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PARTICIPANTS RATED THE PERCEIVED complexity and
melodiousness of fractal (1/f ß) tone sequences with spe-
cific ß values. Plotting the mean complexity and melod-
icity ratings against each other and against ß indicated
that: (1) a melody’s spectral power density slope ( ß) can
be used as an objective measure of its perceived com-
plexity; (2) ß ≈ 1.50 for optimally preferred melodies;
(3) perceived complexity is determined by the distribu-
tion of pitch intervals such that optimally preferred
melodies have a preponderance of small intervals com-
pared to large ones; (4) the poor quadratic fits found in
music-preference studies are due to the use of an inde-
pendent-subjects design or the stimuli not covering the
whole possible range of complexity; (5) ß < 2 for most
music stimuli; and (6) ecologically valid melodies only
exist over the ß range 0.67 to 2.35, with melodies whose
ß values lie outside this range not being perceived as
musical due to their extreme complexity or simplicity.
Finally, converging experimental and neurophysiologi-
cal evidence is discussed that suggests that these results
are a consequence of the auditory system being opti-
mally tuned to the statistical properties of speech.
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I
T HAS BEEN CLAIMED THAT the power spectra of the
pitch and loudness of successive notes in pieces of
music exhibit a 1/f ß spectral density, where ß = 1

(Voss & Clarke, 1975, 1978). Here, the power spectra
exhibit a power-law decrease as a function of frequency
that, when plotted on a log-log graph, is a straight line
with a slope of –ß (see Figure 1). Similar results were
reported for the pitch intervals between the successive
notes of melodies (Hsu & Hsu, 1990, 1991), and these
findings have been widely reported in the literature as

evidence that music is fractal in nature (e.g., Gardner,
1978; Schroeder, 1991). However, Voss & Clarke’s (1975,
1978) studies have been criticised by Nettheim (1992)
on the basis that their data-acquisition method was
flawed, and Hsu & Hsu’s (1991) study has been criticised
by Henderson-Sellers & Cooper (1993) on the basis of
the small range of pitch intervals examined and the
fitting method used.

Furthermore, more recent studies of 1/fß noise in
music that have examined the frequency spectra of
melodies have typically found that 1 < ß < 2. For exam-
ple, Nettheim (1992) found that for melodies by Bach,
Beethoven, Chopin, Mozart, and Schubert, ß ranged
from 1.19 to 1.88 (M = 1.57), and for the isochronous
pitch sequences derived from these melodies, ß ranged
from 0.93 to 1.56 (M = 1.33). Similar results were
found by Yadegari (1992) for the melodies of the prel-
udes and fugues of Bach’s Well-Tempered Clavier, Part
I (M = 1.47), and by Brillinger & Irizarry (1998) for
melodies taken from examples of Baroque, Classi-
cal, Romantic, Spanish guitar, Jazz, and Mambo music
(M = 1.32, and 1.41 when Jazz and Mambo were
excluded from the sample).

The tendency for music to have ß values ≈ 1 has been
explained by Schroeder (1991) using the results of studies
in experimental aesthetics that examined the degree of
arousal induced by visual stimuli. The earliest study in
this area was that of Fechner (as cited in Arnheim,
1985), who systematically manipulated the proportions
of the sides of rectangles and found that the rectangles
most preferred by his participants were ones where the
ratio of the sides accorded with the Golden Section.
From this finding, and his other studies in experimental
aesthetics, Fechner derived his “principle of the aesthetic
middle,” where experimental participants prefer stimuli
that make them neither over- nor under-stimulated, but
instead induce a medium degree of arousal (Arnheim,
1985). A similar conclusion was reached by Birkhoff
(1933) from his studies of aesthetic preference and
complexity, and resulted in his theory of aesthetic value,
which stated that pleasing and interesting works of art
are neither too regular and predictable, nor too irregular

QUANTIFYING AESTHETIC PREFERENCE AND PERCEIVED

COMPLEXITY FOR FRACTAL MELODIES

Music Perception VOLUME 24, ISSUE 3, PP. 247–264, ISSN 0730-7829, ELECTRONIC ISSN 1533-8312 © 2007 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. ALL

RIGHTS RESERVED. PLEASE DIRECT ALL REQUESTS FOR PERMISSION TO PHOTOCOPY OR REPRODUCE ARTICLE CONTENT THROUGH THE UNIVERSITY OF CALIFORNIA PRESS’S

RIGHTS AND PERMISSIONS WEBSITE, HTTP://WWW.UCPRESSJOURNALS.COM/REPRINTINFO.ASP. DOI:10.1525/MP.2007.24.3.247

Preference, Complexity, and Fractal Melodies 247



and unpredictable. Schroeder (1991) used the correlation
characteristics of 1/f ß tone sequences to relate Birk-
hoff ’s (1933) theory of aesthetic value to Voss &
Clarke’s (1975, 1978) findings, and proposed that lis-
teners prefer music where successive notes create a
melody that is moderately predictable and moderately
surprising. That is, when ß = 2, successive notes are highly
correlated, with little note-to-note fluctuation. Hence,
there will be a large proportion of small pitch intervals
in the sequence, leading to a regular, predictable
melody. Conversely, when ß = 0, successive notes are
uncorrelated, with high note-to-note fluctuation.
Hence, there will be a large proportion of large pitch
intervals in the sequence, leading to an irregular,
unpredictable melody. According to Schroeder (1991),
optimally preferred melodies occur when ß = 1, where
successive notes are moderately correlated with a mod-
erate note-to-note fluctuation. Here, there will be a mix-
ture of large and small pitch intervals in the sequence,
leading to a moderately predictable and moderately
surprising melody.

Schroeder’s (1991) association of aesthetic preference
with the ß values of 1/f ß tone sequences bears some
resemblance to Berlyne’s (1971) theory that preference
for aesthetic stimuli follows an inverted-U as a function
of stimulus complexity. Here, stimuli are preferred that
give rise to an optimal level of psychobiological arousal,
rather than those that create very high or very low levels
of arousal, similar to Fechner’s “principle of the aesthetic
middle.” Various studies (e.g., Crozier, 1974; North &
Hargreaves, 1995; Orr & Ohlsson, 2001; Vitz, 1966)
have confirmed Berlyne’s theory for music stimuli,
finding that preference follows an inverted-U (fitted
using a quadratic function) when plotted against com-
plexity, indicating that listeners have a preferred, optimal
level of stimulus variation. However, studies in this area
tend to suffer from two main confounding factors. First,
they often fail to quantify measures of complexity
objectively, as complexity is judged subjectively by the
listener. Second, the stimuli are usually excerpts from
longer pieces of music, and it has been found that the
liking for a piece of music is more associated with the
liking of the music style, than for the piece itself (North
& Hargreaves, 1997).

Schroeder’s (1991) and Berlyne’s (1971) theories,
along with the results of the studies described above,
suggest that aesthetic preference for music stimuli can
be investigated using ß as an objective, quantifiable
measure of stimulus complexity. If this is the case, then
a number of hypotheses can be made concerning the
perception of 1/f ß tone sequences: (1) perceived complexity
should decrease as ß increases; (2) aesthetic preference

(measured by melodicity ratings) should follow an
inverted-U function when plotted against both objective
and perceived complexity (measured by ß and complexity
ratings, respectively); and (3) the ß value for optimally
preferred melodies (henceforth, ßopt) should be between
1 and 2. Some preliminary support for these hypotheses
is given by the findings of two previous studies. The
first, by Schmuckler & Gilden (1993; Experiment 3),
investigated the sensitivity of listeners to the statistical
properties of 1/f ß tone sequences by asking participants
to discriminate between sequences with different ß val-
ues. It was found that discrimination followed an
inverted-U as a function of ß, with the peak discrimina-
tion (i.e., sensitivity) occurring at ß ≈ 2.40. The second,
by Patel & Balaban (2000), measured the amount of
synchronised activity among brain regions in a 0.5-Hz
band centred at 41.5 Hz in response to 1/fß tone
sequences where ß = 0.0, 1.30, or 2.10. The results indi-
cated that the most amount of synchronised activity was
generated when ß = 2.10. The results of these two stud-
ies therefore not only indicate that inverted-U func-
tions are associated with 1/f ß tone sequences, but also
that listeners’ responses to these sequences reach a max-
imum at ß values > 1, as hypothesised above.

