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Abstract. A study on a 220-piece corpus (baroque, classical, romantic, 12-
tone, jazz, rock, DNA strings, and random music) reveals that aesthetically 
pleasing music may be describable under the Zipf-Mandelbrot law.  Various 
Zipf-based metrics have been developed and evaluated.  Some focus on music-
theoretic attributes such as pitch, pitch and duration, melodic intervals, and 
harmonic intervals.  Others focus on higher-order attributes and fractal aspects 
of musical balance.  Zipf distributions across certain dimensions appear to be a 
necessary, but not sufficient condition for pleasant music.  Statistical analyses 
suggest that combinations of Zipf-based metrics might be used to identify genre 
and/or composer.  This is supported by a preliminary experiment with a neural 
network classifier.  We describe an evolutionary music framework under devel-
opment, which utilizes Zipf-based metrics as fitness functions.  

1   Introduction 

Webster’s New World Dictionary (1981) defines beauty as the quality attributed to 
whatever pleases or satisfies the senses or mind, as by line, color, form, texture, pro-
portion, rhythmic motion, tone, etc., or by behavior, attitude, etc.  Since computers 
are ultimately manipulators of quantitative representations, any attempt to model 
qualitative information is inherently problematic.  In the case of beauty, an additional 
problem is that it is affected by subjective (cultural, educational, physical) biases of an 
individual – that is, beauty is in the eye (ear, etc.) of the beholder.  Or is it? 

Musicologists generally agree that music communicates meaning [12].  Some at-
tempt to understand this meaning and its effect on the listener by dissecting the aes-
thetic experience in terms of separable, discrete sounds.  Others attempt to find it in 
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terms of grouping stimuli into patterns and studying their hierarchical organization 
[4], [10], [11], [15], [16].  Meyer [13, p. 342] suggests that emotional states in music 
(sad, angry, happy, etc.) are delineated by statistical parameters such as dynamic level, 
register, speed, and continuity. Although such state-defining parameters fluctuate 
locally within a music piece, they remain relatively constant globally.      

In his seminal book, Zipf  [25] discusses the language of art and the meaning com-
municated between artists and their audiences.  He demonstrates that phenomena 
generated by complex social or natural systems, such as socially sanctioned art, tend 
to follow a statistically predictable structure.  Specifically, the frequencies of words in 
a book, such as Homer’s Iliad, plotted against their statistical rank on logarithmic 
scale, produce a straight line with a slope of approximately –1.0.  In other words, the 
probability of occurrence of words starts high and decreases rapidly.  A few words, 
such as ‘a’ and ‘the’, occur very often, whereas most words, such as ‘unconditionally’, 
occur rarely.  Formally, the frequency of occurrence of the nth ranked word is 1/na, 
where a is close to 1. 

Similar laws have been developed independently by Pareto, Lotka, and Bendford 
[1], [6], [17].  These laws have inspired and contributed to other fields studying the 
complexity of nature.  In particular, Zipf’s law inspired and was extended by Benoit 
Mandelbrot to account for a wider range of natural phenomena [9].  Such phenomena 
may generate lines with slopes ranging between 0 (random phenomena) and negative 
infinity (monotonous phenomena).  These distributions are also known as power–law 
distributions [19]. 

Zipf distributions are exhibited by words in human languages, computer languages, 
operating system calls, colors in images, city sizes, incomes, music, earthquake magni-
tudes, thickness of sediment depositions, extinctions of species, traffic jams, and visits 
of websites, among others.   

Research in fractals and chaos theory suggests that the design and assembly of aes-
thetically pleasing objects – artificial or natural – is guided by hidden rules that im-
pose constraints on how structures are put together [5], [18]. Voss and Clarke [23], 
[24] have suggested that music might also be viewed as a complex system whose 
design and assembly is partially guided by rules subconscious to the composer.  They 
have also demonstrated that listeners may be guided by similar rules in their aesthetic 
response to music. 

1.1  Zipf Distribution in Music  

Zipf mentions several occurrences of his distribution in musical pieces.  His examples 
were derived manually, since computers were not yet available.  His study focused on 
the length of intervals between repetitions of notes, and the number of melodic inter-
vals; it included Mozart’s ‘Bassoon Concerto in Bb’, Chopin’s ‘Etude in F minor, Op. 
25, No. 2,’ Irving Berlin’s ‘Doing What Comes Naturally,’ and Jerome Kern’s ‘Who’ 
[25, pp. 336-337].  

Voss and Clarke [23], [24] conducted a large-scale study of music from classical, 
jazz, blues, and rock radio stations collected continuously over 24 hours.  They meas-
ured several fluctuating physical variables, including output voltage of an audio ampli-



fier, loudness fluctuations of music, and pitch fluctuations of music.  They discovered 
that pitch and loudness fluctuations in music follow Zipf’s distribution.   

