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1. Introduction

1.1. It was proved by Weierstrass* that the function

(1.11) f(x) = E a" cos bn TTX,

where b is an odd integer and

(1.121) 0<a<l,

(1.122) ab>l+^TT,

has no differential coefficient for any value of x.   Weierstrass's result has

been generalized very widely by a number of writers, f who have considered

* Weierstrass, Abhandlungen aus der Functionenkhre, p. 97 (see also P. du Bois-Reymond,

Versuch einer Classification ¿1er willkürlichen Functionen reeller Argumente nach ihren

Änderungen in den kleinsten Intervallen, Journal für Mathematik, vol. 79 (1875),

pp. 21-37).
11 may refer in particular to

Darboux, Mémoire sur les fonctions discontinues, Annales de l'Ecole Normale,

ser. 2, vol. 4 (1875), pp. 57-112 (pp. 107-108), and vol. 8 (1879), pp. 195-202; Faber, Einfaches
Beispiel einer stetigen nirgends differentiirbaren Funktion, Jahresbericht der Deut-

schen Mathematiker Vereinigung, vol. 16 ( 1907), pp. 538-540; Landsberg,

Über Differentiirbarkeit stetiger Funktionen, ibid., vol. 17 (1908), pp. 46-51; Lerch, Über die
Nichtdifferentiirbarkeit gewisser Functionen, Journal für Mathematik, vol. 103

(1888), pp. 126-138;
and to

Bromwich, Infinite Series, pp. 490-491; Dini, Grundlagen, pp. 205 et seq.; Hobson, Functions

of a real variable, pp. 620 el seq.

For a further discussion of certain points concerning Weierstrass's function in particular,

see: Wiener, Geometrische und analytische Untersuchung der Weierstrass'sehen Function,

Journal für Mathematik, vol. 90 (1881), pp. 221-252.
I must confess that I have not been able to arrive at a proper understanding of all the

contents of this paper.
301
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functions of the general forms

(1.131) C (x) = 53 an cos bn x,

(1.132) S (x) = X) an sin bn x,

where the a's and b's are positive, the series J^ a« is convergent, and the b's

increase steadily and with more than a certain rapidity.

A study of the writings to which I have referred, and in particular of the

parts of them which bear directly upon Weierstrass's function, soon shows

that the last word has not yet been said upon the subject. In this paper I

develop a new method for the discussion of this and similar questions, a

method less elementary but considerably more powerful than those adopted

hitherto. It would be easy to apply it in such a manner as to frame very

general conditions for the non-differentiability of the series (1.13). I have

not thought it worth while, however, to do this. The interest of my analysis

lies, I think, in the method itself and in the results which it gives in a few

particularly simple and interesting cases; and its greater power is quite suf-

ficiently illustrated by its application to Weierstrass's classical example.

1.2. The known results concerning Weierstrass's cosine series are, so far

as I am aware, as follows.    Weierstrass gave the condition

3
(1.122) ab>l+^Tr,

and the only direct improvement that I know on this is Bromwich's

(1.21) ab > l+2*-(l -a).

These conditions forbid the existence of a differential coefficient finite or

infinite. For the non-existence of a finite differential coefficient there are

alternative conditions : Dini's

(1.221) ab^l,       a&2>l + 37T2,

Lerch's

(1.222) ab^l,       ab2>l + ir2,

and finally Bromwich's

(1.223) ab^l,       ab2 > 1 -4-1 tt2 ( 1 -a).

All these conditions presuppose that b is an odd integer. But Dini has also

shown that if (1.122) is replaced by

(1.231) ab>l+¡«^-a,
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or (1.221) by

(1.232) ab ^ 1,       ab2 > 1 + Iött2 ~'■£-,
5 — ¿la

then this restriction may be removed.    It is naturally presupposed in (1.231)

that a < \ and in (1.232) that
5

a<Yl.

These conditions are all obviously artificial. It would be difficult to believe

that any of them really correspond to any essential feature of the problem

under discussion. They arise merely in consequence of the limitations of the

methods employed. There is in fact only one condition which suggests itself

naturally and seems obviously relevant, viz:

(1.24) ab^l*

1.3. The chief results which I prove here concerning Weierstrass's function,

and the corresponding function defined by a series of sines, may be sum-

marized as follows.    In none of the results is b restricted to be an integer.

Theorem 1.31. Neither of the functions

C(x) = X)a" cos on ttx,        S(x) = Xa" sin6"7ra;,

where 0<a<l,b>l, possesses a finite differential coefficient at any point

in any case in which

a6&l.

Theorem 1.32. Theorem 1.31 becomes untrue if the word "finite" is omitted.

1.33. If ab > I and so
_ log(l/a)

* ~     log 6     < l '

then each of the functions satisfies the condition

f(x + h) -f(x) -0(1*1«),

for every value of x; but neither of them satisfies

f(x + h) -f(x) =o(|A|<),
for any value of x.

