.22)
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where 0 < t<s< 1. Then

.. Jdoga . log a;
—(1 - —s5) <1 <1 < —1/s. .
(1= 0/l =9) < 1g£1f log £ — H;:Lillp log k — /s (3.23)

Proof From the Minkowski definition of the box dimension (2.5)—(2.6) it is
enough to derive (3.23) on the assumption that for all small enough

ar' < V() < e (3.24)
for positive constants ¢|, ¢; with 0 < ¢ < s < 1. Using (3.17) this gives
Pt < 2k + D+ Za, < '™ where @ <2 <a.  (3.25)
krl

Taking r = § a, the right-hand inequality gives ax(k + 1) < c22°7'a}~*, for the
right-hand inequality of (3.23).
Now write v = (1 —5)/(1 — ) and choose b > | such that

b= > 2¢,. (3.26)
Take r = ba] and let ¢ be the integer such that a,1 < 2r <ay (so g < k).
Provided that & is large enough, (3.17) gives

V) - V) =2g+ r+ S a6+ Dac— S a

q+1 k+1

k
=2g+Dr—(k+ Dac+ Y @

g+l
k—1
= (g +1)2r —agy) + > _(i+ (@i — @)
g+l
< k(2r — agi1) + k(age — ax)
=k(2r — ay)
< 2kr.

Hence from (3.26) and (3.24)

ca < ab et —cat
=ar'™ -
V(r) — V(a)
< V() - Vlay)
< 2kba].
Thus 36! < az_l“ = a,’c(l_s)/(l_’), giving a; > cgk(-/11=9) where ¢3, ¢4 are
independent of k, as required for the left-hand inequality of (3.23). [
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It is easy to check that the right-hand inequality (3.23) holds if s =0 or
s=1,and if t =5 = | then limlogay/logk = —1.

It can be shown that the bounds stated in (3.23) are the best that can be
achieved. In particular, taking a; to be constant for blocks of rapidly increasing
length of consecutive k shows that the lower bound is best-possible.

A satisfying corollary of Propositions 3.6 and 3.7 is that the box dimension
of E exists precisely when the limit of log a;/log k does.

Corollary 3.8

Let EC R be a cut-out set, as above. Then dimgE = dimgE if and only if
lim . logay /logk exists, in which case

dimgE = —l/(klim log a/log k).

Proof From Proposition 3.6, if 1 <a=5b < oo then 1/a < dimg < dimgE <
1/b=1/a.

Conversely, if 0 < ¢t =5 < I, Proposition 3.7 and the remark following give
that lim log a;/logk = —1/s. [

A similar analysis may be carried out for cut-out sets in higher-dimensional
space, though the applicability is less general. We illustrate this for a set
constructed by removing a sequence of discs from a plane region.

Figure 3.6 A cut-out set in the plane. Here, the largest possible disc is removed at each
step. The family of discs removed is called the Apollonian packing of the square, and the
cut-out set remaining is called the residual set, which has Hausdorff and box dimension
about 1.31
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For convenience let 4 be a plane compact convex region of perimeter length
p, and let A}, 4>, ... be a sequence of disjoint open discs contained in 4 with
total area equal to that of 4. Let E = A\UYX, 4;, so that E is a set of area zero
with a cellular appearance, see Figure 3.6. Let r; be the radius of A4;, and
assume that ry >rp, >r3 > ... .

Just as in the case of subsets of the line we can find the area V(r) of the
r-neighbourhood E, of E. If r,) <r < ry then E\E consists of a band of
points outside 4 but within distance r of 4, an annulus with inner and outer
radii r; — r and r; inside each 4; for 1 < i<k, together with the discs A; for
i>k+1. Thus

k o0
Vir) = (pr~|—7rr2)+zﬂ'(ri2v(ri_r)2)+ Z ﬂ-r’g

i=k+1

_pr~|—27rrZr,~|—7rZ 2 4 (1 — k).

i=k+1

It is possible to relate V(r), and thus dimgE, to the r; as in the one-dimensional
case. For example, suppose ry =< k~% where 1 3<a< 1. (Recall that a; =< by
means that for some ¢;,c; > 0 we have ¢; < ai /by < ¢ for all k.) Then for
ree1 < r < ri we have

,\r~|—r21 ~|—Zl_2“—r

k+1
erl a+k1 —2a
- rr]((a—l)/a + r§(2a71)/a

—~

= 1/,

From (2.6) dimpE = 1/a.
Clearly a similar approach may be adopted to find the box dimensions of
sets obtained by cutting out regions of other shapes.

3.3 Notes and references

A basic ‘implicit theorem’ was given by McLaughlin (1987) with further results
and applications in Falconer (1989). For further details of graph-directed sets
see Bedford (1986), Mauldin and Williams (1988) and Edgar (1990) and for
sub-self-similar sets see Bandt (1989) and Falconer (1995a). The Perron-
Frobenius theorem is discussed, for example, in Bellman (1960). Besicovitch
and Taylor (1954) studied the relationship between the lengths of complemen-
tary intervals and the dimension of a subset of R. Results on box dimension
akin to Propositions 3.6 and 3.7 may be found in Lapidus and Pommerance
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Exercises

3.1

32

33

3.4

35

3.6

3.7

3.8

3.9

3.10

Give examples to show that Theorems 3.1 and 3.2 fail without the stipulation that
E is compact.

Show that the hypotheses of Theorem 3.2 imply that P*(E) < P{(E) < oo where
P* and P} are the packing measure and pre-measure, see Section 2.1. (Modify the
proof of Theorem 3.2 by replacing (3.5) with the assumption P(E) > a™* to get
disjoint balls By, ..., B, with } ]B,]’ >a~' for t > 5. Then take g;: E— EN B,

satisfying a|Bi||x — y]<]g,(x #(y)| and deduce in a similar way that
dimyE > s.)
Show that Theorem 3.1 remains true with the second sentence replaced by:

‘Suppose that there is a number ¢ such that for every set U that intersects E with
|U| < ro, there exist, for i = 1,...,q, sets U; such that U C U?_, U;, and mappings
g+ ENU; — E satisfying a|U| ™' [x — y| < lgi(x) - g:(»)]

Show using Exercise 3.3 that the final conclusion of Corollary 3.3 holds if we
merely require that E satisfies the open set condition (2.40).

Let E be the subset of the middle-third Cantor set consisting of those numbers in
[0,1] with base 3 expansion containing only the digits 0 and 2, and where two
consecutive digits 2 are not allowed. Let Ey = EN [0,1] and E; = EN [2,0]. Show
that Ej, E; may be represented as a system of graph-dlrected sets, and show that
dimy E) = dimy E; = log((1 + +/3)/2) /log 3.

Show that there is a unique family of non-empty compact sets E; satisfying (3.12).
(Hint: define a metric on g-tuples of sets so that the distance between two g-tuples
is the maximum of the Hausdorff distances between corresponding pairs of sets,
and mimic the proof of Theorem 2.6).

In the case of a family of two graph-directed sets with associated matrices AW,
show that the largest eigenvalues are given by

‘ Ags)z)z +4A55%Ags%)]/2.

>

1 1
P(AY) =5 (47 + 45%) +5((47)

i

By examining the effect on p(4") of decreasing each term AY, show that p(A9)) is
strictly decreasing in s.

Let E be the (compact) subset of [0, 1] consisting of those numbers with decimal
expansions containing only the digits 0, 2, 4, 6, 8. Deduce from Theorem 3.1 (or
Theorem 3.2) that dimpE =dimgE. Deduce from Proposition 3.6 that
dimp E = log 5/ log 10.

Let V(r) be the area of the r-neighbourhood of the Sierpinski triangle of height 1.
Show that V(r) =< 3%¥2-% where 2% < r <27%! and deduce that the box
dimension of the Sierpinski triangle is log 3/ log2.

Let E be a compact subset of R, and let E’ be obtained from E by adding a single
point inside each complementary interval of E. Show that dimgE’ = dimgE

(assuming that dimgFE exists).

l]’






Chapter 4 Cookie-cutters
and bounded distortion

In this chapter we introduce cookie-cutter sets, which may be thought of as
‘non-linear Cantor sets’. This leads onto Chapter 5 where we shall use cookie-
cutters to show how the theory of self-similar sets may be extended to non-
linear analogues. Working with cookie-cutters allows the essential ideas of
some very general theory to be presented in a relatively simple setting.

41 Cookie-cutter sets

We study a simple form of dynamical system called a cookie-cutter. A cookie-
cutter has a fractal repeller, called a cookie-cutter set, that can be thought of as
the attractor of a related iterated function system. For simplicity, we set this up
so that the IFS has just two mappings, although extending the theory to more
mappings requires few changes. We work in a subset X of R, though the theory
generalises to subsets of R”.

Let X be a bounded non-empty closed interval, and let X; and X> be disjoint
subintervals of X. Let f: X; U X> — X be such that X, and X> are each mapped
bijectively onto X (see Figure 4.1). We assume that f has a continuous
derivative (later we will require a stronger differentiability condition) and is
expanding, so that | f'(x)| > 1 for all x € X7 U X. (Often, f will be the restric-
tion to a set X of a function defined on a larger domain, perhaps even the whole
of R. For example, f might be the restriction to X of a unimodal function as
in Figure 4.2.)

We study the dynamical system given by iterating points by f. Of particular
interest is the set

E={x€X:f*x)is defined and in X, UX, forall k=0,1,2,...} (4.1

where f* is the k-th iterate of f. Thus E is the set of points that remain in
X1 U X, under iteration by f. Since E =N f~*(X), a decreasing sequence of
compact sets, the set E is compact and non-empty.

Clearly, E is invariant under f, in that

f(E) = E=f"\(E), (4.2)
since x € Eif and only if f(x) € E. Moreover E is a repeller, in the sense that
59
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Figure 4.1 A cookie-cutter function f: X7 U X, — X with repelling cookie-cutter set
E=n%, f*X)

points not in E (however close to E they may be) are eventually mapped outside
X, U X, under iteration by f. Indeed, in examples such as Figure 4.2,
f*(x) — —oo for all x ¢ E, see FG, Section 13.1.

An equivalent way of viewing this situation is as the ‘inverse’ of an iterated
function scheme. We define F|, F, : X — X as the two branches of the inverse
of f. Thus

Fi(x)=f"'x)Nnx
F(x)=f"'(x)NX,
so Fy and F, map X bijectively onto X; and X, respectively. Then
F~Yx X€eX
= { o) e @3)
F(x) (x € X»).

Since f has a continuous derivative with |f’(x)| > | on the compact set
X1 U X, there are numbers 0 < ¢min < ¢max < 1 such that 1 < ¢;l. < |f'(x)]
< c;liln < oo for all x € X7 U X;. It follows that the inverse functions F|, F, are
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Figure 4.2 A unimodal function f: R — R gives rise to a cookie-cutter system. In
this example the cookie-cutter set E=NX, f*0,1] is a repeller for f, with
limy o0 f ¥(x) = —o0 for all x ¢ E

differentiable, with cyin < [F/(x)], |F5(x)| < cmax for x € X. By the mean value
theorem, for i=1,2

Cmin|X — ¥ < |Fi(x) = Fi(p)| < emax|Xx =¥ (x,y € X). (4.4)
From (4.1) the repeller E of f satisfies
E=F|(E)UF(E). (4.5)

Since F| and F, are contractions on X, equation (4.5) is satisfied by a unique
non-empty compact set E, using the fundamental IFS property, Theorem 2.5.
Thus the repeller E of fis the attractor of the IFS {F,, F>}.

As in Section 2.2, we index the intervals associated with the IFS by the
sequences Iy = {(i1,...,i) : ;= 1 or 2} formed by Is and 2s, with I = U2, Ix.
In particular, for each i = (iy,..., i) we write X; = X;_;, = F,0---0 F, (X).
Thus f%:X;— X is a bijection between closed intervals with inverse
F,o0---0F,, and more generally, f*: X, — X; is a bijection for

----- im ket yeenrim

each k < m. Since X D X U X5 with the union disjoint, we have X; D X;, U X;»
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with the union disjoint for all i. Thus E; = Uje;, X; consists of 2% disjoint closed
intervals, with (Ex),—, a decreasing sequence of compact sets. As in (2.28)
E =N,k and E is totally disconnected and topologically equivalent to a
Cantor set.

We note, using (4.4), that

Cmin|/Yi| < |/Yi,i| < cmax|1Yt'| (4'6)

forallie Iand i=1,2.

In the simplest case, the IFS consisting of similarity transformations (2.24)
corresponds to the map f: [0,3] U [3,1] — [0,1] given by f(x) = 3x(mod 1).
Then the repeller E is the middle-third Cantor set and Ej; consists of
2 intervals of length 3-%. However, we shall be more interested in the case
where F),F, are not similarity maps. For example, F;,F>» =[0,1] — [0, 1]
defined by

Fi(x) =jx+10x, Fax) =jx+3— 0 4.7)

gives an invariant set E that is a ‘non-linear perturbation’ of the
middle-third Cantor set. Equivalently, £ is the repeller of a non-linear
function f defined on a pair of subintervals of [0, 1] in terms of F, and F, by
4.3).

A dynamical system f: X, U X, — X of this form, or the equivalent IFS
{Fi,F,} on X, is termed a cookie-cutter system and the set E is called a cookie-
cutter set. In general the mappings F; and F, are not similarity transforma-
tions, and E is a ‘distorted” Cantor set, which nevertheless is ‘approximately
self-similar’.

4.2 Bounded distortion for cookie-cutters

The principle of bounded distortion makes precise the idea of a set being
‘approximately self-similar’, in that any sufficiently small neighbourhood may
be mapped onto a large part of the set by a transformation that is not unduly
distorting.

We first prove the ‘principle of bounded variation’ for a general function
¢ defined on a cookie-cutter set E, and then choose ¢ in a way that relates
to the geometry of E to obtain the bounded distortion result. Let
f:X1U X, — X be a cookie-cutter system with corresponding IFS {F\, F>}
and repeller E, as in Section 4.1. Let ¢ : X; U X5 — R be a Lipschitz function,
satisfying

[¢(x) —o0)| <alx—y|  (xyeXiUXy) (4.8)

for some a > 0. (In fact the theory merely requires ¢ : E — R, but in practice ¢
is usually defined naturally on a larger set than E.)
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We are interested in the values of ¢ at successive iterates of points under £ In
particular we shall estimate the sums

Sep(x) = ¢(x) + d(fx) + ¢(f2x) + - + ¢(f*'x)

k1 A (4.9)
= 6(f'x)
7=0
for k = 1,2,..., where f/x is the j-th iterate of x under f. (To avoid excessively

clumsy notation we often write f/x for f/(x) in this context.) Note that Sy¢(x)
is defined provided x € X; for somei € [ If x = F; o --- 0 Fwfor w e X, we
have the alternative form

k
Sk¢p(Fyyo0---0 Fw) = Zd)(F,-j o0 Fyw). (4.10)
=1

We may think of § Sx$(x) as the average of ¢ at x and its first k — | iterates.

The principle of bounded variation is a consequence of the Lipschitz
condition on ¢. The principle asserts that the sums S;¢(x) do not vary too
much with x in a sense that is uniform in £.

Proposition 4.1 (principle of bounded variation)

Let ¢ : X — R be a Lipschitz function.

(@) There exists a number b such that for allk = 1,2, ... and all (iy,. .. i) € I
we have

1Skp(x) — Skp(y)| < b (4.11)

whenever x,y € X, .

(b) More generally for all ¢ > k and all (i\,...,i;) € I; we have

|Sk(x) — Skd(r)] < BIX ™ [ Xy, (4.12)

.....

whenever x,y € Xy _i.-
Proof By repeated application of (4.4) we have |X; ;| =|F; 0o F,(X)]
< kol X| for all (iy,....0) € I If x,y € X, then fix,fly € X, ; for
j=0,1,....k—1, so by (4.8)

|6(f7x) = $(f7y)] < al f7x — £y

<alX;

/aal RAARL] ik |

<ack x|

max
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Hence
k— k—1
|&mw—swon:§:<ﬂw é(fy)

j=0 j=0
k-1

< STl f7x) — ¢(f7y)
=0
o

S a max|X|
i=0

J
< acmax|X|/(1 - cmax);

giving (4.11) with b = acmax| X |/(1 — cmax)-

The proof of (b) is very similar, noting that if x,y € X _; then
f7x,f7y € Xi,,...;, so that
|¢(fjx) - ¢(ij)| S acmax|Xlk+1 | D
It is sometimes convenient to write (4.11) in the form
expSkd(x) _ b (4.13)

~expSio(y) —

We now assume that f: X; U X, — X is of differentiability class C2, that is,
twice differentiable with continuous second derivative (in the one-sided sense at
the interval ends). Equivalently, F, and F, are of class C? on X. We choose

¢(x) = —log|f'(x)| (4.14)
for x € X; U X;. Since 0 < |f’(x)|, the function ¢ has a bounded continuous
first derivative on X; U X>. By the mean value theorem, ¢ satisfies a Lipschitz
condition on both X and X, and so on X; U X>.

The sums Sx¢ turn out to be just what we need to estimate the size of the Xj.
Applying the chain rule for the derivative of a composition of functions to f*
we get

(S ) =£/ ) > f1(FF72x0) x - x f (), (4.15)
where dashes denote differentiation. Taking logarithms,
k-1

—log|(fY) ()| = 3 ~ log /()| (4.16)
j=0
k—1

= > ¢(f/x)

=0
= Sid(x). (4.17)
using (4.14) and (4.9). (This is valid provided we have f/x € X; U X, for
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1,2 E2,1,1, E2,1,2,2 E2,2,1,1,1

mo e e na 1w uaa nn oue o naae Ha
englargement of E, ,

nese 1nun nn mnmn un nam Houne ueoe weme e nn un He
englargement of £, |
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Figure 4.3 The principle of bounded distortion for a cookie-cutter set E. The figure
shows similar copies of some of the components E; ..;, which look like ‘distorted’
versions of E. The ‘amount’ of distortion is bounded over all k and (i, ---, )

Jj=0,1,..., k—1, that is for x € Ui, X;.) Thus, the sums Si¢ have a nice
interpretation in terms of the derivative of iterates of f.

The mapping f* : X, i,..ix. — X is a bijection, but much more than this, it is a
bi-Lipschitz mapping with constants not too different from |X,-,,,._,,-k|'1; in
particular |X;, ;| < [X[|(f*)'(x)|" for all x € X;._,, see Figure 4.3. This is
made precise in the following proposition in which we apply the principle of
bounded variation taking ¢ as in (4.14).

Proposition 4.2 (principle of bounded distortion)

There are numbers by and by such that for all k=0,1,2,... and for all
(i1, ..., ix) € Ix, we have

byt < Xyl (59 ()] < o (4.18)
forall x € X; ;. Moreover,fk Xy, i — X satisfies
bi'ly =2 < |F50) = R Xi, ] < Bily — 2] (4.19)

forally,ze X; .

Proof We have X, =F,0---0 F,(X),sof*: X, ., — Xis a differenti-
able bijection. Applying the mean value theorem to f* gives that for
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»z € X, there exists w € Xj,_; such that

[0 =14 = 0 =2 (w). (4.20)

Choosing y and z to be the end-points of X; _, then f*(y),f*(z) are the
end-points of X, so

X] = Xiall Y ) (421)

for some w € X; ;. Using the bounded variation principle in the form (4.13)
with (4.17) we see that for all x,w € X;,__,

kN
et < w <eb. (4.22)
[(f*) (w)]
Combining this with (4.21) gives (4.18), and then (4.20) gives (4.19), where
by and by depend only on |X| and 5. [

In the form (4.19), the principle of bounded distortion says that the ¥ may
be uniformly approximated by similarity transformations.
It is sometimes useful to write (4.18) in the alternative form

..... ik| S b()

by! < -
0 |(Fl,lo...oFik) (x)

for all x € X. Note that in the special case where Fy, F, are similarities with
ratios ¢y, ¢z, then f’(x) is constant on Xj . ;, and the argument reduces to give
| Xi...il = ¢iciy ... i | X |, as would be expected for a self-similar set.

The crucial point of Proposition 4.2 is that by and »; do not depend on %.
Although the mean value estimate is applied to the composition of k functions,

@1s. T

One useful consequence of the bounded distortion principle is that for each i,
the sets X;; and X;, are reasonably well separated inside X;. Furthermore the X;
are comparable with balls (intervals) in a uniform way.

Corollary 4.3

Let E be a cookie-cutter set and let d = dist(X}, X»).
(a) Forallic I

db7'X;| < dist(X;1, Xi2) < | Xi|- (4.23)
(b) Let A = db ' cuin- For all i, if x € X;NE and | X;| <r < |Xi|c;1i1n, then

B(x, )N EC X;NE C B(x,r). (4.24)
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Proof The mapping f* : X; — X is a differentiable bijection satisfying (4.19).
Taking y € X;1 and z€ X;» so that f*(y) € X; and f*(z) € X, satisfy
dist(f*(»), f*(z)) = d, the right-hand inequality of (4.19) yields the left-hand
inequality of (4.23). The right-hand inequality of (4.23) is clear, since
Xi C Xii UXip.

For (b) we note that if i € I and A\r < db7!|X;|, then by (a) B(x, Ar) is
disjoint from Xj for all j € I; with j # i. Thus the left-hand inclusion of (4.24)
holds; the right-hand inclusion is immediate. []

We now deduce that small parts of E may be mapped onto large parts
‘without too much distortion’. More precisely, there exists a bi-Lipschitz
mapping from each small ball with centre in E to a large part of E, with the
Lipschitz constants comparable with the size of the ball. A set that satisfies the
conclusion of Corollary 4.4 is sometimes called approximately self-similar or
quasi-self-similar.

Corollary 44

Let E be a cookie-cutter set. Then there are numbers ¢ > 0 and ro > 0 such that,
for every ball B with centre in E and radius r < ry, there exists a mapping
g : EN B — E satisfying

crilx =yl <lg(x) —eW)| <erllx—y| (x,y€ ENB). (4.25)

Proof Let r < ro = db;'|X| and let x € E. Then by (4.6) we may find k and
i=(it,...,ik) € I such that x € X; and cmindb;'|Xi| <r < db7'|X;|. By
Corollary 4.3(b) EN B(x,r) C X;, and using (4.19) f*: EN B(x,r) — E satisfies

Xy — 2 S IR — R < b Xl Ty — 2
SO
Cmindb 2y — 2| < | fX() —fR )| < a7y — 2,

which is (4.25), taking g = f*. O
A cookie-cutter set E is also approximately self-similar in the ‘opposite’

sense, in that the whole of E may be mapped into small neighbourhoods of E
without too much distortion.

Corollary 4.5

Let E be a cookie-cutter set. Then there are numbers ¢ > 0 and ro > 0 such that
for every ball B with centre in E and radius r < ry there exists a mapping
g : E— EN B satisfying

clrlx—y[ < lg(x) —g0)| < erlx -y (x,y € E). (4.26)
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Proof Letx € Eandr < ro = |X|. Wemay find i = (i1, ..., i) such that x € X;
and cpint < |X3| <r, so X; C B(x,r). Using (4.19) with y = F;; o---0 F(x)
and z = F;, o---0 F; (w) € X; we have

b Xilx — w] < [y 0 -+ 0 Fy (x) = Fy 0+ 0 F (w)] < b|Xillx — wi
0

Cminby 'r|x —w| < |Fy, 0+~ 0 Fi(x) — Fjy 0+~ 0 Fy(w)| < birlx — w|,

which is (4.26), taking g as the restriction of Fj o---o Fj to E. []

These results on approximate self-similarity allow the implicit theorems of
Section 3.1 to be applied to cookie-cutter sets.

Corollary 4.6

Let E be a cookie-cutter set with dimyE = s. Then dimyE = dimgE = dimpE
=sand 0 < H*(E) < oco.

Proof Corollary 4.4 together with Theorem 3.1 gives that these dimensions are
equal and that 0 < H*(E), and Corollary 4.5 and Theorem 3.2 give that
HY(E)<oo. O

These dimensional properties will also follow, together with a formula for
the dimension itself, from the more sophisticated approach of Chapter 5.

- e nses rere b e s mene rm Ses s [P

Figure 4.4 A ‘four-part’ cookie-cutter f with repeller £ =Ny, f “k(X)
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Just as in Example 3.4, we can also get information on subsets of cookie-
cutter sets which satisfy f(4) C 4 or f(4) D A, see Exercise 4.3.

Note that the theory of this chapter (and the next) applies in many other
situations, which are summarised in Section 5.5. In particular only trivial
modification is required for m-part cookie-cutters f: X, U --- U X,, — X where
[+ Xi — X is an expanding bijection for i = 1,2,...,m, see Figure 4.4.

4.3 Notes and references

The bounded distortion principle has been derived in various contexts, see, for
example, Bedford (1986), Falconer (1989), Ruelle (1982) and Sullivan (1983) as
well as other references listed in Section 5.7 in connection with the thermo-
dynamic formalism.

Exercises

4.1 Find the function f corresponding to Fy, F, given by (4.7).

4.2 Show directly that the middle-third Cantor set is approximately self-similar, and
find the least number ¢ which can be used in (4.25) in this case.

4.3 Let A be a non-empty compact subset of a cookie-cutter set E with s = dimyA.
Show analogously to Corollary 3.4, using (4.25) and (4.26), that if 4 C f~1(4)
then 5= dimgd4 and H*(4) >0, and that if f(4) D 4 then s=dimgA4 and
H*(A) < oo.






Chapter 5 The thermodynamic
formalism

There are many problems in mathematics which may readily be solved in ‘linear’
cases, but which have non-linear counterparts that are much harder to analyse.
For instance, the middle-third Cantor set E is the attractor of the IFS with the
two similarity transformations on R given by (2.24). Many properties of the
Cantor set follow quickly from this ‘linear’ description, for example its
Hausdorff dimension is log 2/ log 3, using Theorem 2.7. However, we may wish
to work with ‘non-linear’ sets such as the cookie-cutters described in Chapter 4,
for example the subset of [0,1] determined by the IFS (4.7). These non-linear
constructions are much harder to analyse; there is no simple expression for the
dimension of E, nor is it even clear how to obtain accurate dimension estimates.

This chapter describes a procedure which allows many results and ideas
from the linear or piecewise-linear situation to be extended to non-linear cases.
A major objective is to derive formulae for the dimension of fractals defined by
non-linear systems, but many other aspects of dynamical systems and fractals
may be treated using this approach.

For ease of exposition we present the thermodynamic formalism in the
context of the cookie-cutter system described in Section 4.1. Nevertheless this
illustrates the essential ideas of the thermodynamic formalism which are much
more widely applicable.

Many of the notions in this chapter were first developed in the context of
statistical mechanics, a subject which has remarkable parallels to dynamical
systems theory, see Section 5.6. This is the reason for the name ‘thermo-
dynamic formalism’ and terms such as ‘pressure’, ‘Gibbs measure’ and ‘entropy’.
It should be emphasised that a knowledge of statistical mechanics is not a
prerequisite here!

5.1 Pressure and Gibbs measures

Two ingredients are required for the thermodynamic formalism: a suitable
dynamical system or IFS and a Lipschitz function defined on an associated
invariant set.

Here we treat the cookie-cutter system described in Section 4.1. Recall
that X is a real closed interval with disjoint subintervals X; and X, and

n
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f: X1 UX,; — Xis an expanding mapping with a continuous second derivative
that maps both X; and X, bijectively onto X. This dynamical system has a
cookie-cutter repeller £ which equivalently may be regarded as the attractor of
the IFS given by a pair of contractions {F;, F>} on X. We use the notation of
Section 4.1; in particular we recall the hierarchy of nested intervals X; indexed
by sequences of 1s and 2s.

We also require a Lipschitz function ¢ : X; U X2 — R, satisfying

|p(x) — ()| < alx -y (x,y € X1 UXy) (5.1)

for some a > 0. The bounded variation theory of Section 4.2 applies, and as

there we write
k-1

Skd(x) = ¢(f’x) (52)

Jj=0

for x € Uiy X;. We recall from Proposition 4.1 that there is a number 4 such
that

|Skd(x) — Skp(y)| < b (5:3)
or, equivalently,

b exp(Sko(x))
~ exp(Ské(»))

for all x,y € X, for all i € I and all .

Initially, we work with a general Lipschitz function ¢. In the next section
appropriate choice of ¢ will lead to the dimension formula for E.

Our first objective is to find a measure u supported by E and a number P(¢)
such that

<eb (5.4)

pu(X;) < exp(—kP(¢)) exp(Sig(x))
for alli € Iy and x € X;. The number P(¢) is of considerable importance and is
called the pressure of ¢, and the measure p is called a Gibbs measure for ¢.
We prove part (a) of the following theorem now; this is enough to establish
the formula for the dimension of E in the next section. Part (b) asserts that we
can impose further stipulations on py; the proof of this involves more
sophisticated functional analysis and is deferred until Section 5.3.

Theorem 5.1
(a) For all k and i € I} let x; € X;. Then the limit

P(6) = lim 2log Y exp Sio(x) (5.5)

icl;

exists and does not depend on the x; € X; chosen. Furthermore there exists a
Borel probability measure u supported by E and a number ag > 0 such that,
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forall kand alli=1,,..., i € Iy, we have
-1 ,U'(Xl'l ik)
a, < - <a 5.6
"= exp( k() + Sedl)) 0
forall x € X;, ..
(b) 1t is possible to choose y satisfving (5.6) so that in addition, either
(i) u satisfies the transformation property
W1 (4)) = exp P(9) | expl-(x)du(x
for all Borel sets A, or
(it} p is invariant under f, that is for all g € C(E)
[ eautx) = [ e(r pauto).
Proofof(a) Fix w € E. From (5.2)
Skm®(x) = Skd(x) + Sm(f*x) (57)
for k,m = 1,2, ..., so taking exponentials and summing,
k
Y expSimb(x) = Y exp(Sed(x)) exp(Sme( S Fx))
x: fltmx=yw x: fltmx=w
= Y exp(Sid(x)) exp(Sm( ££))
z: fmz=w x: fkx=z
= > exp(Smo(z)) D> exp(Sig(x))
z: fmz=w X fx=z
<e D exp(Smp(z)) Y exp(Ska(x))
z frz=w x fhx=w
by (5.4). Writing /
5= Y exp(Sio(x)) (5.8)
x: fkx=w
this becomes the right-hand inequality of
e bspsm, < Skam < el spsm. (5.9)

The left-hand inequality follows in the same way, using the other inequality of
(5.4). Taking logarithms and writing a; = log s; gives

Ak + am — b < g < ax + A + b,

By Corollary 1.2 we have that lim_, ;@ = limi_o 3 log s; exists, that is, the
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limit (5.5) exists in the case where x; = F;, o--- o F; w for each i = (i1, ..., ).
Using (5.4) it follows that the limit (5.5) exists and is the same for any choice of
x; € X;. We also note that Corollary 1.2 applied to the sequences (ax) and
(—ax) gives that kP(¢) — b < ar < kP(¢) + b for all k, that is

e Pexp(kP(9)) < sx < e’ exp(kP(9)). (5.10)
We now construct a measure u satisfying (5.6) by defining discrete mea-
sures u,, on R and taking a limit as m — oo. For m — 1,2, ... and any set 4,

define

,L,,,(A)vi > exp(Smo(x))

Sm XEA: frx=w

(thus the sum is over the points F;, o --- o F; w that lie in 4). Clearly u,, is a

discrete measure supported by E (since w € E we have x € FE for all x with

f™x = w)and u,,(E) = 1. Thus there is a Borel measure y supported by E that

is a weak limit of a subsequence of the measures u,, (see Proposition 1.9).
Certainly u(E) = 1. Moreover, if i€ Iy and k <m

um(&)vi > exp(Smp(x))

Sm XEXi: fMx=w

_ Z exp(Sip(x)) exp(Sm_rp( f*x))

Sm xeX;: fmx=w

using (5.7). Thus, if y is any point of X; we have by (5.4) that
e um(X:) < s, exp(Ske(v)) Z exp(Sm- k(£ *x)) < € m(Xi)
XEX;: fmx=w
or

¢ "un(Xi) <5, exp(Skd(n) Y exp(Smid(2)) < € p(Xi),

z€X: fmhz=w
since f ¥ : X; — X is a bijection. Using (5.8) gives

e um(Xi) < exp(sm(y) '"—") < ebum( X))

m

so by (5.9)
e pm(Xi) < 5" exp(Skd()) < € i (X0).
This is true for all m > k, so for the weak limit u of a subsequence of ()
e < 1(Xa) e?

S~ exp(Sko(y) T s

Inequality (5.6) follows using (5.10).
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Part () follows from Theorem 5.5 which will be proved in Section 5.3. []

The number P(¢) defined by (5.5) is called the topological pressure or
pressure of ¢ and a measure satisfying (5.6) for some ay > 0 is termed a Gibbs
measure for ¢. By definition any two Gibbs measures for ¢ are equivalent. We
have shown that a cookie-cutter set supports a Gibbs measure.

In (5.5) we may take x; to be any point of X;. As Fj 0-- 0 Fj : X > X; C X
is a contraction, there is a unique x; € X; with F; o---0 F,x; = Xx;, or
equivalently with f kx; = x;. Thus, we may choose the points x; € X; for i € I}
to be the set of 2% fixed points of £ *, that is the periodic points of f which have
periods dividing k. This leads to the following expression for the pressure,
which avoids reference to the X

P(¢) = Jim ;log 3 exp(Sie(x) (511

xeFixfk

= lim plog 3 exp(@(x) +6(/9) + -+ o(/4 ),

xeFixf*

where Fix f* denotes the set of fixed points of f*.

5.2 The dimension formula

By appropriate choice of the Lipschitz function ¢, the theory of the previous
section specialises to give an elegant formula for the Hausdorff dimension of
the cookie-cutter set £ in terms of pressure.

To find the Hausdorff measure and dimension of a set we need to estimate
the sums in (2.7). For a cookie-cutter set F it is natural to utilise the coverings
of E provided by the intervals {X; : i € I }. Certainly

Hi(E) < 3 Xl (5.12)

iel;

provided that k is chosen so that max;e;, |X;| < é. Letting § — 0 gives

H(E) < liminf | X;[". (5.13)
ke—oo ehk

It follows that dimy £ < s for any s for which this lower limit is finite.
However, as we shall see, much more is true. Undér very general conditions on
fthese sums are very well behaved, with ), |X;i|* < exp(kP;) where P is the
pressure of a certain function. Thus the pressure P; is the exponential growth
rate of the sums of the s-th powers of the interval lengths at the k-th level of the
hierachy. Moreover, the limit in (5.13) provides a lower as well as an upper
estimate for H*(E), so the Hausdorff dimension is given by the number s which
makes P, = 0, and furthermore the restriction of H* to E is a Gibbs measure.
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For s € R we take

¢(x) = —slog|f'(x)| (3.14)

in (5.1) and consider the pressure P(—slog|f’|) as s varies, where f’ is the
derivative of f. Then (5.5) becomes, for any choice of x; € Xj,

k—1
P(-sloglf') = Jim log 3-exp (Z ~slog If'(fsz‘)|> (5.15)

i€l Jj=0
1 .
= Jlim ~log 7 |(/*) (x| (5.16)
o iel
= fim +log 3 Xil* (5.17)
k—oo k icl,

using (5.2), (4.16) and (4.18). (Observe the resemblance between this and
(5.13).) We examine the behaviour of P(—slog|f’|) as s varies.

Lemma 5.2

For s € R and 6§ > 0 we have
—8my < P(—(s+ &) log|f'|) — P(—slog|f']) < —ém (5.18)
where
0 < my = infyex,ux, log|f"(x)] < sup,ex,uy, log|f'(x)| = m; < oo.
In particular, P(—slog|f’|) is strictly decreasing and continuous in s, with

limg_, oo P(—slog|f’]) = oo and lim;_ P(-slog| f’]) = —oo.

Proof Foré >0

k—1
%logzexp< —(s+6)log|f’(ffxi)l)

iel j=0
< glog (exp (Z —slog|f /(f/xi)|> exp(—ékm1)>
icl 7=0
1 k—1 )
< k—log <Z exp <Z —slog |fl(fjxi)|)) —bmy.
ick =0

Letting £ — oo and using (5.15) gives the right-hand inequality of (5.18). The
left-hand inequality follows in a similar way. [

Thus the graph of P(—slog|/f’|) has the form indicated in Figure 5.1 (the
function is convex, see Exercise 5.5). In particular, there is a unique number s



The dimension formula 77
such that P(—slog|f’|) = 0. This number turns out to be the Hausdorff
dimension of the cookie-cutter set E.

Theorem 5.3

Let s be the unique real number satisfving
P(—slog|f']) = 0. (5.19)

Then dimgE = s and 0 < H*(E) < co. Moreover, the restriction of H* to E is a
Gibbs measure, and in particular there is a number a; > 0 such that

ar'1X|* <H(EN X)) < | X' (5.20)
foralli€ I, and all k.

Proof Let s be given by (5.19), take ¢(x) = —slog|f’(x)| for this s and let u be
an associated Gibbs measure given by Theorem 5.1. Since P(¢) =0, (5.6)
becomes

ag' < u(Xi)/ exp(Skp(x)) < ao
for all x € X;, for all i € I, and all k, so
1

k—
a' < N(I"i)/exp (—szlog If'(f’X)I) = u(X)/|(F5 (%)™ < ao
=0

using the chain rule (4.16). Combining this with (4.18) there is a number a,

Pisloglf')

log 2

dimHE
0 s
0 \

/

Figure 5.1 Form of the pressure function P(—slog|f’|) for a (two-part) cookie-cutter
system
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such that
_1_ (XG)
a S -5 S ar 521
2 |Xt| ( )
for all i. Thus, p is a probability measure supported by E with the measure of
every interval X; comparable to |X;|’.

The measure y may be related to Hausdorff measure on E as a consequence
of the bounded distortion principle. Let x € Eand r < ¢ |X| (in the notation
of Section 4.2); we estimate u(B(x,r)) where B(x,r) is the interval (one-
dimensional ball) with centre x and length 2r. Using (4.6) we may find an
integer k and i € Iy, such that x € X; and

Xl <7 < cqinl Xil.
From (4.24)
u(B(x, Ar)) < u(Xi) < p(B(x,r)),
where A = db; ' cmin is independent of x and r, so from (5.21)
& u(B(x, X)) < |Xil* < aop(B(x,r)).

Thus, for some b, > 0,

by'r < w(B(x,r)) < byr? (5.22)
for all x € F and r sufficiently small. It follows from Proposition 2.2 that
by V< HE ) < 2°b; and dimy E = dimg E = 5. Similarly, it follows that u is
equivalent to the restriction of s-dimensional Hausdorff measure to E, that is

for every Borel set 4 we have by 'H*(EN A) < u(A) < 2°byH*(EN A). Taking
A = X; and combining this with (5.21) gives (5.20). [

The dimension formula (5.19) may be viewed in several ways. Choosing the
x; in (5.16) to be the fixed points of f*, as in (5.11), dimyE is given in
dynamical terms as the value of s such that

0= Jim zlog 3" 17900

k -
- xeFixf*

Alternatively, using (5.17), dimgE is the value of s such that

1/k
lim Xl =1, 5.23
Jim (D | ) (523)
and furthermore 0 < a7 'H*(E) <Y, |Xil* <aH*(E) < oo for all k, by
summing (5.20) over i € I. Thus these natural sums give bounds for Hausdorff
measures; compare this with (5.13).

In the special case when E is a self-similar set and F) and F, are similarity
transformations of ratios r; and r,, dimygE is the number s such that
ri+ri=1, see (242). Here f¥:X, , — X is a similarity of ratio

,,,,,
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(riy=-<ry) 580
STIHY )™ =S ra ) = (5 +r)F = 1.
iel icl

Using (5.16) s satisfies P(—slog|f’|) = 0 so the pressure formula does indeed
generalise the dimension formula (2.42) for self-similar sets to a non-linear
setting.

It is worth noting that, by inspecting the derivation of the pressure formula,
there is control over the rate of convergence in (5.16). In fact, if b is such that
s|log |(F %) (x)| —log|(f*)(»)|| < b for x,y € X; and i € I, then

- 2b
P(-slog|f]) ——log2| Yol <7 (5:24)
i€l
for all k, see Exercise 5.2, and this together with (5.18) enables the accuracy of
corresponding approximations to dimy £ to be gauged.

*5.3 Invariant measures and the transfer operator

This section presents some slightly more sophisticated aspects of the
thermodynamic formalism, leading to an alternative characterisation of
pressure. A major role is played by measures that are invariant under the
cookie-cutter function f, that is measures p supported by E which satisfy

/ ¢ (f(0)du(x) = / ¢ (x)dp(x) (525)

for every continuous g : E — R. This is equivalent to u(f 1(4)) = u(4) for
every Borel set A. In the next section we will derive the variational principle,
that the pressure is the supremum of a certain expression over all invariant
probability measures u on E.

In order to proceed, we must show that the measure x in Theorem 5.1 may
be chosen to be invariant. This extra, rather delicate, requirement is usually
achieved by a functional analytic approach utilizing properties of an operator
L.

Let E be the cookie-cutter repeller for fand let and ¢ : £ — R be a Lipschitz
function as above. Write C(E) for the space of real valued continuous
functions on E. We define the transfer operator or Sinai—Bowen—Ruelle
operator Ly : C(E) — C(E) by

(Lsg)(x) = g(F1x)e?1Y + g(Fyx) e (5.26)

= > gly)eV. (5.27)
yify)=x
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The operator Ly is linear (that is Ly(g1 +g2) = Lyg1 + Lgg2 and Ly(Ag) =
AM(Lyg) for scalars A) and is positive (that is if g(x) > 0 for all x € E then
(Lyg)(x) >0 forall xe E).

We will sometimes need to apply the operator L, repeatedly. Writing L for
the k-th iterate of L, (so that L¢g Ly;(Lyg), etc), we get by repeated
substitution of (5.26) into itself that

(L)) = Y g(Fyor o Fix)explp(Fy oo Fyx)
(i1, ik )€
+¢(Fyo0---0 Fyx) + -+ ¢(Fx)]
= > g(Fyo--oFyx)exp(Sk(Fy 00 Fyx)).  (5.28)

(i1, i)elx

The following identity which relates Ly to fwill be useful. Let g1,g> € C(E).
Then

(Ls((g10f) x 82)) Zg1 (Fix))ga Fx)e¢(Fx)
=12
_Zgl g2 er¢(Fz)
i=1,2
= g1(x)(Lyg2)(x). (5.29)

The principal properties of the transfer operator are given by the following
theorem, which is a version of the Ruelle-Perron-Frobenius theorem.

Theorem 5.4

(a) There exists A > 0 and w € C(E) with w(x) > 0 for all x € E such that w is
an eigenfunction of Ly with eigenvalue ), that is

Lyw = Aw. (5.30)
(b) There exists a Borel probability measure j supported by E such that
[wogrdn = » [ o (5.31)
forall g € C(E).

(¢c) The measure v on E defined by

/gdy:/gwdu (5.32)

for all g € C(E) is invariant under f. (We assume that w is normalised so that

v(E)y=1)
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Proof Since ¢ is Lipschitz, there is a number a > 0 large enough so that
elt(Fix)~¢(Fy)l < eal— for x,y € Eand i = 1,2. Let cpax < 1 be as in (4.4), and
fix & > 0 such that acmax +a < o Let 3 = e @£l > 0 where |E| is the diameter
of E. Define

B={ge C(E): B<g(x) <landg(x) < g(y)e**for all x,y € E}.