To test the hypotheses, two experiments were conducted
where participants were asked to rate the melodicity
and complexity of chromatic, isochronous 1/f ß tone
sequences with specific ß values. Melodicity was used as
a measure of music preference, as Crozier (1974) found
an inverted-U relationship for ratings of melodicity
against perceived complexity. Isochronous tone
sequences were used on the basis of Nettheim’s (1992)
findings concerning the duration-spectra of melodies.
Nettheim, noting that a melody is a combination of a
pitch-sequence and a duration-sequence, examined the
spectra of melodies encoded from Classical music
scores, as well as the spectra of their individual pitch-
and duration-sequences. As mentioned above, he found
that ß ranged from 1.19 to 1.88 (M = 1.57) for the
melodies, and ß ranged from 0.93 to 1.56 (M = 1.33) for
the pitch-sequences. However, for the duration-sequences,
ß ranged from 0.0 to 0.27 (M = 0.19), i.e., the duration-
spectra were effectively flat. Nettheim’s results therefore
indicate that the duration content of a melody makes a
minimal contribution to its spectrum, and that the
pitch content is the dominant factor. Hence, the use of
isochronous sequences will: (1) remove a factor that has
a minimal effect on the spectrum of a melody; (2) result
in melodies with typical 1/f ß spectra; (3) simplify both
the stimuli and the analysis of the results; and
(4) remove rhythm and phrasing as possible confound-
ing factors. In addition, using chromatic sequences also
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avoids confounding factors such as tonality, familiarity,
and music style. Furthermore, an analysis of the results
with respect to the statistical properties of the sequences
may also allow us to determine which characteristic of
melodies determines their perceived complexity.

Experiment 1

Method

PARTICIPANTS

The participants were 18 undergraduate students
(1 male, 17 female, mean age = 19.9 years, SD = 0.8
years), who took part in the experiment in exchange for
course credit.

STIMULUS MATERIALS

Participants were asked to rate 1/f ß tone sequences with
specific ß values (ß = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, or 2.0) with respect to melodicity and complex-
ity. Custom-built software written in Max 3.6.2
(Cycling74) presented the stimuli and recorded the par-
ticipants’ responses. The software contained four sets of
unique predetermined 2,048-tone sequences for each ß
value investigated. Each predetermined tone sequence
was generated in FORTRAN in the following manner.
First, 32,768 points of a time series with a specific ß
value were generated using an inverse-FFT method
(Timmer & König, 1995). These points then were stan-
dardised to have a mean of zero and a standard devia-
tion of one. The standardised sequence (SS) was then
scaled exponentially above and below MIDI-pitch 60
(middle C) to give a chromatic (i.e., atonal) sequence of
MIDI pitches (MP):

if SSi ≥ 0, MPi = int [60 * 2(SSi/4)]

if SSi < 0, MPi = int [60 − (60 * 2−(SSi/4) − 60)]

where int gives the integer part of the argument. To
ensure no periodicities were present in the stimuli, only
the first 2,048 points of MP were used as the predeter-
mined tone sequence (Saupe, 1988). In comparison to
other scaling methods examined by the author, the
exponential scaling used here gave the best results in
terms of preserving the original ß value of the SS
sequence when the predetermined sequences were re-
analysed before use to find their ß values from their
spectral slopes. For all the predetermined sequences
used, ß was originally found to be within ±0.001 of the
desired value. However, when the sequences were 

re-analysed after the experiment, it was found that the
actual ß values were lower than expected. This was due
to a programming error whereby the original ß values
were taken from the power spectra of MP (i.e., the
32,768-point MIDI-pitch sequences), and not the first
2,048 points of MP used as the predetermined tone
sequence. Here, taking subsets of points from larger sets
with specific ß values will result in the aliasing of high
frequencies and, in effect, will add white noise to the
spectra of the original 1/f ß tone sequences (Eke, Her-
man, Kocsis, & Kozak, 2002) resulting in lower ß values
than expected. However, the mean ß values of the prede-
termined sequences were close to the originals (ß = 0.04,
0.20, 0.37, 0.59, 0.79, 0.96, 1.15, 1.35, 1.58, 1.74, and
1.82) and these were noted for later use in the analysis of
the results. These mean ß values, the ±95% confidence
intervals for the ß values, and the mean pitch range (in
semitones) of the predetermined sequences are shown
in Table 1. Figure 1 shows the power spectra of five
2,048-point tone sequences created using the procedure
described above, plotted on log-log graphs, along with
the best linear fits to the data and the 95% confidence
intervals for the ß values derived from the linear fits. Fig-
ure 2 shows the first 64 notes of each of the five
sequences to show the reader how different values of ß
result in different types of melodies. As can be seen, at
low ß values the melodies are angular and unpredictable,
with large intervals between successive notes; at high ß
values the melodies are smooth and predictable, with
small intervals between successive notes.

In the experiment itself, the actual stimuli presented
to the participants were 128-tone MIDI-pitch sequences
(MP128) whose starting points were chosen at random
for each trial from within one of the four predeter-
mined sequences with a designated ß value. In each
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TABLE 1. Mean ß Values, confidence intervals, and pitch
ranges for Experiment 1 predetermined sequences.

Mean ±95% Mean pitch range
Mean ß CI for ß (in semitones)

0.04 0.08 74.50
0.20 0.08 75.75
0.37 0.08 78.50
0.59 0.08 74.25
0.79 0.08 74.25
0.96 0.08 68.75
1.15 0.08 65.75
1.35 0.08 63.50
1.58 0.08 56.75
1.74 0.08 56.50
1.82 0.08 49.00



MP128 sequence, the onset-to-onset time and duration
of the tones were 250 milliseconds, and each tone had a
MIDI velocity of 80. Each MP128 sequence lasted 32 sec-
onds and triggered a Yamaha YS-100 Digital Synthesiser
set to preset 40 “Piano 2” with no reverberation. The

synthesiser’s audio output went into a Yamaha AX-592
amplifier, and the amplifier’s audio output was fed
into a soundproof cabin and was presented dichoti-
cally to participants over Sennheiser HD 520-II head-
phones at 85 dB SPL (measured with a flat-plate
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FIGURE 1. Power spectra of 2,048-point, chromatic isochronous 1/fß pitch sequences. X-axes = log normalized frequency (radians/sample), y-axes =
log power (power/radians/sample). Also shown are the best linear fits to the data (bold lines) and the 95% confidence intervals (CI) for the ß values
derived from the linear fits. For Figure 1a, ß = −0.01, 95% CI = ±0.08; for Figure 1b, ß = 0.49, 95% CI = ±0.08; for Figure 1c, ß = 1.03, 95% CI = ±0.08; for
Figure 1d, ß = 1.5, 95% CI = ±0.08; for Figure 1e, ß = 1.92, 95% CI = ±0.08.
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FIGURE 2. The first 64 notes of the isochronous 1/fß pitch sequences whose spectra are shown in Figure 1, with bars added for ease of reading.
Accidentals remain in force within each bar, unless cancelled. For each sequence, the ß value is shown to the left of the relevant staves.



coupler). At the start of the experiment, and after the
participant made their response, there was a 5-second
silence before the next stimulus was presented.

PROCEDURE

The participants sat in a soundproof cabin wearing
headphones and could see a computer screen through a
built-in glass panel. The screen was connected to a
Power Macintosh 7200/75 and displayed an interface to
the custom-built software. The cabin also contained a
keyboard and a mouse that the participants used to
make their responses.

