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Fractals in Mathematics

By Masayoshi HaTa

Abstract. In this paper we shall survey two topics concerning the Frac-
tals: nowhere differentiable functions and self-similar sets in Euclidean space
such as Cantor set, Koch curve, and Peano curves.
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§0. What is a “fractal”?

The terminology “fractal” was created by Mandelbrot in the description
of Nature. To quote from his book [30]; “A fractal is by definition a set for
which the HausdorfT dimension strictly exceeds the topological dimension.”
For example, Cantor’s ternary set X, and von Koch’s curve Xy are typical
fractal sets, since it is known that dim,(X,)=(log 2)/(log 3) >0 and dim,,(Xx)=
(log 4)/(log 3) > 1 where dim,(X) denotes the Hausdorfl dimension of a set X.

The notion of “fractal” is surely based on the classical mathematical works
done by Cantor, Weierstrass, Peano, Lebesgue, Hausdorll and so on. It is
quite surprising that such pathological counter-examples have something to do
with certain fields of Natural Science. Thus, it is desirable to clarify the
structure of such “singularities”.

The measure theory is one of the most powerful mathematical tools to
handle fractal sets. See e.g. Rogers [37] and Falconer [8]. However in this
paper we shall survey some topics concerning nowhere differentiable functions
and fractal sets in Euclidean space. We hope that this approach will make
a contribution toward shedding light on the structure of “strange attractors”
in dynamical systems.

§1. Nowhere Differentiable Functions

The question of the existence of a continuous nowhere differentiable func-
tion was settled affirmatively by Weierstrass. Namely he showed that

(1.1) W(x)= X a"cos (b"zx) ,

nzl
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260 M. HaTta

where b is an odd integer and 0<a <1, ab>1+(3/2)r, at no point has a difTer-
ential coefficient, either finite, or infinite with a fixed sign. After slight
generalizations by a number of writers, Hardy [10] proved that W(x) does not
possess a finite differential coefficient at any point in any case in which 0<
a<l,b>1and ab>1.

It is now common sense that most continuous functions are nowhere
differentiable in the sense of the Baire category (see e.g. Jarnik [18]). How-
ever, a concrete example of such functions sometimes leads to interesting

speculations.
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Figure 1. (a) Weierstrass function (1—W(x))/2 (b=a'=12).
(b) Takagi function.
(c) Riemann function.
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In 1903, Takagi [40] discovered a quite simple example of a nowhere
differentiable function

(1.2) T(x)= 2 27")(2""'x) ,
nzl

where ¢i(x)=2|x—[x+1/2]|. This example is highly instructive; that is, T(x)
is a typical example of “Condensation of Singularities” (see e.g. Hobson [16,
p. 401], since it is a superposition of so-called saw functions.

The Weierstrass function (1.1) and the Takagi function (1.2) have cusps
at countably many points (see Figure 1(a) and (b)).

Hobson [16, p. 410] also studied the series

(1.3) Sagbrx), 0<a<l,
nzl

and showed that the conditions ab >4 when b is an even integer or ab>1 when
b is an odd integer forbid the existence of a differential coefficient finite or
infinite, applying a simple method of Knopp. For b=a'=10 this was the
example given by van der Waerden [42] in 1930. Also de Rham [35] pointed
out that if we take b=a', b being an even integer, then it has no finite
differential coefficient.

Consider now the following functional equation:

(1.4) f(x)—af(bx)=g(x) .

It was de Rham who remarked that the Weierstrass function (1.1) and the
series (1.3) satisfy (1.4) for g(x)=acos (bxx) and g(x)=a¢(bx) respectively.
Kuczma [24, p. 82] noted that if we take g(x)=a cos (brx), the equation (1.4)
has a C* solution in (—co, ) depending on an arbitrary function, although
the unique bounded (continuous) solution is the Weierstrass function.