* Hadamard {La série de Taylor et son prolongement analytique, p. 31, f. n.), referring to the

sine-series, remarks: " Cette hypothèse (ab > 1 + Ít) est celle que nécessite le raisonnement

de Weierstrass. En réalité, il suffit que ab > 1" ; but no proof of this assertion has ever

been published, and I understand it as merely the expression of an opinion, the more so

since the wording of the remark is ambiguous. It is not stated whether 6 is merely an integer

(as in Hadamard's text), or an odd integer (as in Weierstrass's discussion of the cosine-series),

nor whether the condition precludes the existence of any differential coefficient or only of a

finite one. If the differential coefficient is not restricted to be finite, the assertion is, as we

shall see later, untrue. If it is so restricted, then it is enough that ah g 1.

Trans. Am. Math. Soc. 90
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In section 2 I prove these theorems on the assumption that b is integral.

In section 3 I extend the results to the general case. In section 4 I give a

simple example of a function, represented by an absolutely convergent Fourier

series, which does not satisfy a " Lipschitz condition " of any order for any

value of a;; I introduce a short digression concerning a theorem of S. Bernstein;

and I discuss the question of the differentiability of the function

/(^) = E!

This function is of interest for historical reasons, as it was supposed not to be

differentiable by Riemann and his pupils.* I prove here that f(x), and

indeed the function derived from f(x) by replacing m2 by n", where a < §,

has no finite differential coefficient for any irrational value of a. This result

lies a good deal deeper than anything else in the paper. The proof which I

give is, as it stands, simple, but it depends on previous results established by

Mr. Littlewood and myself by reasoning of a highly transcendental character.

2. Weierstrass's function when b is an integer

2.1. I shall suppose throughout this section that b is integral, and I shall

write wx = 0, so that Weierstrass's series is a Fourier series in 0. I shall

begin by proving a series of lemmas.

Suppose that G(r, 0) is a harmonic function, the real part of a power-

series
£ an zn = £ an r" eni°

convergent when r < 1.   Suppose further that G(r, 0 ) is continuous for

r Si 1, and that
0(1,0) =¡7(0).

Lemma 2.11.   If
gie)-gie0) =0(10-001"),

where 0 < a < 1, when 0 —» 0O, then

when r -» 1.

It is obvious that we may, without loss of generality, suppose 0O — 0.

We have

(2
1   C" 1 - r2

111) G(r,&)=—\----.-XT-—i,g(u)du,
2TrJ_nl—2rcos(u — 9)-\-r2i>K   '     '

when r < 1.    Differentiating with respect to 0, and then putting 0 = 0O = 0,

we obtain

' See du Bois-Reymond's memoir quoted on p. 301 (p. 28).
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/«,„<« 50     f (1 -r2)  /-sin«   ,   x ,
(2.112) ___L_^J^_í(tt)dtíj

where

(2.113) A = 1 - 2r cosw + r2.

Let

(2.114) g(u)-g(0)=y(u).

Then we can choose 5 so that

(2.115) |y(«)|< «|«|"
f or — S ^ u Si S.    Also

/r. ^ ̂ n      f'sinii   ,   v, f* sin m    .   . ,
(2.116) J    -¿¡-gWdu = J    —jg-y(u)au

-(JOjOjOt*-)*
= Jl + J2 + «^3,

say.    Plainly

(2.117) Jx-Oil),       J3 = 0(1),
when r -> 1.   Also

,„„m   ,_,   „  rswa+1¿M   „  rs w*+1dw

(2.118) |J,|<2«Jb   ~^- = 2eJ9   {(1_r)2 + 4rsin2èM}2

Ma+1dw *     _   f00 Ma+1dw

<32eJ„   {(l-r)2 + rW2}2   <32íJ0    {CTT7

_       (1 - r)a-2 f   wa+1dw

)2 + r«2}2

- r)a~2 T"

r1+*      J„jo   (1+w2)2-

From (2.112), (2.116), (2.117), and (2.118) it follows that

1301
(2.119) ddo

<Ke(l -r)-«->,

where A is a constant, for all values of r near enough to 1 ; and the lemma is

therefore proved.

Lemma 2.12.    If g(0) possesses a finite differential coefficient g' (do) for

6 = do, then
dG       ,,„,

when r -» 1.

This is a known theorem, due to Fatou.f   The principle of the proof does

* Since 1—r>J(l—r) and sin \u^\u.

t Séries trigonométriques et séries de Taylor,  Acta  Mathematica,  vol. 30 (1906),

pp. 335-400.



306 g. h. hardy: [July

not differ essentially from that of Lemma 2.11, and I need hardly repeat it.

Lemma 2.13.    Suppose that f(y) is a real or complex function of the real

variable y, possessing a p-th differential coefficient /(p) ( y ) continuous through-

out the interval 0 < y Si yo.    Suppose further that X i? 0, that

fiy)=o(y-x)
if\>0 and

f(y) =¿+0(1)

if X = 0, and in either case that

fr)(y) =0(y-^).
Then

fq)iy) =o(y~^)
for 0 < q < p.

This is a special case of a result proved by Mr. Littlewood and myself in

1912.*

Lemma 2.14.   If p > 0 and

f(y) = Y,V*<r»»
then

fiy) = 0(y->)
as y —> 0.

For, if we writ»

(2.141) e-y = u,      f(y) = Zanun,

(2.142) a0 + ax+ ■■■ + an = sn,

then
s„ = 1 + b" + b2fi + ■ ■ ■ + b">

(2.143)
= 0(bv") = 0(m")

for
6" Si n < 0-+1.