The software interface for the complexity condition
displayed rating buttons numbered 0 to 10 from left to
right, with 0 labeled “least complex,”5 labeled “mid-way,”
and 10 labeled “most complex.” The interface instructed
the participants to: (1) start a new block and listen to
the tone sequence; (2) rate the complexity of the
sequence; and (3) press the appropriate rating button,
then listen to the next sequence. For the melodicity
condition, the interface was exactly the same, except
that the word “complex” was replaced by “melodic.”

Before each condition, participants read a sheet of
paper containing task instructions for either the
complexity or melodicity conditions. The instructions
for both conditions followed the same format and
informed the participants that: (a) they would hear 11
tone sequences, each sequence lasting for 32 seconds;
(b) their task was to rate how complex or melodic they
thought the sequences were, independent of the level of
complexity or melodiousness in the music they normally
listened to; and (c) they should try to use the full range
of the rating scale. The instructions also defined ‘complex’
as being how easy it was to predict what the sequence
would do next and how many surprises the sequence
contained, and ‘melodic’ as being how melodious, tuneful,
and musical the sequence was. The extremes of the rating
scales also were defined, with 0 being the least complex
(i.e., the most predictable, simple, and uniform) or the
least melodic (i.e., the most unmelodious, tuneless, and
unmusical), and 10 being the most complex (i.e., the
most unpredictable, surprising, and erratic) or the most
melodic (i.e., the most melodious, tuneful, and musical).
Ratings of 5 were defined as being midway between the
two extremes.

For both conditions, participants read the instructions,
completed one practice block, and then 10 blocks with
a short break between blocks 5 and 6. Each block pre-
sented one MP128 sequence for each of the eleven ß val-
ues in random order. Participants completed both the
melodicity and complexity conditions, and the order of

the conditions was counterbalanced across partici-
pants. The experiment took approximately 2.5 hours
to complete.

Results & Discussion

CALCULATION OF ßOPT

Two graphs were plotted of the mean melodicity and
complexity ratings across blocks 1 to 10. The first graph
(Figure 3a) shows melodicity (Mel) plotted against
complexity (Comp). Hypothesis (2) of the Introduction
stated that melodicity should follow an inverted-U
(quadratic) function when plotted against perceived
complexity, and Figure 3a appears to confirm this. The
presence of quadratic trends was verified by fitting
the data with exponential, linear and quadratic func-
tions and noting the adjusted R2 values for each fit.
The best fit to the data (shown in Figure 3a) was given
by a quadratic function (adjusted R2 = .92), thereby
confirming Hypothesis (2).

The second graph (Figure 3b) shows the mean
melodicity and complexity ratings plotted against ß.
Figure 3b indicates that perceived complexity decreases
as ß increases, and that melodicity follows a curvilinear
function against objective complexity (ß) that reaches a
peak at high ß values, thereby confirming Hypotheses
(1) and (2) of the Introduction. However, Figure 3b also
shows clear asymptotes for both the complexity and
melodicity ratings when ß < 0.40 to 0.60. This results in
a linear rise in complexity as ß decreases that reaches an
asymptote at low ß values after a curved crossover
region between the asymptote and the ascending linear
trend, and a peak for melodicity at high ß values that
flattens to an asymptote at low ß values after a curved
crossover region between the asymptote and the curvi-
linear trend. These asymptotes for complexity and
melodicity are also present in Figure 3a, where they
cause a bunching of data points on the right-hand side
of the graph (i.e., for low ß/high-complexity stimuli).

To define the underlying response trends in the data
and quantify the value of ßopt, the complexity and
melodicity responses shown in Figure 3b were fitted
with a collection of functions (exponential, linear,
quadratic, 4-parameter sigmoidal, and 4-parameter
Gaussian), and the best fit was taken to be the one with
the highest adjusted R2 value. To obtain meaningful
parameter values for the sigmoidal and Gaussian fits, a
constrained fitting procedure was used where the upper
and lower asymptotes of the sigmoidal function and the
peak and baseline of the Gaussian function fell between
the highest and lowest possible scores for complexity
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and melodicity (i.e., 0 and 10). It was found that the
best fit to the complexity data was given by the sigmoidal
function (adjusted R2 = .98) and the best fit to the
melodicity data was given by the Gaussian function
(adjusted R2 = .90). Both these fits are shown in Figure
3b. Values for ßopt can be found from the midpoint of
the sigmoidal fit and the peak value (i.e., the highest
melodicity rating) of the Gaussian fit. These occurred at
ß = 1.34 for the sigmoidal fit, and at ß = 1.41 for the
Gaussian fit, giving a mean ßopt of 1.38, thereby confirming
Hypothesis (3) of the Introduction.

The melodicity and complexity ratings shown in Figure
3b also allow us to verify the value of ßopt = 1.38 found
above. First, the complexity value corresponding to the
peak value of the quadratic function shown in Figure 3a
was calculated. This complexity value was then entered
into the formula for the sigmoidal fit to the complexity
ratings in Figure 3b to find the ß value corresponding to
the quadratic-function peak in Figure 3a. This gave a ß
value of 1.40, which not only falls within the ßopt range
found above (ß = 1.34 to 1.41), but is also close to the
mean ßopt value found above (ßopt = 1.38).

INTERVAL DISTRIBUTIONS AND COMPLEXITY

The results reported above suggest that the perceived
complexity of melodies may be due to the distribution
characteristics of the pitch intervals between succes-
sive notes. For example, for a 1/f ß tone sequence where
ß = 0, the equal probability of large and small intervals
occurring results in a large standard deviation of pitch-
interval size (interval-SD) around a mean of zero and, con-
sequently, a high complexity rating. However, as ß
increases, the probability of large intervals occurring
decreases until, when ß = 2, the sequence is composed
mainly of small intervals, leading to a small interval-SD
and a low complexity rating. To confirm the association
of perceived complexity with ß and interval-SD, two-
tailed correlations were carried out between ß, the mean
complexity ratings given by the participants (Comp),
and the mean interval-SDs of the predetermined tone
sequences used in Experiment 1. All correlations were
highly significant. ß was negatively correlated with
interval-SD, r(9) = −1.00, p < .001, and Comp, r(9) =
−.96, p < .001, indicating that both interval-SD and per-
ceived complexity increase as ß decreases. This finding
also is reflected in the positive correlation of interval-
SD with Comp, r(9) = .96, p < .001. These findings
therefore confirm the association of perceived com-
plexity with ß, and support the hypothesis that the dis-
tribution of pitch intervals in a melody determines its
perceived complexity.
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FIGURE 3. (A) Mean melodicity ratings (Mel) plotted against mean
complexity ratings (Comp) from Experiment 1. Also shown is the quad-
ratic best-fit to the data (solid line): Mel = −0.13 Comp2 + 1.03 Comp +
3.72 [R2 = .94, adjusted R2 = .92]. Standard-error bars also are shown
for the values of Comp (N = 18), and Mel (N = 18). b) Mean melodicity
(Mel) and complexity (Comp) ratings from Experiment 1 plotted against
ß. Also shown are the sigmoidal and Gaussian best-fits to the data.
Sigmoidal fit (dotted line) to mean complexity ratings (Comp): Comp =
7.99 + (0.79 − 7.99) / (1 + exp((1.34 − ß) * 3.14)) [R2 = .98, adjusted R2 =
.98]. Gaussian fit (solid line) to mean melodicity ratings (Mel): Mel = 1.93
exp(−0.5((ß − 1.41)/0.55)2) + 3.83 [R2 = .93, adjusted R2 = .90]. Stan-
dard-error bars also are shown for the values of ß (N = 4), Comp (N = 18),
and Mel (N = 18).



Experiment 2

The results of Experiment 1 confirmed the three
hypotheses made in the Introduction, and indicated
that the distribution of pitch intervals determines the
perceived complexity of a melody. However, it could be
argued that these results are flawed due to the stimuli
being created by taking subsets of points from larger
sets with specific ß values. As described above, this
procedure will result in the aliasing of high frequencies
and, in effect, will add white noise to the spectra of the
original 1/f ß tone sequences (Eke et al., 2002). Conse-
quently, the ß values of the subsets used as the stimuli in
Experiment 1 will be lower than expected, and the
actual ßopt will be < 1.38. In addition, experiments
investigating music preference and complexity (e.g.,
North & Hargreaves, 1995; Orr & Ohlsson, 2001) typically
use an independent-subjects design where participants
rate the stimuli only for complexity or preference in
order to eliminate any artifacts in the data arising from
the participants’ own hypotheses about the stimulus
variables. Therefore, to address these issues and con-
firm the findings of Experiment 1, the participants in
Experiment 2 rated individual sequences with specific
ß values for either melodicity or complexity.