On other non-differentiable functions, Faber [6] considered the function

2 107"¢(2"x) ;
n2l

he showed that this function does not satisfy a Lipschitz condition of any order.
Recently Cater [4] studied the function

Z 2-! cos (ztmlx) :

nzl

he showed that this function has no cusps and satisfies some extreme prop-
erties.
It was supposed by Riemann that the function

(1.5) R(x)= X n7*sin (ntxx)

nzl

is nowhere differentiable (see Figure 1(c)). Weierstrass had attempted to prove
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Riemann’s statement, did not succeed, and was led to the series (1.1). Hardy
[10] proved that R(x) has no finite derivative at irrational points nor at
rational points of the form 2p/(4q-+1) or (2p+1)/(4¢+2). Gerver |9] proved
that R(x) has a derivative —x/2 at points of the form (2p+1)/(2¢+ 1) and that
no finite derivative at points of the form (2p+1)/2", n>1. Finally Smith [39]
gave a complete answer to the problem, showing that R(x) has no finite deriva-
tive in the remaining cases.
Consider now the following functional equation

(1.6) _l_{f(ﬁ)+f(ﬂl)+ —t~f(m)}:2f(;:x) )
P P P P
This equation was studied by Artin [1]in characterizing Euler’s Gamma func-
tion as a unique smooth solution of certain functional equations. The author
[11] regarded (1.6) as an eigenvalue problem for some Perron-Frobenius
operator and investigated various solutions of (1.6) according to the eigenvalue
A. He also remarked that if 5>2 is an integer, then the Weierstrass function
W(2x)+cos (2zx) satisfies (1.6) for p=b, =1 and iA=a; the Takagi function
T(x)—1/2 also satisfies (1.6) for p=2, p=1 and i=1/2; and the Riemann func-
tion R(2x) satisfies (1.6) for p=2, p=2 and i=1/4.
The Weierstrass function (1.1) is a typical example of a lacunary series, that
is a series where the terms different from zero are very sparse. More gen-
erally, Kaplan, Mallet-Paret and Yorke [20] studied the series

(1.7) f(x)= X a"r(b"x), 0<a<l,

where ab>1 and r(x) is an almost periodic function. They showed that under
certain smoothness conditions on r the series (1.7) is either continuously
differentiable or nowhere differentiable; moreover, in the latter case the metric
(capacity) dimension of /7, is equal to 2-+(log a)/(log b), where [, is the graph
of the function (1.7).

It is possible for /", to have the Hausdor(T dimension greater than 1if g is
sufficiently singular. Besicovitch and Ursell [2] have shown that if g(x) belongs
to the calss Lip(d), 0<d<1, [, has a finite k-dimensional measure for k=
2—d, and they have constructed g for which the k-dimensional measure is
actually positive for 1<k<2—4. More generally, Love and Young [29] have
shown that if x(r) belongs to the class Lip(d) and y(r) to the class Lip(d’) where
6+4d">1,0<8’<d<1, the curve (x(1), y(r)) has a finite k-dimensional measure
for k=2—(6+d’—1)/3. Kline [21] constructed a curve (x(1), y(1)) for which the
dimension k=2—(3+4’—1)/6 is actually attained. Falconer [8] showed that if

g(x)= Zz:. A '(4,x)

where 0<s<1 and {4,} is a sequence of positive numbers satisfying
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Ay log 4,
=l 500  and 208 Tt as n—oo,
i, log 4,

then dim,, (/,)=2—s.

However, it will be difficult to determine the exact value of dim (I7) for
the Weierstrass function (1.1) and the series (1.3). We conjecture that in both
cases
dim, ([)=2+ 1982
log b
This value seems to be quite reasonable since Hardy has shown that if {=
—(log a)/(log b) < 1,

W(x+h)—Wix)=0(|h[%) and W(x+h)—W(x)#ol|h]%)

for any value of x.

§2. Chaotic Mappings

Consider a one-dimensional dynamical system ¢(x)=4x(1—x) on the unit
interval I. It is well known that the n-fold iteration ¢)* can be expressed by

¢"(x)=sin® (2" arcsin v/ x ) .