From (2.141), (2.142), and (2.143) it follows that

f(y) = (l-u)J^snun = 0{(l-u)Tln"un} =0{(1-m)-<>} =0(y~").

Lemma 2.15.   If
sin o" ira: —» 0

as n —» oo , then

V

where p and q are integers; so that sin bn wx = 0 for n =^ q.

* Hardy and Littlewood, Contributions to the arithmetic theory of series, Proceedings

of the London Mathematical Society, ser. 2, vol. 11 (1912), pp. 411-478.
The result required is obtained from Theorems 6 and 8 (I. c, pp. 426-427) by supposing

<i> = <J/ = V~K-
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We have

0    X  =  Kn "T  €n ,

where kn is an integer and e„ -> 0.    It follows that

bkn — kn+i + ben — en+i = 0;

and it is evident that this is only possible if

kn+i  = bkn, €n+l  = 0€„

from a certain value of n onwards, say for n^v.   We have therefore

ty+n — o   e„

and so
b» €„ -* 0

as p. -* «> .    This is only possible if e„ = 0, which proves the lemma.

2.2. The proof of the final lemma is a little more elaborate.    In stating it

I use a notation introduced by Mr. Littlewood and myself:* I write

/ = «(</>)

as signifying the negation off = o(t¡>), that is to say as asserting the existence

of a constant K such that

l/l > Ktb

for some special sequence of values whose limit is that to which the variable

is supposed to tend.

Lemma 2.21.   Suppose that

fiy) = Tlbn"e-'"lv sin bnTrx,

where y > 0, and that

for any integral values of p and q.    Then

f(y) =Q(y~")

for all sufficiently large values of p.

I consider a special sequence of values of y, viz.,

(2.211) y=^ (m-1,2,3,...);

and I write
m—1 »

(2.212) f(y) = E«. = E«n + «n + EMn =/i+/2+/3,
0 m+1

* Hardy and   Littlewood, Some problems  of  diophantine   approximation   (II),   Acta

M a t h e m a t i c a , vol. 37 (1914 ), pp. 193-238 (p. 225).
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say.    We have in the first place

|/i| < &'"p e~'""v[b~p e(-bm-bm'1yj _j_ ¿-2p gC»™-»™-2)* i   ... i

= i»mp e-Pie-pt10«6-^«"»)] _|_ e-p[2iog6-i+(i/»!)] j. ...}

\¿i.¿ii.á\.j

e-Bf

where

(2.2132) £ = log&-1+jj.

Similarly
I/31 < bmf é~bmv{b1' e-fi>",n-"n)y j. ¿2p g-»»41-»»)»  1   ... 1

(2.2141) °    6    {e + e +       }

<6-"e--r—^,t
where

(2.2142) B' = b - 1 - log b.

Now it follows from Lemma 2.15 that sin bm irx does not tend to zero.

There is therefore a positive constant c such that

(2.215) \sinbmirx\> c

for an infinity of values of m, and we shall confine our attention to such values.

We can choose p0 so that

e~B? e~B'?

(2.216) ï31=*p +1-375* <*c

for p>p0.    Using  (2.212),   (2.2131),   (2.2141),   (2.216),  and  (2.215),  we

obtain:

l/l^l/íl-1/ií-l/.l
> bm" e-" ([sin 6"* -n-a;I — \c)

> Kb™ > Ky-f,

where the K's are constants, for p > po and an infinity of values of y tending

to zero.   This completes the proof of the lemma.

* Here we use the inequalities

and

B =log6-l+î>0

mlogb — l+r^;>»lílogb — 1+r).

t Here we use the inequalities

B' = 6 - 1 - log b > 0
and

6" — 1 — m log b > m ( b — 1 — log 6 ).
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2.3. We can now proceed to the proof of our main results.    Let us suppose

first that

(2.311) ab>l,

(2.312) a:*^,

and that

(2.321) f(x) = 2>Bcos6n7ra: = X) <*" cos bn 0 = g (6)

satisfies the condition

(2.3221) f(x + h) -f(x) = o(|A|*)

or, what is the same thing

(2.3222) ¡7(0 +A) -gid) =o([A|«),

where

(2.323, «"^O-

Then, if

(2.33) 0(r, 0) = £>" r6" cos o" 0 = £ a" «~6"1' cos bn rx,

we have, by Lemma 2.11,

F(y) = ^ = - X (d&)" e-6"« sin 6» xa:

(2'34) = - £ o(1_i)n e^"" sin 6" Tra;

= o(y«-i)

when r -» 1, y -> 0.    We have also, by Lemma 2.14,

F^(y) = ( - 1 )** ¿2 (aft**)" e-*"" sin o" Tra;

(2.35) = 0 X fr0*1-0" e-6"«

= 0(yf-^i),

for all positive values of p.    It follows, by Lemma 2.13, that

(2.36) F^(y) =o(yt-«-i)

for 0 < q < p, and therefore for all positive values of q.    But this contra-

dicts Lemma 2.21, if q is sufficiently large.    The conditions (2.322) can there-

fore not be satisfied.

The case in which

(2.37) ab = 1,       $ = 1,

may be treated in the same manner.    The only difference is that we use

Lemma 2.12 instead of Lemma 2.11, and that our final conclusion is that f(x)
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cannot possess a finite differential coefficient for any value of x which is not

of the form p/b9.