Then B is a convex set (thatis zg; + (1 —t)go € Bifg,go€ Band 0< ¢ < 1)
and B is an equicontinuous subset of C(E), so Bis a || ||..—compact subset of
C(E) by the Arzela—Ascoli theorem. We show that a normalised version of L,
maps B into itself and so has a fixed point.

Let g satisfy

0<g(x) <g()e™™ (x,y € E). (533)

Then, if x, y € E, we have |Fix — Fry| < ¢max|x — y|, so by (5.26)

(Log)(x) < 3 g(Fy)amb=atoleb(F
=12 (5.34)

< e (Lyg)(v).

Define the normalised mapping T, on Bby Tyg(x) = Lsg(x)/ || Ly& || - By
the above (T,g)(x) < e ¥(Tsg)(y) for x,y € E, and so, since || Tyg [|oo= 1,
we have 8 =e €l < (T;g)(y) <1 for all y € E. Thus T, maps the convex
compact set B into itself, so by the Schauder fixed point theorem, there exists
w € Bwith Tyw = w, or Lyw = Aw where A =|| Lyw ||. Since w € B it follows
that w(x) > 0 and A > 0, completing the proof of (a).

Now define a set of measures M = {u : spty C E and [wdy = 1}, where w
is as in (a). We regard M as a subset of the space C(E)* of continuous linear
functionals on E which may be identified with the signed measures on E. Let L}
denote the dual mapping to L defined on C(E)" by

[edtiw = [(Logian (5.35)

for ge C(E). Then for p € M

/wd(%L;u) :/i(ngw)d,u:/wd,u: 1.

Hence %L; maps M into itself. Since M is a convex and a compact subset of
C(E)* in the weak-* topology, the Schauder fixed point theorem gives a
measure € M such that {Liu=pu. Thus (5.31) holds using (5.35);
multiplying 1 by a constant to get u(E)=1 then ensures that u is a
probability measure as required for ().
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To check that v given by (5.32) is invariant under f, let g € C(E). Then

[ etodnto = [ glomxduto by (5.32)
e / )(Low)(x)du(x) by (5.30)
=X [agof) M) by (529
=3 [ (g o m(x)dut) by (5.31)
— [ a7 by (532, O

The transfer operator has many other important spectral properties which
we do not pursue here, for example ) is an eigenvalue of multiplicity one with
the remainder of the spectrum of L, inside a disc of radius strictly less than .

The transfer operator is intimately related to the pressure P(¢). The
eigenvalue A of Theorem 5.4 turns out to be exp P(¢), and u, and thus v, are
Gibbs measures for ¢. This is expressed in the next theorem, which extends
Theorem 5.1 by showing that the Gibbs measure may be chosen to be
invariant.

Theorem 5.5

With A, uand v as in Theorem 5.4 we have that log A = P(¢) and that j and v are
Gibbs measures for ¢. Thus y and v are Borel probability measures on E such that
for some ay >0

al < p(Xi) v(Xy)
O T exp(—kP(¢) + Skg(x))’  exp(—kP() + Sko(x))

forallk andi € I} and x € X;. The measure v is invariant under f. The measure
satisfies

< a (5.36)

HPH(A)) = expP(9) | exp(=S.6())du (5.37)
for every Borel set AC Eandk =1,2,....

Proof We write 1,4 for the indicator function of the set 4. Let i = (i},..., i)
€ Ix. Since Fj 0---0 Fpx€ X, ; if and only if j, =i,... ji = i, We get
from (5.28) that for 4 C X, ; NE
LE(e™5014(x)) = exp(—Skp(F; 0 -+ 0 Fyx))14(F; 0+ - 0 Fyx)
X exp(Sk@(Fyy 0 -+ 0 Fyx))
= Lk ) (%),
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since x € f*(A) if and only if F; o -+ 0 F, (x) € 4 for A C X;, ;. Integrating
and using (5.31) &k times

w(F¥(4)) = / i) (¥)d(x)

:/\k/Ae_S"‘ﬁ(x)du(x). (5.38)

This holds for any Borel set 4 contained in X; N E for i € I, so by addition
(5.38) follows for any Borel set 4 C E. Putting A = X; N E in (5.38) and using
(54),

e”? < Me Uy (x;) <t

for all y € X;. By summing over i € I and comparing with (5.5) it is clear that
P(¢) =log A so (5.38) gives (5.37). The inequality (5.36) for y also follows, and
holds for the equivalent measure v, since from (5.32)

(inf w(x))2(X0) < (X)) < (sup w(x))(X)
x x€E
where 0 < infyeg w(x) < sup,cpw(x) <oco. 0O

Note that part (b) of Theorem 5.1 follows immediately from Theorem 5.5.

It is now easy to deduce a further important property of Gibbs measures,
namely ergodicity. We say that a measure p is ergodic for fif every measurable
set A C X which is invariant (in the sense that f~!(4) = A) has either u(4) =0
or u(X\ A) = 0. Thus in the ergodic situation, the only invariant sets are the
ones that are trivial when measured by u.

Observe that if 4 is an invariant set, then 4 = N, f7%(4) C N, f*(X)
=F so ACE. Moreover, A= Uy Fj;o---0F;(A4), so that ANX;=
F,0- -0 F,(A) and

fHAnx;) = 4. (5.39)

Corollary 5.6
Any Gibbs measure p satisfying (5.6) is ergodic for f.

Proof First let u be the measure of Theorem 5.5 which satisfies (5.37). If 4 is
an invariant set then 4 C E, and by (5.39) and (5.37)

H(A) = W FE(AN X)) = expkP(s) [ exp(=Si0(x))du()

ANX;



84 The thermodynamic formalism

for all i € I,. Thus by (5.4)
e "u(4) < exp(kP(¢) — Sx(x)) (4 N X;)
for any x € X;. In exactly the same way, replacing A by the invariant set E,

exp(kP(¢) — Skp(x))(EN Xi) < e’ u(E).

But u(F)=1 and p is supported by F, so combining these inequalities
gives
p(A)(X;) = p(A)(EN X;) < e®p(AN X;)

for all X;. Since {X;NE:i€ I,k=0,1,...} generates the Borel subsets of E,
we have that

u(A)u(B) < ®u(4NB)

for every Borel set BC E. Taking B=E\A gives u(A)u(E\A) <
e*u(AN(E\ 4)) = 0 so that either u(4) = 0 or u(E\ 4) = 0, as required.

Any other Gibbs measure v corresponding to a given ¢ is, by definition (5.6),
equivalent to this u in the sense of (1.22). Hence if A is an invariant set, then
either v(4) =0or v(E\A4)=0. O

One conclusion of this section is that Gibbs measures may be chosen to be
both invariant and ergodic under f. Such measures play a particularly
important role in ergodic theory, as we shall see in Chapter 6.

5.4 Entropy and the variational principle

Entropy quantifies the rate at which information can be gleaned about a
dynamical system from a sequence of repeated observations. Systems that are
equivalent in a certain sense have the same entropy, and consequently entropy
is an important invariant in dynamical systems theory. We first define entropy
and then obtain the variational principle: that pressure is the maximum of an
expression involving entropy.

We continue with the cookie-cutter system introduced in Section 4.1, with
f: X1UX; — X and repeller E. Let p be a probability measure on E which
we assume to be invariant under f. Consider the following ‘experiment’
to determine the position of a point x € E by observing whether its
iterates lie in X, or X». For j=0,1,2,... let j; be the integer 1 or 2 such
that f/x € X;. Thus, regarding f/x as the position of a particle, originally
at x, after time j, we think of X; as an observation of whether the particle
is to the left (in X)) or right (in X3) at time j. A natural question to ask
is how accurately a sequence of k observations (Xj,X;,...,X; ,) deter-
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mines the initial position x of the particle. In particular, what is the
measure

p{x:fix e X; for j=0,1,... .k — 1} = u(Xi,..i,) (5.40)

of the set of x which corresponds to a given set of observations? If this measure
is small, then x is closely determined (according to the measure u) by these &
observations.

If for a given x € E we find that u(X;, ; ,)~c* for large k, where
0 < ¢ < 1, then with each successive observation we improve our knowledge of
the location of x by a factor of about ¢. Thus the rate of acquisition of

information about x is roughly
IOgc - __IOg:u'( [N 1) = _%IOg,u'(Xvi)? (541)

where here i = iy, i1,. .., 1. Of course this value depends on x which is not
known a priori in our experiment. Nevertheless we can average (5.41) over all
x € E with respect to the measure y by forming the sums

This represents the average rate of information gain over time 0 <j <k —1
and taking the limit as k — oo gives an average over all time.

This heuristic argument leads us to define the entropy of f with respect to the
measure |4 to be

h, = h,(f) = lim “Z“ ) log pu(X7). (5.42)

k
- i€l

Of course, this presupposes that the limit exists; to prove this we use the
subadditive inequality.

Proposition 5.7

Let u be an invariant probability measure supported by the repeller E of f. Then
the entropy h,(f) given by (5.42) exists.

Proof 'We show that the sequence ) ;., —u(X;)log u(X;) is subadditive so that
the limit (5.42) exists by Proposition 1.1.

For brevity, we write ¢(t) = —tlog #(¢>0), »(0)=0; then ¢ is a
concave function on [0,00), that is, —3 i3 a convex function. For positive
integers / and j and each i € I; and j € I; we have, assuming that u(Xj) > 0 for
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0 -o{ )

_ID(Z,U 1(Xij) /1 X; ))

jel

>ZN Xij) /(X))

jel;

allje I,

using the concavity of i (see Proposition 1.4) and that Eje 1 11(Xj) = 1. From
the definition of 7

X)) > p(xy)

logu( ) — log (X))

JEI;
> ZMX,-,-) logu(Xj) + ) P(u(Xy))
j€l; jey,

If 4(X;) = 0 for some j € I;, the same inequality may be obtained by summing
over those j € I; with (Xj) # 0. Now summing over i € I; we have

D (X)) > Y u(X)) logu(Xy) + D plu

iel; J€I; ijel,;

noting that ), u(X;j) = u(Xj) since y is invariant. Thus,

> (X)) < D S w((Xa) + v

i€l iel; iel;

In other words, the sequence a; = ) ;. V(u(X:)) = X;c; —1(Xi)log u(X:)
satisfies the subadditive property (1.2) so the limit (5.42) exists by Proposition
1.1. O

In fact, entropy is much more general than suggested by (5.42). If
X =Y U...UY, is any partition of X into a finite number of (measurable)
‘boxes’, we can observe the sequence of boxes (Y;,,..., Y;_,) occupied by the
iterates of x, so that f/x € Y; for each j, and estimate the rate of information

gain as

hm_—’zlu' 0y lkl)log:u’( iy »lk])

k—o00

where Yy, i, = {x:f/xe Y, forj=0,1,... .k — 1}. Remarkably, this limit

exists and equals 4, (f) for any reasonable partition Y U... U Y, (reasonable
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in the sense that the observations (Y;,,..., Y;,) distinguish between almost all
x € E if k is sufficiently large). For our purposes, however, it is adequate to
take (5.42) as the definition of entropy.

The variational principle characterises pressure as the maximum of a certain
expression over all invariant probability measures. Preparatory to proving this,
we need the following expression for an integral with respect to an invariant
measure.

Lemma 5.8

Let E be a cookie-cutter set as above, let ¢ : E — R be a Lipschitz function and
let . be an invariant probability measure on E. Then for any choice of x; € X; we
have

/ d(x)dp = lim - ZS;@ x;) p( X3) (5.43)

tGIk

Proof  First observe that if 4 is invariant then [ ¢(x)dp = [ ¢(f’x)dy for all j
(applying (5.25) repeatedly), so that

[ o1du= / Z¢ (Pdu=7 [ So(xdn (5.44)

Hence, if x; € X; for each i€ I, we have on splitting the range of
integration

[ o= 3 siotuncx)

- p3 (/ 5K Seaur) )

iel;

Z“ max|Sk¢( ) — Skd(xi)]

lGIk

< b/k

using the bounded variation estimate (5.3) and that u(E) = 1. Letting kK — oo
gives (5.43). 0O

Theorem 5.9 (variational principle)

Let ¢ : E — R be Lipschitz. Then
P(¢) = sup{h, + [¢du : u is an invariant probability measure on E}.

The supremum is attained by the invariant Gibbs measure v of Theorem 5.5.
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Proof Choose x; € X; for all i€ l. For k=0,1,2,... and u an invariant
probability measure, define

=~ Z 1(X;)[— log p(Xy) + Skp(x1)] (5.45)
tGIk
= log > exp k()
iely

by Corollary 1.5. Letting k — oo, and noting that the limits of the three parts
of this last inequality are given by (5.42), (5.43) and (5.5) respectively, we get

hu+/¢>du§ P(¢).

To see that equality holds for the invariant Gibbs measure v of Theorem 5.5,
note that from (5.36)

UE %Z V(X1 log(ay exp(—KP(9) + Si(x))) + S (i)

iel;

=7 Z —logag + kP(¢)]

tGIk
= P(¢) — +logay.

Combining with (5.45) (with u replaced by v) and letting £ — oo, again using
(5.42) and (5.43), gives h, + [¢dv > P(¢). [

Taking ¢ = —slog|f’| and using Theorem 5.3 we get the variational
formula for the Hausdorff dimension of the repeller F. It is the unique real
number s such that

0 = sup{h, — sflog|f’|du : p is an invariant probability measure on E}.

5.5 Further applications

The methods of this chapter, and the underlying bounded variation principle of
Section 4.2, adapt to many other dynamical systems and iterated function
systems. We list some further situations for which the dimension of the attrac-
tor or repeller may be found in terms of a pressure, with an invariant Gibbs
measure supported by the set concerned, and satisfying a variational condition.

Weaker differentiability conditions

The thermodynamic theory holds with little modification under weaker
conditions on ¢ and f. For the bounded variation principle to hold it is
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enough that ¢ is a Holder continuous function of exponent ¢ for some € > 0 (so
that

|6(x) — ¢ < alx -y (5.46)

rather than the Lipschitz condition (5.1)), see Exercise 5.1. Consequently, for
the bounded distortion principle and the dimension formula, it is enough for
f'(x) to satisfy an e-Holder condition; in this case f is said to be of
differentiability class C'*¢.

More general iterated function systems

Let X be a closed subset of R” and let Fi, ..., F, be C? contractions (or C'*¢
contractions for some € > 0), with non-empty compact attractor E satisfying
E=U" F(E). If n=1 and X can be chosen so that {F;(X)}, , are disjoint
sets, a trivial modification of the analysis of Chapters 4 and 5 shows that the
‘m-part cookie-cutter E’ is approximately self-similar and has dimension given
by P(—slog|f’|) = 0, where the sums in the definition (5.5) of P are now over
index sets I = {(i1,..., i) : 1 <i; < mj}, see Figure 4.4.

In higher dimensions the situation is more complicated. Let X be a ‘nice’
domain in R”, for example R” itself or a convex set or a connected domain with
a smooth boundary. We say that a differentiable mapping F: X — X is
conformal if its derivative F'(x) (regarded as a linear mapping) is a similarity
transformation. Thus a conformal mapping is a ‘local similarity’ that
transforms small regions to nearly similar images. Let Fy,...,F,, : X —> X be
injections that are C? conformal contractions. If X; = F;(X) fori=1,...,m,
and Xi,..., X, are disjoint, we may regard the attractor E of this IFS as the
repeller of a function f: X; U... U X,, — X where f(x) = F;!(x) if x € X;. The
analysis proceeds more or less as in Chapters 4 and 5, but using higher-
dimensional versions of the chain rule and mean value theorem, to give
bounded variation and distortion principles and approximate self-similarity of
E. The dimension of E is found by solving P(—slog | f’||) =0, where || f’|| is
the expansion ratio of the derivative f/, with F supporting an invariant Gibbs
measure g with u(X;) =< |Xi|.

If X1,..., X, are not disjoint but E satisfies the open set condition, the IFS
attractor £ cannot always be identified with the repeller of a dynamical system.
Nevertheless, by working in terms of conformal mappings Fi,...,F,
throughout rather than with f (so that occurrences of f* : X ., — X are
replaced by (F;, 0+ 0 F,-k)*1 with Sy ¢ defined by (4.10)) the theory proceeds in
the same way.

Graph-directed systems

The thermodynamic formalism allows a non-linear version of the graph-
directed systems defined by (3.12) to be treated. For e € &;; we take
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F,:X;— X; to be C? contractions on appropriate sets Xi,. .. ,X; C R" and
obtain a family of sets £}, ..., E, satisfying (3.12). Under certain conditions the
aggregate of these sets may be the repeller of a certain dynamical system f with
local inverses given by the F,. In the case of X; C R!, or for X; C R” with the
mappings F, conformal, the thermodynamic formalism leads to a ‘pressure
analogue’ of the formula p(4(®)) = 1 of Corollary 3.5 together with Gibbs
measures on the E;.

Julia sets

Julia sets of certain complex analytic functions f: C — C give a very important
class of approximately self-similar sets. (Note that f being analytic implies the
corresponding real function f: R> — R? is conformal). Then f may have a
repeller E, so that there is a neighbourhood X of E (with E C int(X)) such that
E={zeX:f*(z) € X for all k=1,2,...}, with f expanding on X, in that
|f/(z)] > 1 for z € X. Such an E is the Julia set of f. This situation occurs, for
example, for f(z) = z2 + ¢ for ‘most’ complex numbers ¢; in particular if |c| is
small when E is homeomorphic to a circle, or if |¢| is large when F is totally
disconnected, see FG, Section 14.3. In the simplest case, with f (z) = z2 + ¢ and
|| large, the set X may be chosen so that the inverse f~! has two branches
F,F, : X — X which are conformal contractions, see Figure 5.2. Then the
Julia set E is the attractor of the conformal IFS {F;,F>}. Thus E is
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Figure 5.2 The Julia set of f(z) = z> + 0.5 4 0.3, which is a self-conformal set under
the IFS consisting of the two branches of the inverse of f



Further applications 91

E;

Figure 5.3 The Julia set E of f(z) = z> + 0.279 £ 0.3i. Such a set may be regarded
as a graph-directed set using a Markov partition E = E; U F,. With F| and F, as the
‘north-east’ and ‘south-west’ branches of f~!, we have E| = F|(E;) U F((E;) and
E, = F,(E1) U Fy(E)

approximately self-similar and has Hausdorff and box dimensions given by
P(=slog|/"]) = 0.

For other analytic functions f:C — C it is often possible to find a
decomposition £ = F, U...UE, (called a Markov partition of E), a matrix
(€i) of Os and 1s, and functions F; ; : E; — E;, defined when &;; = 1, such that
for each i the branches of f~! near E; are given by F; ;. This is essentially a
graph-directed system of conformal mappings, see Figure 5.3, and as before the
thermodynamic theory gives the dimension of the Julia set £ as the solution of
P(—slog|f']) =0, with 0 < H*(E) < oo.

The thermodynamic approach leads to many further properties of Julia sets,
For instance, dimy(Julia set of 22 + ¢) is asymptotic to 1 + |¢|*/4log 2 for small
¢, and to 2log2/log|c| for large c¢. The theory extends to more general
polynomials and other analytic functions,

Non-conformal repellers in R”

The thermodynamic formalism does not generalise so easily to mappings that
are not conformal, though some progress has been made in a few special cases.
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Figure 5.4 Repeller of the non-conformal mapping (x,y) — (x* — ?, 6xy)

For instance, let S denote the interval [0, 1] made into a circle by identifying 0
and 1, and let f: S x R — § x R be an expanding map that preserves vertical
lines, that is with f(x,y) = (fi1(x),f2(x,y)) for suitable f; and f;. Then f has a
repelling curve that encircles the cylinder S x R. Under certain conditions this
repeller is a fractal curve with dimension given by P(s¢; + ¢») = 0 where Pisa
pressure and ¢; and ¢, are functions involving the expansion rates of fin the x
and y directions,

For certain difftomorphisms of two-dimensional regions where there is a
local decomposition of the mapping into one expanding and one contracting
component, there is a formula involving pressure that gives the dimension of
the invariant horseshoe that occurs.

For functions f without some sort of decomposition into ‘independent’
directions, for example that of Figure 5.4, the situation is much more complex.,
A certain amount of progress towards a dimension formula has been made;
one approach that leads to upper bounds for dimension is sketched in
Section 12.1.

5.6 Why 'thermodynamic’ formalism ?

A question frequently asked by mathematicians involved with dynamical
systems is why the name ‘thermodynamic’ is given to this approach. Although
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Figure 5.5 The configuration of the particle system (i1, ...,#) has energy E; _; and
probability of occurrence proportional to exp(——sEi,,“_Y,‘k)

the analogues are formal rather than physical, many of the ideas, such as the
existence of Gibbs measures, were originally developed in statistical mechanics,
and translated to dynamical systems many years later,

For simplicity, we consider a one-dimensional particle chain with particles
situated at integer points (1,2,3,...,k). Each particle is in one of two possible
positions, which we label 1 or 2 (see Figure 5.5). Thus a configuration of the
system is specified by a k-term sequence i = (i1,..., i) where i = 1 or 2 for
Jj=1,...,k. Each configuration has an associated energy, denoted by E; _;,
and for real numbers s we define the partition function

Zy= ) exp(—sEy, i),

1yl

where the sum is over all 2% possible state configurations.

When the number of particles is large, the particles interact and exchange
energy in the process. The fundamental principle governing such interactions is
Boltzmann’s Law, that the probability of a small part of the system being in a
particular configuration is proportional to a power of the energy of that
configuration. Thus

—sE. .
Probability of configuration (i1,...,#) = w
k

for a number s which may be identified with the reciprocal of the absolute
temperature of the system (multiplied by Boltzmann’s constant).

In the simplest situation, the energy of each particle depends only on its
own state, so that E; _; is the sum of the individual energies of the particles.
Thus, writing ¢(i1,..., i) for the energy of the first particle (depending only
on i1) and f for the ‘shift’ (i1, i,...,&) = (i, ..., i, J1), where j; is chosen
arbitrarily, we have that E;,__;, = ¢(f) + ¢(f (i) + ... + d(f*1(¥)) = Sko(i).

Thus

=D exp(—sSkg(i)

iel;
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and

Probability of configuration(i) = M
k
for i € I.

We allow the particle chain to become infinite, by letting &k — oo; this is
known as taking the thermodynamic limit. Provided that the energies satisfy
certain reasonable physical conditions, such as some form of translation
invariance, an argument parallel to that used to establish the bounded
variation principle and existence of Gibbs measures for dynamical systems
shows that

Z; =< exp(kPy)

and that
probability (a configuration (ji,/»,...) with j; = iy, -, jx = Iy occurs)
= exp(—sS(i) — kP,)
for all finite sequences i = (iy,..., ). The number P; is the pressure of the

physical system and this probability is the classical Gibbs distribution for
states.

The parallels with the formulae and relationships that occur in the cookie-
cutter dynamical systems are now apparent. We have the following
correspondences:

statistical mechanics dynamical systems

finite particle configuration interval X;

infinite particle configuration point of E

energy E; Sk (x)

inverse temperature dimension

partition function the sum ) ., exp(Sikd(x:))
pressure topological pressure

Gibbs distribution on configurations  Gibbs measure on F.

Whilst it may be inappropriate to say that ‘the dimension of a repeller is the
reciprocal of the temperature that renders the pressure zero’, many features of
dynamical systems may be studied to advantage using parallels from statistical
mechanics.

b.7 Notes and references

The remarkable insight that thermodynamic methods could be applied to
dynamical systems began with Sinai (1972) and was developed by Bowen
(1975) and Ruelle (1978). These last two books provide quite technical
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accounts as do Parry and Pollicott (1990) who extend the work via zeta
functions to study periodic orbits of continuous systems. A nice survey of this
material is given by Bedford (1991) and a variety of related survey articles are
included in Bedford et al. (1991). For a very general treatment of entropy and
pressure see Walters (1982). For the functional analytic properties used in
proving Theorem 5.4 see Dunford and Schwartz (1958).

Ruelle (1982) treats the case of conformal maps in regions of R” with special
reference to Julia sets. Bedford (1986) and Mauldin and Williams (1988)
analyse graph-directed or recurrent IFSs, and Bedford and Urbanski (1990)
study maps preserving vertical lines. McClusky and Manning (1983) obtain the
formula for horseshoe attractors, and Falconer (1994) considers general non-
conformal repellers.

Exercises

5.1 Prove the bounded variation principle, Proposition 4.1, with the Lipschitz
condition (4.8) replaced by the e-Holder condition (5.46).

5.2 Verify (5.24) which gives a bound on the rate of convergence in the pressure
definition.

53 Letf: X1 UX, — X be a cookie-cutter system of the usual form, so that fis a 2-1
function on E. Show that if 4 is any invariant probability measure on E then
h, <log2, and that we can always find p with /4, = log2.

54 Consider the system (2.24) so that f(x) = 3x (mod 1) and E is the middle-third
Cantor set. Find P(—slog|f’|) for all real numbers s. Let 4 be the ‘uniformly
distributed’ probability measure on E (so that u(X;) = 27kifie I). Find A, and
verify directly that 4, + [ ¢du = P(¢) when ¢ = —slog|f”].

5.5 Show that P(—slog]|f’|) given by (5.15) is a convex function of s,






Chapter 6 The ergodic theorem
and fractals

The ergodic theorem is one of the most fundamental and useful results in
probability theory and dynamical systems. In this chapter we prove the ergodic
theorem and show how it may be applied to fractal geometry, in particular to
local properties of fractals such as densities and average densities. Other
applications of the ergodic theorem will be encountered later in the book.

6.1 The ergodic theorem

The setting for the ergodic theorem is as follows. There is a set X, a mapping
f+ X — X, and a finite measure x4 on X. We assume for every measurable set
A C X the inverse image f ~'(4) is measurable and

w(f7H(A4)) = u(4), (6.1)

that is, u is invariant under f or fis measure preserving for . Condition (6.1) is
equivalent to

/ g(0)dp(x) = / g(f (x))du (62)

for all measurable g: X — R, We assume, as always, that 4 is a Borel regular
measure so (6.1) is equivalent to (6.2) holding for all continuous g: X — R.

Recall that the measure u is ergodic for fif every measurable set 4 such that
A =f"1(A4) has u(4) =0 or u(X\ A) = 0. Essentially, this means that the
system is indecomposable: if there is a set 4 with A4 =f"1(4) and
0 < u(A) < u(X), then we can consider separately the two independent
systems obtained by restricting f to A and to X'\ 4.

If u is ergodic and ¢:X — R is a measurable function such that
¢d(x) = ¢(f (x)) for all x, then there is a number A such that

P(x) = A (6.3)

for almost all x. To see this, note that for each A& R, the set
A={x€X:¢(x) <A} is measurable and satisfies f!(4) =4, so by
ergodicity either p(A4) = 0 or u(X'\ A) = 0, that is either ¢(x) < A for almost
all x or ¢(x) > A for almost all x.

97
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We regard f: X — X as a dynamical system, so that the k-th iterate f*x
represents the position at time k of a particle at x at time 0. For ¢ : X — R, we
think of 1 E &(f/x) as the time average of ¢ evaluated at the first k iterates
of x. The ergodlc theorem asserts that for almost all x these averages approach
a limit as k£ — oo. Furthermore, if u is ergodic the limit is independent of x
and equals the space average of ¢, that is [, ¢(y)du(y). Thus in the ergodic
case, the time average of ¢ for almost all 1n1t1al points x equals the space
average of ¢.

Theorem 6.1 (ergodic theorem)

Let f: X — X, let u be a finite measure on X that is invariant under f, and let
¢ € L'(). Then the limit

k—1
2(x) = Jim > 9(/'x) (6.4)
=0

exists for p-almost all x. Moreover, if | is ergodic then

1
= 7 L o0 (6.5)

Proof For simplicity we give the proof on the assumption that for some M we
have |¢(x)| < M for all x € X. For the extension to ¢ € L!(x), see Exercise 6.1.
Write

for p-almost all x.

k—
on() = L3 60770 (6:6)

j=0

P?‘

for the average of ¢ over the first k iterates, and &(x) = lim sup,_,, ok (x). The
crux of the proof is to show that for all e > 0

[aaue < [ owdut) +c. (6.)

To verify this define
7(x) = min {k > 0 : ax(x) > @(x) — €},

s0 7(x) < oo for all x by definition of @& Should we be fortunate enough for
there to exist T < oo such that 7(x) < T for all x, then the sum (6.6) may be
broken into blocks of length at most 7 such that the average of the ¢( f/x) over
the j in each block is at least &(x) — e. More precisely, for each x we define a
sequence (k;,k,,...) inductively, by taking k; = 7(x) and k; = 7(f 1+ +ki1x)
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fori=2,3,..., so that

ky+--tki—1

B(f7x) = cue (141 x)

ey Fte
> ki(@(frthy) —€)
= ki(@(x) —¢), (6.8)

since &(x) = a(f*x) for all k. Summing over i,

k—1

> 6(fx) > k(a(x) —€)

J=0

whenever k is of the form ky +---+k; For an arbitrary integer k, by
comparing with the sum to k; +--- +k; terms for the largest i such that
ki+- +k <k, we get

k=1
¢(f'x) > (k= T)(@(x) —€) — TM,
=0

since 0 <k —(ky+---+k;) < T. Integrating (noting that [¢(f/x)du(x)
= [¢(x)du(x) by (6.2)), dividing by k, and letting k — oo gives (6.7) in this
case.
Now suppose we are less fortunate and 7(x) is unbounded. We may choose
T large enough to make p(4) < e, where A = {x : 7(x) > T}, and modify ¢ on
A by defining ¢* : X — R by
. $(x) (x¢4)
¢(x)—{M (x € A4).
We define o} as in (6.6) but with ¢ replaced by ¢*. Letting
75(x) = min{k > 0: a; (x) > a(x) — €},

we now have 7"(x) < T for all x (since 7*(x) = 1 for x € A). Proceeding just as
before we obtain

[ awan < [ 6 waue +
= [ oau) + [(6() = o)) +
< / d(x)dp(x) +2Me + ¢
which gives (6.7) since e may be chosen arbitrarily small.

Since e is arbitrary (6.7) implies [ @(x)du(x) < [¢(x)du(x). A symmetrical
argument gives [ ¢(x)du(x) < [ a(x)du(x), where a(x) = lim infy_ 0o (x),
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and combining these inequalities [(@(x) — a(x))du(x) <0. As 0 < a(x)—
a(x) it follows that a(x) = @(x) for almost all x, so the common value equals
the limit (6.4).

Clearly, ax(fx) — ax(x) = (¢(f*x) — ¢(x))/k, so ®(fx) = ®(x) whenever
either limit exists. Thus if x is ergodic, (6.3) implies that &(x) = A for almost all
x for some \. Using the dominated convergence theorem and the invariance
of p,

/\,u(X):/ (x)dp(x) —hm/ak Ydu(x /d) Ydu(x
which is (6.5). [
Whilst this form of the ergodic theorem is suited to our applications to self-

similar sets, we need the following generalisation, which may be thought of as
an ‘approximate ergodic theorem’, for studying non-linear cookie-cutter sets.

Corollary 6.2
Let f: X — X, let u be a finite invariant measure on X, and let ¢, € L' (u) for

n=1,2,.... Suppose that for all positive integers k and n and all x € X

| (f*x) — Pk (X)] < €n (6.9)
where €,\,0. Then the limit ®(x) = lim,_.(1/m) 37} ¢(x) exists for
u-almost all x. If p is ergodic, then ®(x) is almost everywhere constant.

Proof For m > 1 and n > 1 we have identically that

1 m+n—1 1 n—1

*= x 6.10
mn ; 709 m+n;¢k( ) (6.10)
+m}+—n [¢n+k(x) _¢n(ka)] (6.11)
k=0
m+nmz¢” (/%x). (6.12)

Fixing » and letting m — oo, (6.10) converges to 0 for almost all x, (6.11) is
bounded in modulus by ¢, and (6.12) converges for almost all x to a number,
®;(x) say, using Theorem 6.1. Thus for almost all x,

®,(x) — € < liminf— Z¢k

m—00

< lim sup — Zd)k D, (x) + €.

m—o0
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Letting n — oo, it follows that

e o
i 2 809 = lim 2309 = 0(),
for almost all x.

If u is ergodic, then &} is almost everywhere constant, by Theorem 6.1, so &

is almost everywhere constant. []

A simple application of the ergodic theorem concerns the Liapounov
exponents of a dynamical system. Let X C R be a closed interval and let
f:X — X be a C' mapping. The Liapounov exponent reflects the local rate of
expansion or contraction under iteration by f. We define the Liapounov or
characteristic exponent A(x) of f at x by

A = Jim clogl(£4) () (6.13)
k—1

= lim %Zlogv'(ﬂ‘xn (6.14)
—00 =0

using the chain rule (4.16). Thus for a small interval J centred at x, we have
|f%(J)| =~ exp(kA(x))| J|.Of course, this definition assumes that the limit (6.13)
exists; under reasonable conditions this follows from the ergodic theorem.

Proposition 6.3

Let u be an invariant ergodic measure for a C' mapping f: X — X, and suppose
that [log |f’(x)|du(x) > —oc. Then there is a number ) such that the Liapounov
exponent \(x) exists and equals X for u-almost all x.

Proof  This is immediate from Theorem 6.1, on taking ¢(x) = log |f/(x)|. O

Thus under these conditions we refer to the Liapounov exponent A of f.

Liapounov exponents may be generalised to differentiable mappings
f:X — X where X is a suitable subset of R”. The derivative (f¥)'(x) is a
linear mapping on R”, and we may write a%(x) > a%(x) > ... > a¥(x) for the
lengths of the principal semi-axes of the ellipsoid ( f*)'(B) where B is the unit
ball in R”. The Liapounov exponents are defined as the logarithmic rates of
growth with k of these semi-axis lengths:

.1 ,
/\j(x):kh_)rgo——loga;‘(x) (j=1,...,n).

Thus the Liapounov exponents describe the distortion of an infinitesimal ball
under iteration by f. Using a more sophisticated version of the ergodic
theorem, it may be shown that if x4 is invariant and ergodic with respect to f
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then there are numbers A; > A >... > A, >0 such that X\(x) =X for
p-almost all x for all j.

6.2 Densities and average densities

Self-similar sets and cookie-cutter sets support natural measures that are
invariant and ergodic with respect to their defining transformations. It is this
that makes the ergodic theorem such a useful tool in their study. We first
summarise the properties of these measures.

Lemma 6.4

(a) Let EC R” be a self-similar IFS attractor of dimension s satisfying the
strong separation condition (see Section 2.2) and let . = H° | be the restric-
tion of s-dimensional Hausdorff measure H* to E. Then y is invariant and
ergodic with respect to f: E — E (where f is given by the inverse map (2.41)).

(b) More generally, let y be the self-similar measure on the self-similar set E
given by (2.43)—(2.44), where E satisfies the strong separation condition.
Then yu is invariant and ergodic with respect to f: E — E.

(¢) A cookie-cutter set E of dimension s supports an invariant ergodic probability
measure u that is equivalent to H’|.

Proof

(a) With the usual notation for IFSs (see Section 2.2) we have that

for A C E, with this union disjoint. By the scaling property (2.13) of H’,
and hence of y, and by (2.42)

WA = S A = S riu(4) = u(4)
i=1 i=1

so that y is invariant under f.

Now suppose that 4 C E is measurable and A4 = f~'(4), so that
A=f"5A) =y Fyo--oF(A) for all k and i= (i\,...,&). Then
i = Fy o---0 F;(A4) and by the scaling property

WANE) = (ry - .ri. ) 1(A) = w(E)(E) ™ u(A).
Let C be the class of sets U C E such that

ANU) = p(U)(A)u(E)™". (6.15)

.....
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We have shown that F; € C for all € I, and by additivity any countable
union of such sets is in C. By the regularity of u, given any measurable set
U C E, we may find a sequence of these sets decreasing to U, so that (6.15)
holds for any such U. In particular, taking U= A, we have
w(A) = (AN A) = p(A)p(A)p(E)™" giving u(4) = 0 or u(A4) = u(E), so
4 is ergodic.

(b) We note that we have a scaling property of the form p(F;(A4)) = piu(A)for
any A C E. The proof proceeds as in (@) with r replaced by p;.

(¢) This non-linear analogue of (a) was proved in Chapter 5: Theorem 5.3
shows that the restriction of H® to E is a Gibbs measure, Theorem 5.5
shows that there is an equivalent invariant Gibbs measure, and Corollary
5.6 shows that these measures are ergodic. [

It follows from Lemma 6.4(c) that the Liapounov exponents of a cookie-
cutter system exist and are constant H*-almost everywhere on E.

We now examine some consequences of ergodicity for densities of certain
fractals. Let EC R” be a Borel set of Hausdorff dimension s with
0 < H*(E) < oo. Again, for convenience, we write u = H*| for the restriction
of s-dimensional Hausdorff measure to E, so that

w(A) = H(ENA). (6.16)

Recall from (2.17)—(2.18) (see also FG, Chapter 5) that the (s-dimensional)
lower and upper densities of E at x are defined as

D*(x) = D*(E,x) = lirg%)nf’H%E N B(x,r))/(2r)° = li%%nfu(B(x, r)/(2r)}
(6.17)

and

D*(x)=D*(E,x)=lim sup H*(EN B(x,r))/(2r)* = lim sup u(B(x,r))/(2r)’

r—0 r—0

(6.18)

for x € R”. These densities indicate the concentration of the set £ around the
point x. Clearly, D*(x) < D’(x) for all x, but for irregular ‘fractal’ sets, this
inequality is strict for p-almost all x € E (see Section 2.1). Nevertheless, a
consequence of ergodicity is that, in the case of self-similar sets and cookie-
cutter sets, the lower densities and the upper densities are almost everywhere
constant.

Proposition 6.5

Let E be either a self-similar set satisfying the strong separation condition or a
cookie-cutter set, and let s = dimyE. Then there exist numbers d and d with
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0<d <d <1 such that

D'(x)=d and D*(x)=d
for H’-almost all x € E.

Proof Let f: X — X be the function defining the self-similar set or cookie-
cutter set E. We assume that X is such that E is in the interior of X, so
D*(x) = D*(f(x)) for all x € E by (2.19).

By Lemma 6.4 (a) or (c) there is an ergodic measure y equivalent to the
restriction of H* to E. Since D* is a measurable function of x (see Exercise 6.4),
it follows from (6.3) that D*(x) is constant p-almost everywhere and thus for
HS-almost all x € E. A similar argument applies to D5(x).

We note that 0 < D(x) for all x € E (see (5.22)) and that D*(x) < 1 for H*-
almost all x (indeed this is so for all x, see FG, Proposition 5.1), so
0<d<d<l1. 0O

A classical result in the theory of densities (FG, Section 5.1) states that if
0 < H*(E) < oo and s is non-integral, then D*(x) < D*(x) for H*-almost all x,
that is, the density fails to exist, so d < d in Proposition 6.5. This means that
the ratio

w(B(x,r))/(2r)* = H*(EN B(x,r))/(2r)’ (6.19)

‘oscillates’ more or less between d and d when r is small. It is natural to try and
describe this oscillation, and in particular to find the ‘average’ value of (6.19)
for small r. Since self-similar sets exhibit similarities at scales that approach 0 at
a geometric rate (for example, the middle-third Cantor set has self-similarity
ratios 1,1, .L ..} it is appropriate to use a form of averaging that assigns equal
weight to each such scaling step.

Thus, we introduce the logarithmic averages

A(x,T) = = / u(B(x,e™))(2¢ ) *dt

T
_pl / (B(x,e~") e*dt. (6.20)
=0

We define the lower and upper average densities of E or u at x by
A’(x) = li;n inf A%(x, T)

and
A’(x) =lim sup A°(x, T).

T—o0

If 4°(x) =4"(x), we term the common value the average density or order-two
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density, which we denote by 4°(x). Then

A5(x) = lim &, [ B )

i) T ey de. (6.21)

(Of course, these average densities may be defined for more general measures
than just the restriction of Hausdorff measures.)
It is easy to see that for all x

D*(x) < 4°(x) < A°(x) < D*(x). (6.22)

The densities and average densities are defined locally in that they are
determined by the restriction of u to B(x,r) for any r > 0; thus they reflect the
local structure of E at x.

We have remarked that for a fractal set E the density D*(x) does not in
general exist. However, for many fractals, including self-similar sets and
cookie-cutter sets, the average density A°(x) does exist and takes the same
value at almost all x. We demonstrate this using the ergodic theorem. We first
illustrate the method in the particularly simple setting when FE is the middle-
third Cantor set.

Theorem 6.6

Let E be the middle-third Cantor set, let s = log2/log3, and let y = H°®|; (that
is the natural uniformly distributed measure on E ). Then for p-almost all x € E
the average density A*(x) exists with

5 _ 1 -5 _
A’(x) = Flog2 // |x — y| 7 dp(x)dp(y) = 0.62344 ... . (6.23)
lx—yl>=1/3

Proof Fork =0,1,2,... write

k+ —t
Pi(x) = / 1%’3))&. (6.24)

—k 27t

(Of course, B(x,r) is just the interval [x — r,x + r] in this case.) Let f: E — E
be given by f(x) = 3x(mod 1); then f reflects the self-similarity of E in a
natural way (for r <1, the ‘picture’ of f(E N B(x,r)) is just that of EN B(x,r)
enlarged by a factor 3). Using this and the scaling property of u, we note that
replacing x by f(x) and ¢ by ¢ — 1 in (6.24) has the effect of doubling both the
numerator and denominator of the integrand. Thus ¢« (x) = ¢x—1(f (x)), and
iterating

D (%) = Pro1(fx) = b2 (f %) = -+ = do(f*x).

Since p is invariant and ergodic for f (by Lemma 6.4(a) or by checking
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directly), the ergodic theorem, Theorem 6.1, tells us that for p-almost all x € E,

k—1
[ on()auts) = fim %;mmx)

L=
= fm 2 o)

k —t
—im L[ #B(x,37Y)
k—'OOk =0 2_’
T —t
=2 gim L [ 4B )
T-o T Jimg  (2¢7)

—2°4%(x)

dt

dr

using (6.24); the boundedness of the integrand enables us to pass from the
discrete to the continuous limit. Thus for u-almost all x, the average density
A*(x) exists and equals a, where

a=2" [ ou(3)duty)

It is convenient to put 2 in the form (6.23). Substituting (6.24), and writing
1y for the indicator function of the set X,

ZSa:/E/’:IOZ’,u(B(xJ’))dtd,u(x)

1
:// /2’1{|x—y|53*’}d/‘(y)dtd:uf(x)
EJi=0 JE

min{l,~log|x—y|/log3}
:/ / e/ 82 dr dp(x)dps(y)
EJEJ:

=0
1
_-_— 1
o / / du(x)dp(y)
[x—yl<1/3
1 ,
g [ (x=a = Ddutodut)
Jx—y|>1/3
1 -5
= iog2 // |x — y| " dp(x)dp(y),
[x—y|>1/3

for (6.23). (Here we have split the integral with respect to ¢ and used that
(e x p){(x, ) lx =yl <1/3} = (u x ) {(x,y) : |x —y| > 1/3} by virtue of
the similarity of the left and right parts of the Cantor set.)