1t was Prof. Yamaguti who had the inkling to combine ¢" with the Weierstrass
function (1.1). Indeed, we obtain the fine relation

5 1 1 ) . _—
= 3 g'dMx)=—— 2N an 2541 ares V ;
(2.1) Fla, x) Eaa G (x) W—a 2 ;_)_Ua cos ( rcsin v x )
therefore the generating function F(a, x) is nowhere differentiable for 1/2<a
< 1. Similarly, as is easily seen, we have

(2.2) F(a, x)= 2 a"¢"{x)= ,‘__" a2 1x) , for xel;
therefore F(1/2, x) is nowhere differentiable. See Yamaguti and Hata [44].

Note that ¢(x) is chaotic in the sense of Li-Yorke [27]; moreover there
exists a probabilistic invariant measure dx/(z+ x(1—x)), absolutely continuous
with respect to the Lebesgue measure. It is also known that ¢(x) is topologic-
ally conjugate to the piecewise-linear function (x); that is,

Hogix)=¢ o H(x),

where H(x)=sin*zx is a homeomorphism of 1.

The above examples (2.1) and (2.2) raise the following problem: What
kind of function w: I—{ causes the non-differentiability of its generating func-
tion
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(2.3) F(a, x)= 3 a"o"(x)

nzi

with respect to x? Intuitively, the cause will be the sensitive dependence of
initial value for the dynamical system w. For example, consider a family
of quadratic functions ¢,(x)=4x(1—x) with 0<i<<4. Then it will be quite
interesting to consider the smoothness of its generating function according to
the parameter 4. Suppose that there exists a bounded domain D; containing
an open segment (0, 1) such that ¢,(D;)c D,. Then it is easily seen that F(a, z)
is analytic in D, for any |a|<1. For 0<i<3 we may take D, to be the
interior of the Julia set of the rational function ¢,; in particular, for i=2 we
can take D, to be an open disk of radius 1/2 centered at z=1/2. On the other
hand, for i=4 the Julia set of ¢, is a segment [0, 1] and F(a, x) is nowhere
differentiable for 1/2<a<1.

Here we should recall the work of Julia [19]. Actually he studied the
series

J(z)= é} a"R"(z) , lal<1,

where R(z) is a rational function, and obtained some conditions under which
J(e*) has no finite derivative with respect to #; in other words, J(z) has a
natural boundary |z|=1. For example, we get the Weierstrass function if we
take R(z)=z".

We now give some criteria for the smoothness of the generating function
(2.3).

Theorem 2.1 (Differentiability). Suppose that w: I 1 is continuously differ-
entiable and possesses stable periodic points; that is, there exists a point p such
that w'(p)=p and |(0?)'(p)|<1. Then the generating function F(a, x) is con-
tinuously differentiable in the attractive region W corresponding to {p, w(p), ++-,
@' Y(p)} for any fixed |la| < 1.

Proof. Let K be any compact subset of W and put
po=sup {|w(x)]; xEwYK)} for n>1.

Since o"(K) converges to the set {p, w(p), -+-, @ '(p)} as n—oco, we have
lim sup, ... ftusy =+ ptaso<1l. This implies the boundedness of {g, --- g} and
therefore

> laYe”)(x)| < 3 lal"p, »+- p,<co  for any x€K.
nzi nzy

Thus the series differentiated term by term converges uniformly and this com-
pletes the proof. |

Theorem 2.2 (Non-differentiability). Suppose that w: I—I is continuously

Fractals in Mathematics 265

differentiable and possesses a repulsive fixed point p, such that 1= —o’(p,) > 1.
Suppose further that there exisis a homoclinic orbit {p_,<p_y< +++ <py< +++ <
Py <P-s} such that w(p_)=p_,,, for n=1 and p_,—p, as n-—+co. Then, for any
fixed

p=sup 1powei=pel <lal<1,
nel |P-n"P::-1
the generating function Fla, x) has no finite derivative at any point x for which
w™(x)=p, and (0")"(x)+0 for some n=0.