2.4. This reasoning fails when x = p/b", and such values of x require special

examination.    We have in this case

cos {bn w(x + A)} = cos (bn~qpir + on irA) = ± cos o" wh

for n > q, the negative sign being taken if 6 and p are both odd and the

positive sign otherwise.    The properties of the function in the neighborhood

of such a value of x are therefore the same, for our present purpose, as those

of the function

(2.41) /(A) = X>"coso"7rA

near A = 0.    Now

/(A) -/(0) = - 2 X «n sin2 è6"7rÂ

= -2(/i+/2),
where

/i = Ê a» sin2 \bnTrh,      f2 = V a" sin2 \bnirh.
0 K + l

Choose v so that

(2.42) 6'|A|sil <6"+1|A|.

Then

/i + /2 >/i > Ça«(6« A)2 = A2^   g¿_1

> Kh2(ab2Y > Ka* > Kb~ir > K\h\*,

where the K's are constants.    It follows that

/<*)-/«>) + o(|*|*).

If ab > 1, | < 1, we have proved that we want. In this case the graph

of / ( A ) has a cusp (pointing upwards) for A = 0, and that of Weierstrass's

function has a cusp for x = p/bq. If on the other hand ab = 1, £ = 1,

then we have proved that

r-f(h)-fiO)                       /(A)-/(O), nhm -1-< 0,        hm -j-> 0,
*-»+» A h^za h

so that /(A) has certainly no finite differential coefficient for A = 0, nor

Weierstrass's function for x — p/bQ.

2.5. We have thus proved Theorems 1.31 and 1.33 in so far as they re-

late to the cosine-series and are of a negative character.

We have next to prove that, when £ < 1, Weierstrass's function satisfies

the condition

/(* + A)-/(a;)=0(|A|i)
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for all values of x.   We have

f(x + h) -f(x) = - 2 X) «" sin {bnw(x + §*)} sin \bnirh

= 0 X a" I sin \bn irh |.

Choose v as in (2.42).   Then

/(* + *) -/(a-) = 0(|A| ¿a« &« + !>)
0 K + l

= 0(o" &"|*| + a")

= 0(a") = 0(|*|*).

The condition is therefore satisfied, and indeed uniformly in x. It should

be observed that our argument fails when ab = 1, £ = 1. In this case we

can only assert that

/(* + *) -f(x) =0(1*1*1+a") = o(|A|log-ir).

It should also be observed that the argument of this paragraph applies to

the sine series as well as to the cosine series, and is independent of the re-

striction that b is an integer.

2.6. The proof of Theorems 1.31 and 1.33 is now complete so far as the

cosine series is concerned.    The corresponding proof for the sine-series differs

only in detail.   The lemmas required are the same except that Lemma 2.15

must be replaced by

Lemma 2.61.   //
cos bn TTX —» 0,

then b must be odd and

_P±±
x -    b«    '

so that cos bnTX = 0 from a certain value of n onwards:

and that corresponding changes must be made in the wording of Lemma 2.21.

If now the value of x is not exceptional (i. e. one of those specified in Lemma

2.61), we can repeat the arguments of 2.3. It is therefore only necessary

to discuss the exceptional values, which can exist only if b is odd. We have

in this case

sin {bnw(x + h)} = sin (bn-«p* + #"-« tt + bn wh)

=   ±SÍn (£&n-î 7T + 6n7TÄ),

for n > q, the sign being fixed as in 2.4. The last function is numerically

equal to cos bn irh; it has always the same sign as cos bn irh, or always the

opposite sign, if b is of the form 4* + 1 ; while if b is of the form 4k + 3 the
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signs agree and differ alternately. The problem is therefore reduced, either

to the discussion of the function (2.41) near * = 0 (a discussion made already),

or to that of
/(*) = £ (- a)n cosbnirh.

We have to prove that

/(A)-/(0) *o(|*|«)

if £ < 1, and that / ( A ) has not a finite differential coefficient for * = 0, if

í = l.   '

I consider the special sequence of values

* = Ä (. = 1,2,3, ...).

We have

/(*) -/(O) = -2'¿(-a)» sin» *&»*■*

Now

-<-l>'2a-.É(-î)%in.£.

í(--i)'-f-?(-i)-f-.
say; and S being the sum of an alternating series of decreasing terms,* is

positive.

Also
a- = &-«' = (¿*)f.

Thus /(*)—/( 0 ) is, for the particular sequence of values in question,

greater in absolute value than a constant multiple of *f, and alternately

positive and negative.   This completes the proof of Theorems 1.31 and 1.33.

* In order to prove this we must show that

and this will certainly be true if

.   ,   X        1    .   ,     X     .
sin1 r_ > - sin» ¡—¡r ;

bn    a       bn+l

f ( 9 ) = sin! 9 - b sin! =-

is positive for 0 < 9 S x/b.   We have

/' ( 9 ) = sin 20 - sin -r- = 2 sin —r— 9 cos   "T    9,

which is positive for

0<e<2WTTy
Since

2(6 + l)> *

if b > 2, this proves what we want, when b _: 3.   When b = 2, we observe that / ( 9 )

decreases from 9 = $irto9 = ix, and that

/(ix) = i-2(-U2 = o.
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2.7. The possibility of the existence of a finite differential coefficient is thus

disposed of in all cases. The question remains whether an equally compre-

hensive result holds for infinite differential coefficients. The theorem which

follows, which includes theorem 1.32, shows that the answer to this question

is negative.