The integrand (6.23) is non-singular over the domain of integration, and is
not too awkward to evaluate numerically. The integrand may be thought of as
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the expectation of a random variable with distribution given in terms of
the measure u x u, and may be evaluated roughly using a Monte Carlo
method, or more precisely as a series involving the moments of the random
variable. [

The above proof adapts without difficulty to the case where E is an
‘m-part Cantor set’ obtained from the unit interval by repeated subdivision
into equal and equally spaced subintervals of A times the length of the
parent interval. Thus E is the invariant set of the IFS consisting of the
similarities Fi(x) =Ax+ (i—1)(1-X)/(m—1) for i=1,...,m. Then,
s = dimgE = —log m/log A, with H*(E) = 1 and

A(x) = ﬂ%ﬁ / / I — 1 du(x)du(y)

for p-almost all x, where p is the restriction of H* to E and where the double
integral is evaluated over (x,y) € Ui#j E; x Ej.

Average densities for sets of this form are plotted in Figure 6.1. In
particular, it can be seen that sets of the same dimension have different average
densities; thus the average density is a parameter that can distinguish between
sets of equal dimension.

For sets that are self-similar under similarities of several different ratios the
proof that A°(x) exists and is constant almost everywhere is more involved,
and for general cookie-cutter sets there are further complications, requiring the

A(x)
0.8 —

0.6 —

0.4 —

0.2 —

0
[ I I | I
0 0.2 0.4 0.6 0.8 1.0

dimy E =~logm/logh

Figure 6.1 The average density of an m-part Cantor set F for various values of m and
dimHE
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approximate ergodic theorem, Corollary 6.2. Nevertheless, the proof of
Theorem 6.6 is the prototype for these generalisations.

Let f: X; UX; — X be a C? cookie-cutter system with repeller E, which we
assume to lie in the interior of X. Let s = dimy E, so that 0 < H*(E) < o0, and
let = H*|,. For convenience, we collect together the facts we need to study
average densities of E.

We may find ry so that if 0 < r <ry and x € X then

B(x,r)C X (6.25)
so, In particular, F; o---oF; is defined on all such B(x,r) for all
(i1, ..., ix) € It for all k. From (5.20) we have that for some number d > 0

w(B(x,r))r*<d (6.26)
for all x € E and r > 0. We note from (4.12) and (4.17) that for some b > 0

llog| (/%) (x)] = 1og|(f Y (W)I] < blXic,y,...5]

for all x,y € X; ., for all ¢>k and all (i, ..i). In particular, if
x,y € X;,.;, and ¢ is the greatest integer such that f *(x), f*(y) € Xj,,,,..,,, then

llog|(f ) (x) — logl(f*) WII < brd ~'1.f*(x) ~ f*(»)] (6.27)
by virtue of (4.23).

Theorem 6.7

Let E be a cookie-cutter set and let v be any invariant ergodic measure on E.
Then there is a number a such that the average density A*(x) exists and equals a
for v-almost all x € E.

*Proof The basic argument is parallel to that of Theorem 6.6, but the non-
linearity of the cookie-cutter system requires the extension of the ergodic
theorem, Corollary 6.2.

Forn=0,1,2,... and x € E let

log |(f*1) ()
an(v) = [ e u(B(x,e))dt, (6.28)
log |(f")' ()]
where 1 = H*|,. We show that condition (6.9) of Corollary 6.2 is satisfied by
the ¢,,.
For the time being fix x € E and integers » and k. Write

tn = log |(f")(f*x)| (6.29)

(so the derivative of f” is evaluated at f*x) and assume that » is large enough
to ensure e <ry. Let Fyo...0F, be the branch of f~% such that

Fyo...oF(f*x)=x.
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Let x_, x4 be points of the interval
Fyo---0F (B(f*x,e™™)) (6.30)
such that
[(F5) (x2)] = inf|(£ %) (x)]
and
(%) (el = supl(f*) (%)

where the infimum and supremum are over the interval (6.30). By the Lipschitz
property of Hausdorff measure (2.11), with the Lipschitz constant obtained
from the mean value theorem in the usual way, we have for ¢t > 1,

:U'(B(ka7e‘!)) < |(fk)l(x+)|s,uf(Fi1 o ..- OFik(B(ka, e—[)))
< |(fk)/(x+)|sN(B(x, e_’|(f")'(x_)|‘1)) (6.31)

(the inclusion in the last step follows from an application of the mean value
theorem to F, o --- o F,, noting that (F; o---o F,)' (f*¥(x)) = (f9(x)™.
From (6.28), (6.31) and then substituting u = ¢ + log|(f*)'(x_)|

ou(fx) = / " eu(B(fx e ) d

n

< / e (B, () o) DI ()

t1 Hlog (%) (x_)] ky! s
:/ e u(B(x,e™")) (P (x+) du
u=t+log |(f#)' (x-)]

(S5 (x-)

trr1+log (%) ()]
< / e u(B(x,e™))du + €,,
tytHog [(f*)' (x)]

where ¢, — 0 as » — oo uniformly in k and x, using (6.26) and (6.27) and
noting that | f*x — f*x_|,|f*x — f*x.| — 0 uniformly as n — oo, by virtue of
(6.30). Since ¢, + log |(f*) (x)| = log |(f"**)'(x)| by the chain rule, this is

¢n(ka) < ¢n+k(x) + €n
where ¢, — 0 as n — oo. This is half of the inequality
[6n(f*2) = bnk(x)| S & (x € E),

and the other half follows in exactly the same way.
By Corollary 6.2

L el =
— B(x,e™"))dt = —
= (Bl et = 1D u(x) =
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for some ay > 0 for v-almost all x, since v is an invariant ergodic measure.
By Proposition 6.3 Llog|(f m™'(x)| — X for p-almost all x, where X is the
Liapounov exponent, so

1 /log 1Y ()l (B 0 =

_ e’ u(B(x,e7"))dt — apA”
log [(f™)' ()] Jo

as m — oo. Using that the integrand is bounded (see (6.26)) we may change

from the discrete limit as m — oo to the continuous limit as 7' — oo of (6.21) to

get that 4°(x) = apA~ 127 for v-almost all x. [

By choosing v appropriately, we get the natural result on the existence of
average densities for cookie-cutters.

Corollary 6.8
Let E be a cookie-cutter set of Hausdorff dimension s. Then there is a number

a > 0 such that

A’(x) = lim ! HY(EN B(x,e™))

Am ] a1 dt=ua (6.32)

for H*-almost all x € E.

Proof By Lemma 6.4(c) there is an invariant ergodic measure v on E equivalent
to H’|g, so (6.32) is a restatement of Proposition 6.7 in this case. [J

Unlike density, average density is a well-defined and natural parameter for
describing a wide class of fractals. Unfortunately, average densities are usually
difficult to calculate or even to estimate numerically. It might be possible to
estimate the average densities of certain cookie-cutters in a way analogous to
that indicated in Theorem 6.6 for the Cantor set, but this would be quite
involved.

An alternative way of expressing the average density 4°(x) is in terms of the
behaviour of the singular integral [ |x — y| ™ du(y).

Proposition 6.9

Let p be a finite measure on R", and let x € R" be such that
u(B(x,r)) <dr’ (6.33)
for x € E and r > 0 and such that the average density A*(x) of u exists at x. Then

1 du(y)

A’ (x) = lim .
) = 3 sTiog Sy e — o7

(6.34)
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Proof We have, after writing m(r) = p(B(x,r)) in (6.20),
T
A(x,T) = Z_sT‘l/ e'm(e”")ds.
0
Substituting r = e~ and € = e~ T and then integrating by parts gives

1
A*(x, —loge) = 27%|log | / r'm(r)dr

1

— 27"|loge| s [m<e>e—s ~ m(1) + / r‘ﬂm(r)}

=€

=2 %|loge| s

o(1) +/ |x — yl”du(y)} :
[x—y|>e
using (6.33) and that [ r~*dm(r) < co. Thus (6.34) follows. []

Conversely, the singular integrals may be expressed in terms of average
densities, so that (6.34) becomes

du(y)

~ 2°s|log e|4%(x). 6.35)
/X—YZe |x - y|s ( ) (

as € — 0. Since the average density, or equivalently, this singular integral,

depends only on y in arbitrarily small neighbourhoods of x, it is easy to see

that for any continuous f: £ — R we have that

/ J0)duly) ~ 2%s|log €| f(x)A°(x). (6.36)
|x—y|>e |x - y|s

In fact (6.36) holds for y-almost all x if f € L'(u) (that is, if f is measurable
with [ |f|du < o). This result, which lies in the realms of harmonic analysis,
may be proved using a version of the Hardy-Littlewood maximal theorem to
transfer the formula from continuous to integrable functions. In the case when
s = log 2/log 3, E is the middle-third Cantor set and p = H’|, (6.36) becomes

/ SOVBD) 100 el £(x) x 0-60912....
|

x—y|>e |X - y| s

for almost all x, using (6.23).

6.3 Notes and references

For a full treatment of the ergodic theorem and its variants see the books by
Parry (1981) and Petersen (1983). The ergodic theorem was first proved by
Birkhoff (1931); the proof given here is essentially that of Katznelson and
Weiss (1982).
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Applications of the ergodic theorem to dynamical systems, and in particular
to Liapounov exponents, are described in Pollicott (1992).

Salli (1985) gave a non-ergodic proof of Proposition 6.5. Average densities
were introduced by Bedford and Fisher (1992) who demonstrated their
existence for cookie-cutter sets. The approach described here was given by
Falconer (1992b). Values of average density were calculated by Patzschke and
Zihle (1993) in the case of the middle-third Cantor set and by Leistritz (1994)
for the m-part Cantor sets. Average densities of Brownian paths and other
random sets are considered in Bedford and Fisher (1992) and in Falconer and
Xiao (1995). Patzschke and Zihle (1993) study local properties of fractal
functions using similar techniques.

Exercises

6.1 Deduce the ergodic theorem in the case ¢ € L!(u) (rather than with the restriction
|¢(x)| < M for all x). To do this, first assume that ¢(x) > 0 for all x, and apply
Theorem 6.1 to the function ¢/(x) = max{¢(x), M }. Alternatively, modify the
proof of Theorem 6.1 to allow for ¢ to be unbounded.

6.2 Verify the inequalities (6.22).

6.3 Let E be a compact subset of a real interval [a, 5] with 0 < H*(E) < oo and assume
that the average density 4°(x) exists at some x € E. Let f': [a,b] — R. Show that if f
is an injection with continuous derivative, then 4°(x) equals the average density of
S(E) at f(x), but that this need not be true if f: [a,b] — f{[a,b]) is merely bi-
Lipschitz.

6.4 Verify that the densities D%(x) and D*(x) given by (6.17) and (6.18) are u-
measurable functions.

6.5 Let s =log2/log3, let E be the middie-third Cantor set and u = H*|, and let
p > 0. Show, similarily to Theorem 6.6, that the p-th power average densities
limy_ o 7' fOTu(B(x, e"))” e”dt exist and are constant for y-almost all x.

6.6 Define the (right) one-sided average density of p by A%(x) = limr_ fzio
u([x,x +e7'])/e #dt. Show, with u as the usual measure on the Cantor set, that
A%(x) exists and is almost everywhere constant. How are this value, and the
corresponding almost sure left one-sided density, related to the average density of
u?

6.7 Verify (6.36) in the case of a continuous function f.



Chapter 7 The renewal theorem
and fractals

The renewal theorem is another major theorem of probabilistic analysis that
has been applied with advantage to fractal geometry. The self-similarity of
certain fractals is reflected in relationships equivalent to the renewal equation,
and the conclusions of the renewal theorem then translate to give information
about the structure of the fractals.

71 The renewal theorem

Let g: R — R be a given function and let x be a given Borel probability
measure with support in [0, 00). The integral equation

£ =g+ /0 TF-y)duly) (e R) (7.1)

is called the renewal equation. We shall be interested in ‘solutions’ f of this
equation; in particular the renewal theorem will tell us about the behaviour of
f () as t — oco. We often think of the variable ¢ as ‘time’, so that (7.1) relates
the value of f at time ¢ to its earlier values.

The renewal equation has been studied extensively as an integral equation
in its own right, but it is also of fundamental importance in probability
theory. The example usually quoted concerns the renewal or replacement
of light bulbs. At time 0, a new light bulb is installed, the instant it blows
it is replaced by another bulb, and so on. With px as the probability
measure giving the distribution of lifetimes of the bulbs (so that u([t;,])
is the probability of a failure in the time interval [¢1,#;]) and taking
g(t)=0(t<0) and g(r) =1 (¢ > 0), equation (7.1) is satisfied by f(¢), the
expected number of replacements up to time z To see this note that,
conditional on the first replacement occurring at time y > 0, we have for ¢t > y
that

#(replacements up to time ¢) = 1 + #(replacements up to time ¢ — y).

The renewal equation may conveniently be expressed in the language of
convolutions. Recall that, if x is a Borel measure on [0,00) and f a Borel

13
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measurable function on R, the convolution f* p is defined by

ety = [ 5= n)duis) (12
assuming that this integral exists. In this notation (7.1) becomes
f=g+f*p (7.3)

We will need to take repeated convolutions of such equations with . The
k-th order convolution, p**, is defined inductively, taking x** as the unit point
mass at 0 (so fx p*% = f), with u*! = p, and, in general for k = 1,2,...,

(f*u®) () = (f* & 5 p)(2) (7.4)
:A (f o D) (e — p)dpa(y)

= [T [ = 0dut) . (19
0 0

{Convolution is easily seen to satisfy the associative law, so brackets are not
required in (7.4).) The form (7.5) is obtained by substituting (7.2) in itself
(k — 1) times; the distribution of the sums y; +--- + yx is central to renewal
theory.

We first show that, under suitable conditions, the renewal equation has a
unique solution. We take 1 to be a Borel probability measure with support
contained in [0, c0) such that

A= /000 tdu(t) < oo. (7.6)

To avoid trivial cases we assume that p is not concentrated at 0, that is
1({0}) < 1, which clearly implies that for every a > 0

Vo = /oooe_‘”d,u(t) <1. (7.7

We assume throughout that g: R — R is a function with a discrete set of
discontinuities, and such that for some ¢ > 0 and a > 0

lg(6)] < ce™® (1€ R). (7.8)

In particular, g is bounded and integrable. (In fact the theory goes through
under rather weaker conditions on g: it is enough for g to be ‘directly Riemann
integrable’.)

Given conditions (7.6)-(7.8) we may exhibit the solution of the renewal
equation. We write F for the space of Borel measurable functions f: R — R
such that lim,_,_, f(¢) = 0 and such that fis bounded on the half-line (—o0, 4]
for every a € R. The space F is a natural one in which to seek solutions of

(7.1).
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Proposition 7.1

Let g and u satisfy (7.6)—(7.8). There is a unique f € F that satisfies the renewal
equation (7.1), given by

f=> egxu, (7.9)
k=0

that is

B g/om | ”/ooog(t_yl — - = ye)du(y) . .- dp(yr). (7.10)

Moreover, f(t) is bounded for t € R, and if g is continuous, then f is uniformly
continuous on R.

Proof We prove this result under the simplifying assumption that there exists
7 > 0 such that

p[0,7] = 0. (7.11)

(This is true in all our applications, for the proof without this extra assumption
see Exercise 7.1.)
Using that 4 is a probability measure and (7.8), we have for t € R

2/0“.../0°°|g<,_y1—--'—ykndu(yl)---du(yk)
k=0
:/ooo.../oooi |g(t —y1— - = yi)ldu(y1) - - - dp(ym)
k=0

<c / B / 3 e (1) - dpa(ym) (7.12)
0 k=0

<e [ / 2/(1 & )du(n) - du(yn) (1.13)
=2¢/(1—e*) (7.14)
(In summing to get (7.13) we note that, by (7.11), the numbers yy, ..., y,, are all
at least 7, except for a set of (y,...,ym) of gt x -+ x u measure 0. Thus the

series (7.10) is absolutely uniformly convergent with
f(D)] <2¢/(1 —e™) (7.15)

for all 1 € R.
For ¢ < 0, the bound (7.12) becomes

[T [T ) dum) < et (1 =), (1,16
k=0
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again using (7.11). Applying this to (7.10) gives
(O] <ce/(1-e) (7.17)

for t < 0, so lim,, o f(¢) =0, giving f € F.
For all ¢, we have identically that

m m—1
> (gxp* g0+ > ((gxu™) = w)(1)
k=0 k=0

:g(t)+/ooo (g 1) (¢~ »)du(y).

Letting m — oo and noting (7.14), the dominated convergence theorem gives
that f satisfies (7.1).

Suppose now that f|,fo € F are both solutions of (7.1). Then
Jo =f1 —f2 € F satisfies fy = fo * 1, so by repeated convolution with p we have
fo =fo* pw* for all k. Hence forallu e Rand k= 1,2, ...

| fo(2)] =' /---/fo(t—yn — o = y)dup(yr) .. .du(r)
itetye>u
// folt =31 =+ — m)du(y) .. du(ye)
u—yr——ye20
< sup [folv I+/ / sup fo()le" '~ dp( ). .- dyu( )
k

< sup 140 + sup et ([ et

Given ¢ > 0 we may choose u large enough to make the first term less than %5

(since lim,—,_, fo(v) = 0), and then choose k large enough to make the second

term less than 1e (using (7.7) and that f; is bounded). Thus |fo(1)| < ¢ for all
e >0, so fo(t) = 0 giving f(¢) = f2(¢) for all ¢.

Finally we show that if g is continuous then fis uniformly continuous. Given
€ > 0, it follows from (7.8) that |g(z)| < ee™2?! for all |¢| > T, if T is chosen
large enough. Together with uniform continuity of g on the interval
[--T— 1, T+ 1], this implies that there is a number Ay > 0 such that for all
tcRand 0 < h <hy

|g(t+h) — g(t)| < 2eerM. (7.18)
Replacing g(-) by g(h +-) —g(-) in (7.9) or (7.10) we get

o0

F+h) —f(1) =" ((gh+-) —g()* w)()-

k=0
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Thus applying the estimate (7.15) to f(¢+ h) —f(¢), using the bounds on
lg (1 + h) — g ()| given by (7.18) in place of (7.8), gives

|F(t+h) £ ()] < 4e/(1 —e3T)
for all ¢t € Rand 0 < & < hy. Since ¢ may be chosen arbitrarily small, it follows
that f'is uniformly continuous on R. [

Two contrasting situations arise in renewal theory. On the one hand, p
may be supported by a discrete set consisting of integer multiples of a
number 7 >0, in which case p** is supported by the same set for all k.
Then by (7.10) f(¢) depends only on g(t—k7) for k=10,1,2,... . On the
other hand there may be no such number 7. To see the significance of
this distinction, consider again the light bulb replacement example. If the
bulbs happen to be manufactured in such a way that they always blow
after some exact multiple of 24 hours, then, if the first bulb is fitted at
midnight, renewals will only occur at midnight. On the other hand, if the
bulb lifetime is not distributed with some such underlying periodicity
then in the long term a bulb may require changing at any time of the day
or night.

Thus we define a measure i to be -arithmetic if T > 0 is the greatest positive
number such that the support of u is contained in the additive group
1Z = {7k : k € Z}.If there is no such 7 > 0 then we call y non-arithmetic. For a
simple example, suppose that y is supported by the two point set {y;, y,},where
¥1,¥2 > 0. Then p is non-arithmetic if y;/y, is irrational, and 7-arithmetic if
¥1/y2 is rational with y; = k7 and y; = k,7 where &, k; are co-prime integers.
Similarly, u is non-arithmetic if, for example, the support of u contains an
interval.

The renewal theorem concerns the limiting behaviour of solutions f of the
renewal equation as ¢t — oo. The main conclusion is that in the non-arithmetic
case lim, ., f(f) exists, and in the r-arithmetic case f is asymptotic to a
function that is periodic with period 7.

Various proofs of the renewal theorem have been devised, none particularly
elementary. Here we describe two approaches: the first proof uses ideas from
probability theory and has an intuitive interpretation in terms of a ‘game’, and
the second proof uses Fourier transforms and requires the power of a
Tauberian theorem.

Theorem 7.2 {renewal theorem)

Let g and p satisfy (7.6)—(7.8), and let f € F satisfy the renewal equation (7.1).
If 1 is non-arithmetic then

fim £(0=x" [ gy (7.19)
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If p is T-arithmetic then for all y € [0,7)

lim f(kr+3) =X Y g +). (7.20)

j==o0

First proof This proof uses probabilistic ideas. We give the proof in the
arithmetic case, though it may be adapted to the non-arithmetic situation. By
scaling the time coordinates, we may assume that g is l-arithmetic and by
translating the origin we may assume that y = 0 in (7.20).

We express the solution of the renewal equation (7.10) in probabilistic terms.
We let (Y),Y,,...) be a sequence of independent identically distributed
random variables each with probability measure u (so for all j, u(A4) is the
probability that Y; € 4). We write P for the product probability measure on
the set of sequences (Y1, Y2, ...) and E for expectation with respect to P. In this
notation we may write (7.10) as

F) = E@li—Yi— — Yy)
k=0
:‘i g(j)P(Y1+ -+ Yy =t—j for some k). (7.21)

Fix m € Z* and consider the following ‘game’ played by two players 4 and
B on a ‘board’ consisting of ‘squares’ numbered by the integers
{-m,—m+1,...,-1,0,1,2,...}, see Figure 7.1. Player A starts at square
—m and player B starts at 0. The players repeatedly throw a ‘die’ to determine
the number of places moved: there is a probability p({x}) of throwing an x and
thus advancing x integers. It is intuitively obvious (at least to anyone that
plays board games!) that, if y is a large integer, then 4 and B have virtually the
same chance of landing on square y at some stage of the game, despite
starting on different squares. To see this, suppose for simplicity that
the probability measure u is supported by a finite set of positive integers
{1,...,q} with u({1}) >0, so the players always move between | and ¢

Player 4

-m |-mt+y] . -1] ¢ 1 2 3 4 5 6 7 8

NAAN

Player B

Figure 7.1 The ‘game’ in the proof of the renewal theorem. With probability one the
players eventually land on the same square
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places and have a positive probability of moving exactly one place. The
players take consecutive turns as follows. Player 4’s first turn consists of
repeated throws and moves until he lands on or passes B’s position. Then
player B has a turn of several throws until he lands on or passes A, then 4 has
another such turn, and so on. Then, with probability 1, one player will
eventually land on the square actually occupied by the other. This is because
at the start of each turn, the players must be within ¢ places of each other,
so there is a probability of at least ¢ = u({1})? > 0 of the players coinciding
at the end of that turn, independently of what has happened before. Thus
the probability of the players not coinciding before »n turns have passed is
at most (1 — )" — 0 as n — oo. This argument adapts to the case of general
1, the l-arithmetic condition means that there is a positive probability of
the players coinciding within a finite number of turns, with condition
(7.6) ensuring that the expected number of squares moved on any throw is
finite.

Clearly, once A and B have landed on the same square the probability
of visiting any given subsequent square is the same for both players. Thus, if
S, is the event ‘the first square visited by both 4 and B is square »’ and
r > n, then

P(A lands on r |S,) = P(B lands on r |S,),

where these probabilities are conditional on S,. By the ‘translation invariance’
of the game, for r > m > 0,

|P(B lands on r + m) — P(B lands on r)|
= |P(4 lands on r) — P(B lands on r)

Z(P(A lands onr|S,) — P(B lands on r|S,))P(S,)
n=0

< > P(S,)

n=r+1

r(()5) o

n=r+1

uniformly in m as r — oo, by the preceding paragraph. Thus we have that
(P(B lands onr)),, is a Cauchy sequence, so

P(B lands on r) — 5 (7.22)

as r — oo, for some 5 > 0. But the average number of squares moved by B on
each throw is "2 tu({t}) = X by (7.6), so clearly n = A~!. Interpreting (7.22)
in terms of the random variables Y;,

P(Yl+---+Yk=rf0f30mek)_’77:)\_l
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as r — co. Thus the ‘-th’ term of the sum (7.21) converges to g(j)A~!
t — o0, so since ) °  |g(/)] < oo, by (7.8), and p is a probability measure,
the dominated convergence theorem implies that f(¢) — Zj‘_oo g(iHA L

*Second proof This method depends on properties of Fourier transforms and
Wiener’s Tauberian theorem.

This concerns the existence of limits as x — oo of convolutions of functions
(fxy = [ f(x —y)y(y)dy. Wiener’s Tauberian theorem states that if f
is a bounded functlon on R and there is a function ¢ € L!(R) such that
(f*¢)(x) —> [ as x — oo, then

01 o(ney / [ vt (7.23)

for every ¢ € L'(R), provided that the Fourier transform of ¢ does not vanish,
that is provided that

P(u) # 0 for allu € R, (7.24)

where ((u) = [ e®*p(x)dx is the Fourier transform of .

[An intuitive way of thinking of this theorem for ‘sufficiently nice’ functions
is that, if 1/;( ) #0 and ¢ is a function with rapidly decreasing Fourier
transform ¢, then we may define A(u) by ¢(u) = (u)h(u), so that by the
convolution theorem, ¢ = v * h, where A is the function with Fourier transform
h. Then, formally,

(80 = (Fr9) =) = [ T -k (1.29)

Provided that 4 € L'(R), the major contribution to this integral comes
from ‘relatively small’ values of y, so if x is very large, (f* ¢¥)(x — y) is close to
[ for y where h(y) is significant, and thus the integral is close to / [*_h(y)dy.
Since ¢ =hx1p we have [* o()dy= [ ¥(y)dy [7_ h(y)dy so (7 23)
follows.]

We present the Tauberian proof of the renewal theorem in the case where
is non-arithmetic. We first assume that g is continuous so that f is uniformly
continuous by Proposition 7.1. Rearranging (7.1) and integrating gives

/,:_oog(”d’—/oo/’:m[f(t) (e — y)]dedu(y)
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Hence, defining v(f) = 0 for 1 < 0 and (t) = u([t,00)) for t > 0, we have

/ " g(ndi= / " F(0p(x - de = (fx (), (7.26)

so in particular
. / g(1)dr (7.27)

as x — oco. Wiener’s theorem (7.23) tells us that, provided that the Fourier
transform condition (7.24) is satisfied, then for every ¢ € L'(R)

(o) — [ atnar [~ oty / | vty

=3 [ stoar / B(3)dy, (7.28)
since by (7.6) [ ¢(y)dy = [, u( = [’ td,u =\ To check (7.24)
we use that  is non- arlthmetlc For U= 0 we have 1/; f - yydy=x>0,

as above. For u # 0, integration by parts gives

) = /0 " e[t 0))dt

= (u([o,oo)) -/()Ooei“’du(t)>/iu
- (1 - /oooe"“’du(z)>/iu.

Since ([0, 00)) = 1, it is only possible to have 1 = [,° e dpu(t) for some u # 0
if e =1 for almost all ¢. This would require that for u-almost all ¢, there is an
integer »n such that ¢ =2nn/u, so that g would be (2r/u)-arithmetic. We
conclude that ¢ (u) # 0 for all u € R, so (7.24) and thus (7.28) holds.

To replace (fx¢)(x) by f(x) in (7.28) we choose ¢ to be close to a
‘Dirac delta function’. By Proposition 7.1, fis uniformly continuous on R, so
given € > 0 there exists § > 0 such that |f(x + /) — f(x)| < eforall x € R and
0 < h < é. Choosing ¢ > 0 such that [*° ¢(y)dy = 1 and such that ¢(y) = 0 if
lv| > 6, we have |f(x)— (fx*¢)(x)] <5 for all x. Since ¢ may be
chosen arbitrarily small, (7.28) implies that f(x) — A~! [™ g(1)d¢, as x — oo,
which is (7.19).

Finally we extend the theorem to the case where g has a discrete set
of discontinuities. Given ¢ > 0 we may find go, g, : R — R with g = go + g1,
such that gy is continuous and such that g >0 and [ gi(¢)dr <e.
Similarly, we may find a continuous g;: R— R such that g, > g
and [* g,(t)dt < 2e. We may choose go,g1 and g, so that they all satisfy
the bound (7 8) for some constant c¢. Let f,fi and f; be the solutions to
the renewal equation (given by (7.9)) corresponding to go,g; and g,. We
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have established that the renewal theorem holds for the continuous functions
go and g, so

f()(x) — At /_Oo g()(l)dl

oo

as x — oo, and

0 < limsupf;(x) < limsupfa(x) = A~! / ga(dt < 227 le.

X—00 X—00

— )\“/_:g(z)dz'

< f(x) = fo(x) +

Thus

Al =7 [~ e dz’u [ ot - gtolar
+ A7 / gi()dt

— A+ |fo) — / so(0)ds
if x is large enough, so the conclusion (7.19) holds in this case. [

<327 le

For our applications, u will be of a rather special form, with support on a
finite set, allowing the renewal theorem to be expressed in the following way.
We say thata set {y1,...,yn} of positive real numbers is T-arithmetic if T > 0 is
the greatest number such that each y; is an integer multiple of 7, and non-
arithmetic if no such 7 > 0 exists.

Corollary 7.3

Letm>2 let yi,...,y, >0 be ‘times’, and let py,. .., p, > 0 be ‘probabilities’,
sothat 37 pj = 1. Let g be as in (7.8) and let f € F satisfy the renewal equation
in the form

F =g +3° st~ ) (7.29)
=1

If {y1,...,ym} is non-arithmetic then

lim f(r) = ™! /_ N g(y)dy,

{—00

and if {y1,...,ym} is T-arithmetic then
. 41 .
lim f(kr+y) =" 3 g(ir+)

for all y € [0,7), where A =3~ y;p;.
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Proof This is just a restatement of Theorem 7.2, taking u to be the probability
measure supported by {y,...,y,} such that u({y;}) =p; for j=1,...,m.
The definitions of {yi,...,y»} and p being 7-arithmetic or non-arithmetic
coincide. [

7.2 Applications to fractals

Let g(r) be some measurement of a self-similar fractal E at scale r. It may be
possible to use self-similarity to write down a relationship expressing ¢(r) in
terms of ¢(r’) for ¥’ > r, and a substitution may convert this relationship into a
renewal equation. The limiting behaviour of the solution assured by the
renewal theorem may then correspond to the behaviour of g(r) as r — 0.
This is best illustrated by an example. Let {Fi,...,F,} be an iterated
function system, where F; is a similarity of ratio r;, with attractor £ C R", see
Section 2.2. Thus E = U7 F;(E), where for convenience we assume that this
union is disjoint. As in definitions (2.1)—(2.3), N(r) = N,(E) will denote the
covering number function of E, that is the least number of sets of diameter r that
can cover E. We know that the box dimensions dimgE = dimgE = s, where
S, rf =1, see Theorem 2.7, so that lim, logN(r)/—logr=s, and it is
not hard to show that there are ¢j, ¢z > 0 such that ¢;r* < N(r) < ¢ for all
r <1. The renewal theorem enables us to obtain much more precise
information about N(r) for small r. Recall that f(r) ~ g(r) means that

lim, o f(r)/g(r) = 1.
Proposition 7.4

Let E be a self-similar set as above, with covering number function N(r). If

{logrt, ... logr;'} is a non-arithmetic set, then for some ¢ > 0
N(r)~er™ (7.30)
asr— 0, and if {logri!,... logr;'} is T-arithmetic then
N(r) ~r~*p(—logr) (7.31)

as r — 0, where p is a positive function with period .

Proof Let d = miny; dist(F;(E), F;(E)) and let N;(r) be the minimum number
of sets of diameter r that can cover F;(E). We observe that if r < d a set of
diameter r cannot intersect more than one of the F;(E), but if r > d such a set
may cover parts of several of the F;(E). Thus counting the number of sets of
diameter r needed to cover E,
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rir,

Figure 7.2 The set E shown is a self-similar set constructed using ratios r; and r;.
Scaling the left and right parts of £ by 1/r) and 1/r; relates an r-cover of E to r/r|- and
r/ry-covers of E, and this gives relation (7.32)

where h(r) = 0 for 0 < r < dand h(r) > 0 for r > d. Since F;(E) is similar to £
at scale r;, we have Ni(r) = N(r/r;), so

M§

N(r)= > N(r/r) = h(r); (7.32)

i=1

an equation that reflects the self-similarity of E, see Figure 7.2. We transform
(7.32) using the substitutions

r=e’’; ft)=e'N(e™"); g(t) =e"h{e™). (7.33)
s0

— i eslogr,- e’ logr,-N(eftflogr,-) _ h(eft);
i1
thus after multiplying by e~ we get,
m
[y =Y _rif(t—togr") — g(0). (7.34)
i=1
With s = dimgE we have Soryri=1, so this is the renewal equation (7.29)
with ‘times’ y; = logr;! and probabllmes pi=ri.

Since N(r) is integer valued and increasing, f, and thus A, has discrete
discontinuities. Since A(r) =0 for 0 <r<d, so g(t) =0 for 1> —logd.
Unfortunately, g(¢) is unbounded as 1t — —oo so we cannot apply the renewal
theorem to (7.34) as it stands. To get round this problem, we modify fand g by
defining

0
ﬁm:{ (t<9

[ =0



Applications to fractals 125

and
0 (t<0)
800 = 4 g(t) = Syeeny rif (t—log i) (2 20).
Then
fo) =Y _rifo(t—logri') — go(t) (7.35)

i=1

for t € R, where go(t) = 0 if £ € [0, —log min{ry,...,rn,, d}].

Corollary 7.3 now implies that /(1) = fo(¢) — ¢ for some ¢ > 0 in the non-
arithmetic case, and that f(r) is asymptotic to a positive periodic function in
the arithmetic case; inverting the substitutions (7.33) leads to (7.30) and

(7.31). O

Note that the constant ¢ in (7.30) is given by the renewal theorem in terms
of go, so that the limit of N{(r) as r — 0 may be expressed in terms of
the values of N(r) over the range 1 > r > min{ry,...,ry,d}, and similarly
for the function p in (7.31). Since {logr;!,...,logr,'} is ‘usually’ a non-
arithmetic set (as it will be if logr;!/logr;! is irrational for some i # j),
the ‘usual’ conclusion is that r*N(r) approaches a limit. Asymptotic periodi-
city (7.31) is the ‘exceptional’ possibility, although it occurs for self-similar
sets with all the similarity ratios r; equal, such as for the middle-third Cantor
set.

To obtain more precise asymptotic forms, we specialise to subsets of the
line. Let E be a self-similar subset of [0,1] constructed using similarities of
ratios ri,...,r, and assume that at the first stage of the construction, the
gaps between the intervals have lengths &y,...,b,-1. We define the

gap-counting function of E by
G(r) = #{complementary intervals of E with length > r}.

(Thus for the middle-third Cantor set r; = r, = b; = 1/3 and G(r) = 2¥ — 1 if
3-(+1) < p < 37%)) The renewal theorem method is well suited to estimating
G(r) for small r.

Proposition 7.5

Let E be a self-similar subset of [0, 1] as above. If {logr{!,...,logr; '} is a non-
arithmetic set, then

G(r) ~rss! Zbg/ > rilogrt, (7.36)
i=1 i=1
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asr— 0. If {logr;!,... log r '} is T-arithmetic, then, for each o > 0,
1 g m

G(ap*) ~ (ap*) (1 — ™)' > "exp(sloga — s[(log b +loga) /7))

=1
” -1
x (Zrﬁlog ril> (7.37)
=1

as k — oo, where p = e 7 and here | | denotes ‘the greatest integer less than or
equal to’.

Proof We note that for each i the gap lengths within the components F;(E) are
those of E multiplied by r;, so counting the gaps in E by counting those within
each F;(E) together with those between the F;(E), we have

m

G(r) =Y _G(r/r) + #{i: b; > r}.

i=1

This formula is valid for all » > 0, and the right-hand term vanishes for r > 1.
Substituting

r=e’; f(t)=eGle™"); gt)=e#{i:b;>e"}
we get, just as in (7.34),

rif(t—logr;") +g(1), (7.38)

M§

f(n) =

1

with f(f)=g(t) =0 for 1<0. Taking s=dimpE =dimygE, we have
Tri=1, and |g(r)| < (m — 1)e ', so we may apply the renewal theorem

directly to (7.38). Since

/ g(ndr = Z / e ds
—00 i=1 log b;
=35,
Corollary 7.3 gives
—1 s
zino}:f Zb /Zr logr;!

and substituting back gives (7.36). The r-arithmetic formula follows in a
similar manner. []

Proposition 7.5 enables us to deduce the asymptotic behaviour of V{(r), the
Lebesgue measure of the r-neighbourhood of E, see Section 3.2.
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Corollary 7.6

Let E be a self-similar subset of [0,1] as above, and assume that
{logri!,... ,logr;'} is non-arithmetic. Then as r — 0

m m
V(r) ~ 021751 —5) 75! Zb;/z rilogry .
i=1 =1

Proof We sketch the proof; the exact estimates required are easily completed.
As in (3.17)

V(r) =2r(G(2r) + 1)+ > {|A|: A is a gap of length < 2r}, (7.39)

where G is the gap-counting function. With G(r) ~ cr™*, where ¢ is the
coefficient of r~* in (7.36), we have

2r
Z{|A| : A is a gap of length < 2r} = —/ tdG(1)
0

2r
~ cs/ rdt
0

=cs(1—s)7'(2r)".
From (7.39)

V(r) ~c2r)' ™ +es(1 —s)7 ' 2r)' 7,
=c2n)' (1 -5

as required.

Of course there is an analogue of Corollary 7.6 (with an even messier
formula!) in the arithmetic case.

The renewal theory method may be applied to many other sets and
quantities. The basic idea is always to use self-similarity to write down a
recursion relation and to transform this into a renewal equation to enable the
renewal theorem te be applied. The method may be applied to sets with a
weaker separation condition, such as the open set condition, see Exercise 7.4. A
more sophisticated version of the renewal theorem has been developed to study
approximately self-similar sets such as cookie-cutter sets or attractors of
conformal iterated function systems.

The method may be used to examine the infinitesimal limits of a variety of
quantities reflecting the fractality of self-similar sets. An application to the
asymptotic form of solutions to the heat equation on fractal domains is given
in Section 12.3.
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7.3 Notes and references

Accounts of renewal theory may be found in many probability texts, see for
example Feller (1966) or Grimmett and Stirziker (1992). The Tauberian proof
of the renewal theorem is given in Rudin (1973) and a version of the
probabilistic proof in Lalley (1991). For other proofs see Lindvall (1977) and
Levitin and Vassiliev (1996).

Renewal theory was applied to covering functions of fractals by Lalley
(1988, 1991); the first of these papers treats self-similar sets with the open set
separation condition. Renewal methods were applied to the gap counting
functions and the length of the r-neighbourhood of self-similar sets in Kigami
and Lapidus (1993) and Falconer (1995b). A generalisation of the renewal
theorem suited to attractors of non-linear IFSs, such as cookie-cutter sets, was
proved in Lalley (1989) where many applications are given.

Exercises

7.1 Prove Proposition 7.1 without the assumption (7.11). (Hint: A little more work
is needed to estimate the sum Y} 4 e rrn—-¥l in (7.12) to get estimates
like (7.15) and (7.17). This may be achieved by using (7.7) to bound
[ f#{kra<yi+- 4y < b} du(y) ... dp(ym) for a < b))

7.2 Adapt the first proof of Theorem 7.2 to the arithmetic case. (The ‘game’ now needs
to be played on the real line, with the distance moved along the line determined by
the probability measure p.)

7.3 Find N(r) explicitly for the middle-third Cantor set, and verify that (7.31) holds
where p is a (non-constant) function with period log 3.

7.4 Let E be the von Koch curve, and let N(r) be the covering number function for E.
Show that N(r) = 4N(3r) — h(r), where |h(r)| <6 for r < 1/6. Deduce that
N(r) ~ r1o84/1083p(_logr) where p has period log3. Thus the renewal theory
method may be used for self-similar sets without strict separation of the parts.

7.5 Let E be the middle-third Cantor set and u the restriction of H* to E, where
s=log2/log3. Define M(r)= (ux p){(x,y):|x —y| <r} = [ u(B(x,r))dp(x).
Show that M(r) =3M(3r) + q(r), where q(r) = (ux p){(x,y) : 1 <|x—yi <r}.
Hence investigate the behaviour of M(r) as r — 0.

7.6 Let £ C R” be the self-similar attractor of the IFS with similarities {Fy,..., F,} of
ratios ry,...,r, with the components F;(E) disjoint. Fix x ¢ E, and define
N(r) = #{(i1, ..., i) : dist(F;, o -+ -0 Fy,x, E) > r}. Study the asymptotic behaviour
of N(r)asr— 0.



Chapter 8 Martingales and fractals

The martingale convergence theorem gives general conditions that guarantee
convergence of sequences of random variables or functions. In this chapter we
prove the theorem and give two rather different applications to fractal
geometry.

8.1 Martingales and the convergence theorem

Although the martingale convergence theorem can be formulated as a result in
mathematical analysis, and indeed one of our applications will be in an analytic
context, martingales are very naturally thought of in probabilistic terms. The
word ‘martingale’ comes from the name of a classical gambling system
(involving doubling one’s stake after every lost game), and it is natural to think
intuitively of martingales in the context of gambling.

A gambler plays a sequence of games against a casino, the games being fair
in the sense that whatever amount is betted, the expected or average gain is
zero. (Thus a game might involve throwing a die, with the gambler losing his
stake unless a 6 is thrown, in which case he gets back 6 times his stake.) If the
gambler’s capital after the k-th game is denoted by the random variable Y
then the fairness of the game requires that the expected value of Y, ; equals
Yy, regardless of how much is betted and the outcomes of earlier games. One
version of the martingale convergence theorem states that if Y, > 0 for all £
(that is if the player is not allowed to run into debt) then, with probability one,
Y, converges to a random variable Y satisfying E(Y ) < E(Y}), where Yy is the
initial capital and E denotes expectation. (In the gambling example Y has a
high probability of being zero, unless the gambler is extremely cautious, in
which case there might just be a positive probability that Y > 0!) Whatever
‘system’ the gambler uses to determine his stake for the k-th game (which
may depend on the outcome of the first £ — 1 games) there is almost sure
convergence to an ultimate capital Y which has expectation no more than the
initial capital. In particular this means that there is no gambling system that
yields an expected profit for the gambler.

Analogues of this idea occur in a wide variety of situations in probabilistic
analysis. We work in a sample space 2 with F a o-field of events (so F is closed
under countable unions and intersections and under taking complements) on
which a probability measure P is defined. Let Fy CF; C---C F be an

129
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increasing sequence of o-fields of events, and assume that F is the smallest
o-field that contains F for all k. For k = 0,1,2,... let Y, be a random variable
on Fy. We call Y, or, more precisely, (Yx,Fx) a martingale if for all
k=0,1,2,...

E(|Y]) < o0 (8.1)
and
E(Yei1|Fi) = Ya. (8.2)

Condition (8.2), that the expectation of Y, conditional on Fi equals Y,
means essentially that, whatever happens in the first & steps of the process, the
expectation of Y nevertheless equals Y.

[Note: the technical measure theoretic definition of conditional expectation
with respect to a o-field is quite complicated. For our purposes it is enough to
think of E(Yx.1|F) as the mean value of Yy, calculated as though Yy,...,Y;
are already known. The properties of conditional expectation that we shall use
are very natural in terms of this interpretation.]

In the gambling example, F represents the set of all possible outcomes of
the first £ games. Then (8.2) says that regardless of what happens in the first &
games, the expected value of the gambler’s capital Yy, after the (k+ 1)-th
game equals the capital Y, before that game; this reflects the fairness of the
game.

From (8.2) we get the unconditional expectation

E(Yk+1) = E(Ya), (8.3)

that is, the average of Y,.; will equal that of Y, when no reference is made to
what has gone before.

Much of the theory goes through if (8.2) is weakened to inequality. We say
that (Y, Fy) is a supermartingale if for k = 0,1,2,... we have E{|Yy|) < oo
and

E(Yk+1|]'-k) < Y (8.4)
or a submartingale if
E(Yii1|Fk) > Yi (8.5)

(Thus, in the supermartingale case, the game favours the casino, and in the
submartingale case, the gambler has an advantage.)