Proof. It suffices to show the non-differentiability at x=p,. We note that
Ap=1, since

Pnis—Po _ Pas—Ps 1 as n—oo,

PP ‘U{P--w-l’”pﬂ “-"{PO}

Suppose, on the contrary, that there exists a finite derivative 4=(d/dx)Fla, p,).
Then, the equality Fla,p , )—aFla,p_,)=P_,_, implies A=(1+ad)"'. On the
other hand, we have

_-J — F(ﬂ»P-:n-l)_F(ﬂvPo)
NE

P w1 Po
=14+a P z.v_f'o+ R PP
P21~ P Paw-1—Po
o a2
=1+ Z 7Ip-u-z;—:—Po+a{P~uf~z;-l_Po)| .
=P 2y 1~ Po

First consider the case a< 0. Then we have 4,>1 since

Porsiaya—Pot Py —pu) >0 .

Hence 4>1, contrary to the assumption A'=1—1la]<1—p 'la|<0. Next,
consider the case a>0. Then we also have 4,>1 since

ajj“?__e--m'_i_:i:.p_" :

P.I—P -2 M 241
Hence 4> 1, contrary to A'=1+4al>1. This completes the proof. )

In general, it is a difficult problem to study the differentiability of (2.3) at
repulsive periodic points. It is an open problem whether there exists a no-
where differentiable generating function for which the dynamical system e is
not onto.
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§3. Substitution Operator S,

The Weierstrass function (1.1) for =2 can also be represented in the form

> arcos (2'zx)= Y a" cos (zy"(x)) .
=0

e

nzi nz

Thus the Weierstrass function and the series (1.3) corresponding to b=2 are
particular cases of the following series:

(3.1 F(a, x)= %a"g(t,-’r“(x)) i

where F(0, x)=g(x) is a smooth function on I. It is easily seen that the
series (3.1) is a unique continuous solution of the functional equation

(3.2) F(a, x)—aF(a, $(x))=g(x) .

To deal with the series (3.1), it will be convenient to introduce a substitu-
tion operator. Let E be a complex Banach space of all complex-valued con-
tinuous functions on / with uniform norm. For a given continuous dynamical
system w: I, we will define the substitution operator S, by

(3.3) S ()x)=f(w(x)) for xel.

As is easily shown, S, is a bounded linear operator of E and its spectrum
a(5,) is contained in the unit disk.

It is known that the substitution operator (3.3) is one of the Bourlet
operators satisfying a multiplication formula (Targonski [41]). Moreover it is
a linear ring endomorphism of our Banach algebra. Note that the eigenvalue
problem for the substitution operator leads to the Schrdder equation f(w(x))=
Af(x).

Using the operator Sy, the series (3.1) can be written as

F(a, x)= %J a*Sy(g)=(Id—aSy)'(g) ,
where the operator (Id—aS,)™' is known as the resolvent operator of S,.
Therefore (Id—aS;)"' maps g,x)=cosax to the Weierstrass function and
g:(x)=x to the series (1.3) for b=2; that is, it maps some snooth functions to
nowhere differentiable functions.

If the operator S, is completely continuous, then a family on functions
{w, @*, ---} must be a compact subset of E. In this respect, we have the
following:

Theorem 3.1 ([44]). Suppose that there exists a sequence {p_},., such that
w(po)=py#p-, and w(p_)=p_,,, for n=1. Then we have o(S,)={z; |z| <1}.

By the above theorem, it is possible for a non-chaotic dynamical system @
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to possess the unit disk as a spectrum of S,. On the other hand, Bonsall [3]
gave an interesting example of S, which is completely continuous in a cone
C and not in any subspace ol E containing C. Let C be a complete positive
cone in E consisting of all increasing and convex functions £ with f(0)=0 and
let a be an element of C satisfying a(1)< 1 and a/.(0) >0. Then the cone map
S, has the desired properties. Note that its partial spectral radius is given by
al(0) and there exists an eigenvector u € C such that S,u=a’ (0.
More generally, we will consider the operator

(3.4) T(g)x)= 2 a.5,'g)= X a,glw"(x)) ,

where ¥ a, is an absolutely convergent series. Plainly T, is a bounded linear
operator with [|7,]l< 3., |a,l. By the well known representation theorem,
there exists a function =(x, y), defined on < J, satisfying

1

T(ghy) :E glx)d=(x, y),
o

where (x, y) is of bounded variation with respect to x for each y and is con-

tinuous with respect to y as x=1. Actually, we can obtain the concrete ex-

pression for t(x, y) as lollows:

x, )= ¥ a,.