Theorem 2.71.   7/
a&S 1,       a(b + 1) <2

then the sine-series has the differential coefficient + <» for x = 0; and if b is

of the form 4¿ + 1, then the same is true of the cosine series for x = %.

It is enough to prove the first of these statements, the second then fol-

lowing immediately by the transformation x = \ + y.

We have

(2.711) «Mül.^iw

■I   v—1 1      00

= T YL «" sin 6n7rA + t Y. an sin bnwh
A o » »

= /l+/2,

say, where v is chosen so that

(2.712) 6^1*1-i <o*|*|.

Suppose first that ab > 1.   Then

(2.7131) fi > 2 £ ( ab )• = 2 (^r_~1,

(2.7132) \M<W\Pn=Iï^aW\-
Now

so that
a(b + 1) <2,       1 - a > ab - 1;

1 -a
(2.714) aT-[= l + o,

where S > 0.    We can suppose A so small (or v so large) that

(2.715) <4fei>    2 + 5(o6)'        2(1 + 5)*

Then from (2.7131), (2.7132), (2.712), (2.714), and (2.715) it follows that

|/, | (ab)"     ab-1 1

fi   <(aby- 1 1-a <l + è5'

and so that/i + f2 is greater than a constant multiple of /i or of ( ab )".   Thus
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(2.716) m=iiSi++.
n

as * -> 0.

If on the other hand ab = 1, then I/21 remains less than a constant and

/1 > 2v -» + °° ,

so that (2.716) is still true.

When b is given, a number a ( b ) exists which is the least number such that

the condition
ab > a(b)

forbids the existence of a differential coefficient finite or infinite.    All that we

can say about a(b) at present is that

-*--=«(*)*I + fe.

2.8. We have now proved everything that was stated in Section 1, subject

to the restriction that b is an integer.

When b is not an integer, our series are no longer Fourier's series, and we

can no longer employ Poisson's integral (2.111). The first stage in the dis-

cussion is naturally to construct a new formula to replace Poisson's. When

we have done this, we find that some further modifications of the argument

are needed, owing to the lack of any simple result corresponding to Lemmas

2.15 and 2.61, and the difficulty of determining precisely the exceptional

values of x for which sin bn ttx —> 0 or cos bn irx -» 0. It will be found,

however, that no fundamental change in the method is necessary, and that

the additional analysis required is not of an elaborate character.

3. Weierstrass's function when b is not an integer

3.1. I suppose now that b is any number greater than 1; and I write

(3.11) s = <r + it,

(as is usual in the theory of Dirichlet's series), and

(3.121) f(s) = ¿><r6"s = G(o-,t) +iH(o-,t) (^0),
1

(3.122) 0(0, t)=g(t).

3.2. Lemma 3.2.    If a > 0 then

l  C"
G (a, t) = — I      ,  ."V- -~r^, du.

irj-a

<rg(u)

y+(u-t)2

' The first inequality follows from 2.71, the second from (1.21).
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We have, by a well-known formula,*

(3.21) o(ao,¿o)=¿X(log^-0¿log^)^,

where
G = G(o-,t),

r= 4(a - <ro)2 + (t - <o)2,

r' = V(o- + o-o)2+(í-ío)2,

0 is a closed contour which lies entirely in the half-plane a > 0 and includes

the point (o"o, to) in its interior, and dS and dn are elements of the arc of C

and the outward normal to 0.

I take 0 to be the rectangle whose vertices are the points

(Ô,T),       (5,-T),       (ß,-T),       (ß,T)
where

0 < 5 <ß,        T >0,

and I denote the four sides of the rectangle, taken in order from the vertex

(8, T ), by 0i, 02, 03, 04, and the corresponding parts of the integral by

J1 > J11 J» > «M •

Suppose first that 5 -> 0.    The functions 0 and

d r_ _       _o- — Co_o- + o-Q_

~ do-l0g r' - ~ (o- - o-o)2 + (t - U)2 + (tr + <r0)2 + (t - t0)2

are continuous forOsio-SiS, — T ^= t = T.   We have also, when a = S,

.      r ¡(<ro-à)2+(t^to~j2

log7 = logV((ro+ô)2+(i-<o)2=0(5)'

uniformly for - T Si t Si T; and

~ = - |^ = £ (ab)n e-b"° cos 6" < = 0 £ (a6)" e"6"',
an do-

which is of the form
0(a(-1) (0<{<1)

if ab > 1, and of the form

0(logi)

if ab = 1.    From these facts it follows at once that

i r   ^(0
Jl     ^-ttI^S + ÍÍ-Ío)2^'

* See for example Picard, TVaiíá d'analyse, vol. 2, pp. 15, 16.
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and that J2 and Ji tend to limits X2 and -A, the former of these limits, for

example, being given by the formula

wherein t = — T.

