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MUSIC FROM FRACTAL NOISE

Michael Bulmer
University of Queensland
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Thereare many interestingconnectiondbetweenmusic and mathematicsthough theseare
rarely usedwhenteachingmathsin schools.In this paperwe look at one examplewhich
involves using musical motivationsto introducesomemathematicaideas.The aim is to
develop a random method for making music which produces pleasant results.

INTRODUCTION

Folklore has it that music and mathematicsare somehow related as human skills.
Howeverwhenit comesto teachingmathematicave rarely use examplesfrom music,
preferring more “practical” applicationsfrom physics, engineering,or finance. This is
perhaps a shame since it gives little credit to the artistic side of mathematics.

In this paperwe will look at a shortteachingactivity that introducesa variety of ideas,
such as autocorrelation through the goal of creating pleasantrandom music. While
having an obvious conclusion, this is very much an open-aadé&dreflecting the desire
to encourage an ongoing artistic appreciation of mathematics.

The materials required for this activity are some dice and an instrdiondisteningto the
generated music. Alternatively, a computer can be used to simulate the dice rofiagr to
the music. Someexperiencewith statisticalmeasuresvill be usefulfor the mathematical
aspectsThe activity alsoworks well after a discussionof the more traditional kinds of
fractals.

RANDOM MUSIC

This activity should start with some discussion and brainstorming &lb@umusic could
be createdrandomlyandthe kind of propertiesthat suchmusic should have. There can
alsobe somediscussiorabout how mathsmight help in this task. Below we describe
three methods for creating music. Each is based on some kinggfa randomprocess
in time. Students may well come up with other methods that go beyond these.

White Noise

One of the easiest methods is to generate notes one at a timdiosil@upposewe have
6 dice, so when we roll them together aulttl up the resultswe geta numberbetween6
and 36. For each of these possibilities, assign it a note of some musi¢scaeample,
6 could be theC below middle C, 7 could be the following D, 8 the E, andso on up to
36. This is a standardmajor scale, but you can also use other scalesor modes, as
describedoy Kandell (1984). You can write the result on normal music paper,or just
make a plot of the raw numbers.

If you listen to this music it will sound prethad, almostlike staticthat hasbeenslowed
down. This noiseis termedwhite becausef this. Figure 1 shows a plot of 256 notes
generated by this method.
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Figurel. Time plot of white noise

After you have generated a sequence of pitches, you can also generate a sequence of
durations for you notes using a similar method.

Brown Noise

An obviousproblemwith white noiseis thatthereis no connectionbetweensuccessive
notes. To overcomethis failing, studentsmay suggestmethodsthat result in various

kinds of brown noise This noise getsits hamebecausét correspondgo the random

walks of physicalBrownianmotion. The standardexampleis of a drunk who staggers
randomly back and forth, sometimes moving a bit in one direatioisometimesnoving

a bit in the other direction.

For example, we might start our music at middle C. To make each new nait wdie.
If the die comes up with & thenwe go down two notesfrom wherewe are;if it comes
up 2 we go down one note; for 3 we go up one note; for gong two notes;andfor 5
and 6 we stay wherewe are. Figure 2 gives an exampleof noise generatedby this
method.
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Figure 2. Time plot of brown noise

Again, you can use a similar process to produce lengths of notes. Brown music is less
painful to the ear but is still rather boring.

Pink Noise

White noiseand brown noisecan be seenastwo extremedor randommusic. In white
noisethereis no associatiorbetweensuccessivaoteswhile for brown noisethereis a
very strong associationWhite noiseis dull becauset is too unpredictablebut brown
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noiseis alsodull becausat is too predictable Interestingly,neitheris predictablein the
long run.

Traditional music, on the other hand, seems to achieve a balance betweeextinesees.
A composemight sit down with a vision for a whole piece of music, devise finer
structurefor smallersections,andthenwrite the notesfor eachsection.This gives the
patternover time a long-rangedependenc&hile still involving short-termrandomness.
This constructionis reminiscentof the constructionin the planeof the Koch snowflake,
as describedin Mandelbrot(1982). The first four stepsin making the snowflake are
shownin Figure 3. The result is an object which is self-similar, possessingsimilar
structures as you look closer and closer at it. Such objects, whether thegpaee like
the snowflake, or in time, like musical notes, are cdtactals

S e 5

Figure 3. Creating a Koch snowflake

Neither whitenor brown noisehasthe long-rangedependencer self-similarity required
by “nice” music. We will create a type of noiget lies in betweenthe extremesof white
and brown, sometimesknown as pink noise (or 1/f noise, as describedby Voss and
Clarke (1978)).

