
18 LATENT ROOTS OF A CERTAIN CLASS OF MATRICES.

and, by multiplying these two equations together,

But zAA' z' is less than or equal to the greatest latent root of A A', which by
Theorem II is less than or equal to a; hence*

Finally, we mention the corollary:

If A is a square matrix whose rows are normalized (hy = 1) and none of
whose columns possesses more than s non-zero components, then every latent
root of A is less than or equal to -\/s.

The Mathematical Institute,
The University, Edinburgh.

SETS OF FRACTIONAL DIMENSIONS (V): ON DIMENSIONAL
NUMBERS OF SOME CONTINUOUS CURVES

A. S. BESICOVITCH and H. D. URSELL|.

1. We first recall the numerical definition of d-dimensional measure
of a "measurable sef ' J .

Definition. Given a plane set of points E, denote by Cp any set of
circles of radii less than or equal to p, covering all the points of E. Given
0 < d < 2, d-measure of E is defined by the equation

d-mE = ljmS {2r)d,

* Cf. E. T. Browne, Bull. American Math. Soc, 34 (1928), 363-368.
f Received 3 July, 1936, read 14 January, 1937.
J F. Hausdorff, "Dimension und ausseres Mass", Math. Annalen, 79 (1918), 157-179;

A. S. Besicovitch, "On linear sets of fractional dimensions", Math. Annalen, 101 (1929),
161-193; " Sets of fractional dimensions (II)", Math. Annalen, 110 (1934), 321-329;
"Sets of fractional dimensions (III)", Math. Annalen, 110 (1934), 331-335; "Sets of
fractional dimensions (IV)", Journal London Math. Soc, 9 (1934), 126-131.
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SETS OF FRACTIONAL DIMENSIONS (V). 19

where r is the radius of the general circle of Cp and S denotes the summation

extended over all circles of Cp.
To every plane set E corresponds one of the three possibiHties:

(i) There exists a number 0 < d < 2 such that, for any d' > d,
d'—mE = 0, and for any d' < d, d'—mE = oo. Then we say that E is a
^-dimensional set and we call d the dimensional number of E.

(ii) d—mE = oo for any d < 2. Then we say that E is a 2-dimensional
set.

(iii) d—mE = 0 for any d > 0. Then we say that E is a 0-dimensional
set.

2. THEOREM. The dimensional number d of the curve y=f(x), where
f(x) belongs to the Lipschitz S-class (Lip5), satisfies the inequalities

l < d < 2 — S .

Consider the curve for 0 ^ x ^ 1. Suppose first that the coefficient
in the Lipschitz inequality can be taken equal to 1, so that to any x corre-
sponds an interval (x—k, x-{-k) such that, for any x-\-h of this interval,

(1) | | | |

By the Heine-Borel theorem, there exists a finite set

( 0 , fiJ0), (X1 K,x,

of overlapping intervals of the above kind covering the whole of (0, 1).
Denoting by c, an arbitrary point between xi__1 and xl belonging to both of
the intervals

we have

Q<c1<x1<c2<x2< ... < xn_x < cn < 1.

The oscillation off(x) in the interval (<;,•_!, c,-) is less than 21 ct—(;,•_.•,_ |5, and
thus the part of the curve corresponding to the interval (ct_l5 ct) can be
enclosed in a rectangle of height 21 Ct—c^ |5 and of base ci—ci_1, and conse-
quently in [2(c,-—Ci-iy-^ + l squares of side ^—c^ or in the same number
of circles of radius (c,—cl_1)/-y

/2 circumscribed about each of these squares.
c2
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20 A. S. BESICOVITCH and H. D. URSELL

Given an arbitrary p > 0, we can always assume all ^—c^ < p. Denote
by Cp the set of all the above circles and consider

S (2r)2~5.
cP

The sum of the terms corresponding to the interval (c(_l5 c,) is

and thus S (2rf~s < 6S(cE—c,-.!) < 6,
cP

which shows that the (2—8)-dimensional measure of the curve is finite and
hence that the dimensional number of the curve is less than or equal to-
2 - 8 .