Suppose next that T -* » .    Then we have, in -£3,

r-o(i)      ^-    dG   0{1)*
G~0(1)'        dn-~dt~a^     '

log7=0(f2)'     ¿log7=-^log7 = 0(¿)'

uniformly for 0 ^= a ^= ß.    Thus «A -* 0, and  similarly  Xt -» 0.   Also  -A

and J3 obviously tend to limits X and <?<\    The formula (3.21) thus passes

over into

(3.22) G(a0,to) = X+3Í,

where

(3.23) £=l~r ,_r°'(0M.*»
Trj-Ko-o + (t - to)2

<3-M> w-e£(""'?s-G¿1°»?)'B-

the value of a in <3£ being ß.

Finally we make ß -> « .    If we observe that

log^ = o(^2),     ¿log7 = ¿Iog7=0(¿)'

uniformly for a = ß; and that

uniformly in T; we see that 3Î-* 0.    Thus the proof of the lemma is completed.

3.3. Let us suppose first that ab > 1.    In this case we shall use, instead

of Lemma 2.11, the two lemmas which follow.

Lemma 3.31.   If
g(t) -g(to) =o(|í-í0|a),

where 0 < a < 1, when t^to, then

* This must be replaced by

O (1 ) log -

when ab ~ 1.
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when a -» 0.

Lemma 3.32.    Under the same conditions

^'-^ = 0(0-).da

The proofs of these lemmas are very similar, and the first is in all essentials

the same as that of Lemma 2.11. It will therefore be sufficient to give the

proof of the second.

We may take t0 = 0 .*   We have then

r\fï -I      /»oo     j2  _     2

(3.321) l*=-.Lw^)2g{t)dt-

git) -giO) =t(0,
If we write

and observe that

we see that
I'-OO^ + O dt = 0,

50   i r* t2 - o-2
(3.322) -«-j^——^,*.

Choose 5 so that
|7(*)|<e|*|a

for — 5 Si t Si ô*.   Then, if we write

(3.323) i£-Kr+£+fH«+*+«.
we have

(3.324) Ji = 0(l),       Jt = 0(1),
and

(3.325) \J2\<e§
* 1 ¿2 — o-21

-s(<2 + a2)2

/•*   I ¿2 _ ff2 I<€L(V+^|í|a¿<<^a_1'

where ÍC is a constant.   The truth of the lemma follows immediately from

(3.322)-(3.325).
* The point t = 0 has of course a special character for the particular function g ( t ) which

we are considering. This is in no way relevant to the proof of the lemma, which is, like Lemma

2.11, a proposition in the general theory of functions, the truth of which depends only on the

validity of the fundamental integral formula, the facts that g ( t ) is continuous and bounded,

and the special hypothesis of the lemma itself. There is therefore no loss of generality in

supposing that U¡ = 0.
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3.4. Suppose now that

g(t + h) -g(t) =o(|Ä|«).

Then, by Lemmas 3.31 and 3.32, we have

AC
-T? = - 2 (ab)n e-^ sin bn t = o (a*'1)

and

— = - £ (ab)n e-*"' cos bn t = o (o-«"1),
do"

and so
/(») = T,(ab)ne-b^+i» = o^"1).

We can now obtain a contradiction by following the argument of 2.3. It

is only necessary to observe that Lemma 2.13 holds for complex as well as

for real functions of a real variable, and to use, instead of Lemma 2.21, the

proposition: if

/(3/) = E^^+i0 U>0)
then

f(y) =Q(o-')

for all sufficiently large values of p.   Since | e-*"" | = 1, there is no longer any

question of exceptional values of t.

3.5. Now suppose that ab = 1. Instead of Lemma 3.31 we use the fol-

lowing lemma, which corresponds to Lemma 2.12.

Lemma 3.51.    If g(t)  possesses a finite differential coefficient g'(to) for

t = t0, then

ag(«r,<o)
~dT0 9 (M

when a —» 0.

The proof of this presents no fresh difficulty. But it is not necessarily

true that

36(a, to)

do-

tends to a limit. *   It is therefore necessary to follow a line of argument which

differs slightly from that of 3.4.

* The difference arises from the fact that the integral

is convergent, but the integral

divergent.    All that we can prove is that

S=°(log^)'

and this is not sufficient for our argument.
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Lemma 3.52.    Under the same conditions as those of Lemma 8.51, we have

d2G(o-,t0)

Taking t0 — 0, we find

dû

32_0_2 r-*(&-**)

dtl  ~wj_a  (oz + l?)3 9{t)M-

In this equation we can replace g (t) by y (t), since

V(3i2-o-2)

/\J —M   (<r2 + <2)3
dt = 0;

and the proof of the lemma may then be completed by arguments similar to

those used in the proof of Lemma 3.32.*

3.6. Suppose now that g (t) possesses a finite differential coefficient g' (t),

and write

/(»)-?£- -X>-*'9ino»<.

Then, by Lemma 3.51, we have

J» =g'(t)+o(l)

when o- -» 0.    But we have also, by Lemma 2.14:

f" («0 = - E b2n e~h" sin b» t = 0 (¿ Y

and therefore, by Lemma 2.13,

(3.61) /'(<r) = £ 6" e-*" sin 6" t = oßY

On the other hand, by Lemma 3.52, we have

(3.62) a'°
= - ¿2 bn e-** cos b°t = oß)

From (3.61) and (3.62) it follows that

(3.63) F ( o- ) = Y. b" e-^+i,) = o Q Y

Also, by Lemma 2.14, we have

(3.64) F™ (o-) = ( - 1 y £ ¥p+l)n e-^'+«) = 0 f ^ ]

* The critical part of the integral is less than a constant multiple of

£J-8    (o*+í«)»    |i|a'

or than a constant multiple of t/o.