On the operator (3.4), we have the following:

Theorem 3.2.  Suppose that @ power series Y, ., a,z" has a radius of conver-
gence > 1 and has no reots in the unit disk. Then the operator T, is a homeo-
morphism of E.

Proof. It is clear that the series X ,., b,2"=(>,.,a,z")"" has a radius of
convergence > | and therefore X b, is absolutely convergent. Then, for any

fEE, define
9= Zb.5.()= L b,f(@(x)) .
Hence,
Tg =X a8 (@=3% Yab, S /)
i ]

x #20 m>0
=2 ¥ a,b,8/(f)=S.

20 nim=1

This implies T(E)=E. Next we assume Y ,.,a,5,"(¢)=0. Then

9= T ab.SMe)= X b5, ¥ a,S5,"9)=0.
1 [l azd

120 nim- "

This implies that T, is one to one. Thus, T, is a homeomorphism of E. []

semgTAIRIEL
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Corollary 3.3. Suppose that a polynomial >¥ ,c.z" has no roots in the unit
disk. Then the operator > Y ¢, 5," is a homeomorphism of E.

Note that the conclusion of the above corollary is equivalent to the fact
that the linear functional equation

cxgla®(x))+ « -+ +eglw(x))+cog(x) =fx)

has a unique solution g€ E for any f€ E.

It is also interesting to consider the higher dimensional substitution
operator in the form

Sal.---.cn(f){xly ity xu}:f{ml(xl)—'— e +wn(xn)) ]

which maps E into the space E, of all continuous functions defined on the
n-dimensional unit cube. In this respect, there is a remarkable result:

Theorem 3.4 (Kolmogorov [22]). There exists a Samily of continuous mono-

tone increasing functions w,,, defined on I, 1<p<n, 1<q<2n+1, such that the
substitution opeartor S* on E*"*' defined by

Intl
S*(fli e '9/!1” 1) = Z:l Sulq,---.m,m(fq}
£
is onto; that is, SYE*"")=E,.
This is known as the representation theorem of continuous functions of n

variables by superposition of continuous functions of one variable and addi-
tion.

§4. Difference equations

In this section, we will discuss various properties of the function in the
form

4.1 flx)= %c,v’-"(x) .

Obviously the Takagi function (1.2) and the series (2.2) are particular cases of
(4.1). First of all, Hata and Yamaguti [14] proved the following theorem
using particular orbits of the dynamical system ¢.

Theorem 4.1. Suppose that the series (4.1) converges everywhere. Then the
series 2> c, is absolutely convergent.

Moreover, they showed that the operator L defined by

Le)= X e.gn(x)€E
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is a linear homeomorphism from the space of absolutely convergent series onto
its image. They also generalized this result to the series (3.4) for m=¢.

Faber [7] showed that the series (4.1) has no finite derivative at any point
if lim sup, ... 2*|e,| > 0. This result was accomplished by Kéno as follows:

Theorem 4.2 (Kono [23]).  The series(4.1) has no finite derivative at any point
if and only if lim sup, ... 2%|c,| >0. Moreover, if limsup, .. 2"c,=0, it is differ-
entiable on a set of continuum.

He also studied further properties on the series (4.1). In particular, he
showed that the family {¢*(x)—1/2},., is a concrete example of a multiplica-
tive system but not strongly multiplicative.

In [14], we showed that a continuously twice-differentiable function in the
form (4.1) must be a quadratic function. This result was also strengthened by
Koéno so that it holds true even in the class of smooth functions in the sense
of Zygmund.