Method

PARTICIPANTS

The participants were 86 undergraduate students (20
male, 66 female, mean age = 19.2 years, SD = 3.0 years)
who took part in the experiment in exchange for course
credit.

STIMULI

Participants were asked to rate 1/f ß tone sequences with
specific ß values (ß = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, 2.0, 2.2, or 2.4) with respect to melodicity or
complexity. The tone sequences were generated in
exactly the same manner as in Experiment 1, except that
only the first 128 points of MP were used to create a
predetermined tone sequence with a specific ß value.
When the predetermined sequences were re-analysed to
find their ß values from their spectral slopes, it was
found that the actual ß values were lower than expected.
This effect was probably due to high-frequency aliasing
(as described in Experiment 1 above and Eke et al.,
2002). Therefore, the actual ß value of each sequence
was noted for later use in the analysis of the results.

As in Experiment 1, the stimuli were chromatic 128-tone
MIDI-pitch sequences (MP128) where the onset-to-onset

time and duration of the tones in each MP128 sequence
was 250 milliseconds, and each tone had a MIDI veloc-
ity of 80. Each MP128 sequence lasted 32 seconds and
was unique. The mean ß values, the ±95% confidence
intervals for the ß values, and the mean pitch range (in
semitones) of the MP128 sequences are shown in Table 2.
The MP128 sequences were converted to MIDI files that
then were converted to AIFF files using Virtual Sound
Canvas 3 (Roland) software set to preset 0 “Piano 1”
with no reverberation. The AIFF files of the stimuli were
burnt onto four pairs of CDs, each CD-pair containing
10 examples of the 13 ß values in a different random
order. A Yamaha CDX-390 CD player presented the
stimuli via a Yamaha AX-592 amplifier and B&W book-
shelf loudspeakers placed approximately five feet apart
at 90 dB SPL (measured one foot from the loudspeaker).

PROCEDURE

Participants were tested in groups of three to seven at
a time in a quiet room, seated in an inverted-U
arrangement facing the loudspeakers. This procedure
served to minimise the possibility of distraction
within the group (North & Hargreaves, 1995). Unlike
Experiment 1, participants in each experimental session
were assigned to either the complexity or the melodicity
condition. For both conditions, participants read the
instructions (which were the same as Experiment 1),
completed one practice block (which contained one
example of each of the 13 stimuli), and then listened to
one of the stimulus CD-pairs. Participants rated on
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TABLE 2. Mean ß values, confidence intervals, and pitch
ranges for Experiment 2 128-tone MIDI-Pitch sequences
(MP128).

Mean ±95% CI Mean pitch range
Mean ß for ß (in semitones)

−0.73 0.37 67.92
−0.49 0.36 67.52
−0.26 0.34 70.82
−0.03 0.37 68.35

0.19 0.35 68.00
0.41 0.35 68.10
0.63 0.35 66.82
0.84 0.35 64.82
1.05 0.35 66.37
1.26 0.36 63.02
1.45 0.34 60.52
1.66 0.23 51.52
1.84 0.18 43.55



answer sheets how complex or melodic they thought each
stimulus sequence was. The rating scales were 11-point
scales ranging from 0 (least melodic/complex) to 10
(most melodic/complex), as in Experiment 1. There was
an 8-second gap between sequences for the participants
to make their responses. The use of the stimulus CD-
pairs was counterbalanced across participants, and the
experiment took approximately 1.5 hours to complete.
At the end of the experiment, participants were given a
sheet of paper where they were asked to rate the degree
of attention they paid to the stimuli on an 11-point
scale, where 5 was a point midway between 0 (complete
lack of attention) and 10 (total attention).

Results & Discussion

Calculation of ßopt

Product-moment correlations (Pearson’s r, two-tailed)
were carried out between the stimulus CD-pairs for the
complexity and melodicity ratings to test for any possible
order effects in the stimuli. All correlations between
CD-pairs for the complexity ratings were significant,
r(11) ≥ .90, p < .001. However, for the melodicity ratings,
all correlations between the CD-pairs were significant,
r(11) ≥ .65, p ≤ .02, except for one CD-pair that did not
significantly correlate with any of the other pairs, r(11)
≤ .42, p ≥ .15. Therefore, the data obtained from this
CD-pair were excluded from further analysis and the
complexity and melodicity data were pooled across the
remaining three CD-pairs. In addition, participants
who gave ratings of < 5 for the attention they paid to the
stimuli were excluded from the analysis. The final
results, therefore, were obtained from 25 participants
for the complexity condition, and 23 participants for
the melodicity condition.

A preliminary investigation of the participants’responses
using cluster analysis (Ward’s method, squared Euclidean
distance) indicated the presence of two distinct partici-
pant groups in both the complexity and melodicity
conditions. One group in the complexity condition
(CG2) exhibited a monotonic decline in complexity
ratings with increasing ß, and one group in the melod-
icity condition (MG2) exhibited a curvilinear function
for melodicity ratings that reached a peak at high ß values.
For both these groups, there were clear asymptotes for
the complexity and melodicity ratings when ß < 0.40 to
0.60, and both patterns of responses agreed with those
found in Experiment 1 for complexity and melodicity—
(see Figure 4b). However, the other participant groups
in each condition gave uniform ratings over the whole

range of ß values investigated, resulting in linear
response patterns for the complexity (CG1) and the
melodicity (MG1) conditions (see Figure 4b). The
presence of these CG1 and MG1 groups may be due to
the chromatic/atonal nature of the stimuli employed
in the experiment. For example, the CG1 participants
may have confused atonality with complexity and,
consequently, rated all the stimuli as being equally com-
plex, leading to uniformly high complexity ratings over
the whole range of ß values. Similarly, the MG1 partici-
pants may have confused atonality with unmelodious-
ness and rated all the stimuli as being equally
unmelodic, leading to uniformly low melodicity ratings
over the whole range of ß values. Alternatively, the pres-
ence of the CG1 and MG1 groups may be due to the
range of ß values used in Experiment 2. In Experiment
1, ß ranged from 0.04 to 1.82. However, in Experiment
2, ß ranged from −0.73 to 1.84. This suggests that the
predominance of stimuli with low ß values in Experi-
ment 2 (i.e., high-complexity/low-melodicity stimuli)
may have biased some participants towards giving high
complexity and low melodicity ratings across the
whole ß range. Further examination of the participant
groups also revealed the following gender differences:
for CG1, N = 8 (2 male, 6 female), for CG2, N = 17
(4 male, 13 female), for MG1, N = 11 (5 male, 6 female),
and for MG2, N = 12 (0 male, 12 female). This initially
would appear to suggest a gender difference in the per-
ception of melodicity in 1/f ß tone sequences. However,
this is unlikely to be the case for three reasons. Firstly, a
Kruskal-Wallis one-way ANOVA performed on the
four cluster groups resulted in χ2(3) = 6.61 and p = .08
for gender, indicating no significant gender differences
between cluster groups. Secondly, a cluster analysis
(Ward’s method, squared Euclidean distance) of the
participants’ combined complexity and melodicity
responses for Experiment 1 showed no obvious partic-
ipant groups. Finally, the responses of the sole male
participant in Experiment 1 followed exactly the same
trends as the female participants for complexity and
melodicity. These results therefore suggest that confu-
sion or response bias was responsible for the CG1 and
MG1 responses, and that the greater number of males
in MG1 occurred simply by chance and seemed to
appear significant because of the relatively small sample
size. However, regardless of the reasons for the presence
of the CG1 and MG1 groups, their data clearly were not
applicable, and were excluded from further analysis.