Martingales may be thought of in an analytic rather than a probabilistic
way, as a sequence of functions defined on a hierarchy of sets. A simple case
may be visualised graphically, as in Figure 8.1. Let E be a set, let u be a finite
Borel measure on E, and let Cy,Cy,... be finite collections of disjoint Borel
subsets of E of positive measure such that E= U{A € C;} for each k, with
every set of C; a disjoint union of sets in Cx;;. We let Fy be the o-field
generated by Ci, which in this case is the finite family of sets formed by
unions of sets in C;. For k=0,1,2,... let g, : E— [0,00) be such that for
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Figure 8.1 The sequence of funtions {gx} is a martingale: g is constant on each
interval of Cx, and the average of g, over an interval 4 of C; equals gx(x) forall x € 4

each 4 € C;
gx(x) is constant for x € 4, (8.6)

with
ge(x) = p(A)”! / g1 (7)du(y) (8.7)
A

for all x € A4, that is the value of gx at any point of a set A4 of C; equals the
average of gr+) over A.

Here we have interpreted the probabilistic notions analytically, with random
variables replaced by functions, and expectations by integrals. Condition (8.6)
says that g, is F,-measurable, and (8.7) is the martingale condition (8.2), so
that (g, Fx) may be considered’a martingale.
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The main reason why martingales and supermartingales are important is
that, under very weak assumptions, they converge with probability 1 (or, in the
analytic formulation, for almost all x). The standard proof of the martingale
convergence theorem depends on the notion of upcrossings. We fix numbers
a < b and consider the number of upcrossings of the interval [a, b], that is the
number of times Y, changes from less than a to more than . More formally,
we define the number U, of upcrossings of [a,b] made by Y up until time » to
be the largest integer M such that there are integers R;, S; with

O0<RI<SI<R<S<...<Ry<Su<n (8.8)
and
Yr,<a and Yg>b forall 1<i<m.

We assume that the random integers S; and R; are chosen so that S; is the least
integer greater than R;, and R; is the least integer greater than S; ;, for which
(8.8) is true.

The key to the proof of the martingale convergence theorem is the following
bound on the expected number of upcrossings.

Proposition 8.1 (upcrossing lemma)

Let Yy be a supermartingale and let U, be the number of upcrossings of [a,b] up
until time n. Then

E(|Y,]) + |a| .

<
E(Un) < ==

(8.9)

Proof We define a new process Z that ‘shadows’ Y;. In the gambling context
we think of Z, as the capital (which is allowed to be negative) after the k-th
game of a second gambler B whose stake in each game depends on that of
gambler A (the gambler with capital Y, described above) as follows. Gambler
Bhas initial capital Zy = 0 and does not bet until the first time R; that gambler
A’s capital is less than a. Gambler B then stakes equal amounts to 4 in each
game until the time S is reached when A’s capital exceeds b (if this ever
happens) and then stops betting. When A’s capital next falls below a4, gambler
B recommences betting, staking equal amounts to A until A’s capital again
exceeds b, and so on, see Figure 8.2. There cannot normally be too many
upcrossings, otherwise gambler B’s system of shadowing 4 would lead to a
profit above the odds. Mathematically, with the upcrossings as in (8.8), we
define

Z if0<k<R Si <k <R;
Zk+1:{ e (0= oS +) (8.10)

Zr + Yk+1 — Yy (lf R <k< S,)

(The first case is when gambler B ‘sticks’, and in the second case B’s winnings
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Figure 8.2 Proof of the upcrossing lemma. Gambler B (with capital Z; after the k-th
game) bets during the ‘upcrossings’ of gambler 4 (with capital Y;) indicated by a solid
line. A sequence of upcrossings leads to a profit for B. If upcrossings are too likely, this
would mean that 8 had a ‘winning system’, which is not possible in the martingale or
supermartingale situation

are the same as A4’s.) Since Y is a supermartingale, (8.10) and (8.4) give

E(Z |f)_{zk (if0<k<Ryor Si<k<Riy)
k+11/k) = Zi + E(Yr1|Fi) — Yi (if R <k <S)
< Z.

(This says that whatever the outcome of the previous games, gambler B’s
expected capital after each game is at most his capital before that game. The
system that B has been playing, even though it depends on A4’s system, still
cannot yield an expected profit.) On taking unconditional expectations
E(Zki1) < E(Zy) so that E(Z,) < E(Zp) = 0.

Since Z; increases by at least (b — a) for each upcrossing of [a, b], we have

Zy, > (b—a)U, +min{0, Y, — a} (8.11)

(the second term allows for the possibility that Y, is less than a at time n).
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Taking the unconditional expectation of (8.11),
0> E(Z,) > (b — a)E(U,) + E(min{0, Y, — a})
> (b~ a)E(Un) + E(—|Ya| — [al]),
giving (8.9). O

The convergence theorem for supermartingales now follows easily.
Theorem 8.2 (supermartingale convergence theorem)

Let Yy be a martingale or supermartingale with
sup E(] Yk|) < 0. (8.12)
k

Then there is a random variable (i.e. a P-measurable function) Y such that
Y — Y almost surely. Moreover, E(|Y|) <liminfy . E(|Yy]), so |Y| < o0
almost surely.

Proof Proposition 8.1 together with (8.12) implies that for every pair of
rational numbers a < b, the random variable Y, makes finitely many
upcrossings of the interval [a, 5] with probability one. Thus, since there are
countably many rational pairs, there is probability one that Y, makes finitely
many upcrossings of every rational interval [a, b]. However, if a real sequence
(Vk)peo fails to be convergent, we may find rationals a,b such that
liminfy o yx < @ < b < lim sup,_, yk, so that in particular (yi);-, makes
infinitely many upcrossings of [a,b]. We conclude that Y, converges with
probability one. Define Y = lim inf; ., Y%, so that Y, — Y almost surely. By
Fatou’s lemma

E(|Y|) = E(lizninf|Yk|) < lilzninfE(lYk|) <sup E(| %) < oo,
—0C —X k
so |Y| < oo almost surely. [

Our applications will concern non-negative (super-)martingales (that is with
Y, > 0 for all k) to which the following corollary applies.

Corollary 8.3
Given a non-negative supermartingale Yy, there exists a non-negative random
variable 'Y, such that Y, converges to Y almost surely. Moreover,

Proof Since 0 < E(|Yy|) = E(Yy) < E(Yy) < oo for all &, the result follows
immediately from Theorem 8.2. [
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A disadvantage of the martingale convergence theorem in the form of
Theorem 8.2 or Corollary 8.3 is that it is possible to have a non-negative
martingale Y, with E(Yy) = E(Yp) > 0 for all k, but with limit ¥ = 0 almost
everywhere. For many applications we need to be able to conclude that Y > 0,
at least with positive probability. We now add conditions to ensure that this
is so.

A martingale Y is called an Lz-bounded martingale if

0<k<oo

Corollary 84

Let Yy, be an L*-bounded martingale. Then there is a random variable Y such that
Y — Y almost surely, with

E(|Y - Yi]) < E(Y - Y))'/* > 0.
as k — oo. In particular E(Y) = E(Y}) for all k.

Proof Observe that if j > k then E(Y,;Yi|Fy) = E(Y;|Fx)Yx = Y2, so taking
unconditional expectations E(Y;Yx) = E(Y2). Thus for m > 1

Y E(Y = Yt = Y (E(Y]) = 2E(Y;Y;0) + E(Y]))

m m
j=1

=1

S

f 2 )
1

=
E(Y7) — E(Yg),

so > o E((Y; — Y;1)%) < oo, using (8.13). In the same way, for m > k

E((Ym — Yi)*) = E(Y2) — E(Y}) = ZEY Y, )Y,

Jj=k+1

so letting m — oo and using Fatou’s lemma,

oo

E(Y—-Y)’) < > E(Y— Y)!) =0

ok
as k — oo. Using the Cauchy—Schwartz inequality,
[E(Y]) - E(I%)] < E(IY - Yi) SE((Y = ¥))/* > 0,

As Y, is a martingale, E(Y}) is constant by (8.3), so the final conclusion
follows. [
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The martingale convergence theorems may be interpreted analytically to
give conditions for a sequence of functions to converge almost everywhere.

Corollary 8.5

For k=0,1,2,... let C be finite collections of disjoint Borel sets of positive
measure, as above, and let g . E — [0, 00) satisfy (8.6) and (8.7). Then there is a
(Borel measurable) g: E — [0,00) such that gi(x) — g(x) for p-almost all
x € E

Proof This is just Corollary 8.3 expressed analytically. Condition (8.6) implies
that g, is Fr-measurable, where F is the o-algebra generated by Ci, and (8.7)
says that the average of gx, | over A is gi(x), which is (8.2). Thus Corollary 8.3
tells us that g,(x) is convergent u-almost everywhere. []

8.2 A random cut-out set

A variety of random fractal constructions have been proposed, for one class of
examples see FG, Section 15.1. Random fractals may often be analysed using
martingale techniques: the usual procedure is to define a random measure on
the random set as the limit of a sequence of measures associated with the
construction, and to use martingales to deduce properties of the limiting
measure. Here we find the dimension of a random fractal obtained by removing
a sequence of random intervals of decreasing length from the unit interval.
(Note that this construction differs from that of Section 3.2 in that the intervals
removed may overlap.)

Let (ax),-, be a given decreasing sequence of numbers convergent to 0,
with 0 < g < % Let A4;,A,,... be a sequence of random open subintervals
of [0,1] such that A, has length a, with the midpoints of the intervals
independently uniformly distributed on [0,1]. It is convenient to identify
the ends 0 and 1 of the interval [0,1], so if 4; has centre x and 0 < x < jlak
(respectively 1 — x < %ak < 1) then A; is taken to consist of the two end
intervals [0,x +1a) U (1 —Lax +x,1] (respectively  [0,x +1ax — 1)
U(x —1a,1]). We define a sequence of random closed sets E; by ‘cutting
out’ the intervals Ay, so that Ey = [0,1] and Ey = E,_\Ax for k=1,2,....
Then the cut-out set

E= ﬂEk_Ol\UAk (8.14)

is a random closed set, see Figure 8.3. It is easy to see thatif > (" @y < oo then
there is positive probability that £(E) > 0 (where £ is Lebesgue measure or
‘length’) and if ) ° ax = oo then L(E) = 0 almost surely. It turns out that the
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0 1 0 1

i | F | £
4, E,
4,  — —_ — —_—
4 — _ — — g

Figure 8.3 Construction of the random cut-out set £ by repeated removal of randomly
placed intervals. The sequence of intervals shown on the left are cut out to form the sets
on the right

critical case is when

t
a7 (8.15)

as k — oo for some constant ¢ with 0 < r < 1. We show that in this case E is
generally a fractal, provided it is non-empty, and we show that with probability
one its Hausdorftf dimension is at most 1 — ¢ and frequently equals 1 — ¢.
We first estimate the probabilities that a given point, and a given pair of
points, are in Ej. Clearly for all x € [0, 1] we have P(x € 4;) = a;. We define
k

pk;Hu—a,) (k=1,2,..). (8.16)

i=1
Our calculations depend on estimates of this product. Since Y ;°; a; = co we
have that

k k
logpk—Zlog (1—-a) Za,N—Zt/iw—tlogk. (8.17)

=1 i1 =1
Thus by (8.15)
logpy ~ —tlogk ~ tlogay. (8.18)

For x,y € [0,1] write d(x,y) = min{|x — y|, 1 — |x — p|}, that is the distance
between x and y with 0 and 1 identified.
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Lemma 8.6
(a) Forallxe€ [0,1] and k = 1,2, ...
k
P(x€ E) =[](1-a) = (8.19)
i=1
(b) Given € > 0 there exists ¢ > 0 such that
P(x € Exandy € Ey)
pi
forall x,y€[0,1] andk =1,2,....

< cd(x, )1 (8.20)

Proof We have that x € E; if and only if x ¢ 4, for all i=1,... k. But the
events (x ¢ A) —, are independent, so

k

k
P(x € Ex) :HngfA H(l—a,-)zpk.

i=1 i=1

Given € > 0 we have from (8.18) that there exists ¢; > 0 such that
k

H(l —a) =pr > c1a, (1+e) (8.21)
j=1
for all k =1,2,... . By considering the positions of 4; for which 4; excludes

both x and y, and using the uniform distribution of the centre of A;, we have

B l—a;—d(x,y) <1-g if ;> d(x,y)
P(X¢Ajandy¢Aj) o { 1-— 2a, < (1 — aj)z if aj < d(x,y)

Thus

P(x ¢ Ajandy ¢ 4;) < {(1 —a)”" il @ >d(x,y)
(1 —a)* ~ 1 if a4 <d(x,y),

so by independence of the cut-outs,

P(x € Exandy € E) ﬁP ¢Aandy¢A)
S H (1 — aj)_l
Jazd(x, y)

= (Ptaeeyy) "

—1_ —t(1+e)
S €1 g y))
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for a suitable ¢; by (8.21), where j(d(x,y)) is the largest integer j such that
a; > d(x,y). From (8.15) axs1/ax — 1, 50 ajiyx, ) ~ d(x,y), giving (8.20) for a
suitable ¢. [

With 1g«g as the indicator function of E, x Ei, inequality (8.20)
becomes

pl:2 E(lEkXEk(x?y)) :PEZ P(x € Ey andy € Ek)
< cd(x,y)""F. (8.22)

We introduce a sequence of random measures by setting uy = p; ' L] £, that
is the restriction of Lebesgue measure to Ej scaled by a factor p; ', so that for a
set A

p(A4) = pi ' L(A N Ey).

We use the martingale convergence theorem to show that u; converges to a
random measure g with probability one. Recall that a binary interval is an
interval of the form [p2™ (p + 1)27™) for integers m and p.

Lemma 8.7

With probability one there exists a Borel measure p supported by E with
0 < u(E) < oo such that u(A) — u(A) for every set A that is a finite union of
binary intervals. Moreover, u(E) > 0 with positive probability.

Proof Write F for the o-field underlying the random positions of the centres
of Ay,...,Ax. (Formally Fy is the o-field generated by a k-fold product of
Borel subsets of [0,1].) For each binary interval A we have by independence
that

E( 1 (4)|Fi) = E(ppy LIA N Ee N ([0, 1\ A1) F i)
= Pt £(0, 1\ 1) L(A N Ey)

= Preir (1 = @) Prtikc (A)
= e (4).

Thus . (A4) is a non-negative martingale for each binary interval 4, so
by Corollary 8.3 there are random variables u(A4) such that, with proba-
bility one, p(A4) — pu(A4) for each of the countably many binary intervals.
Then p extends to a Borel measure supported by E in the usual way,
and by additivity, u(A) — u(4) whenever A is a finite union of
binary intervals. (In fact, almost surely, this convergence occurs for all
Borel sets.)
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Now consider (1[0, 1])*. We have

E((uel0, 11)) = p E(L(ER))
= pPE((L x L)(x,y) : x € Exandy € Ey))

_psz(//lEkXEk X,y dXdy>
Sc/ / d(x,y)""M9dxdy < 0o
0 Jo

using (8.22), where ¢ is chosen so that 7(1 + €) < 1. (Note that d(x, y) ' has a
singularity like |x —y|~' for x near y.) Thus [0,1] is an I’-bounded
martingale, so E(u(E)) = E(u[0, 1]) = E(u[0, 1]) = 1 by Corollary 8.4, giving
that P (w(E) > 0) > 0. O

Proposition 8.8

With probability one the random cut-out set E has dimyE < dimgE < 1 — ¢, and
with positive probability 1 — t < dimgE.

Proof Let 6 be given, and let k(6) be the greatest integer k£ such that
ar = |Ak| > 26 . We note that if x € Ej, where Ej is the 6-neighbourhood of E,
and j < k(é), then x ¢ A;, where A4 is the open interval with the same mid-
point as 4; and length a; — 26 . By the independence of the cut-outs we have
that for all x € [0, 1]

P(x € Es) <P(x g 4; forall j=1,...,k(6))

k(6)
< H P(x ¢ 4;)
H —26)) (8.23)
But
k(6) K(6)
logH (1—(q;—26)) < =) (a;—26)
j=1
k(8)

:—Za,+25k

~ —tlogk( ) + 26k(6)
~tlogé +t (8.24)
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as § — 0, using (8.17) and that t/k(6) ~ a5 ~ 26 (a consequence of (8.15) and
that ay,1/ax — 0). It follows from (8.23) that, given € > 0, there exists ¢ such
that

E(L(Es)) = P(x € Es) <cb™°
for all 6 < 1. Thus

E( Z L(E&)zs’+2€>gc Z 8¢ < o0.
§=2-k: k=12,... 6=2-k

Tk=12,...

We conclude that with probability one, Y5 5 41, £{Es)6~"% < 00, so that
L(Es)6~'% is bounded above for § of the form 2%, and thus (since ce L(Es)
increases with é) for all 0 < é < 1. It follows from (2.5) that dimpFE <
1 — 1+ 2¢. Since € > 0 is arbitrary, we conclude that dimgE < 1 — ¢ with
probability one.

For the lower bound we use a potential theoretic calculation. Let ¢ > 0 and
let u; and p be the random measures on E; and E introduced above.
Since, almost surely, ux(A4) — u(A) on binary intervals, we get, using Fatou’s
lemma,

e( [ [ ksl autoauty)
<hm//|x | g (x)dpue( ))
< liminfE( / / v — ¥~ *d g (x)dpaie y))
~11m1nfpk2E<//|x Y g, (x dxdy)
<c /0 /0 d(x,y)"%d (x,y)""9dxdy
< o0

provided that d < 1 — t( + €), using (8.22). It follows that, foralld < 1 — ¢, we
have [ [|x — y| ? du(x)du(y) < oo with probability one, where y is a random
measure supported by E. By Proposition 2.5, dimg E > 1 — ¢ provided that
u(E) > 0, an occurrence of positive probability. []

There are many natural variations and extensions of this random cut-
out construction. For example, in two dimensions, we can remove a
sequence of discs (or indeed any convex sets), with radii aj > @ > ...
and independent uniformly distributed centres, from the unit square
(with opposite sides identified) to get a fractal subset E of the square, see
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Figure 8.4 A random cut-out set obtained by cutting out discs of decreasing radius and
random centres. Here the k-th disc has radius 14~/ and the cut-out set has dimension
1.87

Figure 8.4. A similar analysis enables the dimensions of the cut-out set to be
found, see Exercise 8.4.

A variety of other random sets may be studied by using martingales to define
random measures on the sets. For example, instead of cutting out intervals, one
can consider the points that are covered by infinitely many intervals. With
suitable conditions on the interval lengths, it is possible to calculate the almost
sure dimension of the set of points that belong to infinitely many random
intervals.

Again, martingale techniques may be used to investigate the natural random
generalisations of self-similar sets. Such statistically self-similar sets are
discussed in FG, Section 15.1, where a random measure is defined on the set
using an L?-bounded martingale.
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8.3 Bi-Lipschitz equivalence of fractals

In this section we apply martingales in a very different way, to study the
existence of bi-Lipschitz mappings between two (non-random) self-similar sets.

The sets £ and F are called bi-Lipschitz equivalent if there exists a bi-
Lipschitz mapping f: E — F, that is, a bijection satisfying

alx =yl <If(x) —fWI < eaalx =yl (x,y € E), (8.25)

where 0 < ¢; < ¢;. Bi-Lipschitz mappings preserve many ‘fractal properties’ of
sets; in particular dimE = dimF where ‘dim’ denotes Hausdorff dimension,
lower or upper box dimension, or indeed any other reasonable definition of
dimension, see (2.12). Just as a major aim in topology is to classify sets to
within homeomorphism (regarding two sets as equivalent if there is a
continuous bijection with continuous inverse between them), one approach
to fractal geometry is to classify sets to within bi-Lipschitz equivalence. In
topology one seecks homeomorphism invariants for sets, that is, quantities
associated with sets (such as the Euler-Poincaré characteristic) that are equal
for homeomorphic sets. In the same way, a dimension may be thought of as a
bi-Lipschitz invariant. For two sets to be bi-Lipschitz equivalent they must
certainly be homeomorphic and have the same dimensions. However, in
general this is far from enough to guarantee equivalence.

We use martingales to show that certain self-similar sets of equal dimension
are not bi-Lipschitz equivalent. For ease of exposition, we give the proof for
a particular pair of sets, but the method works for much more general self-
similar sets.

Let E be the middle-third Cantor set and let F be the self-similar set obtained
from the unit interval by repeated replacement of intervals by three equally
spaced subintervals of lengths 3 = 37198 3/log 2 times that of the parent interval,
see Figure 8.5. Then E and F are homeomorphic, see Exercise 8.6, and 3 has
been chosen so dimpE = dimy F = log 2/log 3, so that bi-Lipschitz equiva-
lence cannot be ruled out on topological or dimensional grounds.

X
P
X, Xp f®
nn nn un mn --—f-—> e wow HEHE [T
E F

Figure 8.5 The mapping f between two self-similar sets. For X a k-th level subset of E,
the image f(X) is a complete union of m(k)-th level subsets of F
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Proposition 8.9
The sets E and F described above are not bi-Lipschitz equivalent.

Proof We assume that there is a bi-Lipschitz mapping f: E — F satisfying
(8.25), and derive a contradiction. By a k-th level subset of E we mean EN X,
where X is one of the intervals of length 3% that occur in the usual
construction of the Cantor set; we let C; denote the family of k-th level subsets
of E. Similarily, a k-th level subset of Fis one of the form FN Y where Y is one
of the 3% intervals of length 8% in the construction of F.
Let ¢y, c; be asin (8.25). For k =0, 1,2, ... define m(k) to be the least integer
such that
BmE < 37k, (8.26)

A consequence of f being bi-Lipschitz is that, if X is a k-th level subset of E,
then f(X) is a complete union of some n of the m(k)-th level subsets of F where
n 1s an integer satisfying

3mkp—key < p < 3mKpke,, (8.27)

To see this, note that if £(X') contains any point of an m(k)-th level subset ¥ of
F, then f(X) D Y; otherwise there would be points x € X and w € E\ X such

that f(x), f(w) € ¥, giving
B = Y| > |f(x) = f(W)] 2 erlx = w| > e137%,
contradicting (8.26). The bounds on » in (8.27) follow since

HA(f(X)) _ n37m®
ca < =
H3(X) 2k
using (2.12) and that H*(E) = H*(F) = L.
For k=10,1,2,... we define gx : E — R by
gi(x) = H'(f(X))/H*(X) (8.29)

where X is the k-th level subset of E with x € X. Thus, g is constant on each
k-th level subset of E. Moreover, if x € X, and X, and X are the (k + 1)-th
level subsets of the k-th level set X,

ge(x) = 2H°(f (X))
= % [zkH'HS(f(XL)) + 2k+1Hs(f (XR))]

= 5[gre1(xL) + gre1(xR)]
— Ho(x)! / st (X)dH (x), (8.30)
X

Le, (8.28)

where x; and xg are any points of X; and Xy respectively. This is just the
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martingale condition (8.7), and we conclude from Corol{agy 8.5 that gy(x)
converges for almost all x € E.
Choose x to be any such point of convergence, with gi(x) — ¢, say. By
(8.28) and (8.29) ¢; < ¢ < 2.
From (8.28) and (8.29),

g(x) =2K37"Wn (8.31)
where n satisfies (8.27). Thus
gk+l(x) _ 2k+137m(k+l)nl B !
g(x)  2K3-mlp T 3mk+D-mlop

where ¢} 82183 < ' < 3bc; 8B ysing (8.26) and (8.27), and
m(k + 1) — m(k) is bounded for all k, by virtue of the definition (8.26). Thus
2r11(x)/gk(x) can only take finitely many distinct values; since gx(x) converges
to a non-zero limit, this requires that gi(x) is eventually constant, that is
gr(x) = ¢ for all sufficiently large k. For all such k, there are, by (8.31), integers
n; with

¢ = gi(x) = 25370y, (8.32)

so ¢ is rational, say ¢ = p/q where p and g are co-prime positive integers. Hence
2k3-mK)p = p/q for all sufficiently large k, that is

2%ng = 3"®p, (8.33)

so p is divisible by 2% for arbitrarily large integers k, which is absurd. We
conclude that our hypothesis that f is bi-Lipschitz is false. [

In the above proof, we used martingales to deduce that f was ‘differentiable
with respect to the measures’ in a certain sense, and the geometry of the sets F
and F to deduce that f was ‘locally linear’.

In a very similar way, we can show that if E, respectively F, are self-similar
sets constructed by replacing intervals by m, respectively n, equal and equally
spaced subintervals, then for £ and F to be bi-Lipschitz equivalent, it is
necessary (and, indeed, sufficient) that dimgFE =dimpgF and either
m = n? or n = m? for some positive integer g.

More generally, a similar method gives necessary conditions for the
equivalence of self-similar sets constructed using unequal similarity ratios.

We write E(r1,...,r,) for the attractor of some IFS on R” consisting of
similarities of ratios r|,...,r, and satisfying the strong separation condition,
so that E(ry,...,r,) is totally disconnected.

Proposition 8.10

The following conditions are necessary for the sets E(ri,...,rm) and
E(t,...,1;) to be bi-Lipschitz equivalent.
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(@) dimyE(ry,... rym) =dimgE(t), ..., t,) =5, say;
®) Qry,...,r;,) =Q(},...,t;), where Qai, ..., an) denotes the sub-field of
(R, +, X) consisting of the rational functions of ay, .. ., ay;

(¢) there exist positive integers p and p' such that
sgp(rf,...,r0) Csgp(ty,---, 1),
sgp(tf, ..., %) Csgp(ri,- -, tm),

where sgp(ay, ..., an) denotes the sub-semigroup of (RY, x) generated by
ai,...,am, that is, the set of products of the form at" - - - a%» with the a; non-
negative integers.

Proof The idea of the proof is similar to that of Proposition 8.9; we omit the
details. [

The general problem of determining whether two sets are bi-Lipschitz
equivalent is complicated. The approach above applies to certain self-similar
sets that are homeomorphic to Cantor sets and in particular are totally
disconnected. At the other extreme, equivalence amongst a large class of quasi-
self-similar fractals that are homeomorphic to the circle is completely
determined by Hausdorff dimension; this is discussed in FG, Section 14.4.

8.4 Notes and references

The book by Williams (1991) gives a detailed treatment of martingales with
some nice applications. Many texts on probability, such as Grimmett and
Stirziker (1992), include introductions to martingale theory.

Mandelbrot (1972, 1982) introduced the random cut-out model, or random
trema model, as he termed it. His dimension calculations were based on a birth
and death process; the approach here is due to Zihle (1984), who gives many
generalisations. For other constructions based on random translates of
intervals, etc, see Kahane (1985) and the references therein. The natural
random analogues of the Cantor set and other self-similar constructions are
described in FG, Chapter 15.

The martingale approach to bi-Lipschitz equivalence of self-similar sets is
that of Falconer and Marsh (1992); see Cooper and Pignataro (1988) for a
different approach.

Exercises

8.1 Check that if ¥} is a martingale then E(Yy) = E(Y;) for all k. Verify that if Y isa
martingale, then E(Y,.4x|Fi) = Yi for all m,k > 0.
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83

8.4

8.5

8.6

Exercises 147

Let Y, be a supermartingale with respect to Fi. Verify that Y2 is also a
supermartingale, provided that sup, E( Y,f) < 00.

In the random cut-out model, show that if > 7 ar < oo then L(E) >0 with
positive probability, and if 3" {° ax = oo then L(E) = 0 almost surely.

Let gy be a decreasing sequence with a; ~ tk~'/2 where 0 < r < (2/m)"/%. Let E be
the random cut-out set obtained by removing from the unit square (with opposite
sides identified) a sequence of discs of radii a; and independent uniformly
distributed random centres. Modify the arguments of Section 8.2 to show that
dimp E < dimgE < 2 — m¢?, with a positive probability of equality.

Let E and F be self-similar subsets of R constructed by replacing intervals by m,
respectively #, equal and equally spaced subintervals. Show that there exists a bi-
Lipschitz map between E and F if and only if dimyE = dimy F and either m = n4
or n = m4 for some positive integer ¢. (Hint: mimic the proof of Proposition 8.9;
for a simpler problem show that no such map exists in the case when m has a prime
factor that does not divide ».)

Verify that the two sets considered in Proposition 8.9 are homeomorphic. (Hint:
map the ‘gaps’ of the sets to each other in a systematic way.)






Chapter 9 Tangent measures

Tangent measures provide a means of studying infinitesimal features of sets
and measures. In particular, many of the classical results in geometric measure
theory concerning densities, rectifiability and projections of sets may be proved
in a natural way using tangent measures. Some very powerful and technical
results have been obtained using these methods; here we are content to describe
the basic properties of tangent measures and give a few simple but elegant
applications.

9.1 Definitions and basic properties

Tangent measures describe the structure of a set in the neighbourhood of a
point that becomes apparent when viewed through a microscope with ever-
increasing magnification. Thus we look at the limiting sets or measures that can
be realised by a sequence of enlargements about a point. These limits or
‘tangent measures’ are in some way like derivatives: they carry a great deal of
information about the local form of a set or a measure, but certain regularity
properties of tangent measures mean that they are often easier to work with
than the original sets or measures.

Throughout this chapter, x will be a finite (or locally finite) Borel measure
on R”; by far the most important instance is where g is the restriction of s-
dimensional Hausdorff measure to an s-set £ (that is a Borel set £ C R” with
0 < H*(E) < ), so that 4 = H*|;. We also assume throughout this chapter
that there is a number s such that the s-dimensional densities of 4 are bounded
away from 0 and oo at p-almost all x, that is

0 < D*(u,x) = liminf u(B(xr))

(B(x,1)) _ 5

. 7
<1 =D . (91
2ry  Slmsup=rns D*(p, x) < oo. (9.1)
(In the case when y is the restriction of H*® to an s-set then D*(u,x) < oo
necessarily holds at u-almost all x.)

For x € R” and r > 0 we define the similarity mapping F, : R” — R” by

Feo ()= (y—x)/r; 9.2)

thus Fy, translates x to the origin and scales by a factor 1/r, so the ball B(x, r)
is mapped onto the unit ball B(0, 1). We are particularly interested in the way
these similarities transform measures, and we define the induced similarity

149
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mapping between measures by
(Frr[n])(4) = p(x +rd) (9.3)

where p is a measure on R” and x+r4d={x+ra:ac A} for all sets
A C R". Thus F,,[u] is thought of as the enlargement of y about x by a factor
1/r.

To define tangent measures we examine possible limits of F,,[u] as r \, 0.
To obtain limiting measures that are positive and locally finite, the
magnitudes of these measures need to be scaled appropriately. Thus we define
v to be a tangent measure of y at a point x € R” if there is a sequence r; \, 0
such that

v=lim r;°Fy, [u], (9.4)

k—oc

where the limit is the weak limit of the sequence of measures, see Section 1.4.
The set of all tangent measures of y at x is termed the tangent space of u at x
and denoted by Tan(u,x). [ Note that what we term tangent measures are
referred to as ‘standardised tangent measures’ in some accounts.] Of course,
Tan(y, x) depends on the value of s, but for every u there is at most one s for
which (9.1) is satisfied.

Using (9.3) and the definition (1.24) of a weak limit, (9.4) says that for every
continuous g : R” — R with bounded support

[ ewavt) = im i [ (0= 2)/r08u0). 93)

Tangent measures are locally finite, but in general are infinite measures of
unbounded support, even though this need not be so for u.

Some examples should help in understanding this concept. Fix E as
a bounded Borel subset of R” with 0 < L"(E) < oo, where L" is n-
dimensional Lebesgue measure, and let = L£"|,. The Lebesgue density
theorem (2.20) states that £L"(B(x,r)N E)/L"(B(x,r)) — 1 as r — 0 for L"-
almost all x € E. Intuitively, this means that at almost all x € E, small balls
centred at x are nearly filled by E, so that enlargements of y about such x
approach Lebesgue measure, the unique tangent measure. To see this formally,
if g is continuous with support in B(0, R), then

r" / gdFy, [p] =r" / g((y — x)/rdu(y)
= / g((y = %)/M)15()dy
= [ e@etr+ ez

. / g(z)dz

as r — 0. (For the last step we use that by the Lebesgue density theorem
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fB(o.R Heg(x+rz) — 1{dz — 0, for almost all x € E, where R is chosen so
sptg C B(0,R).) Thus lim,_or " F, ,[u] = L" for almost all x € E, so L" is the
unique tangent measure of y at x.

For a second example let i be ‘length measure’ on the unit circle C in R?,
that is u(4) = H'|- where H' is 1-dimensional Hausdorff measure. For x € C,
the portion of C near x approaches a line segment under increasing
magnification, so the unique tangent measure might be expected to be one-
dimensional measure restricted to the line through the origin parallel to the
tangent to C at x. Again, this may be verified formally using (9.5). More
generally, this is true if C is any smooth curve.

A more interesting situation arises when p is a fractal measure. Let
= H’|g, where s =log2/log3 and E is the middle-third Cantor set. In this
case, the tangent space has a very rich structure. For almost all x, Tan(u, x)
contains infinitely many measures, each the restriction of H* to an unbounded
extension of the Cantor set E that looks locally like E itself. Writing
E={0-bb,...inbase 3, where b; = 0 or 2 for all i}, almost every x € Ehas a
base 3 expansion which contains every finite sequence of Os and 2s infinitely
often, and thus at such x the tangent space Tan(y,x) contains measures
supported by enlargements of E about all of its points. In particular, Tan(u, x)
contains the restriction of the measure H® to the extended Cantor set
E'={aya,_1...a-b1by ... in base 3, where a;,b; = 0 or 2 for all i}, together
with its restriction to all similar copies of E’ that contain the origin. For a
further example, see Figure 9.1.

Observe in all these examples that, whenever v € Tan(u, x) and z € sptv
(where sptv is the support of v), the translate F, ;[v] of v that brings z to the
origin is also in Tan(y, x). (In the first two examples this is because the unique
measure in Tan(u, x) is unchanged by such translation, in the third example it
depends on the wealth of measures in Tan(y, x).) As we shall see in Proposition
9.3, this ‘shift invariance’ holds for all tangent spaces, and this is one of the
properties that makes tangent measures such a useful tool.

We now derive some general properties of tangent measures. Taking A as a
ball in (9.3) we have that for r, R > 0,

75 (Fey [ 1) (B0, R)) = r~*u(x + rB(0, R))
=r~*u(B(x,rR))
= R*(rR) u(B(x,rR)). (9.6)

This observation leads to several basic properties of tangent measures,
including their relationship with densities.

Lemma 9.1

Let p be a measure on R*. Then for all x satisfying
0 < D°(u,x) < D°(n, x) < 00 (9.7)
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h@

v € Tan (p,x)

Figure 9.1 A tangent measure v € Tan(u,z) is obtained as the weak limit of a
sequence of enlargements about z of (scalar multiples of) the measure u. Here u is
Lebesgue measure restricted to the region under a ‘devil’s staircase’ and the tangent
measure v is Lebesgue measure restricted to a half-plane

we have:

(a) Tan(p, x) is non-empty,
(b) D*(p,x) < (2R)"*v(B(0, R)) < D*(u, x) for all v € Tan(u, x) and R > 0,
(¢) 0 € sptv for all v € Tan(y, x).

Proof

(a) If (9.7) holds at x, then by (9.6) there is a number d > 0 such that for each
R, if r is sufficiently small,

r*(Fe, [u])(B(0,R)) < RYd.
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By weak compactness (Proposition 1.9) there is a sequence 7 \, 0 and a
measure v such that r *Fy, [4] — v, so v € Tan(y, x).
(b) Let v be given by (9.4) for some rx \, 0. Then for all R > 0

(2R)’'D*(u,x) = R® lirrllionf (rR)“u(B(x,rR))
< limsup 7> (Fxr [ 1)) (B(0, R))

k—oo

< v(B(0, R))

using (9.1), (9.6) and (1.25). In the same way, but using (1.26), we see that
v(B°(0,R)) < (2R)’D"*(u, x) for the open ball B°(0, R). Since v(B(0, R)) <
v(B°(0,R,)) for all R, > R, the upper bound follows on taking R,
arbitrarily close to R.

(¢) Since 0 < D*(u,x), part (b) gives that 0 < v(B(0,R)) for all R >0, so
0esptv. O

Our remaining aim in this section is to prove the shift invariance of tangent
spaces. Recall that, for a measure p and measurable set £ in R” a point
x € sptu is a density point of E if

imAEQBN) (9.8)
r—0 /‘(B(x’ r))
In particular, according to Proposition 1.7, p-almost all x € E are density
points. It is easy to see that if v € Tan(u, x) and z € spty then there exists a
sequence xx € spty with Fy, (xx) — z. The following lemma extends this to
allow the xx to be chosen from a prescribed set E.

Lemma 9.2

Let E be a u-measurable set and let x € sptu be a density point of E. Let
v = Mmooty Fy (1] €Tan(p, x). Then for all z € sptv there exist points xy €E

such that

Xk — X

Fy, (xx) = -z (9.9)

Tk

as k — oc.

Proof For (9.9) to hold we must arrange for x; to be ‘near’ x + rrz. Thus for
all k, choose xi € E such that

X + iz — xi| < dist(x +rx z, E) + k' (9.10)

If z = 0, then dist(x + ¢z, E) = 0, and (9.9) is immediate. Suppose that (9.9) is
false and z # 0. Then there exists § with 0 < § < |z| such that

[x+rkz—xk[ 22(57'1( (911)
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for infinitely many k. For such k with &k > 6!, (9.10) and (9.11) give
16 < (26 — k7Y < dist(x + r 2, E),
$0 in particular
B(x + rr z,r6) C B(x,ri|z| + 16) \ E C B(x, 2r|z|)\E.
Since x is a density point of E,
w(E N B(x, 2rk|z]))

b= (B 22

— iy PBOx 2rk]2])) — p(B(x, 2ri|z)\ E)
k—00 N(B(x’zrk'z'))

.. u(B(x 4 ryz, 1))

< it B 2rel)

C (Fali)(BG8)

= 1= il e (B0, 220))
B8

<=0, <"

using (1.25), (1.26) and that v(B%(z,8)) > 0 since z € sptv. This contradiction
means that (9.11) cannot hold for infinitely many k, so (9.9) follows. [

The following proof of shift invariance uses properties of weak convergence
of measures in a delicate way.

Proposition 9.3

For p-almost all x, the tangent space Tan(u,x) is shift invariant, that is
F,\[v]€Tan(u, x) for all veTan(u, x) and z €spt.

Proof Let R, ¢, 6 be positive numbers and let

E(R,¢,6) = {x : there exists v, € Tan(y, x) and z(x) €spty, with
dr(F. (o)1 [Vx], 7 Fy,[p]) > € for all r < 6}. (9.12)

(See (1.28) for the definition of the pseudo-metric dg on measures.) The result
will follow easily once we have shown that u(E(R,¢,6)) =0 for all such R, e
and 6.

Suppose to the contrary, that u(E(R,¢€,§)) > 0 for some R, e and 4. For all
x € E(R, ¢, 6) choose v, € Tan(p, x) and z(x) € spty, such that the condition in
(9.12) holds. We may find a Borel set £ C E(R, ¢,6) with u(E) > 0 such that

dR(Fz(x),l[Vx]aFz(y),l[uy]) < %6 (913)

for all x, y € E. This follows from the separability by Lemma 1.11: if (ug) is a
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countable dense sequences of measures then
E={x € E(R,€,8): dr(Fy(x)1[vxl, k) < 3¢}

has positive y-measure for some k.

Choose x to be any density point of E, with vy = limy_ o1 *Fxy, [14]. By
Lemma 9.2 we may find xx€E such that (xx— x)/rx — z(x). Since
Fyore = Fiu—x)jri,1 © Fx e, it follows that

r]:stk,rk[:u] = F(xk—x)/rk,l [r]:SFx.,rk[/‘]]
— F(o1 ] (9.14)

as k — oo. Since x; € E(R, ¢, 6), if k is sufficiently large

€< dR(FZ(xk),l [ka]a rI:SFXka [,u])
< dR(Fz(xk),l [ka], Fz(x),l [Vx]) +dr (Fz(x),l [Vx]’ r]:Ska,rk [N])
< %6 —}-%6,

using (9.13), Lemma 1.10 and (9.14), which is the contradiction sought.
We conclude that u(E(R,¢,6)) = 0forall R, ¢, 6 > 0. By Lemma 1.10, the set

{x: there exists a non-shift-invariant measure v, € Tan(y, x)}
o0 o0

= U U E(m,1/m,1/n)
m=1n=1

and this has u-measure 0, as required. [

9.2 Tangent measures and densities

Tangent measures are a natural tool for studying local properties of sets
and measures, such as their densities and average densities. The idea is
to convert a problem involving a set or measure into a more tractable one
involving tangent measures. We give some typical examples of this procedure,
starting with the classical result that the density of an s-set cannot exist on a set
of positive measure, unless s is an integer. (Recall that the non-existence of
density is a manifestation of fractality.) We work with a general measure y, but
the main example that we have in mind is the restriction of H* to an s-set E in
R”, so that 4 = H*| for a Borel set E with 0 < H*(E) < oo.

To illustrate the use of tangent measures in a particularly simple case, we
first prove that the density fails to exist if 0 < s < 1. After that, we develop the
more complicated proof for general non-integral s.

Proposition 9.4

Let 0 < s < | and let yu be a measure on R" with 0 < D*(u,x) < D*(u, x) < 00
Sfor p-almost all x. Then D*(u,x) < D*(u,x) for p-almost all x.
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Proof Suppose that 0 < D*(u, x) = D*(u, x) for a set of x of positive measure.
By Proposition 9.3 we may select such an x such that Tan(u,x) is shift
invariant; let d = D*(u, x) = D*(u, x) > 0 be the density at this particular x. By
Lemma 9.1(b), d = (2R)"*v(B(0, R)) for all v € Tan(y, x) and all R > 0. Fixing
any v € Tan(u, x), there exists z € spt v with |z| = 1 (otherwise v(B(0, R))
would be constant for R near 1). By Proposition 9.3, F;;[v] € Tan(y, x), so
d= (2R)™(F;1[v])(B(0,R)) = (2R)*v(B(z, R)) for all R>0. For 0< R< %
we have B(z,R) € B(0,1+2R)\ B(0,1 —2R), s

(2R)’d = v(B(z, R))
< v(B(0,1+2R)) —v(B°(0,1 —2R))
:25d[( +2R)* — (1 — 2R)"]
= O(R)

for small R, a contradiction since 0 <s< 1. We conclude that
D*(u, x) < D*(u, x) for y-almost all x. [

Thus in particular, the density D*(E, x) of an s-set E fails to exist almost
everywhere if 0 < s < 1.

To extend this result to general non-integral s, we introduce ‘s-uniform’
measures. We show that such measures can only exist if s is an integer, and then
show that if the density D*(u, x) exists on a set of positive measure, then y has
an s-uniform tangent measure, so that s must be an integer.

We define a measure v on R” to be s-uniform for s > 0 if there exists ¢ > 0

such that
v(B(x,r)) = cr’for allx € sptv and r > 0. (9.15)

Lemma 9.5

Let v be an s-uniform measure on R". If xesptv and v) €Tan(v, x) then v, is
s-uniform on R”.