Trans. Am. Matb. Soc. 21
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for ail values of p.   Hence, as in 2.3, it follows that the 0 may be replaced

by o; and this, as before, leads to a contradiction.

3.7. It is only necessary to add the following remarks. Our argument,

throughout this section, has been stated in terms of Weierstrass's cosine

series. The same arguments apply to the sine series, as there are now no

" exceptional values," and it was only the existence of such values which

differentiated the two cases in Section 2. The positive statement in The-

orem 1.33 has already been proved, the proof given in 2.5 applying to all

values of 6. No fresh proof is required of Theorem 1.32. The proofs of the

theorems stated in 1.3 are therefore now complete in all cases.

4. Other functions

4.1. A function which does not satisfy a Lipschitz condition of any order.

It was suggested to me recently by Dr. Marcel Riesz that it would be of

interest to have an example of an absolutely convergent Fourier's series whose

sum does not satisfy any condition of the type

/(* + *)-/(*) =0(|*|-) <«>o)

for any value of x.    The function

, .     . -^ COS If TX
/(aO-L—¡p—

is such a function.   It is in fact easy to prove, by the methods used in this

paper, that

/(. + *> -/(«> + 0(^5^)*.

I should observe, however, that a somewhat less simple example may be

found by merely combining remarks made by Faber and Landsberg in their

papers quoted on p. 301.   Faber writes

(4.11) F{x) = ElO-"0(2"11),

where <f>(x) is the function of period 1 which is equal to x for 0 Su x =i J and

to 1 — x for jëiSl, and he shows that

F(x + h)-F(x)^0(]^m),

Landsberg, on the other band, uses the expansion of a function, substantially

equivalent to <j> (x), in a Fourier's series.    We have in fact

.   .      1      2rr cos 2virx
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If we substitute this expansion in (4.11), we obtain an expansion of .F(a;)

as an absolutely convergent Fourier series, and so an example of the kind

required.

4.2. On a theorem of S. Bernstein. In this connection it is natural to

allude to an important theorem of S. Bernstein, which may be proved very

simply by the use of the ideas of this paper. Bernstein's* theorem is as

follows :

If fix) satisfies a Lipschitz condition of order a, where a > 5, throughout

the interval ( 0, 1 ), i. e. if

\f(x + h)-f(x)\<K\h\°,

where K is an absolute constant, then the Fourier series of f(x) is absolutely-

convergent.   Also 5 is the least number which possesses this property.

Suppose that 2irx = 0 and

fix) = g(0) = ia0 + E(a« cosM0 + bn SÚ1M0);
and let

0 ( r, 0 ) = \ao + E r" (a» cos nQ + bn sin m0 ),

if r < 1, and 0(1, 0) = giO).   Then 0(r, 0) is continuous for 0 Si r si 1,.

OsÍ0SÍ2tt.

It follows from a simple modification of Lemma 2.1 If that

f)C
-Tñ = — E nrn~1(a„ sin n0 - 6„ cos nd) = 0{(1 - r)"-1},

uniformly in 0.    Squaring, and integrating from 0 = 0 to 0 = 27r, we obtain

EM2r2"(|a„|2+|6n|2) = 0(1 -r)2-2.

Hence, by putting r = 1 — (1/V),we obtain

¿M2(k|2 + |M2) = o(?2-2"),
1

and so, by Schwarz's inequality,

(4.21) ¿»(kl + N) = o(v|-a).
1

From (4.21) it is easy to deduce that the series

¿n"(|an| + |6»|)
1

is convergent if ß < a — \.

* Sur la convergence absolue des séries trigonomêtriques, Comptes Rendus, June 8,

1914.
t With 0 in the place of o, and "uniformly" inserted in premises and conclusion.
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This establishes the truth of the first part of Bernstein's Theorem (indeed

rather more). The truth of the second part may be shown by the example

of the function
giO) = 2w_6cos in" + nd),

where 0<a<l,0<6<l.    In this case G(r, 6) is the real part of

Fix) = Fireie) = £ n~h e'»az".

I have shown elsewhere* that this function is continuous for

M=U
if

ia + b > 1:

and it is not difficult to go further and to show that g ( 6 ) satisfies a Lipschitz

condition of order \a + b — 1. t Now let a be any number less than \.

Then we can choose numbers a and b, each less than 1, and such that

\a + b - 1 > a.

The function g ( d ) then satisfies a Lipschitz condition of order greater than a,

but its Fourier series is not absolutely convergent.

4.3. Riemann's non-differentiable function.    It was supposed by Riemannf

* Hardy, A theorem concerning Taylor's series, Quarterly Journal of Mathe-

matics, vol. 44 (1913), pp. 147-160. I take this opportunity of correcting a misprint: on

p. 153,lines 1 and 6, for ( -a)«-»)/« read ( - z )-«-»/•.
t The example shows the importance of the distinction between a Lipschitz condition

satisfied at every point of an interval and one satisfied (uniformly) throughout the interval-

Since / ( z ) is regular save for z = 1, g ( 9 ) satisfies a condition of order 1 for every value

of 9 that is not a multiple of 2x. And it is easy to prove that, at the point 9 = 0, it satisfies

a condition of order

,- M„(l, lt+l=l).