These participant groups being excluded, the same
procedure was used as in Experiment 1 to analyse the
data. Two graphs were plotted of the mean complexity
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and melodicity ratings for all participant groups over
the range ß = −0.03 to 1.84. The data points for ß < −0.03
were excluded to enable the best comparison with the
results of Experiment 1, and also because no additional
information was given by these data points as the
asymptotes resulted in level traces for complexity and
melodicity below this point. The first graph (Figure 4a)
shows the melodicity responses plotted against the
complexity responses and indicates that, for CG2 and
MG2, melodicity follows a quadratic trend against
complexity, as found in Experiment 1 (see Figure 3a).
The quadratic trend was verified by fitting the data with
exponential, linear, and quadratic functions, and noting
the adjusted R2 values for each fit. The best fit to the
data was given by a quadratic function (adjusted R2 =
.94), confirming the quadratic trend for melodicity
against complexity found in Experiment 1.

The second graph (Figure 4b) shows the mean
complexity and melodicity ratings for all participant
groups plotted against ß. Figure 4b clearly shows that
the responses of the CG1 and the MG1 groups are
uniform over the whole ß range, and that the CG2
and MG2 groups exhibit the same trends for com-
plexity and melodicity shown by the participants in
Experiment 1. However, the overall rating range is
smaller compared to Experiment 1, and this is proba-
bly due to the differences between Experiments 1 and 2.
In Experiment 1, each participant was tested alone in
a soundproof cabin and rated the stimuli for com-
plexity and melodicity. In Experiment 2, each partici-
pant was tested in a group in a quiet room and rated
the stimuli for complexity or melodicity. Conse-
quently, participants in Experiment 1, who would
have had more exposure to the full range of stimulus
complexity and melodicity compared to the partici-
pants in Experiment 2, might have been better able to
discriminate between the different 1/f ß sequences for
the second condition they completed. As the com-
plexity and melodicity conditions in Experiment 1
were counterbalanced across participants, this may
have resulted in the wider rating range found in
Experiment 1.

Next, to define the underlying response trends in the
data and quantify the value of ßopt, the complexity and
melodicity responses were fitted with the same collec-
tion of functions used in Experiment 1, using the same
constrained fitting procedure for the sigmoidal and
Gaussian fits, and the best fit was taken to be the one
with the highest adjusted R2 value. The best fit to the
CG2 data was given by the sigmoidal function
(adjusted R2 = .96), and the best fit to the MG2 data

was given by the Gaussian function (adjusted R2 = .90).
Both these fits are shown in Figure 4b. As in Experi-
ment 1, values for ßopt can be found from the midpoint
of the sigmoidal fit and the peak value of the Gaussian
fit. These occurred at ß = 1.68 for the sigmoidal fit, and
at ß = 1.60 for the Gaussian fit, giving a mean ßopt of
1.64 for Experiment 2. This ßopt value is fairly close to
the mean ßopt of 1.38 found in Experiment 1, and sug-
gests that the same perceptual effects were being meas-
ured by both experiments.

As in Experiment 1, the melodicity and complexity
ratings shown in Figure 4b allow us to verify the values
of ßopt found above. First, the complexity value corre-
sponding to the peak value of the quadratic function in
Figure 4a was calculated. This complexity value was
then entered into the formula for the sigmoidal fit to
the complexity ratings in Figure 4b to find the ß value
corresponding to the quadratic-function peak in Figure 4a.
This gave a ß value of 1.62, which not only falls within
the ßopt range found above (ß = 1.60 to 1.68), but also is
close to the mean ßopt value of 1.64 found above. Fur-
thermore, as the mean ßopt found in Experiment 1 was
1.38, the mean ßopt of 1.64 found in Experiment 2 sug-
gests an overall value of ßopt ≈1.50, a value that agrees
well with the mean ß values found by Nettheim
(1992) for classical melodies (1.57), by Yadegari
(1992) for the prelude and fugue melodies of Bach’s
Well-Tempered Clavier Part I (1.47), and by Brillinger
& Irizarry (1998) for melodies taken from examples
of Baroque, Classical, Romantic, and Spanish guitar
music (1.41).

INTERVAL DISTRIBUTIONS AND COMPLEXITY

To confirm the association between perceived com-
plexity (Comp), ß, and interval-SD found in Experi-
ment 1, two-tailed correlations were carried out
between the ß values, the complexity ratings given by
CG2, and the mean interval-SDs of the tone sequences
used in Experiment 2. All data points, including those
for ß < −0.03, were used in this analysis, as the asymp-
totes described above may have been associated with
interval-SD. All correlations were highly significant,
and the results paralleled those of Experiment 1. That
is, ß was negatively correlated with interval-SD, r(11) =
−.98, p < .001, and Comp, r(11) = −.79, p = .001, indi-
cating that both interval-SD and perceived complexity
increase as ß decreases. Interval-SD was also positively
correlated with Comp, r(11) = .89, p < .001. These
results, along with the similar values found for ßopt,
therefore confirm the findings of Experiment 1 and the
hypotheses made in the Introduction.
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Quadratic Fitting and Ecological Validity

A number of studies that have investigated music pref-
erence as a function of complexity have found that,
although the best fits to the data are given by quadratic
functions, the fits typically are sparse on the low-
complexity side of the functions (North & Hargreaves,
1995; Orr & Ohlsson, 2001). The same effect was found
in this study when the melodicity ratings were plotted
against the corresponding complexity ratings (see
Figures 3a and 4a). Here, the best fits to the data from
Experiments 1 and 2 were quadratic functions (R2 = .94
and .95, respectively) with sparse fits on the low-com-
plexity (i.e., high ß) side of the functions. The association
of these sparse-fit areas with high ß values suggests that
this effect has occurred in previous studies because of
two factors associated with the design considerations of
the experiments.