Proof Suppose v; = limy_oo;*Fy,[v] and ze€spty;. We may find points
zrespt Fy, [V] with zx —z, so there exist xpespty with (xx —x)/rg
= F., (xx) = zx — z. Then for all R >0
(Fur [V])(B(z, R)) = v(B(x + nez, e R))
= v(B(xx + re(z — z), ik R)
(B(x *(R — IZ — z/))

by (9.15). Hence by (1.25)
v1(B(z, R)) > lim sup r,.°Fy ,, [V](B(z, R)) > ¢R°.

k—o0
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That v (B°(z, R)) < ¢R* for all R > 0 follows in a similar way using (1.26), and
these inequalities combine to give v (B(z, R)) = cR* for all R, so that v, is
s-uniform. [

In fact s-uniform measures are very regular indeed: they can only exist if s is
an integer.

Proposition 9.6

Let v be an s-uniform measure on R", so that for some s > 0 and ¢ > 0 we have
v(B(x,r)) = cr’ for all x € sptv and r > 0. (9.16)
Then s is an integer with 0 < s < n.

*Proof Let g(r) € R” be the centre of mass of the restriction of an s-uniform
measure v to B(0,r), so that for all z € R"

2o g(r) = / o, D0 (9.17)

where ‘-’ denotes the usual scalar product on R”". The proof depends on the
estimate that if v is any s-uniform measure and 0 € sptv then

|z g/l =0 (9.18)

as z — 0 through points z in the support of v.
To derive (9.18) we consider the ‘potential integral’

0= [ 02— x—yPav), 9.19)
Differentiating under the integral sign at x = 0, we have
V0.0 =2 [ ) (9.20)
B(0O,r)

where ‘V’ is the usual ‘grad’ operator. (Note that the contribution to the
derivative from the boundary vanishes, since

[ er-phaver- [ <r2—|y|2>du<y>{
B(x,r) B(0,r)
N
B(0,r+[x[)\B(0,r—|x|)
< 20| (B0, 7+ [x])) — (B0, 7 — [x])
= 2rfxle((r + )’ — (7 — 1x])")
= o)




158 Tangent measures

as [x| — 0, using (9.16).) Thus, from (9.17) and (9.20) and the directional
derivative formula,
~2z.g(r) = z- VQ,(0)
= 0:(2) — 2:(0) +0(2)
= o(2),
since if 0,z € sptv we have Q,(0) = Q,(2) (= 2¢r*/(2 + 5) by direct calcula-
tion from (9.19) using (9.16)). Thus (9.18) follows.

We now assume that the stated proposition is false, so that for some non-
integral s and some integer # with 0 < s < n there exists an s-uniform measure
v on R” Let n be the least integer for which this is possible; we obtain a
contradiction by exhibiting an s-uniform measure in R”"! (where R® = {0}).

We must have that sptiy is a proper subset of R”; otherwise packing the unit
ball B(0,1) with small balls and using (9.16) with s < n would imply that
1 (B(0,1)) = occ. (Note that this is where we use that s is non-integral.) Choose
y € R"\ spty, let ¥ > 0 be the least number such that B(y, r) N sptyy # 0, and
take x € B(y,r) Nsptyy. Then choosing v € Tan(yy, x) it is easy to see that
0 € sptv C H, where H is the half-space {z € R":z-e >0} with e as the
outward unit normal to B(y,r) at x. (Under magnification about x, the ball
B(y,r), which contains no points of sptv in its interior, enlarges to the
half-space R"\H.) Using Lemma 9.5 it follows that v is s-uniform, that
is v(B(z,#)) = cor® for all z € sptv and r > 0. By Lemma 9.1(c), 0 € sptv,
Defining g() to be the centre of mass of this measure v restricted to B(0,r),
(9.18) holds.

If g(r) = 0 for all r > 0, then since sptv lies in the half-space H and the centre
of mass of v restricted to B(0,r) is in the bounding hyperplane 0H, we must
have sptv N B(0,r) C 8H for all r > 0. Thus sptv C dH, so by identifying 0H
with R”~! we have that v is an s-uniform measure on R""!.

On the other hand, if g(r) #0 for some r >0, we may take v =
limg_,o0ry* Fo,, [v] € Tan(v,0), so that v, is s-uniform by Lemma 9.5. Given
n>0and R > 0 define 4 = {z€ B°(0,R) : |z g(r)| > n|z|}. Then by the weak
convergence property (1.26)

n(Ad) < liggxfr,:xFo,k [V](A4) = ligci)gxfr,zsu(rkA)
= liminf 7 °{z € B(O,7kR) : |z £(1)] > )
=0,
since if z € B(0,rR) Nsptv and r is sufficiently small then |z - g(r)| < nlz| by
(9.18). Thus v4(A4) =0 for all >0 and R > 0, so sptv; C {z:z-g(r) =0},

and again by identifying this hyperplane with R”""! we get an s-uniform
measure on R*!. O

Given this property of s-uniform measures, it is straightforward to deduce
the density result.



Tangent measures and densities 159

Theorem 9.7

Let y be a finite measure on R™" and let s > 0. Suppose that
0 < D*(u,x) =D*(u, x) < 00 (9.21)

(that is the density exists and is positive and finite) for a set of x of positive -
measure. Then s is an integer with 0 < s < n.

Proof By Lemma 9.1(a) p has a tangent measure at all x for which (9.21)
holds, so by Proposition 9.3 we may choose such an x for which there is a shift
invariant v € Tan(y, x). Thus for all z € sptv we have F;[v] € Tan(u, x), and
so by Lemma 9.1(b)

D*(u, x) < (2R)*(F-,1[V])(B(0, R)) = (2R) *v(B(z, R)) < D*(u, x)

for all R > 0. It follows from (9.21) that v(B(z, R)) = 2°D*(u, x)R* for all z €
sptv and all R > 0, so s is an integer by Proposition 9.6. [

The corresponding result for densities of s-sets follows easily.

Corollary 9.8

Let E be an s-set in R" where s is not an integer. Then for H*-almost all x € E we
have D*(E, x) < D’(E, x).

Proof Let p=H*|; Then 0 < D’(u,x) = D'(E,x) < oo for p-almost all
x (see Exercise 9.1). Thus either 0 < D*(u,x) < D*(u,x) for p-almost all
x, as required (since D*(u,x) = D*(E,x) and D*(u,x) = D’(E, x)), or
0 < D*(u,x) = D’(u,x) for a set of positive measure, in which case s
would be an integer by Theorem 9.7. [

The existence of the density D*(u,x) almost everywhere implies not only
that s is an integer, but also that y is an s-rectifiable measure. (A measure
is s-rectifiable if it is absolutely continuous with respect to H?*, so that u(A4) = 0
whenever H’(A4) = 0 and there exists an s-rectifiable set E with u(R"\ E) =0,
see Section 2.1.) Let s be an integer and u a measure satisfying
0 < D*(u,x) < D’(p,x) < oo for almost all x. It may be shown that y is
s-rectifiable if and only if for almost all x the tangent space Tan(u,x)
contains a single measure v that is the restriction of a scalar multiple of H*
to an s-dimensional subspace of R”. It is perhaps not surprising that
developing further properties of s-uniform measures and applying them
to tangent measures leads to the following difficult theorem and its
corollary.
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Theorem 9.9

Let p1 be a measure on R" such that for u-almost all x the density D*(u, x) exists
with 0 < D*(u,x) < oc. Then s is an integer and p is s-rectifiable.

Proof Omitted. O
Corollary 9.10

Let E be an s-set in R". Then E is s-rectifiable if and only if D*(E, x) exists for
‘H*-almost all x € E.

Proof Taking p = H*| in Theorem 9.9 shows that this condition is sufficient,
since D°(E, x) > 0 almost everywhere. [

The interplay between the ‘metric’ concept of density and the ‘geometric’
concept of rectifiability is at the heart of geometric measure theory, and
tangent measures are a major tool for relating these concepts.

Next we use tangent measures to compare densities and average densities for
non-integral 5. For this we study the ‘density function’ g: R — R of p at x
given by

p(B(x,e7"))
1) = —nl 9.22
8() =" (622)
By definition the (s-dimensional) lower density of y at x is given by
D(u,x) = lign inf g(1) (9.23)
and the lower average density by
1 T
A*(p, x) = lim inf—/ g(ndt, (9.24)

with similar expressions for upper densities, see (6.21).
We first show that if a density and the corresponding average density are
equal, then g(z) is ‘nearly constant’ over long intervals.

Lemma 9.1

Let u be a measure on R", let s > 0, and let x be such that
0 < D*(u, x) < D*(u, x) < oo. (9.25)
Suppose that for some d > 0 either
A%(,%) = D(,x) = d (9.26)
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or
A’ (1, x) = D*(n,x) = d. (9:27)

Then given € > 0 and Ao > 0 there exist arbitrarily large T such that for all
t e [T, T+ )\0]

d—e<g(t)y<d+e (9.28)
Proof We give the proof under hypothesis (9.27); the case (9.26) is similar. We
have control over the rate of increase of f: for t > u
g(t) — 2vses(tvu)esu'u(B(x7 evt))
< es(tvu)2vsesu'u(B(x7 evu))
< e g(u). (9.29)

Clearly the right-hand inequality of (9.28) holds for all sufficiently large
t by (9.27). In particular, given 0 < é <1 we may find Ty such that if
t>1Tp

g(t) <d+ino+1)"" (9.30)

where n=d(6— (1 —e™*°)/s) > 0. Suppose that 7> Tp and there exists
u€lr,7+ X\ with g(u) <de 0. By (9.29) g(r) < de*"*9 <d for u<
t<u-+6,so

u+6 u+é
/ (g(t) —d)dt < / d(e 0 — 1)dt =d((1 —e**) /s — 6) = —n.

u

Writing A = X + 1,

T+ u+6
—d)dt < —d)d —d)d
[ (8() — d)de < / (g() — d)di + /[T,m]\{u,um(g(’) )dr

<—m+axipt=—ly (9.31)

using (9.30). Suppose that for some 77 > Ty it is the case that for all
m=0,1,2,... there exists u € [T| +mA T; +mA+ X with g(u) < de %,
Then, if T> T| and M is the greatest integer such that MA < T — T,

1 77T 1 1T | M=l Tit(mDA
T RCORETE Y AN CO RS S B ACORT!

T m=0 1 +mA
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As T — oo, the first and third terms in this sum tend to 0, so by (9.31)

_ 1 M-1 ,Ti+(m+1)A
A*(u,x) —d = limsup—; Z / (g(r) — d)dt
T—o0 m=0 v Ti+mA
: —Mn _ -1
< = —
< limsup T o\ <0
which contradicts (9.27). We conclude that there exist arbitrarily large 7 such
that g(u) > de™* for all u € [T, T + Xo), which is the left-hand inequality of
(9.28) if § > 0 is chosen small enough so that d —e < de™*%. 0O

We may interpret Lemma 9.11 in terms of tangent measures.
Lemma 9.12

Let yu, x and s be as in Lemma 9.11, satisfying (9.25) and either (9.26) or (9.27).

Then there exists v € Tan(u, x) such that v(B(0,R)) = (2R)’d for all R > 0.

Proof By Lemma 9.11 we may find a sequence # " oo such that
d—1/k<g(t)y<d+1/k

for all ¢ € [tx — logk, tx + logk], so letting r, = e and using the definition
9.22) of g
d— 1k < u(B(x,7))/(2r)' <d+1/k

for all r € [ry/k, kry]. For all R > 0 there exists ko such that for all £ > ko we
have ri/k < R < kry giving

1 Fap, [1](B(0, R)) = r*u(B(x, ik R))
= (2R)’(2rR) *u(B(x,rR)) — 2°R°d

as k — co. The same is true for the open ball B%(0, R), so taking v € Tan( y, x)
to be the weak limit of a subsequence of r*Fy, [u] we get that
v(B(0, R)) = (2R)’d, using (1.25) and (1.26). (3

With Lemma 9.12 at our disposal, the proof of Proposition 9.4 is easily
adapted to yield a stronger result involving average densities.

Theorem 9.13

Let u be a measure on R" with 0 < D*(u, x) < D*(u, x) < oo for u-almost all x.
If0 <s <1 then

D*(1,x) < (%) < A°(, x) < D (1, ) (9.32)

Sfor p-almost all x.
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Proof Suppose that 0 < D*(u, x) = 4°(u, x) for a set of x of positive measure.
By Proposition 9.3 we may select such an x such that every v € Tan (p, x) is
shift invariant; let d = D*(u, x) = A*(u, x) > 0 for this particular x. By Lemma
9.12 we may choose some v € Tan (u,x) such that v(B(0,R)) = d(2R)’. B
shift invariance, for all z € sptv we have F,,[v] € Tan (g, x), so by Lemma
9.1(h) d < (2R) *(F.1[v])(B(0,R)) = (2R)°v(B(z, R)) for all R > 0. We may
choose z¢€ sptr with |z| = 1, otherwise v(B(0, R)) would be constant over an
interval for R close to 1. For 0 < R <1, we have B(z,R) C B(0,1 + R)\
B%0,1-R) so

d(2R)’ < v(B(z, R))
<v ((071+ R)) —v(B(0,1 - R))
= 2d[(1+R)’ — (1 - R)’]
= O(R)

for small R, a contradiction, since 0 < s < 1. We conclude that the left-hand
inequality of (9.32) holds; the proof of the right-hand inequality is similar. [

Just as with Corollary 9.8 we can specialise this result to s-sets.
Corollary 9.14

Let E be an s-set in R" with 0 < s < 1. Then A*(E, x) < D*(E, x) for H*-almost
all x € E.

Proof With yu = H*|; we have 0 < D*(u, x) = D*(E, x) < oo for y-almost all x
(see Exercise 9.1). Thus either 0 < A*(u, x) < D*(u, x) for p-almost all x as
required, or 0 < A°%(u, x) = D*(u, x) on a set of positive measure, which cannot
happen by Theorem 9.13. [

In fact it has been shown that the conclusion of Theorem 9.13 holds for all
non-integral s.

9.3 Singular integrals

We give a very brief introduction to the use of tangent measures in another
area where they have proved a powerful tool, namely the theory of singular
integrals.

One of the most familiar singular intergrals is the Hilbert transform, defined
by the real integral

1)
() = [ 1 dy 933)
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for f € L'(R). This integral must be interpreted in terms of its principal value,
that is,

(Hf)(x) = lim ) 4, (9.34)

0 J)y-xzeyV = X

The fundamental property of the Hilbert transform is that the integral (9.33)
does indeed exist and is finite for almost all x € R, provided that f € L'(R). In
other words, at a typical point x the singular contributions to the integral on
either side of x more or less cancel.

It is natural to consider analogues of the Hilbert transform on fractal
domains. For a simple example, let £ be the middle-third Cantor set, of
dimension s = log 2/log 3, and let u = H*|; be the ‘Cantor measure’. For
f€ LY(u) define

(y—x10)

- x| du(y) = lim/ =x)f)

—du(y).  (9.35)
b-xlze [y —x

e—0

) = |

[Since
ar® < u(B(x,r) < car? (9.36)

for x € E and r < 1 where 0 < ¢; < ¢; < o0, see Exercise 2.11, it is natural to
consider a kernel with exponent —s; use of (y — x)/|y — x[s+1 is merely a device
to express the sign change across the singularity. Recall that we considered the
singular behaviour of the absolute integral of (9.35) in (6.36).] We use tangent
measures to show that (9.35) fails to exist for almost all x.

Proposition 9.15

Let p = H°’|; be the Cantor measure and let f € L' (). Then for p-almost all x
such that f(x) #0

lim sup
e—0

/ - X)fsi)l’) du(y)| = 0o (9.37)

y-x2e |y — x|

and so (Hf )(x) does not exist.

Proof To avoid unnecessarily awkward notation, we make the convention
of writing (y —x)™ for (y—x)ly —x|™"!, so that (y —x)* is understood
to be real with the sign of y —x. We give the proof in the case when
f(x) =1 for all x; little modification is needed for general f€ L'(u), see
Exercise 9.8.

Suppose that there exists a set Xy C E with u(Xp) > 0 such that for all
x € Xp the integral f|yvx|>€(y—x)”d,u(y) is bounded for 0 < ¢ < 1, that is
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there are numbers ¢(x) such that forall 0 < § <e <1

[ o0t < e (9.3
§<|y—x|<e

for all x € Xy. Then we may find a number ¢ < oo and a compact set X' Z X
with p(X) > 0 such that ¢(x) < ¢ for all x € X. Fix x € spty as any density
point of X (see (9.8)); we examine the tangent measures of y at x. Choose
v = iMooty *Fy (1] € Tan (u, x) and let z € spty. By Lemma 9.2 there 1< 4
sequence x; € X such that z; = (x; — x)/ry — z. By Lemma 9.1(b) and (9.36) :
has no atoms (that is, v({y}) = 0 for all y), so

[ v-raw)
r<|y—z|<R

= lim (¥ —2z)"dv(y)

k=00 Jr<ly-zi|<R

= lim / (3 = 2) A (Fan [1]) ()
r<ly—zI<R

k—o0

— Jim r* | (3 —2)/rk — 20)du(y)
r<|(y—x)/re—ze|<R

k—o0

= lim (y—xx)du(y) (9.39

k=00 Jrm <| y—xi| <Rrie

using an extension of (9.5) and the definition of z. Since x; € X it follows from
(9.38) that

<limsupc(xg) < ¢ (9.40

k—oo

J LR
r<ly—z|<R

for all ve€Tan (y, x), all zesptv and 0 < r < R.
But for y-almost all x € E the measure v given by the restriction of H’ to the
extended Cantor set

E'={apy...a1- b1by...in base 3, where a;, b; = 0 or 2 for all i}

is in Tan(u, x). Taking such an x € X and 0 € sptv, we have on integrating by
parts and using that ¢;r* < v(B(0, r)) < ¢or* for some ¢, c; >0 by Lemma
9.1(d),

R
/( =07 ) = B +s / (B0, p))dy

r

R
> —02+Cls/ y'dy

which may be made arbitrarily large by taking r small enough. This contradicts
(9.40) and the result follows. [
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The proof of Proposition 9.15 used (9.38), the boundedness of the
integral with respect to u, to imply (9.40), the boundedness of the
integral with respect to the tangent measures. For a suitable choice of tangent
measure, the latter property is more readily shown to be false. Proposition
9.15 and its proof hold for a very much wider class of measure u, for
example the restriction of H® to any self-similar s-set in R"” with the
strong separation condition. In fact the following even more general result
concerning vector integrals is true. Note that (9.42) is a very strong statement
to the effect that the centre of mass of v restricted to each ball centred in sptv is
at the centre of the ball.

Proposition 9.16

Let s > 0 and let u be a finite measure on R" such that for almost all x we have
0 < D*(u, x) < D*(u, x) < 0o, with the limit

: (y—x)
lim ————=du(y) (9.41)
=0 Jixyize [y — £

existing and finite. Then for almost all x
/ ydv(y) = zv(B(z,1)) (9.42)
B(z,r)

Sor all v € Tan(u, x) and for all z € sptv and r > 0. In particular, this implies
that s is an integer and that p is an s-rectifiable measure.

Sketch of proof The existence of the limit (9.41) implies that

lim v =x)/ly — xI"du(y) =0, (9.43)

0<e<6—0 e<|y—x|<6

and using Egoroff’s theorem we may find a set X with u(X') > 0 on which this
convergence is uniform. Proceeding just as in the proof of Proposition 9.15 we
again get (9.39), so on passing to tangent measures, (9.43) gives

L= =0 (9.44)

for all v € Tan(u, x), all z € sptv and all 0 < r < R. To deduce (9.42) consider
the integral

=[-8y - Do)
where ¢ : [0,00) — R. By (9.44) I, = 0 if ¢(1) = r*"'1;, g(z), where 1 is the

indicator function, and approximating 1y, z(¢) by a linear combination of such
functions gives f0<|yvz|<R(y —z)dv(y) = 0, which is (9.42).
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Now suppose that v is a measure satisfying (9.42) with ¢;r® <
v(B(z,r)) < cor® for z € sptv (as before, this latter condition follows for
v € Tan(u, x) from Lemma 9.1(5) and the density bounds on p). It may be
shown, using an argument in the spirit of Proposition 9.6, that s is an integer
and that v is the restriction of H* to an s-dimensional subspace of R". Pulling
this tangent measure property back to the original measure p gives that spty is
rectifiable, with u absolutely continuous with respect to H* restricted to sptu.
We omit the details. [

Given the existence almost everywhere of the integral (9.41) when s = n and
 is the restriction of n-dimensional Lebesgue measure to a bounded Borel set,
it may be verified that the principal value integral (9.41) exists when g is the
restriction of H’ to a rectifiable s-set in R” where s is an integer, and further for
any p that is absolutely continuous with respect to such measures. (Remember
that a rectifiable set is made up of pieces that are subsets of s-dimensional C!
sets (see Section 2.1). Thus Proposition 9.16 lends to a pleasing characterisation
of those measures on R” for which singular integrals (9.35) exist. Typically,
singular integrals do not exist for fractal measures.

9.4 Notes and references

Tangent measures were introduced in the fundamental paper of Preiss (1987)
which unified and extended the theory of densities, tangents and rectifiability
that had developed over the previous 60 years. For a comprehensive account of
this work and many further applications of tangent measures, see the book of
Mattila (1995a) which also contains a very substantial bibliography for this
area of geometric measure theory. Preiss (1987) and Mattila (1995a) derive
strong properties of s-uniform measures, and use these to relate densities to
rectifiability. The original proof of Proposition 9.4 and Theorem 9.7 on density
and integral dimension were due to Marstrand (1954) with extensions to
average density by Falconer and Springer (1995), and for general s by
Marstrand (1996). The use of tangent measures to study singular integrals was
pioneered by Mattila (1995b) and Mattila and Preiss (1995) and again a full
account of this area may be found in Mattila (1995a). A related topological
theory for the local form of sets is given by Wicks (1991).

Exercises

9.1 Verify that if E is an s-set then 0 < D*(E, x) < oo for H*-almost all x€ E.

9.2 Find Tan(y, x) for all x € R? where . is the restriction of plane Lebesgue measure
to the unit disc B(0,1) C R2.

9.3 Let u be the middle-third Cantor set, let s = log 2/log 3 and let u be the restriction
of H* to E. Describe Tan(u,0).
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9.4 Let i be a measure on R”, let f: R” — [0, c0) be continuous, and define a measure
pr on R™ by pe(A) = f,fdu for Borel sets 4. Show that if f(x) >0 then
v € Tan(p, x) if and only if f(x)v € Tan(iy, x). Show that if f: R" — [0,00) is
merely locally integrable, this remains true for p-almost all x such that f(x) > 0.
(Hint: for the final part use Lusin’s theorem, that for ¢ > 0 there is a set 4 with
#(R"\ A) < g, such that the restriction of f to A is continuous.)

9.5 Let E be the middle-third Cantor set, let s =log 2/log 3 and let p = H*|;. Let
f1 E — E be given by f(x) = 3x (mod 1). Show that Tan(u,x) = Tan(u, f(x)) for
all x € E. (This observation leads to various ergodic properties of Tan(y, x).)

9.6 Extend Proposition 9.3 to show that for p-almost all x and every v € Tan(u, x) we
have that F;,[v] € Tan(y,x) for all z € spt v and r > 0.

9.7 Tangent measures may be used to study the angular distribution of sets. Let E be an
s-set in R” with 0 < s < n. Let > 0 and for each x € R” and unit vector 8§ define
the cone C(x,8,n) = {y € R" : (y - x) - 8 > n|y — x|}. Show that for H*-almost all
x € E there exists a unit vector § such that

limionfr_S'HS(Eﬂ B(x7 r) N C(x7 0, 77)) =0.

(Hint: As in the proof of Proposition 9.6 there must exist a tangent measure of
1 contained in a half-space. This is not possible if the result stated here is false.)
9.8 Prove Proposition 9.15 for all f€ L'(u). (Use Lusin’s theorem given in Exercise
9.4)
9.9 Show that if f: R — R is a Lipschitz function of compact support then the Hilbert
transform (9.34) exists at all x € R. (Hint: show that fly_X|26f(y)(y - x)']dy
satisfies the Cauchy criterion for convergence as ¢ — 0.)



Chapter 10 Dimensions of measures

Measures have been a fundamental tool in the study of the sets now termed
‘fractals’ ever since such irregular sets first attracted the attention of mathe-
maticians early in the 20th century. We have already seen many instances
where a set is analysed by studying properties of measures supported on the set.
Often however, fractal structures are in essence already measures. For example,
if the attractor of a dynamical system is displayed on a computer screen by
plotting a sequence of iterates of a point, what is actually observed is a measure
rather than an attracting set: the measure of a region is given by the proportion
of the iterates lying in that region.

In the next two chapters we study measures as fractal entities in their own
right, relating their properties to those of associated sets. We develop the idea
of the dimension and local dimension of measures. We examine sets such as E;
at which the local dimension of a given measure u is s; these sets may be ‘large’
for a range of s. We measure such sets by p itself in this chapter, and by
dimension in Chapter 11 leading to the multifractal spectrum.

10.1 Local dimensions and dimensions of measures

Much of the theory of Hausdorff and packing dimensions of sets depends on
local properties of suitably defined measures. We now study such properties
in their own right. Throughout this chapter p will be a finite Borel regular
measure on R”, so that in particular 0 < u(R") < oo.

Recall from (2.15) and (2.16) that the lower and upper local or pointwise
dimensions of p at x € R” are given by

log u(B(x, )

dimio, u(x) = lim nf ~E7 7 (10.1)
and

- log (B

dim e () = limsup BB 1) (10.2)

r—0 logr
and we say that the local dimension exists at x if these are equal, writing
dim s p(x) for the common value. Thus, the local dimensions describe the
power law behaviour of u(B(x,r)) for small r, with dim . p(x) small if y is
‘highly concentrated’ near x. Note that dimje u(x) = oo if x is outside the

169
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support of p and dimeu(x) =0 if x is an atom of u. For technical
completeness, we remark that routine methods show that the mapping
x—dim p(x) is Borel measurable, so that sets such as {x : dim jocu(x) < ¢}
are Borel sets for all ¢, with similar properties for upper local dimensions.

Writing |, for the restriction of x4 to the Borel set E (so that u|.(A4) =
u(EN A)), we note that for p-almost all x € E

dim  p|p(x) = dim  pu(x) and  dimiee p|;(x) = dimoc p(x). (10.3)

This follows easily from Proposition 1.7, that almost all points of a set are
density points, see Exercise 10.2,

The fundamental relationships between Hausdorff and packing measures of
sets and local properties of measures supported on the sets were stated in
Propositions 2.3 and 2.4. We rewrite these relationships to give explicit
expressions for the dimensions of sets,

Proposition 101

Let E C R” be a non-empty Borel set. Then
dimp E = sup{s : there exists pwith 0 < u(E) < 0o
and dim,  u(x) > s for y-almost all x € E'} (10.4)
= inf{s: there exists u with 0 < u(E) < oo
and dim u(x) < s for all x € E'} (10.5)

and
dimpE = sup{s : there exists p with 0 < u(E) < oo
and dimgpu(x) > s for y-almost all x € E} (10.6)

= inf{s: there exists u with 0 < yu (E) < 0o
and dim,cpu(x) < s for all x € E}. (10.7)

Proof These expressions follow directly from Propositions 2.3 and 2.4. [

Note that it is the lower local dimension that relates to the Hausdorff
measure of a set and the upper local dimension to the packing measure.
Moreover, lower bounds for the local dimensions of measures lead to lower
bounds for the dimensions of the sets, and similarily for upper bounds.

These relationships suggest that it might be appropriate to use local
dimensions to assign dimensions to the measures themselves. Thus we define
the Hausdorff and packing dimensions of a finite Borel measure p by

dimy g = sup{s : dim, . u(x) > s for u-almost all x} (10.8)
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and
dimp o = sup{s : dim jo¢ (x) > s for y-almost all x}. (10.9)
It is hardly surprising that these dimensions of measures may be expressed in
terms of the dimensions of associated sets.

Proposition 10.2

For a finite Borel measure
dimpy ¢ = inf{dimy E : E is a Borel set with u(E) > 0} (10.10)
and

dimp p = inf{dimpE : E is a Borel set with u(E) > 0}. (10.11)

Proof We apply Proposition 10.1 to~definitions (10.8) and (10.9). First take
s < dimy p, so that dim,,u(x) > s for all x € Ey for some Borel set Ey with
w(R™\ Ey)=0. Given a Borel set E with u(E) > 0, it follows that dim , u(x)> s
for all x € EN Ey where u(EN Ey) = u(E) > 0, so by Proposition 2.3(a) or
(10.4) s < dimy(E N Ep) < dimyE for all such E, so dimyy is no greater than
the right-hand side of (10.10).

For the opposite inequality, let s > dimyu, so by (10.8) dim  u(x) < s for
all x in some Borel set E with p(E) > 0. By Proposition 2.3(b) or (10.5)
dimy E < s, as required.

The proof of (10.11) is similar, using Proposition 2.3(c), (d) or (10.6) and
(10.7. O

It is occasionally useful to work with the upper Hausdorff and packing
dimensions of measures defined by

dimy; p = inf{s : dim_ u(x) < sfor y-almost all x} (10.12)
and
dimpp = inf{s : dimecp(x) < sfor p-almost all x}. (10.13)
Clearly
dimpgp <dimpjp and  dimpp < dimpp.
These dimensions may also be expressed in terms of dimensions of sets.

Proposition 10.3

For a finite Borel measure
dimy; g = inf{dimy E : E is a Borel set with u(R"\E) = 0} (10.14)
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and
dimp ¢4 = inf{dimpE : E is a Borel set with u(R"\E) = 0}. (10.15)

Proof This is rather similar to the proof of Proposition 10.2, see Exercise
104. O

To illustrate these notions we calculate the dimensions and local dimensions
of a family of self-similar measures on [0, 1]. For 0 < p <1 we define a self-
similar probability measure p, on [0,1] by repeated subdivision of measure
between binary intervals in the ratio p : (1 — p), see Figure 10.1. Writing X;, _;

for the closed interval of numbers with binary expansion beginning 0 - i .. . i,
where ; =0 or 1 forj=1,...,k we have

pp( X)) =p" (1 = p)" (10.16)

where ny and n; denote the number of times that the integers 0 and 1,
respectively, occur in the sequence (i, ..., i). Thus the self-similar measure p,
is that defined by (2.44)~(2.45) where Fi(x) =3ix, F5(x) =3(x+1), pr=p
and po=1-p.

=]
—_

il

Figure 10.1 Construction of the self-similar measure of Proposition 10.4 by repeated

subdivision of measure in the ratio 1 : 2, that is with p =
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The following argument to calculate the dimensions of the measure i, is
similar to that in FG, Proposition 10.1. The final conclusion of this proposition
will be needed in Section 10.2.

Proposition 10.4

For0<p< % let y, be the probability measure defined above and write

s(p) =—(plogp+ (1 -p)log(l —p))/log2. (10.17)
Then
dimpp, = dimjjp, = s(p) = dimpy, = dimpy, (10.18)
and
dim oepty (x) = 5(p) = A ety (%) (10.19)

Sor u-almost all x. Moreover, there is a family of Borel sets F, that increases with
p such that dimyF, = s(p) and p,(F,) = 1.

Proof First we note that yg is the unit point mass located at 1 and s(0) = 0, so
setting Fyp = {1} gives the result when p = 0.

Now fix 0 < p <1 We may think of y, as the probability measure on [0, 1]
that gives rise to a random number x such that the k-th binary digit of x equals 0
with probability p and equals | with prohability 1 — p, independently for all
digits. For i = 0, 1 we let n;(x|,) denote the number of occurences of the digit i in
the first k& digits of the binary expansion of x € [0, 1]. The strong law of large
numbers tells us that ‘with probability 1’, that is for y,y-almost all x, we have that

no(x|)/k — p and m(x|;)/k — (1 -p)
as k — oo. Defining Borel sets by Ko = Fyp = 1 and
Ky = {x€[0,1]: lim no(xl,)/k = p), (10.20)
for 0 < p <1 it follows that y,(K,) = 1.

For each x € [0, 1] write X;(x) for the binary interval X;, _; of length 2%
that contains x. From (10.16)

log pp(Xk(x)) = no(x|,) logp + ni(x];) log (1 — p).
If x € K, then for t >0

1 X,
—lo gw = pno(x|;) logp + tm(x|,) log(l — p) + tlog2  (10.21)

>

— plogp+ (1 —p)log (1 —p)+tlog2

as k — oo. Thus if # < s(p) (see (10.17)) then limy_ 1, (Xx(x))/| Xk (x)|" = 0,
so by a straightforward variant of Proposition 2.3(a) with the balls centred at x
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replaced by the binary intervals containing x, we get that dimy E > s( p) for
every Borel set E with p,(E) > 0, so in particular dimy K, > s(p), and also
dimg 1, > s(p) by (10.10).

On the other hand, if 0 < ¢ < p and x € K, then (10.21) gives

1 Xr(x
Elog %"k(t)) —gqlogp+ (1—¢q)log(l —p) +tlog2
> plogp + (1 - p)log (1 —p) + tlog2,

since g (logp — log (1 — p)) = qlog (p/(1 — p)) decreases as g increases if p < 1.
Thus if ¢ > s(p) then lim u,(Xx(x))/|Xx(x)| = oo for all x € F, = Up<y<, K,
Again, the analogue of Proposition 2.3(b) for binary intervals gives that
dimyF, < s(p) and equality follows since s(p) < dimy K, < dimy F, from
above. Noting that p,(F,) > uy(K,) =1 it follows from (10.14) that
dimy; p, < s(p), so recalling that s(p) < dimy p, < dimyg p, we get the first
two equalities of (10.18). That dim o u(x) = s(p) for p-almost all x is now
immediate using (10.8) and (10.12).

The right-hand two equalities of (10.18) may be obtained by a parallel
argument (which we leave to the reader) using the parts of Proposition 2.3
pertaining to packing measures, and the corresponding definitions and
properties of dimpyu, and dimpy,. It then follows from (10.9) and (10.13)
that dim ocpu(x) = s(p) for p-almost all x. 0O

In the above examples, dim u(x) and dim o u(x) are both constant for
p-almost all x. Measures with this property occur frequently in practice and are
termed ‘exact-dimensional’ or ‘unidimensional’: we say that a measure y has
exact lower dimension s if dim, p(x) = s for p-almost all x, and exact upper
dimension s if dimecpu(x) = s for p-almost all x. Clearly from (10.8), (10.12),
(10.9) and (10.13) i has exact lower dimension s if and only if

dimypu =dimgp=s
and u has exact upper dimension s if and only if

dimpy = dimp p = s.
As might be expected, exactness may be expressed in terms of dimensions of
sets.

Proposition 10.5

The measure u is of exact lower dimension s if and only if there exists a Borel set
Ey with w(R"\ Ey) = 0 and dimyE = s for every E C Ey with u(E) > 0. (We
may take Ey = {x : dim, u(x) = s}). Similarly, u is of exact upper dimension s
if and only if there exists a Borel set Ey with u(R"\ Ey) = 0 and dimpE = s for
every E C Ey with u(E) > 0.
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Proof If u 1s of exact lower dimension s then, by definition, there is a Borel set
Ey with p(R™\ Eg) = 0 such that dim ,cuu(x) = s for all x € Ey. Thus if E C Ey
and u(E) > 0 then dimyE = s by (10.4) and (10.5).

Conversely, if there exists Ey with u(R"\ Ep) =0 and dimuyE = s for all
E C Ey with u(E) >0, then dimyp =s by (10.10), so dim,, u(x) > s for
p-almost all x by (10.8). On the other hand, dimju <s by (10.14) so
dim, . pu(x) < s for p-almost all x by (10.12), and thus p is of exact lower
dimension s.

The proof for exact upper dimension is parallel, using the corresponding
properties of upper local dimension and packing dimension. [

In the example analysed in Proposition 10.4 the measures p, are of exact
lower and upper dimensions s(p). It may be shown in a similar way that the
more general self-similar measures defined by (2.43)—(2.45) with the strong
separation condition holding are exact-dimensional. '

Another method for demonstrating exact dimensionality, which also may be
applied to self-similar measures, uses ergodicity. Recall from Section 6.1 that a
measure p is invariant under ' X — X if whenever A C X is u-measurable then
so is f71(A4) with u(f~'(A4)) = u(A4), and that u is ergodic if whenever
S~ (A) = A for a measurable set A then either u(4) = 0 or u(X\4) = 0.

Proposition 10.6

Let X be a closed subset of R", let f - X — X be a Lipschitz function, and let i be
a finite measure on X that is invariant and ergodic under f. Then u has exact
lower dimension and exact upper dimension.

Proof The proof utilises the ergodic théorem. Let a be the Lipschitz constant
of f so that | f(z) — f (w)| < alz — w]| for all z,w € X. Thus for x,y € X and
r > 0 we have that | f(x) — f/*1(p)| < a|lx — f/(p)| (where f/ is the j-th iterate
of f) so if f/(y) € B(x,r) then f/71(y) € B( f(x),ar). In terms of indicator
functions this is

Lagen (S ()) < La(ry.an(S7FH(D)) (10.22)

Applying the ergodic theorem, Theorem 6.1, to the indicator functions 1 g
and 1 g 7 () o) (for fixed x and r) it follows from (6.4) and (6.5) that for y-almost

all y
k-1

u(B)) = [ Ve = ) fim 23 Lage(7(5)

and
k=1

w(B(f(x),ar)) = / LB( f(x),andpe = p(x) klgf,loéz La(r(ean (S ()
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(in the second instance we have applied the ergodic theorem at f(y), noting
that ‘almost all f( y)’ corresponds to ‘almost all y* using the invariance of ).
By (10.22) it follows that w(B(x,r)) < u(B(f(x),ar)) for all x € X and r > 0.
Then

dim o 4 (x)) = lim nf log u(B(/ (x), 1)/ logr
= liIrIl.ionf log u(B(f(x),ar))/ logar
< liminf log u(B(x,r))/(logr + loga)

r—»o
= dimou(x).

Since u is invariant under f,

[ it () du() = [ dimioe )t

so we conclude that dim . u( f(x)) = dim, . pu(x) for p-almost all x, that is u
has exact lower dimension. Exactness of the upper dimension follows in the
same way, using upper limits in the final sequence of inequalities. [

We saw in Lemma 6.4(b) that the self-similar measures defined by
(2.43)-(2.45) and satisfying the strong separation condition are invariant
and ergodic under the mapping f: E — E defined by F;! on E;, so by
Proposition 10.6 they have exact lower and upper dimensions. Similarly, many
invariant ergodic measures may be defined on cookie-cutter sets, and such
measures are therefore exact-dimensional. For another ergodicity criterion for
exact dimensionality, see Exercise 10.6.

Most approaches to calculating the dimensions of sets involve estimating the
dimension of a measure concentrated on the set. However, finding such
measures with dimensions equal to or close to that of the set under con-
sideration can be a major problem.

One situation in which fractal properties of measures rather than sets are
important is in dynamical systems. In a computer experiment to display the
attractor of a dynamical system x+—f(x), one might hope to represent the
attractor by plotting a large number of iterates x,f(x),f %(x),...,f*(x) of an
initial point x. Essentially, what is displayed on the computer screen is
the residence measure p defined by p(A4) =limx_oi#{j<k:fix € A}
(assuming that this converges in some sense), which is supported by the
attractor of the system. It is this measure that is observed rather than the
attracting set itself, parts of which may be very sparsely occupied by the
iterates. Methods of finding the dimension of an attracting set often lead to
estimates of the dimension of this measure rather than of the set. Certainly,
many results that relate the dimension of an attractor to other parameters of a
dynamical system concern the dimension of an attracting measure rather than
of the set itself.
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10.2 Dimension decomposition of measures
If a measure does not happen to be exact-dimensional, it is natural to try to
decompose it into measures which are of exact dimension s for a range of s. In
this section we describe one approach to this problem. We give the details for
lower local dimensions and Hausdorff dimension; there is a parallel theory for
upper local dimensions and packing dimension. As before, y is a finite Borel
regular measure on R”".

For s > 0 we consider the sets on which the (lower) local dimension is at
most s:

E., = {x:dim, p(x) < s}. (10.23)
Then E_; is a Borel set and by Proposition 2.3(b)
dimpg £ <s. (10.24)

Clearly, E_, increases with s and we have the upper continuity property

E., =()E< (10.25)

1>5

We write E for the set of points at which the (lower) local dimension is exactly
s, so that

E, = {x:dim p(x) = s} (10.26)
- __S\U E., (10.27)

To obtain the desired decomposition of u we first study the measures
obtained by restricting y to the sets E,. Thus p, = pl E. is defined by

us(4) = u(4 N Ec,). (10.28)
for all sets 4. Clearly
ps(R"\Ec,) =0
and from (10.25) and the continuity of measures (1.13),

li{n,u,(A) = lti{n,u(A NE.,) =p(ANE.,) = pu(4). (10.29)
NS S - -
We may express u; in terms of dimensions of sets.

Proposition 10.7

For 0 < s < n and all Borel sets A

ps(A) =sup{u(A N E): Eis a Borel set with dimygE < s}.
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Proof Using (10.24)
pis(A) = p(AN E<;) < sup{u(ANE) : dimyE < s}.

On the other hand, for y-almost all x ¢ E.,, that is for ,ul(Rn\E(l)-almost all x,
we have dim l‘l(R"\§<,)(x) = dim,.u(x) > ¢, using (10.3) and (10.23). Thus,
by (10.8) dimHul(Rn\£<l) > t, 50 by (10.10) if E is any Borel set with dimygE < ¢
then 0 = p|gm g_,(E) = W(E\E_,). Hence if A is a Borel set, y(ANE) =
HWANENE,,) < pu(A), so

sup{u(ANE) : dimpE < t} < p(A4).
Thus for all ¢ > s
sup{u(ANE) : dimyE < s} <y (A4),

and using (10.29) completes the proof. [

Taking s = n in Proposition 10.7 gives
Hn(A4) = p(4) (10.30)

for all Borel sets A.
Next we define a finite Borel measure ;i on the real interval [0,n] by
setting

A([0, 5]) = ps(R") (10.31)
and extending this to subsets of [0, #] in the usual way. From (10.28)
([0, 5]) = p(E<y)- (10.32)

The measure [ is sometimes called the dimension measure of u, since [i(B)
records the u-measure of the set of points with (lower) local dimension in the
set of real numbers B.

The following ‘dimension disintegration formula’ expresses the measures p;
as integrals of certain measures v, with respect to ji; the measures v, are termed
the dimension derivative family of p.

Proposition 10.8

There exist real numbers v,(A) defined for each Borel subset A of R" and for all
0<t<n with0<uy(A) <1, and such that

(a) vi is a Borel probability measure on R" for 0 < t < n, and
(b) for all 0 < s < n and all Borel sets A

(4) = /[ A (10.33)
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Proof For each Borel set 4 we may, analogously to (10.31), define a Borel
measure fiq on [0,n] by [4([0,s]) = pus(4) = u(4N E.,), and extending this to
subsets of [0,n]. For 0 < s < ¢ we have

0 < fia(s, 1] = p(A) — ps(A) = p(A N (E< \Es,)) < m(E<\E<y)
= p(R") — ps(R") = fi(s, 1]

so that

0 < fia(B) < u(B) (10.34)
for all B C [0, n]. Thus fi4 is absolutely continuous with respect to i so that we
can represent [i4 in the form

a(B) = [ ()da0)

where 1v,(A) is the Radon-Nikodym derivative v, (A) = dga(z)/dj. In
particular, taking B =[0,s] and using [i4([0,s]) = u(4), (10.33) holds
for 0 <s<n.

