LETTER TO THE EDITOR

Functions with Prescribed Hölder Exponent

STÉPHANE JAFFARD

CERMICS, Ecole Nationale des Ponts et Chaussées, La Courtine, 93167 Noisy-le-Grand, France; and CMLA, ENS Cachan, 61 av. du Président Wilson, 94235 Cachan Cedex, France

Communicated by Yves Meyer

Received March 27, 1995

Abstract — We characterize the class of functions that are Hölder exponents, and for each function $\alpha(x)$ of this class we give an explicit wavelet construction of a function f whose Hölder exponent is $\alpha(x)$ for every x. © 1995 Academic Press, Inc.

A bounded function f is $C^{\alpha}(x_0)(\alpha \ge 0)$ if there exists a polynomial P of degree at most $[\alpha]$ such that |f(x)| $|P(x-x_0)| \le C|x-x_0|^{\alpha}$. The Hölder exponent of f at x_0 (which we will denote $\alpha(x_0)$) is by definition the supremum of all α s such that f is $C^{\alpha}(x_0)$; this function takes its values in $[0, +\infty]$ (bounds included). The determination of the Hölder exponent of a function is often a difficult problem since it can be a very erratic function. Wavelet methods give an easy estimation of the Hölder regularity (see Proposition 1 below) and consequently they allowed to determine the exact Hölder exponent of some classical functions, see [7]. Numerically, even when the Hölder exponent is impossible to compute, one often wishes to obtain at least the dimension of the level sets of $\alpha(x)$; the Multifractal Formalism for Functions was introduced for that purpose and wavelet methods also proved their efficiency in this problem ([1, 4, 6]).

Let ψ^i be orthogonal wavelets in $\mathcal{S}(\mathbb{R}^n)$ as in [8]. The wavelet coefficients of f are denoted

$$C_{j,k}^i = \langle f | \psi_{j,k}^i \rangle = \int f(x) 2^{nj} \psi^i(2^j x - k) \, dx \quad (j \in \mathbb{Z}, k \in \mathbb{Z}^n).$$

We note C^{\log} the class of functions such that

$$|C_{j,k}^i| \le C2^{-j/\log j}. \tag{1}$$

It is a slightly stronger assumption than uniform continuity,

¹E-mail address: sj@cerma.enpc.fr.

but it implies no uniform Hölder regularity. More precisely if $\mu(t) = 1/(\log \log(1/t))$

$$\begin{aligned} \forall x, y \quad |f(x) - f(y)| &\leq C|x - y|^{\mu(|x - y|)} \Rightarrow f \in C^{\log} \\ f &\in C^{\log} \Rightarrow \forall x, y \quad |f(x) - f(y)| \\ &\leq (C/\mu(|x - y|))|x - y|^{\mu(|x - y|)}. \end{aligned}$$

THEOREM 1. A nonnegative function $\alpha(x)$ is a Hölder exponent of a function f in C^{\log} if and only if it can be written as a limit inf of a sequence of continuous functions.

This theorem answers a question posed by Lévy-Véhel (see [3]). The important point in its proof is the explicit wavelet construction of a function f which has a prescribed spectrum α . Remark that when α has a minimal Hölder regularity, a more natural probabilist construction is supplied by the *Fractional Brownian Motion* studied in [2].

We note λ (= $\lambda(j,k)$) = $k2^{-j}$. The following proposition is a slight extension of Theorem 1 of [5] and has a very similar proof, which we leave as an exercise.

PROPOSITION 1. Suppose that $f \in C^{\alpha}(x_0)$; if $|k2^{-j} - x_0| \le \frac{1}{2}$ then

$$|C_{j,k}^i| \le C2^{-\alpha j} (1 + |2^j x_0 - k|)^{\alpha}.$$
 (2)

Conversely, if (2) holds for all j,k such that $|\lambda - x_0| \le 2^{-j/(\log j)^2}$, and if (1) holds, there exists a polynomial P of degree at most $[\alpha]$ such that

$$|f(x) - P(x - x_0)| \le C|x - x_0|^{\alpha} (\log|x - x_0|)^2.$$
 (3)

Proof of Theorem 1. Suppose that f satisfies the uniform regularity condition (1); then (2) and (3) imply that

$$\alpha(x) = \lim_{|\lambda - x| \le 2^{-j/(\log j)^2}} \frac{\log |C_{j,k}^i|}{\log(2^{-j} + |\lambda - x|)};$$
 (4)

let $\theta_0(x)$ be a C^{∞} positive function such that $\theta_0(x) = 0$ if $|x| \le 1$ and $\theta_0(x) = 1$ if $|x| \ge 2$. We define $\theta_1(x) = 1 - \theta_0(x)$ and

$$\alpha_{j}(x) = \inf_{i,k} \left\{ \frac{\log(2^{-j\log j} + |C_{j,k}^{i}|)}{\log(2^{-j} + |\lambda - x|)} \; \theta_{0} \left(\frac{|\lambda - x|}{2^{-j/(\log j)^{2}}} \right) + j\theta_{1} \left(\frac{|\lambda - x|}{2^{-j/(\log j)^{2}}} \right) \right\};$$

 $\alpha_j(x)$ is continuous and (4) implies that $\alpha(x) = \liminf \alpha_j(x)$ so that a Hölder exponent of a function f in C^{\log} is a limit inf of a sequence of continuous functions. Remark that if $0 \le \alpha(x) \le 1$,

$$\alpha(x) = \liminf_{j \to \infty} \inf_{2^{-j} \le |h| \le 2 \cdot 2^{-j}} \frac{\log(|f(x+h) - f(x)| + 2^{-j^2})}{\log h}$$

so that the characterization of Theorem 1 holds for all continuous functions if $0 \le \alpha(x) \le 1$.