To achievetrue pink noiseis actuallyvery difficult, asdescribedoy Mandelbrot(1971).
However, Gardner (1978)escribesa simple method,inventedby RichardVoss, which
approximategink noise and which is easyenoughfor studentsto both carry out and
understandUsing n dice, this methodwill generate2" notes.We will illustrate it here
with 3 dice, labelled A, B, and C. Make a list, as in Table 1, ohtlmebersfrom 0 up to
2"-1 with their binary representationsStart by rolling all three dice and addingup the
results to give the first note (note 0). To generate each subsequetaiotd,the binary
digits that change from roto row in the table. For example whenmoving from note O
to note 1, the C digit changeswhile the A and B digits stay the same.Follow this by
rolling the C die againwhile leavingthe A and B dice as they were. Add up the three
results to give note 1. To get note 2, roll both B artsleaveA alone.Continuedoing
this until all 8 notes have been generated.
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Table 1
Binary method for pink noise
Note A B C
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

It is clear that thisnethodwill give a seriesof notesthat exhibit long-rangedependence.
The higherdigits changelessfrequentlyand so the correspondingdice provide a long-
term stability in the sequenc®f notes.CompareFigure4, showingan exampleof pink
noise created with 8 dice, with the pictures in Figures 1 and 2.
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Figure 4. Time plot of pink noise

DESCRIBING NOISE

So far we havemotivatedand describedhe threecoloursof noisein generalterms. Of

coursewe can also use mathematicgo help explore theseideas more concretely. In

particular, the notion of musical notes being “related” over time is capturedby the
definition of autocorrelation More advancedstudentscanalso usea variancecalculation
to try and determine the fractal dimension of our pink noise.

Autocorrelation

This activity requires an understanding of the standard correlation coefbeiveentwo
variables. This is an easy idea to introduce in isolation and carotbeatedby looking at

real data sets. For example, you could get the class to measure the lengths of tHredr feet
their heights, display the data, and then look at the calculated correlation.

Autocorrelation uses the same calculation, measuring the correlation coeffitietween
valuesin the noisesequenceandthe valuesk time pointsahead.(Write this down as a
usual datasetto conveythe idea.) This numberk is calledthe lag. For example the lag
would have no effect for white noise.



Reproduced from the Proceedings of the Mathematics 2000 Festival, Melbourne, 10 — 13 January 2000

Sincethe two datasetsin autocorrelatiorare actuallythe same,the standardcorrelation
formula can be simplified to the following, as described by Chatfield (1996):

N-k

> (% = X)Xk~ X)

> (=%’

t=1

rk—

To visual the autocorrelatiorstructureof noise, studentscanmakea correlograma plot
of autocorrelatioragainstlag. This realistically requiresa computer;even if students
cannot make the plots themselves there is still much room for discussing the plots.

The correlogramsor white and brown noisesfollow patternsthat are easyto guess.
Studentscanbe encouragedo sketchthe patternthey would expectto seebeforehand.
The white noise correlogram in Figure 5 captures the fact that there reallggsowation
betweenvaluesin the sequencegiving autocorrelationgloseto 0. Figure 6 showsthe

correlogramfor brown noise. The “randomwalk” natureof the noisemeansthat values
close together will be highly correlated. As timereasevalueswanderaway from each
other and correlation declines, ultimately tending to O.
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Figure 5. Correlogramfor white noise
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Figure 6. Correlogram for brown noise

The picture for pink noise in Figure 7 shows what we would like, moderate correlation
over the short term which do not disappear to 0 over the long term.
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Figure 7. Correlogram for pink noise

The patterns in these correlograms are more easily visible when fongef valuesare
generated. (A run of length 1024 works well, requiring 10 dice for the pink noise.)