There is a technical difficulty in showing that 1, is a measure on R” since
di4(t)/dj is defined only to within ji-almost all . We may cope with this as
follows. Let

A={ki27", (ki + D277) x -+ x [ka27", (kn + 1)277)
:meZ k... ko €7}

be the collection of binary cubes in R”. For each 4 € A choose a representation
vi(A) = dfis()/dj of the Radon - Nikodym derivative; by virtue of (10.34) we

may assume that 0 < 1, (4) <1 forall 4 € Aand ¢t €[0,n]. If 4,..., A are
disjoint sets with 4 = UL, 4, then
Qi (0)/dfs = dfia, (1)/dfi + - + dji (1) /i (10.35)
or
UI(A) = UI(AI) + -4 Ut(Ak) (1036)

for j-almost all ¢. Since A contains countably many binary cubes, each a
disjoint union of 2" binary cubes of half of their side-length, there is a set
W c [0,n] with a([0,n]\W]) =0 such that for all e W (10.36) holds
whenever A4 is a binary cube and 41,..., A; are the 2” binary sub-cubes of
half the side-length. Thus for all € W, we may extend v,(4) in a consistent
additive manner to the family of sets 4 that are finite unions of binary cubes,
with (10.33) remaining valid for these sets. We may continue this extension
process in the usual way so that for all € W the measure v, is countably
additive on the Borel sets, with 0 < v,(R") < | and with (10.33) extending to
the Borel sets. From (10.30) u(R") = p,(R") = f[o,n] v (R™)d/i(2), so v (R") = 1
for ji-almost all ¢, since ji([0,n]) = u(R"). Thus for ji-almost all ¢ € [0,n] the
measure v, is a probability measure. By redefining v, on a set of ¢ of i-measure
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zero we may take v; to be a probability measure for all ¢ € [0, ], with (10.33)
remaining valid. [

The next proposition summarises the principal properties of the measures v;.

Proposition 10.9

Let v, satisfy the conclusions of Proposition 10.8. Then

(a) for every Borel set A we have v,(A) = 0 for fi-almost all t € (dimy A, n],
(b) for all s we have v(E_,) = 1 for ji-almost all t € [0,s],
(¢) for fi-almost all t, we have v,(E,) = | and v,(R"\ E,) = 0.

Proof

(a) Let A be a Borel set and write s = dimygA. From (10.33)

/( UAGD = (1) — s (4)
< u(d) —p(4n4) =0,

using (10.30) and Proposition 10.7. Thus 1,(4) =0 for ji-almost all
t € (s,n).
(b) Using (10.33), (10.28) and (10.31)

/ W(E 2 )AAE) = u(E <) = js(R") = ([0, 5]) = / 1da(s).
[0,s] [0,5]

Since 0 < v (E.,) < | for all ¢, this implies that v,(E.) = | for ji-almost
all £ € [0, s].
(¢) We note that

{t€[0,n]: v(E.,) < lfor some rationalg > t}

=J{t:wm(E,) <landr< g} (10.37)
qeQ

From (b) the sets in this union have ji-measure 0, so we conclude that for
fi-almost all ¢ we have v,(E.,) = 1 for all rationals g > 1. Using (10.25)

v(E.,) = Li{r} Vt(qu) =1 (10.38)

for fi-almost all ¢.
In the same way,

{t€0,n]: (E.,) > 0 for some rational g < ¢}

= U{t :u(E<,) >0andt > g},
qeQ
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so by (a) this has fi-measure 0, since dimy £ 1< 4q by (10.24). Thus for
fi-almost all ¢ we have v(E,) = 0 for all rational g < ¢, so

v(E,) = (E<t) —lim v, (E ) =1-0
g/t
using (10.27) and (10.38).
Finally we note that

v (®NE) = u(R") ~ v, (E)=1-1=0. O

Proposition 10.9(c) says that (10.33) is a decomposition of the measure u
into components v, concentrated on £, the set on which g has local dimen-
sion . Ideally, one would like v, itself to have exact dimension ¢ for fi-
almost all . However, since v,(E.,) =1, (10.10) implies that dimpy, <
dimy E.,. Should dimy E, be strictly less than ¢, as can happen, then
dimy v, < t, so by (10.8) dim o v(x) < t for a set of x of positive v,-measure. It
would be interesting to have precise conditions that ensure that v, is exact for
certain ¢. We shall see that this is the case at least when u(E,) > 0.

We now obtain an alternative decomposition of u into components of
differing local dimensions, utilising the nature of the measure £ on [0, n]. Recall
that a number s is an atom of 4 if i({s}) > 0. By summing these point measures
it is clear that the set S of atoms of a finite measure /i is at most countable. The
restriction of [i to S is called the atomic part of (i and the restriction of ji to
[0,n)\S is the non-atomic part of fi.

We shall see that a finite measure y has exact-dimensional components
corresponding to the atoms s of ji. On the other hand, the component u? of p
corresponding to the non -atomic part of ji has diffuse dimension distribution,
that is p?{x : dim jocp?(x) = s} = 0 for all s.

From (10.27) and (10 33) for a Borel set A4,

uMﬂE0=uMﬂE9%4@uMﬂE§
= ps(4) =i (A
fs(A) gy()

—lim [ v(4)dji(e).
r/s (5]

Taking A = R" gives u(E;) = 0, unless s is an atom of /i in which case
u(ANE;) = v(4)a({s}). (10.39)
Thus the atoms of j; correspond to those s for which u(E;) > 0; this leads us to

decompose p into exact-dimensional components by restricting p to E; for
such s.
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Proposition 10.10
Let yu be a finite Borel measure on R”. There exists a finite or countable set

S C [0, n], a measure 1i° of exact dimension s for all s € S, and a measure uP with
diffuse dimension distribution, such that

,u:Z,us—huD. (10.40)
seS
In fact we may take

S={sc(0,n:uE,) >0} (10.41)

and
W(A) = w(ANE,) (10.42)

and
( \ ) (10.43)

SES

for A C R”", where (as before)
E, = {x:dim pu(x) = s} (10.44)

Proof The set S in (10.41) must be countable since p(R") < oc. For s € S

define Borel measures p* by (10.42) and define p” by (10.43). By (10.3) and

(10.44) we have that dim o o (x) = dim joc p(x) = s for p-almost all x € E.

Thus dim 1o ¢*(x) = s for p*-almost all x, so p* is of exact dimension s.
Using (10.42) and (10.43)

Z,uAﬂE +u( \ )
seS seS

= 3 1) + P (4)

seS
for A C R". To show that u? has a diffuse dimension distribution we again use

(10.3) to note that dim oc P (x) = dim oc () for pP-almost all x. Thus for
each ¢ € [0,n)

pP({x s dim e p (%) = 1}) = pP( ( \ )
sES

since if w (E,) > 0 then ¢ would be an atom of ji so that E, = E forsome s € S.
Thus u” has diffuse dimension distribution. [

Measures with exact dimensions are readily found; Propositions 10.4 and
10.6 provide many examples. However, measures with diffuse dimension
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distribution occur less naturally. We show how such measures may be
constructed; in fact we show that there is a measure x on R such that the
dimension measure i equals any given probability measure on [0, 1].
Essentially, we aggregate measures of the form introduced in Proposition
10.4 to obtain measures with the desired dimension measure.

Lemma 10.11

There exist Borel probability measures vy and sets F, for all 0 < s < 1 such that
the F! are increasing with s, and such that dimy F] = dimy vy = s and v(F]) = 1
forall 0 <s<1.

Proof These sets and measures were essentially constructed in Proposition
10.4. We note that for 0 <s <1 we may find a unique p = p(s) such that
0<p<lands=—(plogp+ (1 —p)log(l—p))/log2.Setting F/ = F, and
Vs = pip(s)» Where Fy and g, are as in Proposition 10.4, gives sets and
measures with the desired properties. [

Proposition 10.12

Let ) be a probability measure on |0, 1]. Then there exists a Borel measure j1 on R
such that i = n.

Proof We let v; and F/ be as in Lemma 10.11 and define a Borel measure by

(4) = /[0 . (10.45)

Since v, (R) =1 for all ¢ € [0,1] we have that u(R) = 1. Since dimyy, = ¢ it
follows from (10.10) that v,(E) = 0 for every Borel set E with dimyE < 1. Thus
for 0 < s < 1, using (10.31), Proposition 10.7, (10.45) and Proposition 10.9(a),

ﬂ([O, S]) = ,US(R)

= sup{/ v (E)dn(t) : dimgE < s}
[071]

= sup{/ v (E)dn(t) : dimgE < s}
[0,]

= ([0, s])
since v,(E) < 1 for all E, and u,(l?s’) =1 for ¢t < s with dimyF, = s. It follows
that f=n. O

These arguments may be generalised to obtain a measure x on R” such that
f = n for any given probability measure 5 on [0, #].
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10.3 Notes and references

Local dimensions of measures have been around in some form, though not by
that name, almost since the birth of geometric measure theory. In particular,
Frostman (1935) and Billingsley (1965) use local dimensions of measures to
study dimensions of sets. The relationships between Hausdorff and packing
measures and local dimensions are discussed in Tricot (1982), Cutler (1986),
Haase (1992) and Hu and Taylor (1994). Ergodic criteria for exact dimension-
ality are given by Cutler (1990) and Fan (1995).

Rogers and Taylor (1959, 1962) obtained a decomposition theorem very like
Proposition 10.10 and also constructed measures with diffuse dimension
distribution. The approach followed in Section 10.2 is that of Cutler (1986,
1992). Kahane and Katznelson (1990) use Riesz potentials to obtain a similar
decomposition.

Exercises

10.1 Let u be a finite measure on R” and let f: R” — R” be a Lipschitz mapping. Show
that dim,, v(f(x)) <dim, p(x) for all xe€ R", where v is defined by
v(A4) = u(f ~1(4)). Deduce that if £ is a similarity or affine transformation then
di—mlocy(f(x)) :di_m}ocﬂ(x) for all x € R™.

10.2 Verify (10.3) using the density property, Proposition 1.7.

10.3 Verify that {x : dim,.(x) < ¢} is a Borel set, for y a finite Borel measure on R”
and c € R.

10.4 Prove Proposition 10.3.

10.5 Let 0 < p < 1, let E be the middle-third Cantor set and let x be the self-similar
measure supported by E obtained by repeated subdivision of the measure on each
interval in the usual Cantor set construction in the ratio p: 1 — p between the
subintervals at the next stage. Show that yp has exact lower dimension
~(plogp+ (1 —p)log(1 - p))/log3.

10.6 (Another criterion for exactness.) Let X be a closed subset of R” and let i be an
ergodic invariant measure for f: X — X. Suppose that for all Borel sets E we have
dimy f~'(E) < dimyE. Show that p is of exact lower dimension. (Hint: if
#(E) > 0 use the definition of ergodicity to show that u(U2,f 7/E) = 1 and then
use (10.10) and (10.14).)

10.7 Let u; and py be finite measures on R” with disjoint support. Show that the
dimension measures satisfy (u; + p2) = f1 + fia-

10.8 Show directly that (to within a set of f of fi-measure) the measure p defined by
(10.45) has dimension derivative family v,.

10.9 With E_; as in (10.23), show that dim}; E_; <'s.



Chapter 11 Some multifractal analysis

As we saw in the last chapter, a single measure p of widely varying intensity
may define a whole ‘spectrum’ of fractal sets, determined by those points at
which the local dimension takes particular values. In the last chapter we were
concerned with the p-measure of such sets. Here we undertake a ‘finer’
analysis, by examining sets which, although they may have u-measure zero, are
nevertheless significant as sets of positive dimension. Multifractal analysis aims
to quantify the singularity structure of measures and provide a model for
phenomena in which scaling occurs with a range of different power laws.

Recall that for a finite measure u on R” the local dimension (or local Holder
exponent) of p at x is given by

dimpep(x) = liné log p(B(x,r))/log r, (11.1)

if this limit exists. For each o > 0 we consider the set E, of points x at which
dimecp(x) exists and equals . (In multifractal analysis the use of ‘e’ rather
than ‘s’ in this context is almost universal, and we adhere to this convention in
this chapter.) For certain measures p the sets £, may be non-empty and fractal
over a range of o, and when this happens pu is often termed a multifractal
measure. It is natural to study the multifractal spectrum or singularity spectrum
of u defined by f(a) = dim E,, (for some suitable definition of dimension). For
example, self-similar measures (see Section 2.2) are generally multifractal
measures; their spectra are analysed in detail in Section 11.2.

This idea of getting many fractals for the price of one measure is at first very
attractive, but it is beset by technical difficulties when it comes to analysing
mathematical properties and when attempting to calculate multifractal spectra
in specific cases. For example, it is not always clear when it is more appropriate
to work with upper or lower local dimensions, or which definition of dimension
should be used in defining f (). Care is needed in relating the behaviour of
p(B(x,r)) in the limit as » — 0 with its values at small but finite scales, and this
leads to fine and coarse multifractal theories. Difficulties also arise from
estimates involving 1(A4)? where ¢ is negative and u(A) is small.

Despite this, or perhaps because of it, an enormous amount has been done
on the mathematics of multifractals, much of which parallels earlier work on
fractal sets. The aim is to give satisfactory definitions and interpretations of
multifractal dimension spectra, to study geometrical behaviour (for example by
relating the spectra of a measure and its projections onto subspaces), to find
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general methods of calculating multifractal spectra, and to find the spectra of
specific measures.

In this chapter we can do no more than touch on a few mathematical aspects
of multifractals. Section 11.1 concerns general theory applicable to general
measures and in particular discusses the fine and coarse approaches to
multifractals. In Section 11.2 we calculate the spectra of self-similar measures,
and in Section 11.3 we use the thermodynamic formalism to extend these
calculations to non-linear analogues, that is to Gibbs measures on cookie-
cutter sets.

Measures with multifractal features have been observed in many situations.
Multifractals have been used to describe residence measures on the attractors
of dynamical systems, turbulence in fluids, rainfall distribution, mass
distribution in the universe, viscous fingering, neural networks and many
other phenomena. Nevertheless, it is not always easy to relate these examples to
the mathematical and computational theory.

11.1 Fine and coarse multifractal theories

There are two basic approaches to multifractal analysis: the fine theory where
we examine the geometry of the sets E, themselves, and the coarse theory where
we consider the irregularities of distribution of u(B(x,r)) for small but positive
r. Thus in the fine theory we look at the local limiting behaviour as r — 0 of
u(B(x,r)) and examine global properties of the sets thus defined, whereas in the
coarse theory we quantify the global irregularities of u(B(x,r)) for small » and
then take the limit as r — 0. There are many parallels between the fine and the
coarse approaches to multifractal analysis, for example both involve Legendre
transformation, and both approaches lead to the same multifractal spectra for
many basic measures.

The fine theory is perhaps more suited to mathematical analysis, requiring
ideas close to those used in studying the Hausdorff dimension of sets. On the
other hand, the coarse theory is more convenient when it comes to finding
multifractal spectra of physical examples or estimating spectra from computer
experiments, and this approach is more reminiscent of box-counting dimension
calculations.

We discuss both the fine and coarse approaches and their relationship for
general measures. It must be emphasised that many variations are possible in
the definitions and conventions adopted, and that similar but different
definitions may be encountered elsewhere in the literature.

Let u be a finite Borel regular measure on R”. For o > 0 define

E, = {x € R" : dim ocpu(x) = o}, (11.2)
={xeR": lir%logu(B(x, r))/logr = a}; (11.3)
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thus E, is the set of points at which the local dimension exists and equals «.
The basic aim of the fine approach to multifractal analysis is to find dim E, for
a > 0. (Note that some variants of multifractal theory work with upper or
lower local dimension, or replace ‘= o’ with ‘> o’ or ‘< o’ as in the last
chapter.)

In most examples of interest E,, is dense in sptu for values of « for which E,
is non-trivial. Then dimgE, = dimgE, = dimp sptu (and similarly for upper
box dimension), so box-counting dimensions are of little use in discriminating
between the sizes of the E,. Thus it is more natural to work with

fH(a) =dimyk, and fP(Oé) = dimpEa, (114)

which we term respectively the Hausdorff and packing (fine) multifractal
spectra of .

Clearly 0 < fu(a) < dimy sptu for all o > 0, with similar inequalities for
packing dimensions. By Proposition 2.3(h) we also have

0<fu(®) <a (11.5)
for all «.

The definition of the coarse spectrum is along the lines of box-counting
dimension. We work with the r-mesh cubes in R”", that is cubes of the form

[pr, (mg + 1)r) x -+ x [myr, (m, + 1)r) where my, ..., m, are integers. For pz a
finite measure on R"” and « > 0 we write
N, (a) = #{r-mesh cubes 4 with u(4) > r“} (11.6)

and define the coarse multifractal spectrum of u as

o logH(Ny(at €) = Nyfa - €))
Jela) = lell%lrg% —logr

(11.7)

if the double limit exists. (We write log*x = max{0,logx}; this is merely a
device to ensure fc(a) > 0.) Definition (11.7) implies that if > 0, and € > 0 is
small enough, then

r /@t < N(a+€) — Ny(a—€) < rdel@ (11.8)

for all sufficiently small r. Roughly speaking —fc(a) is the power law exponent
for the number of r-mesh cubes A4 such that (4) ~ r®. Note that fc(a) is not
the box dimension of the set of x such that u(A4,(x)) ~ r® asr — 0 where 4,(x)
is the r-mesh cube containing x; the coarse spectrum provides a global overview
of the fluctuations of p at scale r but gives no information about the limiting
behaviour of u at any point.

In case the limit in (11.7) fails to exist, we define the lower and the upper
coarse multifractal spectra of u by

fc(a) = limliminf log" (N;(a +€) = Ny(a — €))

11.9
=0 r—0 —logr (119)
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for o > 0.
The following lemma gives the basic relationship between the fine and coarse
spectra.

Lemma 111

Let u be a finite measure on R”. Then

Sfu(e) < f(a) < fela) (11.11)
for all a > 0.

Proof We need only prove the left-hand inequality in (11.11); the right-hand
inequality is obvious. For simplicity we take i to be a measure on R; the proof
is similar in higher-dimensional spaces except that measures of balls and cubes
have to be compared instead of measures of intervals.

For fixed a > 0 write for brevity f= fu(a) = dimyE,; we may assume
f>0. Given 0 < ¢ < f then H/~¢(E,) = co. By (11.3) there is a set E® C E,
with H/~¢(E%) > 1 and a number ro > 0 such that

3r¢ < p(B(x,r)) < 27 (11.12)

for all x € E° and all 0 < r < ro. We may choose § with 0 < § < 1ro such that
H(EY) > 1.

For each r < § we consider r-mesh intervals (of the form [mr, (m + 1)r) with
m € 7) that intersect E%. Such an interval 4 contains a point x of E 0 with

B(x,r) CAUALUAg C B(x,2r)
where Ay and A are the r-mesh intervals immediately on either side of 4. By
(11.12)
3rote < pu(B(x,r)) < m(AU AL U Ag) < pu(B(x,2r)) < r* =
so that
rote < p(do) <r* (11.13)

where Ay is one of A4, A; and Ag. By definition of ’Hf ¢ there are at least

r</HI¢(E) > r<7 of the r-mesh intervals that intersect £° o ,sothereare at least
3 r¢~/ r-mesh intervals A, that satisfy (11.13) (note that two 1ntervals A separated
by 2r or more give rise to different intervals 4p). We conclude that for r < 6

Nr(a + 6) — Nr(a — 6) Z %rf_f
so from (11.9) fo(@) > f=fu(a). O
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In fact, just as many sets encountered have equal box and Hausdorff
dimensions, many common measures have the same coarse and fine spectra.
This is so for self-similar measures as we shall see in the next section.

Multifractal spectra are related by Legendre transformation to certain
moment sums, and this can provide an alternative way of calculating spectra.
Indeed many measures have spectra that are actually equal to the Legendre
transforms of a natural auxillary function.

Let 5: R— R be a convex function. Then there is a range of «, say
@ € [O@min, Omax| for which the graph of 3 has a line of support L, of slope —a,
and for such « this support line is unique. (When a = aypi, Or amax We take L,
to be the asymptote of the graph.) The Legendre transform of 3 is the function
't [omin, max] — R given by the value of the intercept of L, with the vertical
axis. By inspecting Figure 11.1,

f@=_inf {5(g)+ag} (11.14)

and f is continuous in .

The coarse spectrum is related to the Legendre transform of the power law
exponents of moment sums. For ¢ € R and r > 0 we consider the ¢g-th power
moment sums of a measure y, given by

M (q) = u(A)’, (11.15)

where the sum is over the r-mesh cubes 4 for which u(A4) > 0. (There is a
problem of stability here for negative g: if a cube A just clips the edge of sptu,

B(q) curve

fo)=pig) +ag

(g, B(@)

B - =—===--

Figure 11.1 The Legendre transform of 3(q) is f(«), the intersect of the tangent L, of
slope — a with the 3 axis
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then u(A4)? can be very large. There are ways around this difficulty, for example
by restricting the sums to cubes with a central portion intersecting sptu, but we
do not pursue this here.)

These moment sums are related to the N,(«): using (11.6) it follows that for
ala>0

M(q) = p(4)! > r®Ny(a) (11.16)
if ¢ > 0 and
M,(q) =) p(A)? > r®#{r-mesh cubes with0 < u(4) <r®}  (11.17)

if ¢ < 0. We identify the power law behaviour of M,(g) by defining

B(q) = lim inf log M,(q)/ — logr (11.18)
and
B(q) = limsuplog M,(q)/ — logr. (11.19)
r—0

(Note that many texts use —7(g) in place of our 3(g).) The following lemma
relates the f c and fc to the Legendre transforms of the 3 and 3.

Lemma 11.2

Let p be a finite measure on R”". Then for all o > 0

fel@) < fi(@)=_inf_{8(a) +aq) (11.20)
and
Fel@) <) = _inf_{3(g)+aq) (11.21)

Proof First take ¢ > 0. Then, given € > 0, (11.16) and (11.9) imply that

M,(q) > riCIN,(a +€) > ralareayLelete (11.22)
for all sufficiently small r. It follows from (11.18) that
—B(q) < q(ate) - f(a)+e

s0 /(@) < B(q) + aq by taking e arbitrarily small. This inequality also holds
when ¢ < 0 by a parallel argument, using (11.17) with « replaced by o — e.

The argument for the upper spectra is similar: instead of (11.22) we use
that

M,(q) > riCHIN (a + ) > réerdyTelere

for arbitrarily small values of r. [J
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The Legendre transforms f and f; defined by (11.20) and (11.21) are
sometimes termed the lower and upper Legendre spectra of p. There are many
measures for which equality occurs in (11.20) and (11.21), indeed the lower and
upper values are often all equal, as in the case of self-similar measures. Very
often the coarse spectrum is the Legendre transform of a function 3(q) that can
be defined in a more explicit way than as a limit.

The Legendre transform also plays a major réle in the fine theory of
multifractals. Again the aim is to define a suitable 3 function with a transform
that is a good candidate for the multifractal spectrum. A continuous analogue
of the mesh cube sum is

B(q) = limlog / p(B(x, ) dp(x) / logr (11.23)

(or an upper or lower limit if this limit fails to exist). For nicely behaved
measures the Legendre transform of 3 gives the multifractal spectrum.

An alternative approach uses measures of Hausdorff type tailored for
multifractal purposes. Briefly, given a measure u on R” and ¢, 3 € R we define
measures H%? using the following steps:

He A mf{ZH (xi, 1)) 2r,) :EC UB(xi,r,-),xieE,rigé},
HE(E) = lim 13" (E),

H4P(E) = sup HEP(E). (11.24)
E'CE

(The use of covers by balls centred in E is to avoid difficulties when ¢ is
negative. The final step is needed to ensure monotonicity, that is H%%(E) <
H4? (E,) when E| C E,.) For each q we define 3(q) analogously to Hausdorff
dimension, as the value of 8 at which H%#(R") jumps from oo to 0, so that
HIP(R") = 0o if #< B(q) and HIP(R") =0 if 3> B(q). Then the ‘fine’
analogue of Lemma 11.2 holds:

Jale) < _ inf  {8(q) + ga}. (11.25)

Again, there is equality for ‘nice’ measures .

This approach to the fine theory using the measures H%” (and also ‘packing’
analogues) is mathematically sophisticated, but seems the most appropriate
version of multifractal theory for geometrical properties such as the relation-
ship between multifractal features of measures and their projections onto, or
intersections with, lower-dimensional subspaces.

In practical situations multifractal spectra are often awkward to estimate
and work with. One might hope to compute the coarse spectrum fc by ‘box-
counting’. For instance, if u is a residence measure on the attractor of a
dynamical system in the plane, a count of the proportion of the iterates of an
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initial point that lie in each r-mesh square 4 might be used to estimate the
number of squares for which oy <logu(A4)/logr < axy1, where 0 < o
< ... < . Examining this ‘histogram’ for various r enables the power law
behaviour of N,(a +¢€) — N,(a +€) to be studied and f(a) to be estimated.
However, this Aistogram method tends to be computationally slow and awkward.

In general it is more satisfactory to use the method of moments for
experimental determination of a multifractal spectrum. This uses Legendre
transformation: the moment sums (11.15) are estimated for various ¢ and r and
the power law behaviour in r examined to find 3(q) as in (11.18) or (11.19).
Legendre transformation of 3 gives a Legendre spectrum f1 (o) of u, and there
are often good reasons for considering this to be the coarse spectrum. The
method of moments is usually more manageable numerically than the
histogram method, but even so, practical computation of multifractal spectra
is fraught with difficulties.

11.2 Multifractal analysis of self-similar measures

In this section we calculate the multifractal spectra of the self-similar measures
introduced in Section 2.2. We do this not only because self-similar measures are
important in their own right, but also because the method to be described is a
prototype for multifractal calculations for many classes of measures. Self-
similar measures are well-behaved, in that the various multifractal spectra
introduced in the last section are all equal.

We take p to be the self-similar measure defined by the probabilistic IFS
with similarities {F}, ..., F,,} on R" with ratios r|,...,r, and with associated
probabilities py,...,pm (Where p; > 0 and >_7 | p; = 1); thus p satisfies

w(A) =3 pn(F7(4)) (11.26)
=1

for all sets A4, see (2.43)—(2.45). Then E = spty is the attractor for the IFS
{Fi,...,Fn}, and we assume that the strong separation condition is satisfied,
that is F;(E) N F;(E) = 0 for all i # j, so that E is totally disconnected.

We recall the usual notation, with I = {(i|,..., %) : 1 <i<m} and a
typical sequence (i),...,i) abbreviated to i. We take X to be any non-empty
compact set with Fy(X') C X for all i and F;(X)N F;(X) =0 if i #/ (taking
X = E would suffice), and write

Xi=X, i=F,o0---0F(X). (11.27)
For convenience we assume that |[X| = 1, so for i = (i, 2,...,%) we have
| Xil = ri=riry, -1y, (11.28)

and
u(Xi) = pi = pipiy -+ Piy- (11.29)
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We will obtain the multifractal spectrum fy(a) = dimE, as the Legendre
transform of an auxilliary function §. Given a real number ¢, we define
3 =B(q) as the positive number satisfying

SopirfP =1 (11.30)
i=1

It is easy to see that 3: R — R is a decreasing real analytic function with
lim f(g) =00 and lim §(q) = ~oc. (11.31)
g——0c0 g0

Differentiating (11.30) implicitly twice gives
0=3 st O (Srogr-+ oz + Loz,

so 3 is convex in ¢. Assuming that logp;/logr; is not the same for all
i=1,...,m, then G is strictly convex; we assume that this is the case from now
on to avoid degenerate cases. Writing f for the Legendre transform of 3, given
by

fla)=__inf {5(q)+ g}, (11.32)

—00<g<00

then f: [Gmin, @max] — R where —oauin and —apmay are the slopes of the
asymptotes of the convex function 8. Since £ is strictly convex, for a given «
the infinium in (11.32) is attained at a unique ¢ = ¢g(«); by differentiation this
occurs when

dg
so that

fl0) = ag+Blg) = —qj—f 1 8(g)- (11.34)

We note that if any one of g € R, 5 € Rand a € (amin, &max) 18 given, the other
two are determined by (11.30) and (11.33). In particular on differentiating (11.30)

m 4.8 .
o= 2t Piri 18P, (11.35)
n, pirilogr;

On inspecting this expression, we see that

O'in = 12‘3" logp;/logr; and @ = lrélt%)'(nlogp,-/log r; (11.36)

corresponding to ¢ approaching co and —oo respectively.

From the geometry of the Legendre transform, it is easy to see that f
is continuous on [min,¥max]. Moreover, provided that the numbers
{logp:/logr;}1, are all different, f (min) = f (Qmax) = 0, see Exercise 11.2.
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Differentiating (11.34) we get, using (11.33),

df _ dg ds dg
da %%t ada " (11.37)
Since g decreases as « increases, it follows that f is a concave function of «.

There are some values of ¢ that are of special interest. If ¢ =0 then
B(g) = dimy spty = dimp spty, using (11.30) and the formula (2.42) for the
dimension of the attractor spty of the underlying IFS. Moreover, by (11.37)
g = 0 corresponds to the maximum of f(a); hence dimy spty = dimp spty =
max, f(a).

When ¢ =1 (11.30) implies 3(¢q) =0 so f(a) =« by (11.34). Moreover
4 (f(a)—a@)) =g—1=0,so that the f (a) curve lies under the line f = & and
touches it just at the point corresponding to ¢ = 1. It will follow later that
a(l) =f(a(1)) = dimy g = dimp u (see (10.8) and (10.9) for the definitions of
the dimensions of a measure). The main features of 3(¢g) and f () for a typical
self-similar measure are indicated in Figure 11.2,

Our main aim is to show that the Hausdorff and packing spectra of u are

given by the Legendre transform (11.32) of 3(g), that is
Sula) =fp(a) =f () (11.38)
for & € [min, ®max|, Where E, is the set of points (11.2) of local dimension «,
and fy(a) = dimyE, and fp(a) = dimpE,.
Writing

o(q, ) = Zp (11.39)

for ¢ and 3 real, 3(q) is defined by ®(q, 8(q)) = 1, see (11.30). We require the
following estimate of ® near (g, 3(q)).

Lemma 11.3
For all e > 0,

(g +6,8(q) + (—a+¢€)b) <1 (11.40)
and

O(qg—6,8(q)+ (a+¢€)d) <1 (11.41)

Jor all sufficiently small 6 > 0.
Proof Recalling that d3/dg = —a,

Blg+6) = Blg) — ab + O(8) < B(g) + (—a + )b
if 6 is small enough. Since ®(q + 6, 3(¢ + 6)) = 1 and & is decreasing in its
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B(0) = dimyy spty

dimyy spt

dimp

(b)

Figure 11.2 Form of the multifractal functions for a typical self-similar measure. (a)
The B(g) curve, (b) the ‘multifractal spectrum’ fla) = dimy E,, which is the Legendre
transform of 3(q)

second argument, (11.40) follows. Inequality (11.41) is derived in a similar
way. [

To prove (11.38) we concentrate a measure v on E, and examine the power
law behaviour of v(B(x,r)) as r — 0, so that we can use Proposition 2.3 to find
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Figure 11.3 This self-similar measure p supported by the Sierpinski triangle is
constructed using probabilities p; = 0.8, p; = 0.05, p3 = 0.15. The analysing measure
v, concentrated on the set E, where u has local dimension « = 0.6 (corresponding to
q = 1.4), is self-similar with probabilities 0.896, 0.018 and 0.086, giving that
dimpE, = f(a) = 1.138

the dimensions of E,. For given ¢ € R and 3 = 3(q) we define a probability
measure ¥ on sptu by

v(Xi,.i) = (pupsy -+ i) (rarsy - 13,)P (11.42)

and extend this to a Borel measure in the usual way, see Figure 11.3 for one
instance of this. Together with (11.28) and (11.29) this gives three ways of
quantifying the X; forie I:

For x € spty we write Xj(x) for the k-th level set X;, _; that contains x. We
shall go back and forth between the set Xj(x) and the ball B(x, r) where | X, (x)|
is comparable with r. In particular, for any «,

. log u(B(x,r)) : : log pu(Xk(x))
lim—="—~2" Y — f lim ————2£ = 1.4
lim Tog a if and only if Jim Tog | X ()| a, (11.44)

see Exercise 11.3.
Proposition 11.4

With q,3,« and f as above, and with v defined by (11.42),

(@) v(Es) =1,
(b) for all x € E, we have logv(B(x,r))/logr — f(a) as r — 0.
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Proof Let € > 0 be given. Then for all § > 0

v{x s p(Xi(x)) > [ Xe(x)[*) = vfx : 1 < pu(Xe(x))®| X (x)| 2%}
< / 1 Xi ()| X ()] P du(x)

= ZH )°1X| P (X;) (11.45)
il

_ q+6 ,3+€ a)é
;p

= (quw BH(e—a) )k

= [B(q+ 6,8+ (e — )O)* (11.46)

where ® is given by (11.39), using (11.43) and a multinominial expansion.
Choosing 6 small enough and using (11.40) gives that

v{x s p(Xi(x)) 2 [ Xe(x)|") < 4 (11.47)
where v < 1 is independent of k. Thus

[o.¢]

v{x : p(Xe(x)) > |Xi(x)|" for some k > ko} < Y ¥ <y%/(1 7).
k=kq

It follows that for v-almost all x we have
li,?lg}f log 11(Xk(x))/log | Xx(x)| > a — €.
Since this is true for all ¢ > 0, we get the left-hand inequality of
o < liminf log x(Xi(x))/log | Xi(x)|
< liin sup log u(Xi(x))/log | X (x)] < a.
The right-hand inequality follows in the same way, using (11.41) in estimating

v{x: p(Xp(X)) < |Xi(x)|**}. Using (11.44) we conclude that for v-almost
all x,

lir%log w(B(x,r))/logr = klim log (X (x))/log | Xk(x)| = «;
r— —00

since v is a probability measure it follows that v(E,) = 1.
For (b) note that from (11.43)

log v(Xk(x)) _  logu(Xk(x)) | glog|Xi(x)|
log | Xi(x)] log|Xi(x)] " log|Xi(x)]

(11.48)
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so forall x € E,
log v(Xi(x))
log | X (x)|

as k — oo, using (11.34). Part (b) follows, since (11.44) remains true with v
replacing pu. [

—qga+p=f (11.49)

Our main result on the multifractal spectrum of self-similar measures
follows easily.

Theorem 11.5

Let u be a self-similar measure as above and let

E,={x: lin&log w(B(x,r))/logr = a}.
r—

Ifad [amin, amax] then E, =0, and if a € [amim amax] then
dimyE, = dimpE, = f (a), (11.50)
that is

Ju(a) = fo(e) =1 (a).

Proof From (11.43)

k k
log u(X;) /log | Xi| =) " logp;, / > logr,
= =1

where i = (i1,..., i), so by (11.36) log u(X;)/log|X;| € [min, max] for all i.
Thus the only possible limit points of log u(X;)/log|X;|, and so (analogously
to (11.44) of log u(B(x,r))/logr, are in [Gmin, @max|- In particular E, = @ if
o4 € [amim amax]-

If o € (amin, omax) then by Proposition 11.4 there exists a measure v
concentrated on E, with lim, ,ologv(B(x,r))/logr =f(a) for all x € E,, so
(11.50) follows from Proposition 2.3. For the cases & = amin and o = apyax, see
Exercise 11.5. [

Thus, for a self-similar measure, the dimension of E, may be calculated by
finding ((¢) and taking its Legendre transform. A specific example of a
multifractal spectrum is shown in Figure 11.4.

We remark that instead of E, we might consider

G, = {x : lim log u(B(x,r;))/logr; = a for some r; \, 0}, (11.51)

that is the set of x which have « as a limit point of log u(B(x,r))/logr. Clearly
E, C G,, so from Theorem 11.5 f(a) is a lower bound for the dimensions of
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Figure 11.4 Multifractal spectrum of the self-similar measure u on the Sierpinski
triangle shown in Figure 11.3

G,; in fact little more calculation is required to show that f(«) = dimyG, =
dimpG,, see Exercise 11.6.

The dimensions of spty and the measure p may easily be found from the
multifractal spectrum.

Proposition 11.6

Let u be a self-similar measure as above. Regarding o = a(q) as a function of q,

(@) fla) takes its maximum when o= (0), with f(a(0)) = dimy sptu =
dimp spty
®) fla(l)) = a(l) = dimgp = dimpp.

Proof Part (a) and that f(a(1)) = a(l) were noted as a consequence of
(11.37). For the dimensions of the measures, if g=1 then =0 from
(11.30), so from (11.42) the measure v is identical to u. By Proposition 11.4
w(Eqay) =1 and dimyee p(x) = lim,_olog u(B(x,r))/logr = f(a(1)) for all
x € E,(1), so (b) follows from the definitions of the dimensions of a measure
(10.8)and (10.9). O

Next we show that the coarse spectrum of a self-similar measure is also equal
to f(a) given by (11.32) if « < «(0).

Proposition 11.7

Let u be a self-similar measure as above. Then
Je(a) > fla) (11.52)

Sfor all o, with equality if o = a(q) where ¢ > 0.
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Proof We first note that by Theorem 11.5 and Lemma 11.1 we have
fle) = fule) < f(a) < fc(a), where the coarse spectra are given by (11.9)
and (11.10).

To prove the opposite inequality, let 4 be the minimum separation of X; and
X; for i #j, and write a = 2y/n/d. Given r < a'|X]|, let J be the set of all

ey

acmint < | Xi| =1 < ar (11.53)

if i € J, where cpin = min;<;<p,t;. We note that each point of E lies in exactly
one set X; with i € J, and also that for distinct #,j € J the sets X; and X; have
separation at least ard = 2/nr.

Suppose ¢ > 0 and let 3, and f be the corresponding values given by
(11.30), (11.33) and (11.34). Then

H{i €T p(X0) > a X"} = #{i € T 1 1 < a9plr; ")
<a* Zp?r,.—aq
ieJ
— aaq Zp?r?ri_ﬁ_aq
icJ

< a®(acmin) 7r’ (11.54)

using (11.53), (11.34) and that Z,.Ejp:.’r? =1, an identity that follows by
repeated substitution of 3°7", p{; rf .= pir? in itself. Every r-mesh cube is of
diameter /nr so intersects at most one of the sets X; for i € J. With N,(«) as in
(11.6)

N,(a) = #{r-mesh cubes 4 : u(4) > r®}
< #lied: p(Xy) > a X}
< a"q(acmin)_f(a)r_f(a).
It follows that there is a number ¢ such that for sufficiently small € and r

Ny(a+e€) ~ Ny(a~€) < Na+e) <cr/r,

so, using (11.10) and that fis continuous, gives f () < f () and thus equality
in (11.52). O

The coarse spectra, as we have defined it, is not well-enough behaved for
equality to hold in (11.52) for « corresponding to ¢ < 0. The problem is that in
this case we would need to estimate the number of r-mesh cubes A4 with
0 < u(A) < r* and this may bear little resemblence to the number of sets X;
of comparable size with u(X;) < |X;|*. This difficulty can be overcome by
redefining N,(a) in (11.6) to be the number of r-mesh cubes A with u(A4) > r®
and such that p(A’) > 0 where A’ is the mesh cube with the same centre as 4
and of half the side-length. Then with the coarse spectra defined by (11.9) and
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(11.10) using this N,(e), the argument of Proposition 11.7 may be extended to
give equality in (11.52) for all «.

11.3 Multifractal analysis of Gibbs measures on cookie-cutter sets

A rather similar analysis to that of the previous section enables us to calculate
the multifractal spectrum of a Gibbs measure supported by a cookie-cutter set
of the form introduced in Section 4.1. This is another instance where the
thermodynamic formalism enables the theory for self-similar sets to be
extended to non-linear analogues.

We assume that f: X — X is a cookie-cutter system of the form described in
Section 4.1, where X is a closed real interval and f~' : X — X has two branches
given by Fi and F,. We index the iterated sets F;, 0---0 F(X) =X;, .5 = X;
in the usual way. Theorem 5.3 showed that the dimenswn dimy E of the cookie-
cutter attractor E is given in terms of the pressure functional P by the number s
satisfying P(—slog| f'|) = 0. Recall that this pressure gives the exponential
growth rate in k of )., |X;|'. Here we obtain an analogous pressure formula
for the multifractal spectrum of a Gibbs measure u supported by E; in this case
we use pressure to estimate the growth rate of ) ., | X2 u(X0)?.

Let 1 be a Gibbs measure on E associated with a C? function ¢ : X — R. We
assume that ¢ has pressure 0 so that by (5.6)

p(Xi) < exp(Sie(x)) (11.55)

for alli € I and x € X;, where Spé(x) = Zf;ol é( f'x) (If the pressure of ¢ is
non-zero then we may replace ¢ by ¢ — P(¢) which has pressure zero and the
same Gibbs measures.) We assume that

d(x) <0 forall xe€X; (11.56)
this ensures that p(X;) satisfying (11.55) remains bounded.

In Section 11.2 we defined 3(g) for self-similar measures by the requirement
that 37, u(X)?|X;|” = 1, which implies that 3~;., u(X;)?|X;|° =1 for all k.
Here we will use pressure to define 5 = 3(q) to ensure that

D u@) x| < 1; (11.57)
iEIk

for any other choice of 3 this sum converges at an exponential rate to 0 or cc.
By (4.16)-(4.18)

| X;| < exp(—(Sklog| /'])(x)), (11.58)

for all x € X;, so combining this with (11.55) the condition (11.57) becomes
that

> exp(Sk(—Blog| | + ¢)(x) < 1,
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where (x;) € X; for each i € I;. By (5.5) this is achieved by defining 8(g) by
P(~B(q)log|f'| + q¢) = 0, (11.59)

where P is the pressure functional. To see that (11.59) defines a unique 3 we
note that the function

(9, 8)—P(—Blog|f'| + q¢) (11.60)

is strictly decreasing and continuous in both 8 and g; this may be verified just
as in Lemma 5.2, noting that there exist m;, m, < 0 such that

my < —log|f'(x)], (x) < my
for all x in the compact set X. Again as in Lemma 5.2, for all g
lim P(—Blog|f’'|+ q¢) = Foo.
fB—to0
We conclude that g+—3(g) is continuous and strictly decreasing, and
lim B(g) = co and lim 3(g) = —oc.
g—-00 g—00

It may be shown (see Exercise 11.11) that the function (11.60) is convex, that
is its graph is a convex surface. Thus g—/3(qg) is a convex function (with its
graph obtained by taking the plane section P = 0 of the surface). It may also be
shown (though this is rather harder) that 3 is a differentiable, and indeed a real
analytic, function of g. Thus the overall form of 3 is very much like that
indicated in Figure 11.1 for a self-similar measure. To avoid a degenerate
analysis, we again assume that /3 is strictly convex.

To find the dimension of the set

E,={x: lin& log ;1(B(x,r))/logr = &}

we again look to the Legendre transform
fle)=_inf {B(q)+qa}.
—00<g<00

Just as in (11.33)—(11.34) for the self-similar case we have

dg
~ 30"
andthat f: [oumin, may] — RT U {0} isacontinuousconcave function. Moreover,
the values ¢ = 0 and g = 1 have the same significance as in the self-similar case.

The proof that f(«) = dimy E, = dimpE,, is very similar to that presented
for self-similar measures in Section 11.2. Again the crucial step is to introduce a
measure v analogous to (11.42) that is concentrated on E,; this time, however,
the measure we require occurs naturally as a Gibbs measure.