Let us now prove the converse result; we suppose that $\beta(x)$ is a limit inf of a sequence of continuous functions $\beta_n(x)$; the problem is local so that we can suppose that the β_n are uniformly continuous; thus there exist C^1 functions γ_n such that $|\gamma_n(x) - \beta_n(x)| \le C/n$; let $A(n) = n + \sup |\nabla \gamma_n(x)|$; we define the wavelet coefficients of f as follows. If f is one of the numbers [A(n)],

$$C_{j,k}^i = \inf(2^{-j/\log j}, 2^{-j\gamma_n(\lambda)})$$

else we take $C_{j,k}^i = 0$. Let $\alpha(x)$ be the Hölder exponent of f at x. The direct part of Proposition 1 obviously implies that

$$\alpha(x) \leq \liminf_{[\lambda - 2^{-j}, \lambda + 2^{-j}] \ni x} \gamma_n(\lambda)$$

$$\leq \liminf \gamma_n(x) + 2^{-j} A(n) = \liminf \beta_n(x)$$

so that $\alpha(x) \leq \beta(x)$. In order to prove the converse estimate remark that f satisfies (1) so that we can use the second part of Proposition 1. We have

$$C_{j,k}^{i} = \inf(2^{-j/\log j}, 2^{-j\gamma_n(\lambda)})$$

$$\leq \inf(2^{-j/\log j}, 2^{-j\gamma_n(x)}2^{j|x-\lambda|A(n)}).$$

Since $|\lambda - x| \le 2^{-j/(\log j)^2}$, $2^{j|x-\lambda|A(n)} \le 2$ for *n* (hence *j*) large enough and Proposition 1 implies that Hölder exponent at *x* is exactly $\lim \inf \gamma_n(x)$.

EXAMPLE 1. Let $\alpha(x)$ be a positive measurable function in L^1 . After perhaps redefining α on a set of measure 0, we can suppose that

$$\forall x \quad \alpha(x) = \liminf_{r \to 0} \frac{1}{Vol(B(x, r))} \int_{B(x, r)} \alpha(u) \, du.$$

Let $\phi(x)$ be a positive C^{∞} function supported in [-1, 1] of

integral 1; then $\alpha(x) = \liminf \alpha * (1/n)\phi(\cdot/n)$ so that $\alpha(x)$ is a Hölder exponent.

EXAMPLE 2. Let $\beta_1 > \beta_0 > 0$; there exists a function f such that $\alpha(x) = \beta_1$ is x is a rational, and $\alpha(x) = \beta_0$ if x is an irrational.

We define the wavelet coefficients of f as follows. If there exists a rational p/q such that $|\lambda - p/q| \le 2^{-j/(\log j)^2}$ and $j \ge q$, then $C_{\lambda} = 2^{-\beta_1 j}$, else $C_{\lambda} = 2^{-\beta_0 j}$.

EXAMPLE 3. If $\beta_0 > \beta_1 > 0$, there exists no function f such that $\alpha(x) = \beta_1$ if x is a rational, and $\alpha(x) = \beta_0$ if x is an irrational.

Suppose such a function exists and let β_2 be such that $\beta_0 > \beta_2 > \beta_1 > 0$. We construct a decreasing sequence of closed intervals I_n with nonempty interiors: suppose I_{n-1} is constructed. There exists a dyadic interval $\lambda \subset I_{n-1}$ such that $|C_{\lambda}| \ge 2^{-\beta_2 j}$ (else f would be C^{β_2} on an open subinterval of I_{n-1}). We choose for I_n a subinterval of λ which contains no rational of denominator less than λ . The sequence I_n decreases towards an irrational λ and λ 0 such that λ 1 is such that λ 2.

Remark that in this counterexample, we do not need to make any uniform regularity assumption on f.

ACKNOWLEDGMENT

The authors expresses his gratitude to Yves Meyer for mentioning this problem, and for many helpful remarks and enlightening discussions.

REFERENCES

- A. Arneodo, E. Bacry, and J. F. Muzy, Wavelet analysis of fractal signals. Direct determination of the singularity spectrum of fully developped turbulence data, preprint, 1991.
- A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian Random Processes, preprint, 1995.
- 3. K. Daoudi, J. Lévy-Véhel, and Yves Meyer, Construction of continuous functions with prescribed local regularity, preprint, 1994.
- U. Frisch and Parisi, Fully developed turbulence and intermittency. "Proc. Int. Summer School Phys. Enrico Fermi," pp. 84–88. North Holland, Amsterdam, 1985.
- S. Jaffard, Pointwise smoothness, two-microlocalisation and wavelet coefficients, *Publ. Mat.* 34 (1990).
- S. Jaffard, Multifractal Formalism for functions Part I: Results valid for all functions et Part II: Selfsimilar functions, preprint, 1993.
- S. Jaffard, The spectrum of singularities of Riemann's function, preprint, 1994.
- P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes. Rev. Math. Iberoamer. 1 (1986).