The first factor is the nature of the inverted-U func-
tion of aesthetic preference against complexity. Accord-
ing to Berlyne (1971), the inverted-U function arises as
the result of the combined action of two biological sys-
tems that exhibit opposing sigmoidal trends with
respect to affect as stimulus complexity (or arousal)
increases. The first, a reward/pleasure system, generates
a positive affect; the second, an aversion/displeasure
system, generates a negative affect. The activation of
both systems increases with stimulus complexity, such
that affective asymptotes are reached at high levels of
complexity. Here, the combination (or sum) of the
two opposing sigmoidal reward and aversion func-
tions results in a curvilinear, inverted-U function that
determines the hedonic value of the stimuli, with par-
ticipants preferring stimuli of medium complexity
where the hedonic value is maximal. However, the
results of Experiments 1 and 2 suggest that the
inverted-U function can instead be considered as
being due to the interaction between sigmoidal and
Gaussian functions for complexity and melodicity/
preference. This interaction, and the nonlinear nature
of the sigmoidal and Gaussian functions, suggests a
possible explanation for the sparse-fit areas, which can
be illustrated in the following manner. First, the sig-
moidal and Gaussian fits to the complexity and
melodicity data in Experiments 1 and 2 are used to
create complexity-melodicity (CompMel) functions
equivalent to the trends underlying the participant
responses shown in Figures 3a and 4a. That is, the
Gaussian fits to the participants’ mean melodicity rat-
ings (Mel) are plotted against the sigmoidal fits to the
participants’ mean complexity ratings (Comp) for
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FIGURE 4. (A) Mean melodicity ratings (Mel) plotted against mean
complexity ratings (Comp) from Experiment 2 for participant groups
CG1 and MG1, and CG2 and MG2. Also shown is the quadratic best-fit to
the data for CG2 and MG2 (solid line): Mel = −0.22 Comp2 + 1.61 Comp +
3.46 [R2 = .95, adjusted R2 = .94]. Standard-error bars also are shown
for the values of Comp (N = 17), and Mel (N = 12). b) Mean melodicity
(Mel) and complexity (Comp) ratings from Experiment 2 plotted against
ß for participant groups CG1, CG2, MG1, and MG2. Also shown are the
sigmoidal and Gaussian best-fits to the data for CG2 and MG2. Sig-
moidal fit (dotted line) to mean complexity ratings (Comp): Comp = 6.42 +
(0 − 6.42) / (1 + exp((1.68 − ß) * 4.2)) [R2 = .97, adjusted R2 = .96]. Gauss-
ian fit (solid line) to mean melodicity ratings (Mel): Mel = 1.54 exp(−
0.5((ß − 1.6)/0.45)2) + 4.69 [R2 = .94, adjusted R2 = .90]. Standard-error
bars also are shown for the values of ß (N = 30), Comp (N = 17), and Mel
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both experiments over the range 0 ≥ ß ≥ 3. To simulate
the participants’ responses to the stimuli, the Comp
values from each experiment are used to derive the
equivalent melodicity values (Mel-d) from the Comp-
Mel functions. For each experiment, Mel and Mel-d
are then plotted against Comp, along with the Comp-
Mel functions themselves (see Figure 5), and the
CompMel functions and Mel-d fitted with quadratics.
For Experiment 1, the CompMel function and Mel-d
are well fitted (R2 = .98 and 1, respectively; see Figure 5a).
However, for Experiment 2, the fits to the CompMel
function and Mel-d are less good (R2 = .95 and .97,
respectively; see Figure 5b). The reason for this can be
seen in Figure 5, which shows that the CompMel func-
tion and the Mel-d values for Experiment 2 follow a
distorted quadratic trend that results in a worse quad-
ratic fit and a sparser fit to low-complexity data com-
pared to Experiment 1. The closer similarity of the
results of Experiment 2 to those of North & Harg-
reaves (1995) and Orr & Ohlsson (2001) suggests that
the sparse fits to low-complexity data are due to the
independent-subjects design employed by all three
studies. This conclusion is supported by the results for
Experiment 1 (shown in Figure 5a), that show a more
symmetrical and quadratic CompMel function, a less
sparse fit to low-complexity data, and a larger
response range compared to Experiment 2. These
results also suggest that: (1) although inverted-U
functions for preference against complexity are well
approximated by quadratics, caution should be exer-
cised when analysing/fitting the data gathered using
an independent-subjects design; and (2) where possi-
ble, aesthetic-preference experiments should use a
procedure and stimuli similar to Experiment 1 to
obtain clearer response trends.

The second factor associated with the design consid-
erations of previous studies that may account for the
sparse-fit areas is the ecological validity of the stimuli.
For the stimuli in music-preference studies to have eco-
logical validity (i.e., be musical), the stimuli cannot fall
over the whole possible range of complexity. This
occurs because most music stimuli exhibit some degree
of change, and simpler stimuli might not be perceived
as music as such by listeners. Therefore, extremely
simple stimuli such as the monotonous repeated-note
sequences one obtains when ß > 2 have been excluded
from previous studies for being “unmusical.” This is
supported by Orr & Ohlsson’s (2001) statement regard-
ing the musicians who created the stimuli used in their
study: “. . . when instructed to produce something very
simple, they nevertheless played music. They did not,
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for example, play the same tone over and over again”
(p. 123). As the sparse-fitting effect for low-complexity
also occurs for music stimuli that are excerpts from pre-
existing pieces (North & Hargreaves, 1995), the replica-
tion of this effect using the data from Experiments 1
and 2 therefore: 1) supports Orr & Ohlsson’s (2001)
suggestion that “the lower bound on complex-
ity . . . might reflect the nature of music rather than a
methodological difficulty” (p. 124); and 2) indicates
that ß < 2 for most music stimuli.

Our replication of the sparse quadratic fits found by
North & Hargreaves (1995) and Orr & Ohlsson (2001)
also suggests that the same data might allow us to esti-
mate the range of ß values over which ecologically
valid melodies exist. Here, the bounds of the ecologi-
cally valid ß range define the upper and lower limits of
melodic complexity, beyond which melodies are not
perceived as being musical due to their extreme com-
plexity or simplicity. These bounds can be estimated
by examining the asymptotes of the sigmoidal and
Gaussian fits to the data at extreme ß values. That is,
the upper and lower bounds for ecologically valid
melodies are indicated by: (1) the asymptotes of the
sigmoidal fits to the complexity data; and (2) the
decline of the Gaussian fits to the melodicity data to a
baseline. To assess the ecologically valid range for
melodies, the criteria for the upper and lower bounds
were taken to be the ß values where each of the sig-
moidal fits to the complexity data reached 10% and
90% of their full range (i.e., upper-lower asymptote)
and each of the Gaussian fits to the complexity data
reached 10% of their full range (i.e., peak-baseline).
For Experiment 1, these points occurred at ß = 0.64
and 2.04 for complexity (Comp) and ß = 0.24 and 2.58
for melodicity (Mel), resulting in mean ß values of
0.44 for the lower bound and 2.31 for the upper
bound. For Experiment 2, these points occurred at ß =
1.16 and 2.20 for CG2 and ß = 0.63 and 2.57 for MG2,
resulting in mean ß values of 0.89 for the lower bound
and 2.39 for the upper bound. The mean upper and
lower bound values taken from these results therefore
indicate an ecologically valid ß range of 0.67 to 2.35 to
accompany the overall ßopt of ≈1.50 found above. Sup-
port for the validity of this ecologically valid ß range
is given by: (1) its convergence with the lowest and
highest ß values (0.73 and 1.90, respectively) for the
melodies investigated by Brillinger & Irizarry (1998)
and Yadegari (1992); and (2) its midpoint, which
occurs at ß = 1.51, a value very close to the overall ßopt

of ≈1.50 derived from the results of Experiments 1
and 2.

Interval Distributions and Melodies

The results of Experiments 1 and 2 indicated that the
distribution of pitch intervals in a melody determines
its perceived complexity. For the overall ßopt of ≈1.50,
the interval-SD associated with this ß value will result in
melodies with a preponderance of small pitch intervals
compared to large ones, a characteristic that applies to
melodies from a wide variety of cultures (Huron, 2001;
von Hippel, 2000; Vos & Troost, 1989). For example,
von Hippel (2000, Figures 1 and 4) plotted the percent-
age occurrence of pitch intervals against absolute inter-
val size in semitones for samples of melodies taken from
Schubert lieder and folk-song collections (Chinese,
European, Ojibway [Native American], and South
African), and found that interval occurrence decreased
as a function of absolute interval size. The same pattern
of results also were found by Vos & Troost (1989, Figure 2)
for samples of melodies written by composers (Bach,
Bartok, Beethoven, Brahms, Chopin, Debussy, Dvorak,
Mozart, Schubert, Schumann, Shostakovich, J. Strauss,
and Stravinsky) and “ethnomusic” (Albanian, Bulgarian,
Iberian, Irish, Macedonian, Norwegian, Sicilian, and
American Negro folk songs).

As described previously, 1/f ß tone sequences have
specific pitch-interval distributions that vary as a func-
tion of ß. This suggests that, if the overall ßopt of ≈1.50
found from Experiments 1 and 2 is valid, von Hippel’s
(2000) and Vos & Troost’s (1989) interval data should
correlate highest with the interval data from 1/f ß tone
sequences with this ß value. This hypothesis can be con-
firmed in the following manner. First, the sets of four
2,048-point predetermined sequences used in Experi-
ment 1 to generate 1/f ß tone sequences with specific ß
values were examined, and the mean percentage occur-
rence of each absolute interval size over each set of four
sequences was calculated for ß = 0.04, 0.20, 0.37, 0.59,
0.79, 0.96, 1.15, 1.35, 1.58, 1.74, and 1.82. These
sequences were chosen for analysis as: (1) the mean ßopt

value found in Experiment 1 (1.38) is close to the over-
all ßopt of ≈1.50 found from Experiments 1 and 2; and
(2) the large number of points (4 × 2,048) will give an
accurate reflection of the interval distributions associ-
ated with each ß value. The interval data from the 1/f ß

tone sequences were then correlated (two-tailed) with
von Hippel’s (2000) and Vos & Troost’s (1989) data over
the interval range 0 to 12 semitones. If the hypothesis
made above is correct, we would expect the highest
correlations to occur when ß = 1.58.