Although there are no simple functional equations the series (4.1) must
fulfill in general, we can obtain a family of difference equations whose unique
continuous solution is the series (4.1). 1t is convenient to denote the set of
lattice points {(n, m); 0<n<2""'—1, m>1} by 2. Then, the desired equations
are

4.2) f(l’;—“—l)—%{f(-zgj)+f(;;_ll)}:r, for all (n, meQ

with boundary conditions f(0)=0 and f(1)=c,. Note that the left hand side
of the above equation is essentially the so-called cenrral difference scheme for f.
Indeed, if we take c,=4"™, m>1, then the equations (4.2) will shift to the
differential equation f”=—2, so that f(x)=c,x+x{1—x).

Modifying the equations (4.2), consider

(4.3) f(2"+ ):{I—aju‘(—i%)+af(ﬂ+l) for all (n, myeQ

2- 2n—l

with boundary conditions f(0)=0 and f(1)=1 where 0<a<1 is a constant.
In [14], we showed that a unique continuous solution of (4.3) satisfies the
following functional equation:

af (2x) for 0<x<

=

(4.4) fix)=

—

(1—a)f(2x—1)+a for %:A’X‘{

This is a particular case of de Rham’s funcrional equations: actually he proved
the following

TEMIITININGE S
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Theorem 4.3 (de Rham [36]). Suppose that F, and F, are contractions in
R". Then the functional equation

F,(f(2x)) for 0<x<
(4.5) flx)= 1
Fi(f(2x-1))  for ~2—£.x:';l

possesses a unique continuous solution if and only if Fy(p,))=F.p,), where p, and
p, are unique fixed points of F, and F, respectively.

Moreover, de Rham showed that the solution L(a, x) of (4.4) is strictly
monotone increasing and its derivative vanishes almost everywhere if « #1/2.
Such functions are known as Lebesgue's singular functions. The solution
L{a, x) was also studied by Lomnicki and Ulam [28] and Salem [38]. It is
known that L(a, x) is the distribution function for the Bernoulli trials of unfair
coin tossings. In [14], we obtained the following expression

an_

(4.6) L{a, x):x+(“_ %) s Elan_m(p}(l_a)ﬂ(plsp)n(x} .

nzl p=0

where m(p)=p—>_.., [p/2"] and

Syax)=2]

1 i

X

2
x z»J

_P+1|_|2x_ Z&F ,
2= 2 )

which is known as the Schauder base of E. From this formula, we can obtain
a fine relation between the Takagi function (1.2) and the solution of (4.4)

a 1
—L[—,x)=2T(x).
2e(d)m
The expression (4.6) is also valid for complex parameter a€{z; |z| <1,
|1 —z|< 1} and actually gives a continuous solution of (4.4). In particular,

@) ' (b)

Figure 2. (a) Lévy curve.
(b) von Koch curve.
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nzbh P=

- am ) s
(4.8) L(; = x) =xd X2y S,,...tx‘;exp[—‘;(rﬂ 2—2m(p))]

is the curve studied by Lévy [26] (Figure 2(a)). Note that the n-th partial
sum of (4.8) gives an approximation broken-line curve.
It is also interesting to consider the following equation instead of (4.4):

\I(I_JF(IZX_) for 0:»’_..1"2—;' s
(4.9) flx)=/

[(1-a)fx=Tj+a  for —;—5x4_<1 .
De Rham pointed out that the solution of (4.9) becomes the von Koch curve f";
for a=1/2+(~/"376)i (Figure 2(b)) and Pélya’s space-filling curve for a=1/2+
i/2. The corresponding difference equations to (4.9) are particular cases of the
following equations: :

dnt-1y . nmo n+1 l-
R(—l,'.:.l')—“—*‘mm('gﬁ)ﬂmﬁ(—zzr) ‘
‘dn+3\ n n+1
R(_ ?i'f-__) h "’"‘R(_z:--')* b _"‘“)R(Eﬁ)

for all (n, m)e £ with conditions R(0)=0, R(1)=1 and R(1/2)=a, where 0<
In<pa<1, m>1 are conslants. Indeed, if we take 4,=|a|* and Un=1—
[l—al?, then the continuous solution of (4.10) also satisfies (4.9). It is easily
seen that the equations (4.10) possess a unique continuous solution if

(4.10)

0< inf2,< sup p,<1. e

nxli n>l 'IJH
The curve R(/) is clearly contained in the triangle with vertices 0, 1 and a.
R(I) becomes a Jordan curve if 2,< . n>1 and becomes a Peano curve if

4=t n=1. Also it is easily verified that 2-dimensional Lebesgue measure
of the curve R(I) is given by

%|1n101"[_!lcl—z,—,f,) )

Thus, for a suitable choice of 4.0 and {x.}), we can get a Jordan curve of
positive area as a unique continuous solution of (4.10).

