Práctica 2

(1) Mostrar que todo número $x \ge 0$ se puede expresar de la forma

$$x = m + \frac{a_2}{2!} + \frac{a_3}{3!} + \dots$$

donde $m \geq 0$ es un entero, y para cada $k=1,2,\ldots,$ $a_k \in \mathbb{Z}$ es tal que $0 \leq a_k \leq k-1$. Sea

$$F = \{x \in \mathbb{R}, x \ge 0 : m = 0 \text{ y } a_k \text{ es par para } k \ge 2\}.$$

Hallar $\dim_H(F)$.

- (2) Sea $f: \mathbb{R}^d \to \mathbb{R}^d$ una función Lipschitz (1). Probar que $\underline{\dim}_B(f(F)) \leq \underline{\dim}_B(F) \quad \text{y} \quad \overline{\dim}_B(f(F)) \leq \overline{\dim}_B(F).$
- (3) Sea F el subconjunto del [0,1] cuya expansión decimal no contiene el dígito 5. Hallar $\dim_B F$ mostrando que esta existe.
- (4) Usar la equivalencia apropiada de la dimensión box, para hallar la dimensión box del triángulo de Sierpinski.
- (5) Hallar unconjunto F para el cual $\underline{\dim}_B(F) < \overline{\dim}_B(F)$. (Sugerencia: Considerar una variación de la construcción del conjunto de Cantor, donde cada intervalo E_{k-1} contiene dos subintervalos de E_k . Permita que estos intervalos son grandes para $k=1,\ldots,k_1$ y pequeños para $k=k_1+1,\ldots,k_2$, grandes para $k=k_2+1,\ldots,k_3$ y pequeños para $k=k_3+1,\ldots,k_4$ y así sucesivamente).
- (6) Hallar subconjuntos F_1 y F_2 de \mathbb{R} , para los que $\underline{\dim}_B(F_1 \cup F_2) > \max\{\underline{\dim}_B(F_1),\underline{\dim}_B(F_2)\}.$
- (7) Cuáles son las dimensiones Hausdorff y Box del conjunto

$$\{0,1,\frac{1}{4},\frac{1}{9},\frac{1}{16},\dots\}$$
?

(8) Hallar dos conjuntos Borelianos disjuntos E y F para los que

$$\mathcal{P}_0^s(E \cup F) \neq \mathcal{P}_0^s(E) + \mathcal{P}_0^s(F).$$

- (9) Cual es la dimensión packing de la curva de von Koch?
- (10) Mostrar que $\dim_P(F) = \overline{\dim}_{MB}(F)$.
- (11) Sea $0 < \lambda < 1$ y sea F el conjunto de Cantor central λ obtenido removiendo en cada paso del intervalo I_j el intervalo central, abierto de longitud λI para todos los intervalos I_j . Sea $\{I_\ell\}_{\ell\in\mathbb{N}}$ la sucesión de los intervalos que se remueven. Mostrar que las dimensiones de Hausdroff, packing y Box coinciden y el valor es aquel s_0 tal que

$$\sum_{\ell=1}^{\infty} (\operatorname{diam} I_{\ell})^{s} \quad \text{converge si} \quad s < s_{0} \quad \text{y diverge cuando} \quad s > s_{0}.$$

1