Variance Plots

The correlograms described above give an intuitive feghtocorrelationstructureof the
differenttypesof noise, requiring only a minimal backgroundin statisticalideaswhen
presentedn conjunctionwith a discussiorof correlation.However, the activity can be
extended if students know the important rule for the effect of sample size \aaritislity
of the average :

Unlike correlation, it is probably unwise to use this activityntooducethis activity since
it turns out not to alwayshold! To seethis, think of the run of valuesas a seriesof
samples of size, for each of which we can calculate the médnatis, for the sequence
X3, Xy ..., Calculate the averag€s+...+x.)/m, (X, +...+X,)/m, ..., andthencalculate
the sample variancef thesenumbers,Var(m). (This is certainly somethingthatis better
suitedto a computer!)Repeathis for a rangeof m values,say 2 to 30, andthen plot a

graph of log(Vanf)) against logt).

If the standardrule held we would expectto seea line of pointswith slopeequalto —1.
Figure 8 shows this plot for the white noise, where the least-squarefine throughthe
points is 1.29- 1.0¢ a slope very close to —1. This is not surprisimgein white noise
there is no associatidretweenadjacentvaluesand so the consecutivesamplegeally are
independent.
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Figure 8. Variance plot for white noise
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The picture for brown noise, shown in Figure 9, is quite different. Here the variability of

the sample average seems to be independent of the sample size! This happens because the
variability of the values in a sample increases as the sample size increases, since the
random walk can cover more ground, and this perfectly cancels with the decrease in
variability from having a larger sample.
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Figure 9. Variance plot for brown noise

The Koch snowflake is made up of a line (an object of dimension 1) which seems to fill
up the plane (dimension 2). Thus it is said to havadaional dimensionsomewhere
between 1 and 2 (in fact it is 1.26). The analogous fractal dimension of a noise is given

by the Hurst parametdt,. If Sis the slope of the line in the variance plot, then H is equal
to 1+3 /2. White noise had = 0.5 while brown noise h&$ = 1.0. As is to be expected,
the parameter is somewhere in between for pink noise. Figure 10 shows the variance plot

for pink noise, giving the least-squares line 1.40 -X0.Z8us the pink noise has a
fractal dimension oH = 0.86.
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Figure 10. Variance plot for pink noise

EXTENSIONS

One of the greatadvantagesn involving an obviously creativeareasuch as music in
mathematicsteachingis that it leads immediately to many extensions.Studentsare
naturally keento come up with improvementson the basic algorithm which make the
resultingmusic more pleasantto the ear. Theseimprovementscould be mathematically
motivated,such as trying to changethe autocorrelationstructure. They could also be
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musically oriented, such as changing the scale used to produce modal music or
introducing a second instrument.

There are also extensions away from the original musical task, looking atimgheeries
to develop an understanding of the kfdpatternsthat might emerge Studentscould be

seta projectof makingsomemeasuremerver time andthen discussingthe behaviour
that they observe.Stock pricestypically give brown noise while anythingto do with

independent observations will give white noise. Mandellzd Wallis (1968) originally

found pink noise when looking at the flooding patteshsivers. Other patternsobserved
may motivatea generaldiscussionof time seriesanalysis,including seasonalariation
and trend.

The study anduseof pink noiseand 1/f phenomenais currently of broad interest.For
example,traffic on the Internetexhibits the long-rangedependencef pink noise that
current models daot properly capture;Jeonget. al (1999) give an overviewof therole
of suchself-similar noise in teletraffic research.Thereis an extensivebibliography of
other 1/f phenomenain suchareasasastronomy.ecology,economicselectronics,and
DNA sequences, on the web at http://linkage.rockefeller.edu/wli/1fnoise.

Technical Notes

The fractal noisaisedin this paperwas generatedy simulatingthe structureddice rolls
in Mathematica. Thigould havebeendoneeasilyin almostany programminglanguage.
To listento the resulting music the numberswere convertedinto a standardMIDI file
using the Perl packageMIDI-Perl by SeanBurke. This was then imported into the
QuickTime Player on the Macintosh and played. The instrumentsoundsavailable in
QuickTime are lovely, but again there are many other simpler t@aysneratenoteson a
computer.
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