Thus for a given ¢, we define 3, a and f as above, and let v be a Gibbs
measure of the function —3log| f’| + g¢. Since 3 is defined so that the pressure

f(o) =B(q) +qo where o= (11.61)
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of this function is zero, we have from (5.6) that
v(Xi) < exp(—B(Sklog| /) (x) + q(Sk$)(x))
for alli € I and k € Z" and x € X;. Using (11.55) and (11.58) it follows that
v(X;) < 1 X () (11.62)

For x € spty we write Xi(x) for the set X; _; containing x. As in the case of
self-similar measures we may, by virtue of Corollary 4.3, go back and forth
between Xi(x) and B(x,r) where |Xi(x)| is comparable with r. Thus for
example

log ju(B(x,r)) : . log pu(Xx(x))
— = f ly if _— . .
lim Togr a if and only if lirgo Tog [ X ()| =a (11.63)

The following property of pressure is the analogue of Lemma 11.3.
Lemma 11.8

For all € > 0,

P(—(B(q) + (e — a)d)log| f'| + (¢ + 6)¢) < 1
and

P(=(B(q) + (e + a)d)log | | + (g — 6)¢) < 1
for all sufficiently small 6.

Proof Given that d3/dg = —a, see (11.61), the proof is almost identical to that
of Lemma 11.3. [

Proposition 11.9

With B, o and f defined in terms of q, and v as above,
(@) v(Es) =1,
(b) for all x € E, we have logv (B(x,r))/logr — f(a) asr — 0.

Proof Lete > 0 be given. Then, just as for (11.45) but using (11.62), forall § > 0

v{x s p(Xe(x)) > [Xe(x)| "} < D (X)) Xl 0 (X5)

iel,

<CZ;UI q+6|X|ﬁ+e a)é

icl,

<ey* (11.64)

where y = P(—(8+ (e — «)b) log | f'| + (¢ + 6)¢) and c and ¢, are independent
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of k, using (11.62), (11.55), (11.58) and the definition of pressure (5.5). By
Lemma 11.8 we have v < 1 for é sufficiently small, so (a) now follows from
(11.64) exactly as part (a) of Proposition 11.4 follows from (11.47).

From (11.62)

V(Xi(x)) < p(Xe(x)?| X(x)]”

SO

i = lim g————*
k—oo log|Xip(x)|  k—oo log|Xi(x)]
=qga+p
for x € E,. Part (b) follows by using (11.63) first for i and then for v. []

logv(Xi(x)) _ . logp(Xx(x))

Theorem 11.10

Let i be a Gibbs measure associated with ¢ as above. With
E, ={x: lin& log u(B(x,r))/logr = a},

we have that
dimyE, = dimpE, = f (a)

Jor o € (Oumin, Omax)-

Proof Just as in Theorem 11.5, this follows from Proposition 2.3 using the
measure v on E, and (a) and (b) of Proposition 11.9. []

Note that Proposition 11.6 on the significance of g =0 and g =1 also
applies in the Gibbs measure situation.

11.4 Notes and references

Much has been written on multifractals, and multifractal spectra have been
calculated for many specific measures. We can do no more than mention a
selection of references where further details may be found.

The idea of studying measures from a fractal viewpoint is implicit in
Mandelbrot’s essay (1975, 1982). Legendre transformation was introduced into
multifractal analysis in Frisch and Parisi (1985) and Halsey, et al. (1986).
Various approaches to multifractals are described at a fairly basic level by
Falconer (FG), Feder (1988), Evertsz and Mandelbrot (1992) and Tél (1988). A
substantial bibliography on multifractals may be found in Olsen (1994).

Detailed rigorous approaches to multifractal theory, including measures of
Hausdorff type (11.24) and the relationships between different types of spectra,
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are given by Brown, et al. (1992) and Olsen (1995). A careful treatment of the
coarse theory is given by Riedi (1995).

Self-similar measures are analysed by Cawley and Mauldin (1992), and
Edgar and Mauldin (1992) extend this to graph-directed constructions of
measures. The multifractal spectra of measures on cookie-cutters is found by
Rand (1989), and Lopes (1989) studies invariant measures of rational maps on
the complex plane. King (1995) and Olsen (1996) consider self-affine measures,
and Mandelbrot and Riedi (1995) consider self-similar measures constructed
from IFSs consisting of infinitely many similarity transformations. Falconer
and O’Neil (1996) introduce vector-valued multifractal measures.

There are natural random analogues of self-similar measures, when both
the similarity ratios and the ratios of division of measure are random variables
that are independent and identically distributed at each subdivision. In this case
the 3 function is defined by the expectation equation E(37, P4RY9) = |
(where P; and R; are the random variables underlying the statistically self-similar
measure and the geometry of the construction) and the almost sure multifractal
spectrum of the random measure is then given by Legendre transform of 3. Such
measures are considered by Mandelbrot (1974), Kahane and Peyriére (1976),
Olsen (1994) (who also considers a randomised version of graph-directed
measures) and Arbeiter and Patzschke (1996) who work with a rather weaker
separation condition (which relates to the open set condition in the non-random
case).

There are many other ways of studying multifractal aspects of measures. For
example, the generalised dimensions introduced by Hentschel and Procaccia
(1983) defined by d, = B3(q)/(q — 1), where 3 is given by (11.18) or (11.19) in
the coarse case or by (11.23) in the fine case, are often studied. (The
normalisation by 1/(g — 1) ensures that d, = n for all g for measures uniformly
distributed over an open region of n-dimensional space.) Multifractal proper-
ties of measures are also manifested in the behaviour of their Fourier
transforms, see Strichartz (1993), and in the behaviour of their wavelet
transforms, see Holschneider (1995).

There are many aspects of multifractal behaviour that are only starting to be
understood, such as the interpretation of negative dimensions, see Mandelbrot
(1991), and the rigorous geometrical properties of multifractals, such as their
behaviour under projection, section or products, see Olsen (1996).

Exercises

11.1 Find the Legendre transform of 8(g) = e™4.

11.2 For the self-similar measures defined by (11.26) or (11.29), show that both
asymptotes of the graph of ((q) pass through the origin, provided that the
numbers {logp;/logg;};., are all different. Deduce that in this case

Slomin) = f(tmax) = 0.
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11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

Some multifractal analysis

Verify (11.44) directly in the case of a self-similar measure satisfying the strong
separation condition. (Note that the more general result for a cookie-cutter
measure (11.63) follows easily from Corollary 4.3.)

Construct a proof of Proposition 11.4 along the lines of that of Proposition 10.4,
using the strong law of large numbers.

Prove (11.50) when « = amin. (Hint: Take a close to amin, and note that
Proposition 11.4 remains true with (b) replaced by ‘for all x such that
log u(B(x,r))/logr < a we have lim,_glog v(B(x,r))/logr < f(a)’).

With p as the self-similar measure defined by (11.26) or (11.29) and G, defined by
(11.51), show that dimyG,, = f(a). (Hint: show that

{Zlef lGIkand/J,( )>|X|a 5} Zleﬂ qa/(a 5)

i€l

Let 1 be a self-similar measure supported by the middle-third Cantor set (so
rn=r= %) with the measure divided between the left and right parts in the ratio
p1: p2, where p; + p, = 1. Find an expression for 3(g) and hence find « and f'in
terms of the parameter q.

Let 4 be a self- similar measure constructed by repeated subdivision of the support
in the ratios ry =5 landr, = i ! and of the measure in ratios p; and p,. Obtain an
explicit formula for 3(g).

Let u be a finite measure on R” and let g : R” — R” be a bi-Lipschitz function.
Define the image measure v on R” by v(A4) = u(g~'(A4)). Show that fi(«) (given
by (11.4)) is the same for both v and p. (Hint: see Exercise 10.1.)

Let y1, 12 be finite measures on R” with disjoint supports and define v = p) + .
Show that f%;(a) = max{f(«), f§(a)} where f%,f); and f }; are the Hausdorff
spectra of v, u; and p,. Deduce that fi (o) need not be concave over the range of
« for which it does not vanish.

Show that (11.60) defines a convex function of two variables (¢, 5). (Hint: use
differentiation to show that the sums in the definition of pressure are convex for
all k, and take the limit as k — co.)



Chapter 12 Fractals and differential
equations

Fractal geometry can interact with the theory of differential equations in many
ways. For example, solutions of a differential equation can approach a fractal
attractor, or we might wish to seek solutions on a domain with fractal
boundary, or even a domain that is itself a fractal.

This chapter touches on some of the fascinating interplays between fractal
geometry and differential equations. This topic could easily fill a book in its
own right and here we merely give a taste of the subject and indicate some basic
ideas in a few specific cases. The mathematics in this area is often sophisticated;
we make no attempt to give full proofs and we omit many technical details. For
instance, solutions to the differential equations ought properly to be considered
(and, indeed, shown to exist) in appropriate spaces of functions or distributions.

12.1 The dimension of attractors

In this section we describe a method for estimating the dimension of attractors
(which are often fractal) of dynamical systems and differential equations. This
method of finding upper bounds for the dimension has been applied to a wide
variety of systems, including many of the fundamental partial differential
equations of physics, giving an insight into the nature of the attractors. Here
we can do little more than state the basic estimate, and illustrate its use in some
simple situations.

The underlying idea is simple. We work with an open set X" and continuous
f: X — X and study a compact invariant set E C X; thus f(E) = E. The set Eis
often an attractor of the system in the sense that iterates of points in a
neighbourhood U of E approach the set E, so that E =N, f*(U). The
Hausdorff measures and dimension of E were defined in terms of the sums
>=;|Ui|” for covers of E by small sets { U;},. However, if {U;}; covers E, then so
does the iterated cover {f*(U;)}, for each k= 1,2,..., by invariance of E.
Dividing the sets *(U;) into appropriate small pieces often gives a cover of E
that provides a much better bound for the Hausdorff measures and dimension
than the original cover. We estimate the size and shape of f*(U;) in terms of
the derivative of f, which may be thought of geometrically as an affine
transformation that is a local approximation to f.

207
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L(B)
Figure 12.1 Singular values of a linear mapping L

First we consider how a linear mapping (which we will eventually take to be
a derivative) transforms a ball into an ellipsoid. Let L : R” — R” be linear. We
define the singular values ay (L) > az(L) > ... > a,(L) > 0 to be the lengths of
the (mutually perpendicular) principal semi-axes of the ellipsoid L(B),where B
is the unit ball in R”, see Figure 12.1. Equivalently, the o;(L) are the positive
square-roots of the eigenvalues of L*L, where L* is the adjoint of L. We define
the singular value function ws for 0 <s < n by

ws(L) = ay(L) -+ a1 (L) (L)1 (12.1)

where m is the integer such that m — 1 < s < m. Then w,(L) is continuous in s
and is increasing at values of s with m —1<s<m and a,(L) >1 and
decreasing at values of s with m — 1 < s < m and o, (L) < 1. Note that if m is
an integer then wy,(L) is the maximum of L£™(L(D))/L™(D) over all m-
dimensional discs D in R”, where £ is the m-dimensional volume of a subset
of an m-plane. In particular, w;(L) = ||L||, where || || is the norm induced by
the Euclidean norm on R”, and w,(L) = |detL|, where det denotes the
determinant.

It may be shown (see Exercise 12.1) that w, is submultiplicative for each s,
that is for all linear Ly, L,

ws(Lle) S wS(Ll)ws(Lz). (122)

Our dimension calculations depend on covering images of small balls, which
are approximate ellipsoids, by small sets.

Lemma 121

Let A be an ellipsoid with semi-axes of lengths 51 > > .... For m=1,2,...
there is a covering of A by at most

4136y Bur B,

sets each of diameter at most (m + 3)1/ 2Bon.

Proof Note that the j-th principal axis of 4 has length 28;. For each
j=12,...,m—1,slice A4 by at most 483;/3,, — 1 parallel hyperplanes distance
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)

R

28,

Figure 12.2 Division of an ellipse into slices

Bm apart and perpendicular to the j-th principal axis, see Figure 12.2. These
cuts decompose A into at most

(4ﬂl/5m)(452/ﬁm) e (4ﬁmAl/ﬁm)

pieces. Each piece projects to the j-th principal axis in a segment of length at
most 3, forj=1,2,...,m — 1. Moreover, if V is the subspace perpendicular to
these first m — 1 principal axes, then the projection of each piece onto V is
contained in a ball of radius 3,,. Thus the diameter of each piece is at most
((m—1)B2 + 28,)H)Y? = (m+ 3)"/*B,, as required. 0

Let X be open in R"” and f: X — X be continuously differentiable. Let E be a
compact invariant subset of X so that f(E) = E. We aim to estimate the
Hausdorff dimension of E in terms of parameters involving /. We assume that
[ is uniformly differentiable on E, so that the derivative of f at x is a linear
mapping f'(x) : R” — R" satisfying

lim /() =/ (x) =f"(x)(y = 2l/y = x| = 0 (12.3)

with convergence uniform over all x € E.

In the following proof we cover E by small balls B; and note that the sets
f*(B;) are, roughly, ellipsoids with semi-axes of lengths 1 |B;|a;((/*)'(x)) where
x is the centre of B;. By covering each of these ellipsoids according to Lemma
12.1 we get a refined covering of the invariant set E = f*(E), see Figure 12.3.

We define

ws = supws(f'(x)) < 0o (12.4)
xek

where w(-) is the singular value function (12.1).

Theorem 12.2

Let f be as above, with invariant set E. If ws <1 for some 0 < s <n then
dlmHE <s.
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@

Figure 12.3 Estimation of dimy E for a set E that is invariant under a mapping f: (a)
E is covered by discs to estimate the dimension. (b) The discs are mapped by f (or more
generally by f*) to approximate ellipsoids. (c) These ellipsoids are sliced into fairly
square pieces to get a cover of E giving a better dimension estimate
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Proof Let m be the integer such that m — 1 < s < m, and set a = 2(m + 3)1/2.
Let k£ be an integer sufficiently large to ensure that
wk < min{(2a)*, 4"a7}. (12.5)
For all x € E,
ws((f ) (0) = w

s(f'(FF %) o f'(f52x) 0+ o f'(x))
(X)) we (' (F5720)) -+ wi(f (%))
k (12.6)

s

using the chain rule, (12.2) and (12.4). Note that by (12.1) and (12.5) this
implies

IA A
£ &

an((/%)(x)) < wl( (S5 (N < 2a) 7" (12.7)
Since fis uniformly differentiable on E so is f*. Thus there exists ro > 0 such
that for all 0 < r < ry and x € E the set f*(B(x,r)) is contained in an ellipsoid
with semi-axes of lengths 2ra; (( %) (%)), 2raz (( £ ¥)'(x)), ... . We also assume
that rg is small enough so that B(x,ry) C X for all x € E. By Lemma 12.1 we
may cover such an ellipsoid by at most

o (4 () - am1 (5 (X)) am((£5) ()Y (12.8)

sets of diameters at most rac,((f*)'(x)). For 0 < 6 < ry suppose {U;} is a
6-cover of E (as in (2.7)); we may assume that each U; intersects E. Then for
each i, U; C B; for some ball B; of radius |U;| and centre x € E. By virtue of
(12.8), fY(ENU)) Cc fX(EN B;) C YU, for sets {Ui,}; of diameter at most
|Uilacum((f *)'(x)) < 1|U;i| < 16 (using (12.7)), such that

S 1UL I 4 () () aomt (4 () am(( 4 ()70
x (|Uilaam((£%)'(x)))*
= U4 awy((14) ()
<4 la’lUlwi < U

using (12.1) and (12.5). Thus E=f*(E) c U;f*(ENU;) C U; ;U;; where
S AU <30T and Uiyl <36 for all ij. It follows that Hi (E)
<H3(E) for all é < ro, which implies that H*(E) < oo and dimgE <s. = [J

For one way of interpreting this estimate of dimyE, write a; = w;/w;_1, SO

that o; reflects the i-th singular values o;( f'(x)), at least in a ‘reasonably
uniform’ situation. Theorem 12.2 gives, on expressing ws; = 1 in terms of

the ai, 1
dimgE < (m— 1)+ (Z loga,-)/|logam+1|, (12.9)
i=1

where m is the least integer such that 7, loga; < 0.
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There are many ways in which Theorem 12.2 can be improved, for example
by applying the theorem to f* rather than to f, noting that f¥(E) = E. A
similar approach leads to bounds for dimgE.

Theorem 12.2 and its variants have been used to estimate the dimensions of
attractors of a wide variety of dynamical systems and differential equations,
though considerable effort is often needed to estimate w;. We give three
examples of increasing sophistication that show how the method may be
used.

The Heénon attractor
Consider the Hénon mapping f: R* — R? given by
6,y = (y+1—ax? bx). (12.10)

Then f has Jacobian b for all (x,y), so that it contracts area by a constant
factor b throughout R?. The Hénon mapping is, to within a change in
coordinates, the most general quadratic mapping with this property, see FG,
Section 13.4.

With a= 1.4 and b= 0.3, the values usually chosen for study, f has an
attractor E which looks locally like the product of a Cantor set and a line
segment, see Figure 12.4. Taking X to be the quadrilateral region with vertices

(1.32,0.133), (—1.33,0.42), (~1.06, —0.5) and (1.245, — 0.14),

it may be verified directly that f maps X into itself. The attractor is given by
E=n, f*(X) with the fine structure of E resulting from the repeated
stretching and folding effect of iteration by f.

Writing u = (x,y) € R?, the derivative f’ (u) : R?> — R? is given by the

matrix
= (5 )

In this two-dimensional situation w; and w, are easy to calculate. For
a=14b=03and u=(x,y) € X,

wi(f'W) = 1f W) = [4a®x* + 1+ B2|'/* < 3.868
wr(f'(u)) = |det f'(u)| = | — b| = 0.3.
Thus for 1 < s < 2, using (12.1),

wi(f'(w)) = wi (' ()" waf ()" < 3.868 x 0.3

which is less than 1 if s = 1.53. Hence dimgE < 1.53 by Theorem 12.2.

Numerical estimates suggest that dimyF ~ 1.26; our estimate is reasonable
given the approximation introduced by taking the worst values of
we( f'(u)) over u € X.
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/ L "

Figure 12.4 The Hénon attractor. The banded fractal structure is becoming apparent
in the enlarged square

* The remainder of this section may be omitted on a first reading.

Our next two examples concern attractors of continuous dynamical systems
defined by differential equations. We need some more general theory to
estimate how infinitesimal line segments, parallelograms and parallelepipeds
develop under the system.

Let g2 R” — R” be sufficiently differentiable, say C%. We consider the
autonomous initial value problem on R”

du

3O =8W) (20 (12.11)
u(0) = uy; (12.12)

thus u(¢) € R” is the position at time ¢ of a particle moving under the system

which is at ug at time 0. Tt is useful to write f;(ug) = u(¢), so that f; : R” — R”

specifies where each point of R” has moved to at time ¢. We think of the
solutions as defining a ‘flow’ uy — f;(#y) on R". In our applications, f; (for
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suitable ¢) will play the role of fin the earlier theory. In this notation (12.11)
becomes

< i) = g w). (12.13)

We examine the evolution of infinitesimal vectors and, more generally,
m-dimensional volume elements under this flow. For ¢ > 0,uy ¢ R" and £ € R’
we define (assuming sufficient differentiability)

(1) = f{(w)é, (12.14)

where a dash denotes differentiation with respect to the space variable. For
small €

e &(1) = f{(uo)e & ~ fi(uo + €€) — fi(uo),

so £(¢) may be thought as the evolution of a vector element being carried by the
flow f;, starting as £ = £(0) and located at 4y when ¢ = 0, see Figure 12.5(a).
Assuming that the interchange of order of differentiation is valid and
using (12.13),

de d.
a(l) = a(ft (u0)€)

= (& e

= (g(fi(u0))€)
= g'(fi(uo)) o.f/ (uo)€
= g'(fi(u))£(2). (12.15)

Equation (12.15) is called the first variation equation of the system.

Next we consider the development of an infinitesimal m-dimensional volume
element (Figure 12.5(b)). For vectors &y, ..., &, € R", wewrite |§; A& A -+ - A&y
for the m-dimensional volume of the m-dimensional parallelepiped defined by
&1, .-+, &m. (This notation is used since this volume is the norm of the exterior
product & A --- AE,, though for our brief treatment we avoid any exterior
algebra.) With £(¢), & (2), . .. as ‘infinitesimal vectors’ given by (12.14) taking
£=£6(0),6(0),..., we have that |£(1) A--- A&u(2)| is the m-dimensional
volume of the infinitesimal parallelepiped that evolves from that spanned by
&1,&,... and located at up at  =0. We need to extend the first variation
equation to a differential equation for |£,(¢) A -+ A &u(2)].

We write { , ) for the usual scalar product on R”, and recall that the trace
of a linear mapping L : R" — R" is defined by Tr(L) = Y 7 ,(Le;, e;) where
(e1, ez, ...) is any orthonormal basis of R”. This definition is independent of the
orthonormal basis chosen, and if L is represented by a matrix with respect to
an orthonormal basis then Tr(L) is the sum of the elements on the leading
diagonal.
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E(t) = f"(ug)E O
S '(ug)

(a)

Ex(0)

/ o)
B ]

Figure 12.5 (a) Evolution of an infinitesimal vector £ = £(0) under the flow f;. (b) Evo-
lution of an infinitesimal rectangle under the flow f;

g (D)

(b)

Lemma 12.3

The m-dimensional volume of an infinitesimal parallelpiped evolves according to
d
2 OA NG =@ A A En(D)|Tr(g'(fi uo) 0 Om(1))  (12.16)

where Qn(2) : R" — R" is orthogonal projection onto span{&(t),...,&x(1)}.
Thus

() A= A &)l = [£1(0) A -+ - A Em(0)] exP/o Tr(g'( fruo) © Qm(r))dr

(12.17)
for t > 0.
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Sketch of proof  First assume that & = £,(¢) (i=1,...,m) are orthonormal (we
supress the dependence on ¢ for brevity). Using (12.15), in the time interval
¢, + &¢] the cube spanned by the infinitesimal vectors &;,. .. &, is mapped to
the parallelepiped spanned by & + g'( fiug)&16t, ..., Emt+ &' ( friup)émbt. To the
first order, the change in the m-dimensional volume of the cube results from the
component of the increase of each &; in the direction of £;. Thus to order é¢ the
volume of the new parallelepiped equals that of the rectangular parallelepiped
spanned by

E(1+ (' (fiuo)€16t,61)), - - -, Em(1 4 (&' (fruo)émbt, Em)).-

This parallelepiped has volume
1+ 6ZZ "(fiuo)&i, &) + O(6t%) = 1 + 6t Tr(g'(fio) © Q) + O(6¢7?),

compared with the original volume [£; A--- A&yl = 1. Thus (12.16) holds if
&1,. .., &y are orthonormal.

If V is an m-dimensional subspace of R” and L a linear mapping on R”, then
the m-dimensional volume of L(A) is proportional to that of A4 for all regions
A c V. Thus the scaling effect of g on the volume of an infinitesimal
parallelpiped defined by &,...,£, depends only on the space spanned by

&1, ..., &n and not on the choice of spanning vectors. Thus we have lost nothing
by assuming &,...,&, to be orthonormal, and (12.16) holds in the general
case.

Equation (12.16) is a first order linear ordinary differential equation which
integrates to (12.17). [J

To relate this to singular value functions, we note that for a linear mapping
L:R"—> R"and form=1,2,...

wm(L) = sup |L(E) A---AL(En)| (12.18)
&ynbmeB

where B is the unit ball in R”. This is because the m-dimensional volume of the
parallelepiped defined by L(¢1),..., L({,) is maximal when these vectors are
the m longest principal semi-axes of L(B).

Proposition 12.4

With notation as above

wm(fi(4o)) < sup exp tTr(gl(fTMO)on(T))dT- (12.19)
0

Ely---aEmeB

where Q,,(T) is orthogonal projection onto span{&,(7),...,&n(7)}.
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Proof From (12.18) and (12.14)
wn(fy' (o)) = sup | f(uo) (&) A~ AS [ (uo)(Em)l

El»--'agme

= sup  G(D) A ALm(D)]
1(0),6n (0)B

s0 (12.19) follows from (12.17) since supy, )¢, ©@)esl€1(0) A--- A &n(0)| = 1.
O

Using Proposition 12.4 to estimate ws, Theorem 12.2, gives reasonable upper
bounds for the dimension of the attractors of many differential equations.

The Lorenz attractor

The Lorenz equations give an approximate description of the behaviour of
fluid convection in cylindrical rolls in a two-dimensional layer heated from
below (see FG, Section 13.5). With an appropriate choice of origin, the
equations may be written

x=o0(y—x)
y=—-0ox-—y—xz (12.20)
z=xy—bz—b(r+o).

Here x is the rate of rotation of the cylinder, y is the temperature difference
between opposite sides of the cylinder, z measures the deviation from a linear
vertical temperature gradient, and a ‘dot’ denotes differentiation with respect
to time. The positive constants o,b and r represent respectively the Prandtl
number of the fluid (which depends on the viscosity and thermal conductivity),
the width to height ratio of the layer, and the fixed temperature difference
between the bottom and top of the system. We assume that ¢ > b+ 1. Lorenz
demonstrated that with

ale,b:%,r:28 (12.21)
there is a chaotic attractor with two ‘wings’, with trajectories flipping between

the wings in a seemingly arbitrary manner (see Figure 12.6).
We regard u = (x,y,z) as a function of time, u : R — R*. From (12.20)

d
3, Ul = w2z
= —ox? =y} — b2 —bz(r + o)
<-4y + ) = (b= 122 = bz(r+0)

B (r +o)*

< “|u|2 +Tb_1—),
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Figure 12.6 A view of the Lorenz attractor for o =10, b=28/3 and r=28. The
trajectory spirals round the two ‘wings’ and ‘jumps’ from one to the other

using that o > 1 and the usual estimate for the maximum of a quadratic
expression. Then

d 200 Prt0)
- t <
g (HOP) < 5=,
and integrating
P(r+0)’ .
2 « 2 -2t a2t .
) < p(O)Pe + 70 (1= e
In particular,
lim sup |u(t)| < 2po (12.22)

—00

say, where py = b(r + o) /4(b — 12, Thus u(t) is close to, or inside the ball
B(0,2p0) when ¢ is large, and this implies that there is a (maximal) compact set
E C B(0,2pp) that is invariant under the solution trajectories, that is with
J:E = E for all t > 0, where f; ug is the solution u(¢) such that u(0) = uy. With
parameter values (12.21) the set E is the Lorenz attractor shown in Figure 12.6.

We apply Theorem 12.2 to estimate the dimension of E, using Proposition
12.4 to estimate w,( fiup) and ws( frup) for large ¢. Thinking of (12.20) as
u = g(u), where u = (x,y,z), the derivative g'(x) : R®* — R3 has matrix

-0 o 0
guy=|-0-2z -1 -x
y x =b
Thus Tr(g'( fiug)) = —(6 + b+ 1) for all ¢ and up (representing a constant
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volume contraction rate), and Q3(¢) is the identity, so by (12.19)
w3(f](up)) < exp(—(o+ b+ 1)1). (12.23)
To estimate w, write
g'u)=L+Ly+Ls (12.24)

where the linear mappings L, L, and L3 are given by

-o 0 0 0 o O
L= o -1 0 Ly=]| ~0c 0 —x
0 0 -b 0 x O

0 00
L3 = -z 0 0].
y 00

Then if @, denotes projection onto some two-dimensional subspace,
Tr(L; o Q2) <—=b—1 (since s >b+1) and Tr(L; o @>) =0 (since anti-symmetric
mappings have zero trace). For L3, let O,(¢) denote orthogonal projection onto
span{&(#),£&(¢)} and let vy, v2,v3 be an orthonormal basis of R? such that
span{v, v} = Q»(¢)(R?). Then writing v; = (x;, y;, z:)

Tr(L3 o Qz(l)) = <L3V1, V1> + <L3V2, V2>
= —ZX1Y1 + YX121 — 2X2)2 + YX22p

= ZX3)3 — YX3Z3,

since (x1,x2,x3), (y1,¥2,y3) and (z1, z2, z3) are also orthonormal. By Cauchy’s
inequality followed by the arithmetic-geometric mean inequality

Tr(Ls 0 Qx(1)) < |xa|(v3 + 22) /(2 + %)/

<@+ R+ A+
< 3lul.

Given 6 > 0, if ¢ is large enough,
Tr(L3 0 Qx(1)) < po + 36
using (12.22). Thus for such ¢ the decomposition (12.24) gives
Tr(g'(fi(uo)) © Q2(1)) < —b =1+ po + 36,
so from (12.19)
wa(f(uo)) < exp((—b— 1+ po + 6)1) (12.25)

for sufficiently large ¢, provided —b — 1 + gy > 0.
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By (12.1), (12.23) and (12.25), for all uy € E and sufficiently large ¢, if
2<s<3

(£ 1(10)) = walf{(10)) s (f1(u0))*
<exp((3—=s)(=b—1+po+8)t—(s=2)(c+b+ 1))
<exp((s—2)(~=po—0—6)+ (po —b—1+0))t.

Thus if (s — 2) < (po — b — 1)/(po + o) we see by choosing § small enough that

wy = sup,cx ws(f(uo)) < 1 for sufficiently large ¢. It follows from Theorem
12.2 that

dimgE <2+ (po— b—1)/(po+ o) where py=b(r+0)/4(b— 1)
(12.26)

With the usual values (12.21) for the Lorenz attractor E, we get
dimg E < 2.539. These calculations may be refined to give better estimates;
numerical evidence suggests that the dimension is actually about 2.05.

A similar method may be used to examine spatial attractors of certain other
autonomous systems of differential equations.

The basic method may be extended to estimate dimensions of functional
attractors of certain spatio-temporal partial differential equations. Thus we
regard a solution u(x, t) with x € D ¢ R" and ¢ > 0 as a point (-, ¢) in a space
of functions on R”, and look at the dimension of the set of functions that are
limit points as ¢ — oo of such solutions. We indicate this procedure in the case
of a simple non-linear partial differential equation.

A reaction-diffusion equation

Let D be a bounded open domain in R” with smooth boundary 9D, let p be a
polynomial of odd degree with a positive leading coefficient, and fix ¢ > 0. We
consider the solutions u(x, ¢) of the reaction-diffusion equation

%?—evzu—i—p(u) =0 for xeD,t>0 (12.27)
with boundary condition
u(x,t)=0 for xe€dD,t>0 (12.28)

and initial condition
u(x,0) =up(x) for xeD. (12.29)

Equation (12.27) is known as the Allen—Cahn equation and has been used to
model phase transitions. To apply the method to this situation, we replace R”
by the Hilbert space H of square integrable functions on D endowed with the
usual inner product (v, v») f b V1(x)n2(x)dx. We think of the time develop-
ment of the solution (12.27)—(12.29) as a ﬂow in H. Thus we write f;(up) for the
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solution u(-,¢) at time ¢, regarded as a point in H, corresponding to the initial
condition u(-,0) = uy. Then (12.27) may be written in the form of (12.11) as

V)= glu(,0) with g) = Vu-pl),  (1230)

where du/d¢is now the Fréchet derivative of a Hilbert space valued function of z.

It may be shown that for each uy € H, the problem (12.27)—(12.29) has a
unique solution u(x, ¢) that is continuous in x and ¢, with fi(ug) = u(-,t) € H
for all ¢>0. Moreover, u(-,t) € H' where H' is the space of Fréchet
differentiable functions with derivative in H.

The system (12.27)—(12.29) may be shown to have a maximal attractor E
that is a compact subset of H such that f;(E) = E for all ¢ > 0, with the Hilbert
space distance dist( f;(ug), E) — 0 as ¢t — oo for all uy € H.

The dimension of E may be estimated in a way parallel to that followed for
the Lorenz attractor. We are now working in an infinite dimensional space H,
but nevertheless the singular values and singular value function wy(L) of a
linear operator L on H may be defined for s > 0 in just the same way as in a
finite dimensional space. Moreover, Theorem 12.2 remains valid with minimal
modification to the proof. As before, we can examine the development of the
infinitesimal vectors to get the first variation equation (12.15) for
&(t) = f/ (uo)€ € H which in this case is

S (w))el) = V- P fl)E for >0, E€H  (1231)
with

£&(t)=00ndD and £(0)=¢EonD. (12.32)
(This formal assertion needs justification in the appropriate function spaces.)

Using the first variation equation we can examine the development of
infinitesimal parallelepipeds spanned by £,(¢), ..., &, (), where &(t) € H is the
infinitesimal vector evolving from &;(0) =& € H. There is no problem in
defining the m-dimensional volume of an m-dimensional parallelepiped in the
Hilbert space H, and Lemma 12.3 and Proposition 12.4 are valid just as in the
finite dimensional case.

To apply Proposition 12.4 in the Hilbert space situation we estimate
Tr(g'( fi(uo)) © Qm(t)) where Qn(f) denotes orthogonal projection onto
span{{i(t),...,&x(2)}. Fixing ¢ for the time being, let v;, v» ... be an orthonormal
basis of H, with span{v,...,v,} =span{&(s),...,&(2)} = spanQ,,(¢)H.
Since £;(1) € H' for all j and +>0 we have vje H' for all j. Then
Om(t)v; = v; (if j < m) = 0 (otherwise), so for j < m

(g'(fi(uo)) © Qum(t) vy, v) = (&' (filuo)) v}, v))
= (V2 v) = (' (fi(uo))v, v;)

= (P = [ P w)vidr
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using (12.31). Since p is an odd degree polynomial with positive leading
coefficient, there is a number x > 0, depending only on p, such that p’(s) > ~x
for all s € R. Thus

(8'(fi(u0)) 0 Om(1)v;,v)) < (Vv 1) + &

since [, v7dx = 1 by orthonormality of the v;. Hence

m

Tr(g'(fi(40)) © Qm(1)) = D (' (fi(uo)) © Qun()¥;, v))

=1

<€y (Vv v) + km. (12.33)
i=1

Let0 < A; < A\ < ... be the eigenvalues of —V? for the Dirichlet problem in
D (that is V?u+ A u=0 with u=0 on D). Then for any orthonormal
sequence vy, v»,... € H we have

m
=S UV = A+ A (12.34)

=1
(This may be established by noting that
VIA AV (V) AV A A4 A2 A A (=)

is an (unbounded) self-adjoint transformation on the m-fold exterior product
of H which has A; +-- -+ ), as its least eigenvalue.) By Weyl’s theorem (see
(12.40)) the asymptotic distribution of the eigenvalues is given by
A~ coﬁ"(D)_z/"jz/", so summing, A + - + Am > 1 L7(D) " /"m'*2/" where
¢g and ¢; depend only on #, and £*(D) is the n-dimensional Lebesgue measure
of the domain D. Thus from (12.33) and (12.34)

Tr(g (fi(uo)) © Qm(1)) < —c1eL(D)™"m"*¥/" 4 km. (12.35)

If the integer m is chosen to make the right-hand side of this expression
negative, less than —4, say, then from (12.19)

W (f1(u0)) < 7.

Then by Theorem 12.2, which remains valid in the Hilbert space setting,
dimg E < m where E is the functional attractor of the system. By equating the
right-hand side of (12.35) to 0,

dimyE < 1 + ce k™2 L"(D), (12.36)

where ¢ = cl_"/ 2 depends only on # and the shape of D. (In fact ¢ can be found
quite accurately by careful consideration of the distribution of the eigenvalues
of V2.) Inequality (12.36) shows clearly the dependence of the dimension of
the functional attractor on the volume of D, the constant ¢ in the partial
differential equation (12.27), and x which depends explicitly on the
polynomial p.
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The dimension of functional attractors of many other differential equations
may be studied using extensions of the methods sketched in this section, for
example the Navier-Stokes equation, pattern formation equations and non-
linear Schrodinger equations. The functional attractor represents the per-
manent regime that can be observed when the system starts at any point in
function space. Its dimension indicates the degree of complexity of the flow,
and may be thought of as the number of degrees of freedom of the
phenomenon that it represents.

12.2 Eigenvalues of the Laplacian on regions with fractal boundary

Let D C R”(n > 1) be a bounded open region with boundary 9D (we do not
insist that D is connected). We consider the eigenvalue problem

Viu=-Au in D (12.37)
with Dirichlet boundary condition
u(x) =0 for x € D (12.38)

so that the (real) eigenvalues 0 < A; < Ay < ... are those A for which there is a
non-trivial solution. The eigenvalues may be thought of as the principal
frequencies of vibration of an (r-dimensional) membrane stretched across the
region D.

We define the eigenvalue counting function

NO) = #(k: M < ). (12.39)

We are interested in the behaviour of N()) for large A, and in particular how
this reflects the nature of the boundary of D. A classical result of Weyl states
that if @D is sufficiently smooth then

N(A) ~ e, L"(D)X"? (12.40)

as n — oo, where ¢, = (2r)""L"(B), and B is the unit ball in R” and L£" is
n-dimensional volume. Moreover, if the boundary 9D is sufficiently smooth,

NN = LT (D)XY? + b L7 1 (BD)AP=D/2 4 p(A-D/2) (12.41)

for a constant b, depending only on #. Thus the ‘surface area’ of D determines
the second term in the asymptotic expansion of N(A); notice that the exponent
(n—1)/2 is half the dimension of the (smooth) boundary.

We seek analogues of (12.41) for regions with fractal boundaries. In
particular ‘can one hear the dimension of a fractal?’, that is, can the dimension
of dD be recovered from a knowledge of the eigenvalues? Here we can do little
more than indicate that there is often a connection between the dimension of
the boundary and the second term of the expansion for N(A).

We first consider a one-dimensional version of the problem (12.37)—(12.38),
which is rather artificial since the region is not connected, but which is
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Figure 12.7 Two of the eigenfunctions of the Laplacian on the complement of the
Cantor set. These may be thought of as resonances of a string stretched across the
Cantor set.

reasonably tractable since it is possible to express N()) in a closed form. We
use the notation of Section 3.2. Let A C R be a bounded closed interval, and
let A, 4> ... be a sequence of disjoint open subintervals in order of decreasing
length with

4] =" |4il. (12.42)
i=1

We work on the region D = U2, 4; which is a ‘cut-out set’ with boundary

8D:A\UA,»; (12.43)
i=1

recall that the box dimensions of 0D were studied in Proposition 3.6. The
eigenvalue problem on D may be thought of as finding the resonant frequencies
of a string stretched across A and fixed at the points of @D so that it can vibrate
independently on each interval A4;. Thus we seek solutions of

9%u
Ox?
Non-trivial solutions occur at the resonant frequencies of each interval A4;: for
A= (mk/|Ai])? (k=1,2,...), (12.44) has a sinusoidal solution of frequency

nk/|A;| which vanishes off 4; (Figure 12.7). Counting these eigenvalues for all
intervals A; gives

=-X inD with u(x)=0 on ID. (12.44)

#(k : (nk/|4i))* < N)

NgE

N\ =

Il
—_

|7 A2 |4y

I
NgE

I
-

71_41)\1/2|Ai| i Z{ﬂ_—l)\l/2|Ai|}
i=1

7r:"£’(D)/\’/2 - 1/1(:\) (12.45)

I
NgE

It
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using (12.42), where
P(A) =D {n7' A2} (12.46)
=1

(Here we use | | to mean ‘the greatest integer less than’ and { } to mean ‘the
fractional part of °.) The first term in (12.45) is just the Weyl expression (12.40)
when n = 1; we show that under certain conditions the remainder term () is
of order A2,

Proposition 12.5

Let D =UXA; C R be constructed as above. Let
N\ = 7 1LLYD)AY2 — (). (12.47)
Then
(a) if |A4i| < i‘l/sioisome 0 < s <1 then (X)) < X/ as X — oo,
(b) if dimpdD = dimpdD = s where 0 < s < 1 then limy_.ologi(A)/logh =1s.

Proof

(a) Given A > 7r2|A1|_2, let k be the greatest integer such that
7 'A/2|4;| > 1. From the hypothesis of (a)

TN <k < en? (12.48)
when ¢ > 0 is independent of A. Using (12.46)
>IN 4] <yp(A) <k+ Y nT'AV24]
i=k+1 i=k+1
Thus there exists ¢; > 0 such that
Cl—l)\l/Z Z l-—l/s < ",b()\) < k+C1)\1/2 Z l-—l/s
i=k+1 =i+ 1
and hence ¢; > 0 such that
C;l)\l/Zkl—l/s < ’l/)()\) < k+62)\1/2k1_1/s,
using the ‘integral test estimate’ 5%, i~"/¢x k!~!/s. Incorporating
(12.48) immediately gives 1(\) < X*/2.

(b) By Corollary 3.8 the condition dimgdD = s implies lim; log|A4,|/logi
= —1/s, so that for all ¢ > 0 we have

iAeAl/s < |Al| < ieAl/s
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for sufficiently large i. Proceeding just as in (@) we get
)\s(l—e)/2 < ",b()\) < )\s(l+e)/2
if X is large enough. [

Thus, for highly disconnected regions in R, the second term in the expansion
of N()\) does indeed depend on the box dimension of the boundary.

These arguments may be taken further. For example if the condition (a) of
Proposition 12.5 is strengthened to |4;| ~ ¢i~'/* then

W) = 75 S¢(S) N2 4 0o(N7?) (12.49)

where ¢ is the Riemann zeta function; this may be established by number-
theoretic type estimates on the sum (12.46). For self-similar sets, this may be
combined with the renewal theorem estimates of Chapter 7. Let 9D be a self-
similar set of dimension s constructed from [0,1] so that the first step of the
construction consists of intervals of lengths ry,...,r, with gaps of lengths
bi,...,bm1 in between. Provided {logri!,... logr,'} is a non-arithmetic set
it may be shown using Corollary 7.3 (see Exercise 12.5) that

m—1 m 1/s
|Ay| ~ i Vsg=1/s (Zbg/zrglogr;l> , (12.50)
i=1 i=1

where A; is the i-th longest gap in 9D, so

m—1 m
$(N) =757¢(s) (Z b / > rilog ) X2 o). (1251
i=1 i=1

In the arithmetic situation, ¥(\) = A/?p(log)) + o(X¥?) for a periodic
function p.

For plane regions D, we have the Weyl estimate N(\) ~ %W‘lﬁz(D))\ for
large A, and one might hope that the second term of the expansion would again
reflect the fractality of dD. However, the situation is more complicated in the
plane, since in general regions cannot be decomposed into parts which may be
regarded as independent as was possible in one dimension. Nevertheless, some
progress has been made, and the asymptotic behaviour of the eigenvalues of
(12.37)—(12.38) on certain bounded regions D in R”" has been related to the
interior Minkowski dimension of 0D, given by

dim;gD =n— liné log L"(E,)/log r (12.52)

assuming that this limit exists, where here E, is the interior r-neighbourhood of
8D defined as

E, = {x € D:dist(x,0D) < r}, (12.53)
see Figure 12.8. (The interior Minkowski dimension may be thought of as a
‘one-sided box dimension’, compare (2.4) —(2.6).)
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Figure 12.8 The interior r-neighbourhood E. of 3D

Most estimates of eigenvalue counting functions for plane regions are based
on explicit calculations that are possible in the case of a square domain. For D
a square of side a, the problem

0%u n d%u B
ox2  Oy?
has eigenvalues A = 72(k? +m?)/a? and corresponding eigenfunctions of the

form u(x,y) = sin(kmx/a)sin(mny/a) for k,m € Z*. Thus for the square of
side a,

-t inD with u(x,y)=0 ondD (12.54)

N =#{(k,m) € Z" x Z" - k* + m? < a*n 22},

that is the number of integer coordinate lattice points in Q(0,an~'A'/2) where
Q(0,r) denotes the strictly positive quadrant of radius » and centre the origin.
It is easy to see that

#{lattice points in Q(0,r)} =0 if r<1 (12.55)
and
0 < area Q(0,r) — #{lattice points in Q(0,r)} < 2r (12.56)
for all r > 0, see Exercise 12.3. Thus for a square of side a
NQA) =ta*n A= (N (12.57)
where

0 < ¢(A) < 2ar'A/? (12.58)
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and
Pp(\) =1a’7r7'A for A< nla? (12.59)

(so that N(\) = 0 for A < 72a72).