Voss and Clark also developed a computer program to generate music using a Zipf- 
distribution noise source (aka 1/f or pink noise).  The results were remarkable:  The 
music obtained by this method was judged by most listeners to be much more pleasing 
than that obtained using either a white noise source (which produced music that was 
‘too random’) or a 1/f 

2 noise source (which produced music that was ‘too corre-
lated’).  Indeed the sophistication of this ‘1/f music’ (which was ‘just right’) extends 
far beyond what one might expect from such a simple algorithm, suggesting that a 
‘1/f noise’ (perhaps that in nerve membranes?) may have an essential role in the 
creative process. [23, p. 318] 

2   Zipf-Based Metrics for Evolutionary Music  

We have developed several Zipf-based metrics that attempt to identify and describe 
such balance along specific attributes of music [8].  These musical attributes may 
include the following: pitch, rests, duration, harmonic intervals, melodic intervals, 
chords, movements, volume, timbre, tempo, dynamics.  Some of these can be used 
independently, e.g., pitch; others can be used only in combinations, e.g., duration.  
Some attributes are more straightforward to derive metrics from, such as melodic 
intervals; others are more difficult, such as timbre.  These attributes were selected 
because they (a) have been used in earlier research, (b) have traditionally been used to 
express musical artistic expression and creativity, and/or (c) have been used in the 
analysis of composition.  They are all studied extensively in music theory and compo-
sition.  Obviously, this list of metrics is not complete.   

We have automated several of these metrics using Visual Basic and C++.  This al-
lowed us to quickly test our hypothesis on hundreds of musical pieces encoded in 
MIDI.  The following is a brief definition of selected metrics: 

 
• Pitch:  The relative balance of pitch of music events, in a given piece of music. 

(There are 128 possible pitches in MIDI.)   
• Pitch mod 12:  The relative balance of pitch on the 12-note chromatic scale, in a 

given piece of music.   
• Duration:  The relative balance of durations of music events, independent of 

pitch, in a given piece of music.   
• Pitch & Duration:  The relative balance of pitch-duration combinations, in a 

given piece of music.   
• Melodic Intervals:  The relative balance of melodic intervals, in a given piece of 

music.  (This metric was devised by Zipf.) 
• Harmonic Intervals:  The relative balance of harmonic intervals, in a given 

piece of music.  (This metric was devised by Zipf.) 
• Harmonic Bigrams: The relative balance of specific pairs of harmonic intervals 

in a piece.  (This metric captures the balance of harmonic-triad (chord) struc-
tures.) 



• Melodic Bigrams: The relative balance of specific pairs of melodic intervals in a 
piece.  (This metric captures the balance of melodic structure and arpeggiated 
chords.) 

• Melodic Trigrams: The relative balance of specific triplets of melodic intervals 
in a piece.  (This metric also captures the balance of melodic structure.) 

• Higher-Order Melodic Intervals: Given that melodic intervals capture the 
change of pitches over time, we also capture higher orders of change.  This in-
cludes the changes in melodic intervals, to the changes of the changes in melodic 
intervals, and so on.  These higher-order metrics correspond to the notion of de-
rivative in mathematics.  Although a human listener may not be able to con-
sciously hear such high-order changes in a piece of music, there may be some 
subconscious understanding taking place. 1 

2.1  Evaluation  

We evaluated the effectiveness of our Zipf metrics by testing them on a large corpus 
of quality MIDI renderings of musical pieces.  Additionally, we included a set of 
DNA-generated pieces and a set of random pieces (white and pink noise) for compari-
son purposes.  Most MIDI renderings of classical pieces came from the Classical 
Archives [22]. 

Our corpus consisted of 220 MIDI pieces.  Due to space limitations, we summarize 
them below by genre and composer. 

 
1 Baroque: Bach, Buxtehude, Corelli, Handel, Purcell, Telemann, and Vivaldi (38 

pieces). 
2 Classical: Beethoven, Haydn, and Mozart (18 pieces). 
3 Early Romantic: Hummel, Rossini, and Schubert (14 pieces). 
4 Romantic: Chopin, Mendelssohn, Tarrega, Verdi, and Wagner (29 pieces). 
5 Late Romantic: Mussorgsky, Saint-Saens, and Tchaikovsky (13 pieces). 
6 Post Romantic: Dvorák and Rimsky-Korsakov (13 pieces). 
7 Modern Romantic: Rachmaninov (2 pieces). 
8 Impressionist: Ravel (1 piece). 
9 Modern (12 Tone):  Berg, Schönberg, and Webern (15 pieces). 