Suppose, e. g., that

a = i,       b = i,       ïa + b-1-l,       ïi±A-jLi = l.

Then the function satisfies a condition of order 1 at every point. But it does not satisfy

throughout the interval ( 0, 2x ) any condition of order greater than i.

This remark was suggested to me by an observation of Dr. Marcel Riesz, viz. that the

functions derived from the expansion of

(1 - z)A6-l/<!-»>

possess similar peculiarities.

X My authority for this statement is du Bois-Reymond, who, in his memoir quoted in

Section 1, remarks (I. c, p. 28): " Ist seit einigen Jahren wohl hauptsächlich in Deutschlands

mathematischen Kreisen von der Möglichkeit von Functionen ohne Differential-quotienten

die Rede, besonders seitdem Riemannsche Schüler verkündeten, ihr Lehrer habe von der

Reihe mit dem gliede (sin p2x)/p2 die Nichtdifferentiirbarkeit behauptet. Diese Reihe

solle für gewisse, in jedem noch so kleinen Intervalle unbegrenzt oft wiederkehrende Werthe

von x keinen endlichen bestimmten Differentialquotienten zulassen. Einen Beweis hierfür

hat unseres Wissens keiner der Riemannschen Schüler zu Papiere gebracht, indessen ist nach
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that the function

/(*) = E; ti
has no finite differential coefficient for any one of an everywhere dense set of

values of x. No proof or disproof of this assertion has, so far as I know, been

published. The question is a much more difficult one than any of those con-

nected with Weierstrass's function, owing to the comparatively slow increase

of the sequence n2. But a combination of the methods used earlier in this

paper with certain results proved elsewhere* by Mr. Littlewood and myself

has led me to a proof of Riemann's assertion and a good deal more.

Suppose that Riemann's function is differentiable f for a certain value of x.

Then, by Lemma 2.12, we have

E f"2 cos M27ra; = .4 + o(l),

where A is a constant, as r —» 1.

But
E r"2 cos m2 TTX = fi{ ( 1 - r)-*}

if x is irrational,Î and

E r"2 cos m2 7ra; = fi {( 1 — r )-1}

if a: is a rational of the form ( 2X + 1 )/2p or 2X/( áp + 1 ). § Thus Riemann's

function is certainly not differentiable for any irrational (and some rational)

values of x. It is easy, by using Lemma 2.11, instead of Lemma 2.12, to show

that Riemann's function cannot satisfy the condition

/(* + *) -/(*) =o(|*|*)
for any irrational x.

We can prove more, viz.,

Theorem 4.31.    Neither of the functions

where a < f, is differentiable for any irrational value of x.

einer Mitteilung des Herrn Weierstrass die Riemannsche Behauptung richtig." I am not clear

as to the meaning of the last remark. It may mean that Weierstrass, in some communication

now lost, had investigated Riemann's function itself. Or it may mean merely that Weier-

strass's example showed that Riemann was right in his general view as to the existence of

continuous non-differentiable functions.

* Hardy and Littlewood, Some problems of diophantine approximation (II), Acta

M a t h e m a t i c a , vol. 37 ( 1914), pp. 193-238.
t In what follows I use "differentiable" as implying the existence of a finite differential

coefficient.

í L. c, p. 233.
§ Ibid., p. 195. This last result is trivial: that concerning irrational values lies much

deeper.
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Suppose, e. g., that the sine-series is differentiable.    Then, by Lemma

2.12, we have
2 n2-* rn* cos n2 ttx = A + o ( 1 ),

or

(4.311) fiy) = £ n2— er»*» cos n2 xa; = ^ + o ( 1 ).

But
/W(î/) = (-1)pZ «2p+2_a e""2* cos n2 ttx

= 0 Y. n2**2-" e-n*» = 0 iy-v-H*).

Hence, by the theorem of Mr. Littlewood and myself quoted on p. 323,*

we have

for 0 < q < p, and in particular

(4.312) fiy) =oiy-1~T*+h.

But it is easy to prove that

(4.313) fiy) = - Y n4~a e-"2" cos n2 ttx = 0(y *   *).f

From (4.312) and (4.313) it follows that

3       a      9     a
+ 2^_2^>4~2'

and this is impossible if a < ( f ) and p is sufficiently large.

It follows from Theorem 4.31 that the series

where 0 < ß < \, are not Fourier's series.    For if the first (e. g.) were a Fourier's

series, then the sum of the integrated series

n2+ß

would be a function of limited total fluctuation, and would therefore be

* Of which Lemma 2.13 is a special case,

t The contrary hypothesis would involve

S e~"2» cos n2 xx = o ( y~K),

where
9 _a     4 -a     1,

X~4     2 2     ~4'

and this is false.
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differentiable almost everywhere.    This result was proved by Mr. Little-

wood and myself, in a different manner, in our paper referred to above.*

I may observe in conclusion that it is easy to prove directly that the func-

tion

/(*) =E!

where 2 < a < ( f ) has the differential coefficient + » for x = 0. A simi-

lar direct method could no doubt be applied to an everywhere dense set of

rational values of x.

* L. c, p. 237.