§5. Self-similar Sets

In this section, we will discuss self-similar sets in Euclidean space R».
The self-similarity is an important notion in Mandelbrot’s book. The Lévy
and von Koch curves illustrated in Figure 2 are typical examples of such self-
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similar sets. It is known that the Lévy curve has a positive 2-dimensional
Lebesgue measure and that the Hausdorff dimension of the von Koch curve
is given by (log 4)/(log 3); therefore both curves are fractal.

To deal with self-similar fractal sets in R?, there are at least two methods
as far as the author knows. One is accredited to Dekking [5] who used
endomorphisms of words in free groups and the other is a method of Hut-
chinson [17] using a set of contractions: the latter is used in this section.

A mapping F: R*—R? is said to be a contraction provided that there exists
a constant A€ (0, 1) for which IF(x)—F(y)]| <Alx—y| for all x, yER". The
least such 2 is called the Lipschitz constant of F and denoted by Lip(F). The
unique fixed point of F is denoted by Fix(F). Then

Definition 5.1 (Hutchinson). A non-void subset X of R is said to be
invariant with respect to a set of m contractions F,, Fy, « -+, F, provided that
X satisfies the equality

(5.1 X=F(X)UF(X)U +-- UFa(X).

This method describing the self-similarity was refound by the author
[12] recently. Although Hutchinson’s motivation probably has its origin in
geometric measure theory, the author studied invariant sets from a general
topological point of view. Some results of Hutchinson were strengthened by

Mattila [32].
For a set of contractions F,, +++, F,,, we can define the mapping

(5.2) O(X)=F(X)UF(X)U -+ UF(X)

for an arbitrary subset X of R*. Obviously the invariant set (5.1) becomes a
fixed point of @. First of all, we have

Theorem 5.2 (Williams [43], Hutchinson [17]). For a set of contractions
F,, +-+, F,,, there exists a unique non-void compact invariant set K. Further, for
an arbitrary non-void compact subset X of R”, @~(X) converges to K in the Haus-

dorff metric as n—co.

The existence and uniqueness of invariant sets were essentially proven by
Williams in 1971 toward a study of generic properties of the action of free
(non-abelian) groups on manifolds. The author extended this result for weak
contractions.

For example, the Cantor set is a unique compact set invariant under two
contractions of R, F,(x)=x/3 and F,(x)=(x+2)/3. The Lévy curve is a unique
compact set invariant under two affine contractions of R, F,(z)=az and F,(z)=
(1—a)z+afora=1/2+i/2. Also the von Koch curve is invariant under Fy(z)=
az and F.(z)=(1—a)z+4a for a=1/24(+/3/6)i. We will illustrate in Figure 3
some other examples of invariant sets for two affine contractions in R*. 1In
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{3+ 41
b (0, ==, 0, =
® {9 70 * 50/-
{o L+i i—1
) s 14\
tC] |. T 0, 2 /=

(d) (0.4614+0.46147, 0, 0, 0.2896—0.585i).

all cases, we define
F(2)=az+f2 and F(oi=yz—1)+dz—1)+1.

The corresponding parameters (a, 8, v, d) are given in the captions of Figure
3 respectively.