If now f(x) satisfies the Lipschitz condition with a variable coefficient

\f(x+h)-f(x)\<C\h\\

and C is not bounded, then, for any € > 0, it satisfies the condition

\f(x+h)-f(x)\<\h\'-

for sufficiently small h, and thus the dimensional number of the curve is
less than or equal to 2—8+e, i.e. less than or equal to 2—8.

This completes the proof.

COROLLARY. The dimensional number of the curve y =f(x), where f(x)
has a finite derivative at all points, is 1.

This follows at once from the fact that f(x) belongs to Lip5 for 8 = 1.

3. A curve of class Lip8 may have any dimension number in the range
1 ^ d ^ 2—8, as we now show by examples. We write </>(x) for the function
equal to 2x in 0 ^ x ^ \ and defined elsewhere by the relations

We consider curves

where an =
 bnS ( 0 < 8 < l ) ,

and we write sv(x) = 2 an<f>(bnx).
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SETS OF FRACTIONAL DIMENSIONS (V). 21

I. / / 6 n + 1 > Bbn, where B>1, thenf(x) is of class Lip8.

Wejhave 0 < f < l , |#'[=2,

and hence ' |^(6n.a:+6ilA)-^(6na;)| < 1, •.. . ~

\</>(bnx+bnh)-cf>(bnx)\^2bnh.

Hence

\f(x+h)-f(x)\^2an\4>(bnx+bnh)-<l>(bnx)\

•• ' < t 2anbnti+ S au

the numbers iTl3 iT2 depending only on 5 and S. Now choose v = v(h) so
that

bv ^ bv+1'

Then we get at once

II. /(a;) is not of any higher Lipschitz class.

For, taking x =[0 and A = 1/26V, we get

and ft here is arbitrarily small.

III. / / l < r f < 2 - S 3 bx>\, bn+1 = b%>, where ^ > ! = ? | = ^ , then

the d-measure of the part of the curve arising from a finite range of x is
finite or zero: and the curve is of dimension less than or equal to d.

As in I we get

|Ay|<Z16;- |A+Za67+i = ^ say.

By dividing the range of x into intervals of length h we are able to cover the
curve with rectangles of width h and height H, and these in turn can be
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22 A. S. BESICOVITCH and H. D. URSELL

covered with squares of side h. Choose h = hv so that

whence hy = b-^'-1+s ^&-a-«>/(<*-D-^0 as v->oo.

The number of squares of side hv required is less than

I being the length of the range of x. For hv < I this is less than

and the corresponding approximation to the cZ-measure is less than

Since ft, is arbitrarily small, this proves the result stated.
Note that it is sufficient to have

1 - 8 2 - d , .

instead of for all n, provided that 6 n o > l . If we now construct an
example in which bn^oo, /xn-?-oo, then we can take d arbitrarily near to 1
in the above argument and hence the curve is of dimension precisely 1.
This will be true, for instance, if

IV. / / l < d < 2 - 8 , 6X>1, bn+1 = bn», where ^ = 1 = ? ? = ^ , then

the d-measure of the curve y =f{x) is greater than zero.

Let <f> be a square of side h with its sides parallel to the axes of
coordinates. The points of the curve y=f(x) which lie in <j> give by
orthogonal projection on the x-axis a set which we denote by E^. We
show that the linear measure of E^ is less than Khd. The desired result
then follows immediately.

The gradient sv'{x) is dominated by its final term ±26J~fi, and the
remainder /— s,, is dominated by its first term when v is large. We suppose
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S E T S OF FRACTIONAL DIMENSIONS (V). 2&

that

ICi(*)l<fci"a. so that \sj(x)\>bl-s,

and 0 </— s, < 2av+1

for all the relevant values of v.
We choose v = v(h), as in I. We have, of course, av > b~x > h: choose

K so that
a>v+K-x > h ^ av+K.

Then Ki.^>^>^v

We distinguish two cases : (i) h ^ &„, (ii) A. < hv.

