Práctica 3

(1) Verificar que

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \left(\inf \left\{ \sum_{i} (\operatorname{diam}(U_{i}))^{s}, \right. \right.$$

donde U_i son conjuntos cerrados de diámetro $\langle \delta, \bigcup_i U_i \supseteq F \}$.

- (2) Probar que $\mathcal{H}^0(F)$ coincide con la cantidad de puntos en el conjunto F.
- (3) Sea $f: \mathbb{R}^d \to \mathbb{R}^d$ de clase C^1 . Mostrar que para cualquier subconjunto $F \subseteq \mathbb{R}^d$, $\dim_H(f(F)) \leq \dim_H(F)$. (Sugerencia: considerar primero conjuntos acotados F).
- (4) Sea $f(x) = x^3$ y $F \subset \mathbb{R}$. Mostrar que $\dim_H(f(F)) = \dim_H(F)$.
- (5) ¿Cuál es la dimensión de Hausdorff del conjunto de puntos $x \in [0, 1]$ que en su expansión en base 8 $(0.a_1a_2...)$ satisfacen que existe un entero positivo k tal que $a_i \notin \{0, 2, 3, 4, 6, 7\}$ para todo $i \geq k$?
- (6) Sea $S\subset\mathbb{R}^2$ el círculo unitario con los puntos parametrizados por el ángulo θ que forman con el eje x. Sea

$$F = \{ \theta \in S : 0 \le 3^k \theta \le \pi (\mod 2\pi), k \in \mathbb{N} \}.$$

Hallar $\dim_H(F)$.

- (7) Sea F el subconjunto de los reales de números cuya expansión en base 4 $b_m b_{m-1} \dots b_2 b_1.a_1 a_2 \dots$ tales que ninguno de los dígitos b_i o a_i es 1 o 2 (o sea el Cantor set 1/4 construido para afuera y para adentro). Cuál es la dimensión de Hausdroff de F?
- (8) Mostrar que para todo $0 \le s \le 2$ existe un conjunto totalmente disconexo del plano, de dimensión de Hausdorff igual a s.