Figure 6 shows the correlation coefficients plotted
against ß. For von Hippel’s (2000) data, the highest

Preference, Complexity, and Fractal Melodies 259



correlations were with ß = 1.58 for Schubert, r(11) = .92,
p < .001, European, r(11) = .86, p < .001, South African,
r(11) = 0.72, p = .009, and Ojibway, r(11) = 0.43, NS.
However, the highest correlation with Chinese was for ß =
1.15, r(11) = 0.62, p = .023. For Vos & Troost’s (1989)
data, the highest correlations were with ß = 1.58 for
composers, r(11) = 0.91, p < .001, and ethnomusic,
r(11) = 0.91, p < .001. As the majority of the highest
correlations occurred when ß = 1.58, these findings
indicate that the hypothesis made above is substantially
correct. That is, the overall ßopt of ≈1.50 found from
Experiments 1 and 2 is valid, and the pitch-interval dis-
tribution in a melody determines its perceived com-
plexity and, consequently, the listener’s preference. This
conclusion also is supported by the plateau for the cor-
relation-coefficient traces in Figure 6, which indicate
that the ß values of von Hippel’s (2000) and Vos &
Troost’s (1989) melodies mostly lie between 1.35 and
1.58. However, the high correlations for Vos & Troost’s
(1989) data, and von Hippel’s (2000) Schubert and
European data, compared to the lower correlations for
von Hippel’s (2000) South African, Ojibway, and Chi-
nese data suggests that the overall ßopt of ≈1.50 (that was
obtained from UK undergraduates) may only apply to
Western/European music, and that ßopt may vary across
cultures. This notion is supported by: (1) a correlation-
coefficient plateau for Chinese melodies from ß = 1.15
to 1.58, indicating a ßopt of ≈1.35, and a preference for

melodies with a greater proportion of large pitch inter-
vals compared to Western/European listeners; and (2)
higher correlation coefficients when ß ≥ 1.74 for Ojib-
way melodies compared to the others, indicating a pref-
erence for melodies with a greater proportion of small
pitch intervals compared to Western/European listen-
ers.

General Discussion

Summary of Findings

The results of Experiments 1 and 2 confirmed the three
initial hypotheses. With respect to Hypothesis (1), per-
ceived complexity decreased as ß increased, indicating
that the ß value (i.e., spectral power density) of a
melody can be used as an objective, quantifiable meas-
ure of its perceived complexity. With respect to
Hypothesis (2), aesthetic preference (as measured by
melodicity) followed an inverted-U function when
plotted against objective complexity (as measured by ß)
and perceived complexity (as measured by the com-
plexity ratings), thereby supporting Schroeder’s (1991)
association of ß with aesthetic preference and the
results of previous studies that have found an inverted-
U function for music preference when plotted against
objective complexity (Crozier, 1974; Vitz, 1966) and
perceived complexity (North & Hargreaves, 1995; Orr
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& Ohlsson, 2001). Furthermore, the reproduction of
the sparse fits found by North & Hargreaves (1995) and
Orr & Ohlsson (2001) for the low-complexity sides of
the inverted-U functions indicated that: (1) this effect
occurs when an independent-subjects design is used, or
when the stimuli do not fall over the whole possible
range of complexity; (2) ß < 2 for most music stimuli;
and (3) ecologically valid melodies only exist over the ß
range 0.67 to 2.35, with melodies whose ß values lie
outside this range not being perceived as musical due to
their extreme complexity or simplicity. With respect to
Hypothesis (3), the overall ßopt of ≈1.50 found for pre-
ferred melodies was between 1 and 2. This finding
agrees with the results of Nettheim (1992), Brillinger &
Irizarry (1998), and Yadegari (1992), and supports
Nettheim’s (1992) criticisms of Voss & Clarke’s (1975,
1978) methodology. The results of Experiments 1 and 2
also indicated that the perceived complexity of a
melody is determined by the distribution characteris-
tics of the pitch intervals between successive notes.
Consequently, optimally preferred melodies have a pre-
ponderance of small pitch intervals compared to large
ones, a characteristic of melodies from a wide variety of
cultures (Huron, 2001; von Hippel, 2000; Vos & Troost,
1989). Finally, although it could be argued that the find-
ings reported above, which were obtained using chro-
matic/ atonal stimuli, may not necessarily apply to
music that reflects the cultural norms of participants
(e.g., being diatonic, staying in one key, or a related
group of keys), this is unlikely to be the case, as the
experimental results converged with the findings of
studies that used “real” music taken from a variety of
cultures (Brillinger & Irizarry, 1998; Nettheim, 1992;
North & Hargreaves, 1995; Orr & Ohlsson, 2001; von
Hippel, 2000; Vos & Troost, 1989; Yadegari, 1992). Con-
sequently, one would expect “real” music to show the
same relationship between ß, complexity, melodicity,
and pitch-interval distribution that was found for the
chromatic/atonal stimuli used in this study.1

Stimulus Generation Issues 

In the Introduction, we noted the results of two studies
that indicated that inverted-U functions are associated
with 1/f ß tone sequences, and that listeners’ responses to
such sequences reach a maximum at ß ≈ 2.10 to 2.40.
The first, by Schmuckler & Gilden (1993; Experiment 3),
found that the sensitivity of listeners to 1/f ß tone
sequences followed an inverted-U as a function of ß, with
the peak sensitivity occurring at ß ≈2.40, and not ß = 1, as
would be expected from Voss & Clarke’s (1975, 1978)
findings. The second, by Patel & Balaban (2000), found
that the highest amount of synchronised activity
among brain regions in response to 1/f ß tone sequences
occurred when ß = 2.10. Although these findings would
appear to conflict with the overall ßopt of ≈1.50 derived
from Experiments 1 and 2, it should be noted that both
of these studies used stimuli that were generated by bin-
ning 1/f ß noises into discrete pitch levels. This proce-
dure will result in the aliasing of high frequencies due to
quantizing error and, in effect, will add white noise to
the spectrum of the original 1/f ß noise (Eke et al., 2002).
With respect to the stimuli, this means that there will be
a greater proportion of large pitch intervals in the
sequences than expected. With respect to the ß values of
the stimuli, this means that the spectral slopes of the
sequences will be flattened, i.e., the actual ß value will be
lower than its original value when doing a linear fit to
the spectrum on a log/log plot. Therefore, Schmuckler
& Gilden’s (1993) data, and the inverted-U function
they found, should actually be shifted leftward to lower
ß values to reflect the true nature of the stimuli they
used. Consequently, the peak sensitivity will now occur
at ß < 2.40. Similarly, for Patel & Balaban’s (2000) study,
the effect of quantizing error means that the highest
amount of synchronised activity actually was generated
by sequences where ß < 2.10. The reanalysis of these two
studies therefore reduces the conflict of their findings
with the overall ßopt of ≈1.50 found above, and indicates
that the spectral slopes of all tone sequences generated
from 1/f ß noises should be checked before use, as in
Experiments 1 and 2, to eliminate any effects of quan-
tizing errors that may have occurred in the discretisa-
tion process.
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1Objections to the generalisability of these findings to “real” music
might also be raised on the grounds that the stimuli were isochro-
nous. However, as previously noted, Nettheim’s (1992) findings indi-
cated that the duration content of a melody makes a minimal
contribution to its overall spectrum, with the pitch content being the
dominant factor. Furthermore, Nettheim (1992) also noted that the
resultant of a white-noise (ß = 0) pitch sequence and a white-noise
duration sequence is not necessarily “white-noise music,” and
reported the result of an informal experiment where he compared
two white-noise pitch sequences, the first with random (white noise)
pitch durations, the second with uniform pitch durations. He found
that the combined white-noise pitch/duration sequence sounded more
coherent than the uniform-duration sequence due to the introduction

of random rhythmic figures. Although no systematic investigation of
melodies with combined pitch- and duration-sequences of different
ß values has been carried out to date, Nettheim’s (1992) results indi-
cate this as an area worthy of future exploration. Moreover, the con-
vergence of the findings reported here with those of other studies
suggests that, for such stimuli, optimally preferred melodies will
result when the combined pitch- and duration-sequences result in a
melody where ß ≈ ßopt ≈ 1.50.