Estimates of eigenvalue counting functions for (rather artificial) fractal
regions consisting of an infinite sequence of disjoint squares may now be
obtained in the same way as in Proposition 12.5. For example, let 4; be an
open square of side a;, where a; > a, > ..., and suppose D =UX 4; is a
disjoint union with D bounded. If a; < i~/* where 1 < s < 2 then dim;@D = s,
and by proceeding just as in Proposition 12.5 but using (12.57)—(12.59) we
get

NQ\) = r7 ' L2(D)X = (N (12.60)
where () < M\¥/2. By using more delicate estimates for the number of lattice
points in Q(0,r) rather closer estimates for ¢»(\) may be found. Moreover, if
the squares A; are arranged to abut and small gaps of rapidly decreasing
lengths are made between neighbouring squares, these estimates may be
extended to certain connected domains D.

An extension of this idea leads to a lower bound for N(A) for more general
regions. We define the upper interior Minkowski dimension of the boundary 0D
of plane region by

dim;0D =2 — lim inf log L(E,)/log r, (12.61)

where E, is the interior r-neighbourhood of 9D.

Proposition 12.6

Let D C R? be a bounded open region and let s = dim{0D. Then given € > 0,
N(A) = ta=1L2(D)A > =22 (12.62)
for all sufficiently large .

Proof We term a square (m127%, (my + 1)27%) x (my27*, (my + 1)27%) where
my,my € Z an (open) binary square of side 27%. We take a Whitney decom-
position of D into binary squares as follows. Let S] be the union of the binary
squares of side 2! contained in D. Let S, be the union of the binary squares of
side 272 contained in D\S;. Continuing in this way, Sy is the union of the
binary squares of side 27 contained in D\UXZ! 5;. Then the unions of squares
Uﬁ-‘IIS‘,» give a sequence of increasingly good approximations to D from the
inside, with D = U®,S;, see Figure 12.9.

For k£ > 2, every square of S, is contained in the interior neighbourhood
E, v(14v3) since any square of Sy not in Ez—k(l +3) would be contained in
a square of S; for some i < k. Thus if #; is the number of squares comprising
Sk, we have by considering areas

nk2—2k < £2(E2~k(1+\/2‘)) < 24k(24$4€)
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Figure 12.9 The Whitney decomposition of a domain into binary squares, used in
estimating the asymptotic distribution of eigenvalues of the Laplacian

for all sufficiently large %, using (12.61), so
e < 2k69), (12.63)

A classical result on the eigenvalues of (12.37) satisfying the Dirichlet
condition (12.38) is ‘the larger the region the smaller the eigenvalues’, that is if
D’ C D then the k-th eigenvalue of D is no more than. that of D’ for
k=1,2,.... Thus, writing Dy = U S, and N()) and N,(\) for the eigen-
value counting functions of D and Dy, we have Ni(A) < N(A) for all k. As Dy is
a union of disjoint squares, we can find N,(A) by counting the eigenvalues of
each component square, as before. Using (12.56)—(12.58) we get that for &
sufficiently large

NN = Ne(\)
> ) AnTIA2 = Y 2n A2y
i=1 i=1

= LI\ L3(D) — 1n7 "N Z 2%y 2W—IA1/222 "
i=k+1 =1

k
—1)\[:2 1 —1)\ Z 2lS 2+e) 27r41)\1/222i(s—1+e)

i=k+1 i=1
7r_1)\£2 (D) - )\2k(s42+e) _ Cl)\l/Z 2k(SAl+e)
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with ¢ independent of k. Thus given A > 1, taking &k as the integer such that
2k=1 < AI/2 < 2K gives

N\ > 177 IALA(D) — eAb9/2,
Inequality (12.62) follows. [

These methods have been developed to give considerably more information
about the ‘discrepancy’ N(A) ﬂiw‘lﬁz(D))\. For example, the method of
Dirichlet-Neumann bracketing may be used to show that the discrepancy also
has X*/? as an asymptotic upper bound. In special cases the coefficient of )\*/2
has been calculated in terms of the geometry of D to give an expression for
N()) with error o(X\?). The work extends to regions D C R" for all n > 1, as
well as to eigenvalue problems for other elliptic partial differential equations.

12.3 The heat equation on regions with fractal boundary

The flow of heat into or out of a region may depend on the fractality of its
boundary. We consider a heat conduction problem on a plane domain to
illustrate how the heat flow across the boundary is related to its dimension.

Let D be a (bounded open) region in R? with boundary dD. We assume that
initially D has zero temperature throughout, and the boundary 0D is
maintained at unit temperature for all time. The region warms up as heat
enters through the boundary and diffuses through D. (Imagine that an object at
temperature zero is suddenly placed in a constant temperature oven.) We wish
to estimate how rapidly D gains heat.

Formally, for a region D we write up(x, ) for the temperature at x € D at
time ¢ > 0 and V? for the Laplacian operator. Then up satisfies the heat equation

Vup(x,t) = a—g;q (x,t) (x€D,t>0) (12.64)
up(x,0)=0 (xe€ D) (12.65)
up(x,t)=1 (x€aD,t>0), (12.66)

where the initial condition (12.65) represents the initial zero temperature of D,
and the boundary condition (12.66) represents the boundary being kept at unit
temperature. The total heat content of D at time ¢ is

hD(t)z/DuD(x, t)dx. (12.67)

We are interested in the behaviour of sp for small ¢.
For plane domains D with smooth (say C?) boundary, it has long been
known that

hp(t) = 227121221 (OD) + O(1) (12.68)
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as t — 0, where £' is ‘length’. This estimate also holds if D has a polygonal
boundary. (In fact the ‘order ¢’ term has been found explicitly in terms of the
geometry of D in both smooth and polygonal cases.) The exponent % in the
leading term of (12.68) is characteristic of the boundary of D being one-
dimensional. It turns out that for domains with fractal boundary the exponent
is in general smaller, corresponding to a faster rate of heat flow through
a ‘larger’ boundary. (This effect is relevant in meteorology in relation to
the heat gain or loss by clouds, which might be regarded as having fractal
boundaries).

Here we shall be content to show that the boundary dimension provides an
upper bound to the heat gain, and then obtain more precise behaviour of 4p(¢)
in the very special case of the von Koch snowflake domain. We require a
bound for the solution of the heat equation in the case of a disc, which leads to
a bound for the solution in a general region.

Lemma 12.7

The solution of (12.64)—(12.66) in the case of D = B(z,r), the disc of centre z and
radius r, satisfies

UB(z,r) (27 t) < 264’2/4t- (1269)
Proof The function defined by

u(x,t) = (2nt) ™ / exp(—|x — y|*/4t)dy (12.70)

R2\B(z,r)

is continuous and easily seen to satisfy VZu = du/0t for x € intB(z,r) and
t>0, with u(x,t) -0 as t— 0 for x €intB(z,r), and u(x,t) > 1 for
x € 0B(z,r) and t>0. (For this last property, integrating the Gaussian
kernel gives (2nt)™' Jre exp(—|x — y|*/4t)dy = 2; on replacing the domain of
integration R* by R?\B(z,r), which contains a half-plane with boundary
through each x € 8B(z,r), at least half of this value of retained.) Since the
temperature at a point of B(x,r) given by the heat equation solution does not
decrease if the boundary temperature is increased, ug ,(x,?) < u(x,t) for
x € B(x,r), so

uson (2,1) < (2mt) ! / exp(~|z — y|*/41)dy
R\ B(z,r)

:z—l/ exp(—p?/4t)pdp = 2e7" 14, (12.71)
p=r
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Corollary 12.8

The solution of (12.64)—(12.66) satisfies

up(z, 1) < 2e~4istz0D) /4 (12.72)
for z € intD and ¢ > 0.
Proof Writing r = dist(z, D), we have B(z,r) C D. The solutions of (12.64)—
(12.66) for the two regions B(z,r) and D are related by up(x, £) < ug, ,(x, ?)
for x € B(z,r) (since the interior of B(z,r) will heat up faster if its boundary

rather than the more distant boundary of D is held at unit temperature). By

(12.69) ,
up(z,t) < upi r(z,t) <2 0O

We bound the heat content of D in terms of the upper interior Minkowski
dimension of D, which we recall from (12.61) is given by
dim;0D = 2 ~ lim inf log LX(E,)/log r, (12.73)
where E, is the interior r-neighbourhood of 9D.

Proposition 12.9

Let D be a plane region with dim;0D < s. There is a number c such that

hp(t) < ct' =2 (12.74)
for all t > 0.
Proof From the definition of dimdD there is a number c¢; such that £2(E,) <

c1r>* for all r > 0. Using (12.72), integrating by parts and then substituting
2
u=r-/t,

hD(t):/uD(z,t)dz
D
<92 / eAdist(z,(')D)z/4tdZ
~Jp
=2 / e Md L2(Ey)
r=0

- [2e—'2/4f£2(E,)]:°+ ! / re~" 1% L2(E,)dr
r=0

[o9)
~ 24t 2
< et 1/ re" 1425 dy
r=0

— lcltlAs/Z /oo e—u/4ul—s/2du
2 r=0

which is of the form (12.74). O
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Thus the (interior Minkowski) dimension of 0D gives an upper bound for
the heat content of D for small ¢. For many domains there is a lower bound of
a similar order of magnitude, so that

hp(t) ~ ¢1=5/2 (12.75)

for small ¢, where s is the interior Minkowski dimension (assumed to exist)
of dD.

We shall prove this (and rather more) in one special case, namely for a
domain bounded by the von Koch snowflake curve (consisting of three
congruent snowflake curves joined end to end). We shall use the self-similarity
of the boundary to write down a recursive relationship for the heat content.
To do this we need two properties of heat equation solutions: the first
concerns scaling a region and the second concerns dividing a region into
subregions.

Lemma 12.10

Let D be a region and let D' be a similar copy of D scaled by factor . Then
hD/(l) = )\2}11)()\_2[).

Proof We may assume that D’ is obtained from D by scaling by a factor A
about the origin. Let up and up. be the solutions to the problem (12.64)—
(12.66) for the regions D and D' respectively. By differentiation up(A~!x, A=%)
satisfies (12.64) for x € D" and ¢ > 0, equals 1 if x € 9D’ and equals 0 at t = 0.
Thus up:(x,?) = up(A~'x,A72t). Hence

hpi(t) = //uD()\_lx, A72t)dx
=\ /D up(y, \"2t)dy = Nhp(2 %)
on substituting y = A"!'x. [
Lemma 12.11

Suppose a region D is divided into subregions Dy,...,D, by a number of
polygonal cuts, for example as in Figure 12.10(a),(b). Then
m

ho(t) = hp,(t) + O('?). (12.76)

i=1

Proof This is a version of what is known as the ‘principle of not feeling the
boundary’. It expresses the plausible fact that the error in comparing the heat
gained by D with the sum of the heat gains of the D; considered individually is
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(@)

Figure 12.10 Decomposition of the von Koch snowflake domain into (a) three
subdomains, and (b) 13 subdomains
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no more than the heat that would flow across the polygonal cuts, which by
(12.68) is O(¢'/?). We omit the technical details. [J

We use these two lemmas to estimate the heat content of the domain D
bounded by the von Koch snowflake curve. Recall that dimyoD =
dimgdD = log 4/log 3.

Theorem 12.12
Let D be the von Koch snowflake domain. Then the heat content (12.67) of D in
the problem (12.64)—(12.66) satisfies

hp(1) = t®p(—log 1) + O(t'/?) (12.77)
as t\, 0, where a =1 —%log 4/log 3 =0.369 and p is a positive continuous
function of period log 9.

Proof 'We cut up the domain D in two ways, as indicated in Figure 12.10. In
Figure 12.10(a) D is divided into three congruent parts D;, D2, D; so by

Lemma 12.11 \
=Y " hp,(1) +0('?)
i=1

= 3hp, (1) + O(t"/?). (12.78)

In Figure 12.10(b) D is divided into twelve congruent parts Dj,..., D},
together with a hexagon H, so again by Lemma 12.11

Zhl)/ )+ hu(t) + O(t'/2)

= 12hp (1) + O('?)
since (12.68) is valid for a hexagon. Combining with (12.78)
hp, (t) = 4hp: (1) + O(£'/%)
=2hp,(90) + O(£'?)
by Lemma 12.10, since D] is similar to D, at scale % Thus by (12.78)
hp(t) = $hp(9t) + ¢(1) (12.79)

for ¢ > 0, where g(t) = O(¢'/?) for small ¢.
Just as in the renewal theory examples of Section 7.2, on writing

t=e7, f(r)=¢"hp(e™"), g(r)=¢"q(e™), (12.80)
where a = 1 — 3log 4/log 3, (12.79) becomes
f(r)y=f(r—log9)+ g(7). (12.81)
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Since Ap is bounded and continuous, so are ¢, f and g, with
lg()| < ce@ /P (12.82)

for 7 > 0, for some constant c.
Define p: R — R by

k
)= g(r+ilog9)+/(r).
i=1
By virtue of (12.82) this series is uniformly absolutely convergent, so p is
continuous. Using (12.81)

p(7) = p(7 +log9),
so p has period log 9. Moreover

) - o] <3 g + ilog )

< Czeavl/Z) (r+ilog 9)
< cpele=1/2r

for some ¢, since a < % Transforming back using (12.80) gives (12.77). [

Notice that (12.81) is a very special case of the renewal equation in the form
(7.19) with just one ‘time’. Applying Corollary 7.3 directly to (12.81) gives
hp(t) ~ t°p(—log 1), but the above analysis gives the error estimate O(¢'/?).

With considerably more effort (12.77) may be improved to

hD([) = t“p(log Z) — tq(log [) + O(e—l/(1152t))

where p and ¢ have period log9, an estimate that is remarkable for the
exponential error bound.

12.4 Differential equations on fractal domains

In the previous two sections we considered differential equations on regions in
R” with fractal boundary. However, there are certain circumstances when it is
appropriate seek solutions of a ‘differential equation’ defined on a set that is
itself a fractal, for example when modelling conduction of heat or electricity
through a highly porous material.

There are many technical difficulties in working with differential equations
on fractals, not least in defining differential operators such as the Laplacian on
fractal regions. By way of introduction to this complex subject we give a brief
account of the heat equation and the distribution of eigenvalues of the
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Laplacian on the Sierpinski triangle which has good enough regularity and
connectivity properties to allow reasonable progress.

Most approaches to differential equations on a fractal E depend on discrete
difference equations on graphs that approximate E. The aim is to take a limit
of the difference equation solutions normalised in such a way to give a non-
degenerate solution of the limiting ‘differential equation’ on E.

First we consider how to define Brownian motion on the Sierpinski triangle
E, leading to solutions of the heat equation on E. Recall that one way of
defining standard Brownian motion on R is as a limit of suitably scaled random
walks, see FG, Section 16.1. Let X,(¢) be the random walk on the set
{j27% . j € Z} starting with X;(0) =0 and taking steps at time intervals of
47, so that given the position Xi(m4=%) of the walker at time m4~%, his
position Xy((m+1)47%) at time (m+ 1)47% is equally likely to be
Xy (ma=) —27% or Xy(m4=*)+27%. It may be shown that as k — oo the
sequence of random walks X (¢) converges to a process X(¢) on R, namely
one-dimensional Brownian motion. (Scaling the time variable as the square
of the space variable is essential for convergence to a non-degenerate process.)
Thus if k is large Xi(¢) and X(¢) look very similar on all but the finest
scales. The increments of Brownian motion, X(z+ &) — X(¢), are normally
distributed with mean 0 and variance % for all ¢+ and h > 0 so ‘typically’
the motion travels distance 4'/? in a time interval of duration h. More-
over, Brownian motion has independent increments, that is, there is no
historical memory of the path. More generally for Brownian motion on R”
(which may be constructed as the limit of scaled random walks on n-
dimensional cubic lattices) X (¢ + ) — X(¢) has mean 0 and |X(t+ k) — X(¢)|
has variance A.

We attempt to mimic this construction of Brownian motion on the
Sierpinski triangle. For the time being, it is convenient to take E to be the
extended Sierpinski triangle, thus E extends outwards to infinity using self-
similarity, see Figure 12.11. (This avoids the need to regard the three corner
vertices of the usual ‘bounded’ Sierpinski triangle as exceptional.) There is a
natural sequence of geometrical graphs Ej, E,... that approximate the
extended Sierpinski triangle, see Figure 12.11. As geometrical sets,
E¢CECE;C...and E= (U,E:). We write Vi for the set of vertices
of E,. Thus the graph Ej has edges of length 27* and each vertex in Vy is
adjacent to four others. For k =0,1,2,... the vertices of V.| are obtained by
augmenting ¥, by additional vertices at the midpoints of the edges of Ej, with
appropriate additional edges added to form Ej,.

For k=0,1,2... we define random walks X;(¢) on V by travelling along
the edges of Ey, taking steps at time intervals of ay (Where «y is to be specified)
and starting at X, (0) = 0. Thus if Xi(may) is the vertex of Vi occupied by the
random walker at time mau, then Xi((m + 1)a,) is one of the 4 vertices of ¥y
adjacent to Xi(may) in Ej chosen with equal probability ; independently of all
previous steps.
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Figure 12.11 The extended Sierpinski triangle and approximating graphs

For k > 1 this random walk X (¢) on E; induces a random walk on Ej_;:
simply note the sequence of vertices of V,_, visited by Xi(¢) (ignoring
consecutive occurrences of the same vertex) and regard these as the sequence of
vertices visited by a random walk on E;_;. By the symmetry of E; there is
equal probability of moving to each of the 4 adjacent vertices of V;_; in this
random walk on Ej_, so this induced random walk is just Xj_;(¢) undertaken
with steps of varying time interval. For the random walks X} to have a chance
of converging to a reasonable limiting process we should ideally choose the
time intervals «;, oo, . .. so that, for each k, the time for X} (¢) to move from a
vertex of Vj_) to a neighbouring vertex of V;_; is ax_;. We can at least achieve
this on average by ensuring that the expected time of such a step is ax_;.
It follows from the following lemma that this requires that a;_; = Say.
(Whilst a coefficient 4 might be expected since each vertex of E, is adjacent
to four others, the geometry of the Sierpinski triangle makes 5 the right
number.)
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|

ay x b,

Figure 12.12 The random walk on E; from z

Lemma 1213

Let Xi(2) be the random walk on E; as above, let x be a vertex of Vi_1 and let A
be the set of four vertices in Vy_, adjacent to x. Then, conditional on the random
walker being at x, the expected number of steps to reach a point of A is 5

Proof By the symmetry of E;, the portion of E; near x is always equivalent to
that shown in Figure 12.12, where A = {a1, @, a3, a4} and by, b, and ¢ are as
indicated. Write E( p, 4) for the expected number of steps in a random walk on
E} to get from a point p € V) to a point of 4. Given that a random walker
starts at x, symmetry allows us to assume that the first step is to »; when
determining the expected number of steps E(x, 4) to reach a point of 4 from x.
Thus
E(x,4) =14+ E(b,4)
E(b2, 4) = E(b1, A) = 1 +3E(x, 4) + ;E(b2, 4) + 4E(c, 4) + 1 x 0
E(c,A) = 1 +3 % 0+ 3E(b1, A) + 1E(by, 4)

on examining the probabilities of the possible steps from b;, b, and c. Solving
these equations gives that E(x,4) = 5. O

Thus if the random walk X, on E; is undertaken with time interval oy
between each step, this induces a random walk on E,_; with mean time interval
S5ay between each step. To take a non-degenerate limit of X, as k — oo, the
random walk on E,_; induced by X, must, at large scales, be close to the
random walk X _1, so to achieve this we need ay_; = 5a4 for each k.

Hence to ensure scaling compatability, we set oy = 5% for k=0,1,2,....
Then it may be shown, analogously to standard Brownian motion on R or R”,
that the sequence of random walks X} (¢) converges to a random process X(t)
which we call Brownian motion on the extended Sierpinski triangle E.

The basic properties of standard Brownian motion on R are mirrored in
Brownian motion on E but the exponents are different. One might expect that
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the dimension dimy £ = log 3/log 2 = 1.585 would be crucial for determining
the progress of X(¢) through E. In fact, what is more relevant is what is known
as the walk dimension dj, which reflects the rate at which X{(¢) moves at different
scales. From Lemma 12.13, Xj(¢), and thus in the limit X(¢), takes on average
time 5y = 5**! to move between adjacent vertices of ¥,_; which are distance
27k+1 apart, so X(¢) ‘typically’ moves distance A8 2/1°6 5 in time interval . This
leads to defining the walk dimension d,, =log 5/log 2 = 2.322; it is at least
plausible that the mean square of the increments satisfes

E(JX(t + h) — X)) < W% (12.83)

for h>0. (This should be compared with E(|X(¢+h)— X(¢)]*)=h for
standard Brownian motion — the loss of equality is an inevitable consequence
of the fractality of the domain.)

This and much more can be proved rigorously, in particular there are
key estimates for the probability that X{(¢) lies in a set 4 given that X(0) = x.
Let ;2 be the restriction of s-dimensional Hausdorff measure to E,
where s = dimgE = log 3/log 2 (so u is the natural locally finite measure
on E). There exists a transition density p,(x,y) that determines the
probability density for the position y reached after time ¢ by Brownian motion
starting at x:

PO+ 1) € ALXW) =) = [ pi(v )0 (12.84)

if x € Eand 4 is a measurable set. A knowledge of p,(x, y) allows the statistics
of the motion to be studied. By careful analysis of the underlying random
walks X} it may be shown that there are constants ¢, ¢2, ¢3, cs > 0 such that for
all x,ye Eand t >0

“Vdn)d /@1y < b (x ) (12.85)

< eyt exp(—ca(jx — y|t—1/dw)dw/(dw—1)).

et/ exp(—ca(|x — ylt

(This should be compared with standard Brownian motion on R”, where
d, =2, u= L" and the transition density is given by

pi(x,y) = (2mt) ™" exp(—|x — yI*/2¢); (12.86)

(12.85) is the analogue of the familiar Gaussian kernel in this setting.)

By parallel methods to those for standard Brownian motion, compare FG,
Section 16.1, it may be shown that with probability 1 the sample path X(¢)
satisfies a Holder condition

[X(t1) — X(2)| < ety — 1o (12.87)

for all v < 1/d,, and 0 < 1, < T where ¢ depends on v and 7. Moreover,
the Hausdorff dimension of the sample path is log 3/log 2, so the path “fills’ the
set E.
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Brownian motion on R” is intimately connected with solutions of the heat
equation. Diffusion of heat on R” may be thought of as the aggregate effect of
a large number of ‘heat particles’ following independent Brownian paths. If v
is the heat distribution on R” at ¢ = 0, then the temperature at point x at time
t1s

u(x, 1) = / pe(x, Y)du(y) (12.88)

where p, is the standard transition density (12.86). It may be checked by
differentiation that

op. _ 150

ar 2 xP
and thus (12.88) satisfies the heat equation
ou 1_,

E = E V u

on R”, with [, u(x,t)dx — v(4) as t — 0.

In a similar way, Brownian motion on the extended Sierpinski triangle E
may be regarded as modelling heat diffusion on E. Thus an initial heat
distribution v on E would yield the temperature distribution (12.88) at time ¢,
but with p, now the transition density on E given by (12.84).

To obtain a meaningful analogue of the heat equation on E which has
(12.88) as solution, we must say what is meant by the Laplacian V? on E.
Again we use discrete approximation. Recall that the Laplacian on R, d*/dx?,

is the limit of differences
2
3—x (x) = lim R2(f(x+h) = f(X) + (f(x —h) —f(x))]  (12.89)

=limh™? > (f(») - (%))

h—0 yaxth

For a continuous f: £ — R we use discrete approximation via the geometric
graphs Ej, see Figure 12.11. Writing C(E) for the continuous functions on E,
we define V2 € C(E) by the requirement that, for every bounded set 4

lim sup
k—00 xe ANV

553 (f(w) —f(x) = V¥ (x)| =0, (12.90)

we Vi (x)

where V. (x) comprises the four vertices of ¥, adjacent to x. (Note that V? is
defined only on a subspace of C(E).) The number ‘5’ is exactly what is needed
for (12.90) to be meaningful; as indicated below, this is a consequence of the
walk dimension of E being log 5/log 2.

For given k, let x,y € V. On the assumption that Brownian motion on E
starting at x at time 0 reaches one of the four adjacent vertices of V) at time
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8t = 5% (we know this is true on average), consideration of transition densities
to y gives

Prssi(X,y) =~ Z %Pt(WaJ’)

wer(x)
where xi,...,x4 € Vi(x) are adjacent to x. Thus
(Prvs(%,9) = p(x, ) /6t 25 55 > (pu(w,p) = pulx, ),
weVi(x)

so letting 6t — 0 and invoking (12.90) gives

op:
57 ()

We infer that u given by (12.88) satisfies the heat equation on E

ou
ar

where p,(x,y) is the transition density for Brownian motion on E. Clearly,
pi(x,-) is concentrated near x when ¢ is small (since X(¢) will not have moved
far), so [, u(x,t)du(x) — v(4) as t — 0. Thus the Brownian motion integral
(12.88) solves (12.91) on E for a heat distribution v at t = 0. With considerable
effort, these arguments can be made rigorous.

We move to the related problem of finding eigenvalues of the Laplacian on a
fractal domain. Here we need the domain to be bounded, so from now on we
take E to be the (usual non-extended) Sierpinski triangle and adapt our
previous notation in an obvious way to the bounded setting. Thus Ej is the
graph with a finite vertex set ¥, and edges of lengths 27* that approximates E.
The definition of the Laplacian (12.90) is modified slightly to require
V3f € C(E) to satisfy

= %Vzp,(x,y)

= 1V2y, (12.91)

lim sup
k=00 xep\¥p

5D (W) —f(x) =V (0)|=0. (12.92)

weVi(x)

where Vy(x) is the set of vertices in ¥ adjacent to x, other than the vertices of
Vo. We are interested in eigenfunctions of the Dirichlet problem in this context,
that is, for functions vanishing on ¥y, the three corners of E. The eigenvalues
of

Viu=-du with ueCE) and u(x)=0 for xeV,  (12.93)

may be shown to be real and non-negative, and in the spirit of Section 12.2 we
seek estimates for the size of the k-th eigenvalue.

We define the spectral dimension of E as d; = 21og 3/log 5 = 1.365. It may
be shown that the eigenvalue counting function N()) satisfies

N()\) = #{eigenvalues of (12.93) at most A} =< A%/2, (12.94)
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(This should be compared with Weyl’s theorem for open domains in R” where
dy is replaced by n, see (12.40).) Roughly speaking, this is because the Sierpinski
triangle splits into sub-triangles which are joined only at the corners and which
therefore are essentially independent, similarly to the eigenvalue problem on
the cut-out sets in R, see Proposition 12.5.

To get some feel for this, let F|, Fy, F3 be the three similarity transformations
of ratio § that map E onto its three principal component triangles. We note
that if u is an eigenfunction of (12.93) with eigenvalue A and u(x) — 0

sufficiently rapidly as x approaches a point of Vo, then for all i = (iy, ..., ),
where i; € {1,2,3}, the functions
ui(x) = u(F;7'(x)) (ifx € F{(E)) (12.95)
=0 (ifx € E\F;(E))

are eigenfunctions with eigenvalues 57\ where F;=F; o---0F;. To see
this, note that for x a point of F;(E) N E, that is not a vertex of V/, and for

k> p,
Viui(x) = 55 3 (u(F; N (w) —u(F;' (x))
wer(x)

=5P xSk ST (') — u(F ()

w'eVip(F71(x))
~ 5PV2u(F7!(x))
= 5?2 u(F71(x)) = 5P hui(x).

It may be shown that there exists an eigenfunction u that tends to 0 sufficiently
rapidly near }y with eigenvalue Xy > 0, so there are at least 37 independent
eigenfunctions with eigenvalue 57 for p =1,2,.... Thus N(57X¢) > 37 so
N()\) > const A& 3/l8 5 which is half of (12.94). The opposite inequality
depends on showing that a complete family of eigenfunctions may be obtained
from a basic non-negative eigenfunction u using (12.95) for alli € I.

Much more precise information may be obtained on the asymptotics of
N()\). The renewal theorem method (see Section 7.2) gives a positive function p
with period log 5 such that N(\) ~ p(log \) A%/2.

The approach described here for defining Brownian motion and the
Laplacian on the Sierpinski triangle extends to any post-critically finite self-
similar set, that is, roughly speaking, any self-similar set E defined by an IFS
{Fi,...,Fn} for which F;(E) N F;(E) is finite whenever i # j. For example, for
the ‘hexakun’ of Figure 12.13 we have the Hausdorff dimension
dimyE = log 6/log 3 = 1.631, walk dimension d,, = (log 360—log 19)/log 3 =
2.678 and spectral dimension d; = 2log 6/(log 360 — log 19) = 1.218. In these
examples the walk dimension indicates the scaling behaviour of the rate of
diffusion through E and the spectral dimension indicates the coefficient needed
in the definition of the Laplacian (12.92), which is twice the exponent in the
power law for the eigenvalue counting function. In general d, = 2 dimyE/d;,
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Ey E, E

Figure 12.13 The ‘hexakun’ F is a post-critically finite self-similar set. Heat diffusion
and the Laplacian on E may be set up using the approximating graphs Ej in a similar
way to the Sierpinski triangle

just as in the case of standard Brownian motion and the Laplacian on R”
where d; = dimyE = n and d, = 2.

In this section we have just touched on the involved topic of partial
differential equations on fractal domains. There are further difficulties in
constructing partial differential operators on many domains, even as ‘simple’ as
the Sierpinski carpet (which is not post-critically finite). With the variety of
fractal domains and physical processes that might be modelled by appro-
priately defined differential equations, this is an area with exciting potential
for future development.

12.5 Notes and references

The methods of Section 12.1 have been applied to a wide variety of systems.
The basic estimate for the dimension of an invariant set, Theorem 12.2, was
given by Douady and Oesterlé (1980). This theory is developed in much greater
detail in the books by Ladyzhenskaya (1991) and Temam (1988). These books
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contain many further applications to dynamical systems and differential
equations, as well as historical information and many further references.

The suggestion that the second term in the asymptotic expansion of the
eigenvalue counting function N(A) might reflect the fractal dimension of the
domain boundary originated with Berry (1979), and this led to the question
‘Can one hear the dimension of a fractal?” discussed by Brossard and Carmona
(1986). The problem for one-dimensional domains, including the relationship
with the Riemann zeta function, was studied by Lapidus and Pomerance
(1993); see also Lapidus and Maier (1995) for a connection with the
Riemann hypothesis. Bounds for the discrepancy in the eigenvalue counting
function in higher-dimensional domains (also valid for more general elliptic
equations) were obtained by Lapidus (1991). More exact estimates have been
obtained for certain domains, see Fleckinger-Pelle and Vassilev (1993) and
Chen and Sleeman (1995). Surveys of this subject are given by Lapidus (1993)
and Sleeman (1995).

For the heat loss estimate (12.68) for the heat equation on polygonal
domains, see van den Berg and Srisatkunarajah (1990). The asymptotic form
for the snowflake domain was derived by Fleckinger, et al. (1995), and the
estimate (12.75) for more general domains by van den Berg (1994).

Diffusion processes on the Sierpinski triangle were constructed by Goldstein
(1987) and Kusuoka (1987), and a detailed analysis of the transition densities
was given by Barlow and Perkins (1988). Barlow and Bass (1992) extended
the theory to the (non-post-critically finite) Sierpinski carpet. Kigami (1989)
defined the Laplacian on the Sierpinski triangle and Fukushima and Shima
(1992) determined its eigenvalues and eigenfunctions. Kigami and Lapidus
(1993) found the asymptotic distribution of eigenvalues for general post-
critically finite self-similar sets. For a survey of this material see Kigami (1995).

Exercises

12.1 Show that the singular value function w; given by (12.2) is submultiplicative.
(Hint: show this first in the case of s an integer.)

12.2 Improve the estimate for the dimension of the Hénon attractor by working with
the second iterate f/2(x, ) rather than f(x, ). (Some numerical calculations are
needed here.)

12.3 Verify (12.56). (Hint: use that the average number of lattice points in the quadrant
Q(x, r) as x ranges over the unit square equals the area of Q(0, r), and consider the
extreme values of Q(x,r).)

12.4 Show that the eigenvalue counting function for a domain D that is a disjoint
union of squares of sides a; < i ~1/* is given by (12.60) with () = X/2.

12.5 Prove (12.50) by using self-similarity to obtain a recurrence for #{i : |4;| > r} and
applying Corollary 7.3.

12.6 Let D be the domain formed as the union of the bounded components of the
complement of the Sierpinski carpet E of unit side-length. Show that the
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12.7

12.8

12.9

12.10

12.11

12.12

Fractals and differential equations

eigenvalue counting function N()) > In~IX — cA=*/2 for some constant ¢, where
s = dimgE = log 8/log 3.

Heat is distributed on a plane domain according to a finite measure v at time
t =0, and diffuses according to the two-dimensional heat equation V2u = du/dt.
Verify that

u(x, 1) = (4mt)™! / exp(—|x — v /40)dv(y)

gives the temperature at x at time ¢. Now take v to be the restriction of s-
dimensional Hausdorff measure to a self-similar set £ C R” satisfying the strong
separation condition, where s = dimyE. Show that u(x, ¢) < ¢ */2~! for small ¢ for
v-almost all x. (Hint: Use Proposition 6.5.)

Let D be the union of the bounded components of the complement of the
Sierpinski triangle, so that 9D is the Sierpinski triangle. Show that in this case the
heat content Ap(¢) at time ¢ in the problem (12.64) - (12.66) satisfies hp(t) < £1-5/2
for small ¢ where s = dimpdD = log 3/log 2.

Extend the proof of Lemma 12.13 to show that E(t¥) = 12(4 — 31)~" is the
probability generating function of the random variable N, the number of steps of
a random walk on E; taken to travel between adjacent vertices of V;_;. Check
that this gives E(N) = 5.

Use (12.85) to establish the almost sure Holder condition (12.87) for Brownian
motion on the Sierpinski triangle.

Let £C R® be the Sierpinski tetrahedron (the three-dimensional analogue of
the Sierpinski triangle, obtained from a tetrahedron by repeatedly removing
inverted tetrahedra). Mimic the Sierpinski triangle theory to infer that
dimyE = dimpE = 2, d,, = log 6/log 2 and d, = 2log 4/log 6.

Let E be the hexakun of Figure 12.13. Verify the values stated for dimy E, d,, and
d, in this case.
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Index

Entries in bold type refer to definitions.

Allen—Cahn equation 220
almost all 10
almost everywhere 10
Apollonian packing 55
approximately self-similar set
-arithmetic 117, 122
arithmetic-geometric mean inequality
16
asymptotic eigenvalue distribution 222
atom 18
attractor
of dynamical system 207-223
of iterated function system 31
average density 102-112, 114, 160-163
one-sided 112

62, 67

ball 1

bi-Lipschitz mapping 21, 24, 143

bi-Lipschitz equivalent 143, 143146

binary interval 139

binary square 228

boundary 2

bounded convergence theorem 12

bounded distortion 62-69, 65

bounded set 2

bounded variation 63

Borel measure 8

Borel regular 8

Borel set 2

box-counting dimension
51-56

Brownian motion 237-245

19-22, 20,

Cantor set, middle-third xi, xiii, 29, 45,
105, 107, 111, 128, 151, 164

chain rule 64

characteristic exponent 101

characteristic function 2

closed ball 1
closed set 2
closure 2
coarse multifractal spectrum 187
coarse multifractal theory 186-192
codomain 2
compact 2
composition 2
concave function 4
conditional expectation 130
conformal mapping 27, 89
convergence theorem 12
convex function 4
convolution 114
cookie-cutter 56-69, 108-110
cookie-cutter set 62
cookie-cutter system 59-69, 62, 71-88
dimension of 68, 77, 88
m-part 69
correspondence, one-one 2
-cover 21
covering number function 123
cut-out set 51-56, 136142, 147, 224

density 27, 27-29, 102-111, 155-160
lower 27, 103
upper 27, 103
density function 160
density point 11, 153
diameter 1, 19
differential equation 207-246
diffuse dimension distribution
dimension 19-29
box-counting 19-22, 20, 51-56
calculation of 24-27, 41-57
capacity 19
entropy 19
Hausdorff 21-23, 22

181-183

253



254 Index

dimension (cont.)
interior Minkowski 226, 232
local 25, 169, 169-183, 185
lower box-counting 20
Minkowski 21, 51
of attractor 207-223
of IFS attractor 36
of measure 169-176, 170, 171
packing 22-23, 23
pointwise 25, 169, 185
pressure formula 75-79, 77, 88
spectral 242
upper box-counting 20
dimension decomposition 177-183
dimension derivative family 178-181
dimension disintegration formula 178
dimension measure 178, 183
Dirichlet-Neumann bracketing 230
disc 2
distance (between sets) 1
domain 2
domain, fractal 236-245
dominated convergence theorem 12

eigenvalues 222-230, 236-245

eigenvalue counting function 223,
223-230, 243

ellipsoid 208

(s-)energy 26

entropy 84-88, 85

equivalent measures 11

ergodic measure 83, 97, 102-103, 175,
175-176

ergodic theorem 97-112, 98

approximate 100

Euclidean distance 1

Euclidean space 1

exact dimensional 174, 174-176

expectation 129

exterior product 214

Fatou’s lemma 13

o-field 7, 129

fine multifractal spectrum 187
fine multifractal theory 186-192
first variation equation 214
flow 213

Fourier transform 120

fractal, definition of xi

fractal geometry xi—xiv, 19-40

Fréchet derivative 221
Fubini’s theorem 13
function 2

functional attractor 220

gap-counting function 125

gap length 51

Gaussian kernel 231, 240

Gibbs measure 71-75, 75, 82-84, 87
multifractal analysis of 201-204

graph-directed set 47, 47-51, 57, 89-90

Hausdorff dimension 21-23, 22
of a measure 170, 170174
Hausdorff measure 21, 24, 36, 77

Hausdorff metric 29
Hausdorff-type measure 191
heat content 230

heat equation 230-236, 241-245
Hénon attractor 212

Hénon mapping 212

hexakun 241-244

Hilbert transform 163, 167, 168
histogram method 192

Holder continuous 89

Holder exponent 25

implicit methods 41-51
indicator function 2
infinitesimal vector 214
injection 2
integrable 12
integral 12
integration 12-13
interior 2
interior Minkowski dimension 226, 232
interior r-neighbourhood 226
interval 2
invariant measure 38, 79, 79-84, 97,
102-103, 175, 175-176
invariant set
of iterated function system 31
of dynamical system 207, 209
mverse 2
irregular set 28
iterate 2
iterated function system/scheme (IFS)
29, 29-39, 60, 89
attractor of 31
dimension of attractor 36



graph-directed 47
invariant set of 31
probabilistic 36

Jensen’s inequality 4
Julia set 90

Koch curve—see von Koch curve

Laplacian 230, 241, 243
eigenvalues of 223-230, 236-245

Lattice points 227

Lebesgue density theorem 27

Lebesgue integrable 13

Lebesgue measure 9, 21, 150

Legendre spectrum 191

Legendre transform 189, 190, 198, 202

Liapounov exponent 101

limit 3

Lipschitz constant 3

Lipschitz function 3, 21, 23, 42-45

Lipschitz piece 28

local dimension 25, 169, 169-176

logarithmic density 19

Lorenz attractor 217-220

lower box-counting dimension 20

manifold 23

mapping 2
Markov partition 91
martingale 129-147, 130

convergence theorem 135
L? bounded 135
mass distribution 6

mass distribution principle 24
measurable function 12
measurable set 7

measure 6-16, 7

Borel 8

counting 9

finite 8

Hausdorff 21, 21-23
Lebesgue 9

locally finite 8

packing 23, 22-23
probability 8

restriction of 9

measure preserving transformation 97
mesh cube 20
method of moments 192

Index 255

moment sums 189
monotone convergence theorem 12
monotonocity 23
multifractal analysis

of Gibbs measures 201-204

of self-similar measures 192-201
multifractal measure 185, 185-206
multifractal spectrum 185, 185-206

coarse 187

finow 187

Hausdorftf 187

packing 187

185-206

Navier-Stokes equation 223

-neighbourhood 1, 20
interior 226

non-arithmetic 117, 122

one-one mapping 2
onto mapping 2

open ball 1

open set 2

open set condition 35
order-two density 104

-packing 22
packing dimension 23

of a measure 170, 170-174
packing measure 22-23, 23
-parallel body 1, 20
Perron—Frobenius theorem 50
point mass 9
post-critically finite set 243
potential 26
pre-fractal 31, 31-33
pressure 71-79, 75, 82, 87, 202
principle of not feeling the boundary 233
probabilistic IFS 36, 36-39
probability measure 8
pseudo-metric 15

quasi-self-similar set 67

random cut-out set 136-142, 147
random walk 237-245

range 2

reaction—diffusion equation 220-223
rectifiability 27-29

rectifiable 28, 159, 159-160, 166
regular set 28



256 Index

renewal equation 113, 115-117, 236
renewal theorem 113-128, 117, 122
repeated subdivision 9, 9-10

repeller 59

residence measure 176

restriction of measure 9

Riemann zeta function 226
Ruelle—Perron-Frobenius theorem 80

scaling property 22
Schauder fixed point theorem 81
Schrédinger equation 223
self-affine measure 19
self-affine set 33, 35
self-conformal set 35, 90
self-similar measure 39, 102, 172

multifractal analysis of 192-201
self-similar set xiii, 35, 46, 123-127,

143-146

approximately 62, 67

quasi- 67

statistically 142

sub- 46, 4648

super- 46, 4648
sequence notation 32
shift invariance 154
Sierpinski carpet i, xiii
Sierpinski gasket-—see Sierpinski triangle
Sierpinski triangle xi, xiii, 32, 57,

236-245

extended 237
similarity transformation 22
simple function 12
Sinai-Bowen—Ruelle operator 79
singular integral 110, 163-167
singularity spectrum 185
singular value 208
singular value function 208
spectral dimension 242
stable, countably 24
stable, finitely 24
statistically self-similar set 142

strong separation condition 35
subadditive sequence 3, 85
submartingale 130
submultiplicative sequence 4
sub-self-similar set 46, 4648
supermartingale 130, 132-135
supermartingale convergence theorem
134
super-self-similar set 46, 46 — 48
support of function 2
support of measure 8
surjection 2

tangent measure 149-168, 150
tangent space 150, 150-155
Tauberian theorem 120-121
thermodynamic formalism 71-95
topological pressure 75

trace 214

transfer operator 79, 79-84
transition density 240
transitivity condition 47

unidimensional 174

uniformly differentiable 209
uniform measure 156, 156158
unrectifiable 28

upcrossing 132

upper box-counting dimension 20

variational principle 87

Vitali cover 11

von Koch curve xi, xiii, 35, 128

von Koch snowflake domain 234-236

walk dimension 240-243

weak compactness of measures 14

weak convergence of measures 13,
13-16, 150

Weyl’s theorem 222, 223, 242

Whitney decomposition 228

Wiener’s Tauberian theorem 120-121