Modifying the equation (5.1), the author [13] studied the following in-
homogeneous equation

(5.3) X=@¢(X)UV=F(X)U -« UF.(X)UF,

whlere F is a given compact subset of R*. He proved that there exists a
unique no_n-vmd compact solution X satisfying (5.3). Moreover, he showed
the following analogy to Alternative of Fredholm:

: Theorem 5.3, Suppose that F,, ++-, F, are continuous mappings such that
the set | )., @"(X) is pre-compact for any compact X. Then the following state-
ments (a) and (b) are equivalent;

(a) there exists a unique solution af (5.3) for every compact V;

(b) @ has ¢ unique fixed point.
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On the HausdorfT dimension of invariant sets we have

Theorem 5.4 (Marion [31], Hutchinson [17]). Suppose that each contraction
F,, 1<j<m, is a composition of a dilation, a rotation, a translation and a reflec-
tion. Suppose further that there exists a bounded open set U satisfying (U)cU
and F(U)NF(U)=@ for i+j (The open set condition). Then the s-dimensional
Hausdorff measure of the invariant set K is finite and positive; that is, dim, (K)=s,
where s is defined by Lip(F,)*+ -+ +Lip(F,)=1.

We now turn to the connectedness of invariant sets. First we have

Theorem 5.5 (Williams [43]). Suppose that Lip(F\)+ --- +Lip(F,)<1 and
that each F, is injective. Then K is totally disconnected and perfect.

To study the connectedness of invariant sets, the author [12] introduced
the structure matrix My=(m,,;) of K as follows:

_{l if FAK)NF(K)=0 ,
my= ;
0 otherwise.

Then we have

Theorem 5.6. The invariant set K is connected if and only if its structure
matrix My is irreducible. Moreover, if K is connected, it is also a locally con-
nected continuum and arcwise connected.

If two contractions F, and F, satisfly F,(Fix(F,))=F,(Fix(F})), then we
can get a parameterization of the invariant set K applying de Rham’s Theorem
4.3. In fact, let f(x) be a continuous solution of (4.5). Then,

ftnzf([o, ﬂ) U f([% 1])= F(SI)UF(/) .

Therefore f(I) is a compact invariant set under F, and F,, so that K= f([)
as required. In this respect we have

Theorem 5.7. Let f(x) be a continuous solution of (4.5). Then

(a) if Lip(F,)-Lip(F,) < 1/4, then the Fréchet derivative of f vanishes almost
everywhere;

(b) if each F, is a homeomorphism and Lip(F,™")-Lip(F, ') <4, then [ is
not Frécher differentiable almost everywhere; moreover, if Lip(F,”")<2 for j=
1, 2, then f is nowhere differentiable.

Note that the above result gives a generalization of Lax’s [25] theorem.
With these kinds of parameterizations, we can easily get the well known
classical Peano curves given by Peano [33], Hilbert [15], and Polya [34] using
certain affine contractions of R2.
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(b)
(c)
(d)
(e)
(f)

(2)

(h)

M. HaTta

Lévy curve. This is a unique continuous solution of (4.4) for a=
(1-+i)/2 (5§ 4).

Von Koch curve. This is a unique continuous solution of (4.9) for
a=1/2++ 3i/6 (54).

Unique invariant set for Fy(z)=(0.4614 + 0.4614i)z and F:(z)=(0.622—
0.196i)(z—1)+1 (5§ 5).

Unique invariant set for Fi(z)=(0.3 +0.3i)z and Fiz)=0.82(z—1) +1
(§5).

Unique invariant set for Fi(z)=(0.5+0.5/)z and Fi(z)=(—0.5+0.5i)
(z—1)+1 (§5).

Unique invariant set for Fy(z) =(0.4614 1 0.4614)z and Fi(z)=(0.2896
—0.585i)(z—1) +1 (8 5).

This is a unique solution of (5.3) for Fi(z)=(0.540.6i)z, Fu(z)=(0.5—
0.6i)(z—1)+1 and Vis the closed triangle with vertices Py, Fi(po) and
Fi(po) where po=(1—i)/2.

This is a unique solution of (5.3) for Fi(z) =(0.5 +0.2i)z, Fu(z)=(0.5—
0.2i)(z—1)+1, Fy(z)=(0.6+0.1i)(z—0.5—2i) +0.5 +2i and V is the
union of three segments connecting py with Fipo)fori=1,2,3, where
pa=0.5—-0.2i.