Neurophysiological Evidence for ßopt

For the present sample of participants, the optimal
blend of large and small intervals that created the most
preferred melodies occurred when ß ≈ 1.50. According
to Berlyne’s (1971) inverted-U theory of aesthetic pref-
erence, melodies with this ß value should give rise to an
optimal level of psychobiological arousal. This suggests
that the inverted-U functions for melodicity against
complexity and the value of the overall ßopt found from
Experiments 1 and 2 may have a neurophysiological
origin.

One possible neurophysiological mechanism to
account for the findings of Experiments 1 and 2 is sug-
gested by research on fractal aesthetics in the visual
domain. Spehar, Clifford, Newell, & Taylor (2003)
found that aesthetic preference for fractal images fol-
lows an inverted-U function against fractal dimension
(D), with peak preference occurring around D = 1.30.
Aks & Sprott (1996) also found that their experimental
participants preferred fractal patterns where D = 1.30
and, noting that D = 1.30 is close to the D value of nat-
ural fractal patterns (e.g., waves and clouds), proposed
that peoples’ preference is set at D = 1.30 because of
their continual exposure to natural fractal patterns in
the environment. A similar proposal was advanced by
Knill, Field, & Kersten (1990), who found that the abil-
ity to discriminate fractal images followed a quadratic
function when plotted against D, with the peak dis-
crimination (i.e., sensitivity) occurring at D = 2.50.
Similar quadratic functions and D values also were
found for the discrimination of fractal images by
Gilden, Schmuckler, & Clayton (1993). Knill et al. noted
that the D value they found for peak discrimination
corresponds to those of natural terrain surfaces, and
suggested that the visual system might be optimally
tuned to the statistical structure of natural environ-
ments. Recently, some physiological evidence to sup-
port the optimal-tuning hypotheses of Aks & Sprott
and Knill et al. has been found by Yu, Romero, & Lee
(2003), who investigated the response of neurons in the
primary visual cortex (V1) to moving sine wave grating
stimuli with 1/f ß power spectra. Their results indicated
that the maximal response occurred when ß = 1, sug-
gesting that V1 neurons are tuned to optimally process
natural temporal signals.

The findings for visual stimuli reported above suggest
that the auditory system might also be optimally tuned,
but to the statistical structure of natural sound environ-
ments, which typically have 1/f ß power spectra where
ß ≈1 (de Coensel, Botteldooren, & de Muer, 2003). If
this is the case, then two hypotheses can be made: (1) the

maximum processing efficiency, sensitivity, and response
of the auditory system should occur in response to 1/f ß

signals; and (2) peak performance in response to 1/f ß

signals should occur in the range ß ≈1 (from de Coensel
et al.) to ß ≈1.50 (from Experiments 1 and 2). In support
of Hypothesis (1), studies have shown that 1/fß tone
sequences reduce EEG complexity (Birbaumer, Lutzen-
berger, Rau, Braun, & Mayer-Kress, 1994; Jeong, Joung,
& Kim, 1998) and increase synchronized activity
between brain areas (Patel & Balaban, 2000). In support
of Hypothesis (2), Schnupp, Garcia-Lazaro, & Ahmed
(2004) have found that neurons in the primary auditory
cortex (A1) exhibit tuning to 1/f ß dynamics and
respond maximally when 1 < ß < 1.50. Further evidence
supporting the optimal-tuning hypothesis advanced
above also is provided by a study by Singh & Theunissen
(2003) who, for a selection of natural sounds, calculated
the changes in their amplitude envelopes with respect to
time and frequency (temporal and spectral modulation,
respectively). They found that the average temporal
modulation power and average spectral modulation
power of natural sounds followed 1/f ß functions when
plotted against modulation frequency. That is, the
greatest temporal and spectral changes in the amplitude
envelopes occurred at the slowest modulations, and
these changes decreased in strength with increasing
modulation frequency as a function of 1/f ß. Singh &
Theunissen suggested that the auditory system has
evolved to process natural sounds, and cited neuro-
physiological evidence indicating a match between
the modulation spectra they found and the spectro-
temporal receptive fields of auditory neurons (Grace,
Amin, Singh, & Theunissen, 2003; Miller, Read, Escabi,
& Schreiner, 2002). Singh & Theunissen’s results also
indicated that: 1) for the average temporal components
of the modulation spectra, ß = 2.26 for zebra-finch
song, ß = 1.60 for speech, and ß = 0.78 for environmental
sounds; and 2) for the average spectral components of
the modulation spectra, ß = 1.0 for zebra-finch song,
ß = 1.52 for speech, and ß = 1.40 for environmental
sounds. The close match between the overall ßopt of
≈1.50 found from Experiments 1 and 2 and the ß values
for the modulation spectra of speech suggests that pref-
erence for melodies where ß ≈1.50 may be a conse-
quence of the auditory system being optimally tuned to
the statistical properties of speech due to continued
exposure in the natural environment. If this hypothesis
is correct, then it implies that the results described ear-
lier in this paper, which indicated that ßopt varies across
cultures, are due to the ßopt for a culture’s music being
determined by the characteristics of its language. For
example, cultures with languages that resulted in low
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ßopt values in listeners should have music with high inter-
val-SDs and a greater variability in pitch intervals com-
pared to cultures with languages that resulted in a high
ßopt values in listeners. Evidence to support this hypothe-
sis has recently been found by Patel, Iversen, & Rosenberg
(2006), who showed that the variability of pitch intervals
between successive vowels in English and French sen-
tences was reflected in the pitch intervals between succes-
sive notes in classical instrumental music by English and
French composers, with the pitch-interval variability being
greater for English sentences and English music.

The evidence cited above therefore offers some sup-
port to the hypothesis that the auditory system is
optimally tuned to the statistical structure of natural
sound environments, and suggests that the optimal
tuning is set to ß ≈1.50 due to continual exposure to the
statistical properties of speech. If this is the case, then
the results of Experiments 1 and 2 become explicable.
First, listeners will prefer melodies whose statistical
structure is close to speech (i.e., the most easily
processed melodies), leading to the overall ßopt of ≈1.50.
Second, for melodies where ß is greater than or less than
ßopt, there will be a drop-off in processing performance
that will increase as the difference between ß and ßopt

increases. Consequently, melodies will become harder
and harder to process efficiently on either side of ßopt

and therefore less and less preferred (i.e., less melodic),
resulting in the inverted-U functions for melodicity
when plotted against ß. However, there is also some
evidence to suggest that the results of Experiments 1
and 2 may be due to other, more global neurophysio-
logical mechanisms. For example, studies by Watters
(1998, 2000), that examined EEG signals taken from

participants under eyes-closed rest, indicated that the
EEG signals were a fractal time series with a 1/f ß spec-
tral density where the mean ß across participants was
≈1.50. The convergence of this value with the overall
ßopt of ≈1.50 for melodies suggests that 1/f ß tone
sequences with this ß value may be preferred by lis-
teners because of a resonance or entrainment effect
created by the stimuli that reproduces in the listener
the neuronal activity of the brain when it is in a rest-
ing state. Some support for such a resonance effect is
given by Patel & Balaban’s (2000) finding that the
highest amount of synchronised activity among brain
regions in response to 1/f ß tone sequences occurs
when ß = 2.10 (actually, ß < 2.10, as described above).
In conclusion, although the evidence given above
does not allow a definitive biological explanation of
the experimental findings reported in this paper, it
nonetheless suggests that neurophysiological factors
associated with the auditory system, as well as cul-
tural/environmental factors, are at least partly
responsible and, consequently, indicates some
avenues for future research.
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