(i) Suppose first that K = 1 or h > av+1. If (a;, / ) lies in 0, then (x, sv)
lies in a rectangle <f>' obtained by prolonging (j> downwards a distance
2av+1 ^ 2h. The range h of x we divide now into subintervals in which
sj is of constant sign: since h < b~x, there are at most three of them. In any
one of theni the curve y = s,,(x) can lie in <f>' only in an interval of x of length,
at most 3 .̂6^~1. For the height of </>' is at most 3/& and the gradient of the
curve at least 6J~8. Hence

measure of E^ < 9kb8-1 < Qhdh1-dbs-1= 9hd.

If K > 1 we first divide the range h of a; into a t most three par ts in which
s / (a;) is of constant sign. The rectangle </>' is of height h-\- 2av+1 ^ 3ar+1, and
hence in each of these par ts we have only to consider a subinterval of
length a t most Sall+1b

s
v~

1. These we now further subdivide into intervals
in which sl+1(x) is also of constant sign. The number of new intervals
obtained from each of the old is less t han

If K > 2, we repeat the construction, obtaining from each of the intervals
last constructed a set of intervals in wliich s'v+2(x) is also of constant sign,
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24 A. S. BESICOVITCH and H. D. URSELL

in number less than

Finally we get E^ covered by a set of intervals in which s'v+K_1 is of constant
sign. The number of these intervals is less than

3.7*"

In each of them (x, f) lies in «̂  only if (x, sv+K_x) lies in a rectangle <f>^ of
height h-\-2av+K ̂ .Sh, and hence only in an interval of length less than
Shbl+l_x. Thus

measure of E+ < 9 . 7*-1 Tib5'1 < K6h
d.

(ii) In this case av+1 > hv > h, K > 1. If /c = 2, we divide the range h
of x into intervals in which s'+1 is of constant sign. The number of these
is less than

In each such interval {x,f) lies in <f> only if (x, sv+1) lies in a rectangle <j>" of
height h-\-2av+i < 3h, and hence only in an interval of a; of length less than
3^6^}. Thus

measure of E+ < 9h2b&
v+1 < 9hdh2

v~
dbl+1 = 9h<1-

If K > 2, we construct a covering of E^ as in (i) by intervals in which
K+K-i is of constant sign: only the first step in the construction is changed
as above. Thus

measure of E+ < 9 . 7*-2 h2bl+1 < K6h
d.

The curve considered in IV, in which

is of dimension precisely d. We cannot take d = 2—8 in the above work,
since this gives /x = 1 and every term will be the same. However, the same
argument can be used to establish an example of dimension 2—S, as follows.

V. / / the ratio bn+jbn increases to infinity, and if also /*H->1, then the
•curve y—f{%) is of dimension precisely 2—8.

We show that, for any fixed positive a, the linear measure of E^ is less
than /<La/i

2~6-a, indeed is oft2-8-*) as h->0, and hence that the dimension
of the curve is greater than or equal to 2—8—a.
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SETS OF FRACTIONAL DIMENSIONS (V). 25

Write V^/W

and define K as before. It is no longer bounded, but

gives (& + 2 /U • • • / U - i ) - 5 > W .

1—8
K < —K— v+3 < Av when v is large,

-where A depends only on 8. Hence, as in IV, we get

measure of E+ (i) < 9.7^"Jib*-1 if &>/&„,

(ii) < 9.7Al'h2bl+1 if h<hv.

Now ' bv > / J ^ >- X" for any fixed if,

6*a >- 9 . lAv.

ih \ *(i—*—<0
O O d l b O I —J- I W U >, W- .

\ ov I

Hence we get measure of E^ -< h2~8~a,

and it follows that the (2—8—a)-measure of the curve is infinite.
We get an example of this type if we take

Trinity College, Cambridge.

The University, Leeds.

SUMMATION OF SOME INFINITE SERIES OF WEBER'S
PARABOLIC CYLINDER FUNCTIONS

R. S. VARMA.*

The object of this note is to show how an operational image of a parabolic
•cylinder function of negative order can be used to effect the summation of
some infinite series involving the function.

* Received 17 September, 1936 ; read 12 November, 1936.
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