10 Jazz: Charlie Parker, Chick Corea, Cole Porter, Dizzy Gillespie, Django 
Reinhardt, Duke Ellington, John Coltrane, Miles Davis, Sonny Rollins, and The-
lonius Monk (33 pieces). 

11 Rock: Black Sabbath, Led Zeppelin, and Nirvana (12 pieces). 

                                                           
1 Surprisingly, our study revealed that, once a Zipfian distribution is encountered in a lower-

order metric, the higher-order metrics continue to exhibit such distributions.  However, the 
higher-order slopes progressively move towards zero (high entropy – purely random).  This 
result suggests that balance introduced at a certain level of assembly may influence the per-
ceived structural aspects of an artifact many levels removed from the original.  If generaliz-
able, this observation may have significant philosophical implications. 



12 Pop: Beatles, Bee Gees, Madonna, Mamas and Papas, Michael Jackson, and 
Spice Girls (18 pieces). 

13 Punk Rock: The Ramones (3 pieces). 
14 DNA Encoded Music: actual DNA sequences encoded into MIDI, and simulated 

DNA sequences (12 pieces). 
15 Random (White Noise): music consisting of random note pitches, note start times, 

and note durations “composed” by a uniformly-distributed random number gen-
erator  (6 pieces). 

16 Random (Pink Noise): music consisting of random note pitches, note start times, 
and note durations “composed” by a random number generator exhibiting a Zipf 
distribution (6 pieces). 

2.2  Results  

Each metric produces a pair of numbers per piece.  The first number, Slope, is the 
slope of the trendline of the data values.  Slopes may range from 0 (high entropy –
purely random) to negative infinity (low entropy – monotone).  Slopes near –1.0 cor-
respond to Zipf distribution.  The second number, R2, is an indication of how closely 
the trendline fits the data values – the closer the fit, the more meaningful (reliable) the 
slope value.  R2 may range from 0.0 (extremely bad fit – data is all over the graph) to 
1.0 (perfect fit – data is already in a straight line).  We considered R2 values larger 
than 0.7 to be a good fit. 

Every celebrated piece in our corpus exhibited several Zipf distributions.  Random 
pieces (white noise) and DNA pieces very few (if any) Zipf distributions.  Table 1 
shows average results for each genre in terms of slope, R2, and corresponding standard 
deviations.  The average for all musical pieces (excluding DNA, pink noise, and white 
noise pieces) across all metrics is –1.2004, a near-Zipf distribution; the corresponding 
R2 (fit) across all metrics is 0.8213. 

Additionally, we performed statistical analyses on these results to identify patterns 
across genres.  First we drew side-by-side boxplots of each metric for each genre.  In 
the following results, genres are numbered as 1 - Baroque, 2 - Classical, 3 - Early 
Romantic, 4 - Romantic, 5 - Late Romantic, 6 - Post Romantic, 7 - Modern Romantic, 
9 - Twelve-tone, 10 - Jazz, 11 - Hard Rock, 12 - Pop, 13 - Punk, 14 - DNA, 15 - Pink 
noise, and 16 - White noise.  Although boxplots are not formal inference tools, they 
are useful in data analysis because any substantial differences in genres should be 
evident from visual inspection.  These side-by-side boxplots revealed several interest-
ing patterns.  For instance, genres 14 (DNA) and 16 (random music – uniformly dis-
tributed pitch) are easily identifiable by their pitch metric.  We also discovered that 
the first seven genres (baroque, classical, and the five genres with the word “romantic” 
in them) appear to have significant overlap on all of the metrics.  This is not surpris-
ing, as these genres are relatively similar – people refer to such pieces as “classical 
music.”  However, further examination suggests that it may be still be possible to 
identify styles and composers by using combinations of metrics. 

We also performed analyses of variance (ANOVAs) on the data to determine 
whether or not the various metrics had significantly different averages across genres.   



We found that all of the p-values are significant, meaning there are differences among 
genres within our corpus.  To better visualize the ANOVA results we generated confi-
dence interval graphs.  When displayed using side-by-side boxplots, genre samples 
may overlap due to simple natural variation and/or some unusual individual pieces 
within the genres.  However, the confidence intervals given in the ANOVA output 
characterize where the mean slope for each metric within each genre is located.  When 
these intervals do not overlap, there is a statistically significant difference between 
genres.  Figure 1 shows the results for the harmonic interval metric. 

Overall, twelve-tone and DNA differ from the other genres significantly.  In terms 
of the pitch metric, Late Romantic appears to differ significantly from Hard Rock and 
Pop.  In terms of pitch mod 12, there are several genres that differ significantly from 
Jazz.  Jazz and Baroque appear to differ in duration.  Jazz definitely differs from most 
other genres in terms of pitch & duration. 

Moreover, several other interesting patterns emerge.  For instance, in the pitch-
mod-12 metric, twelve-tone music exhibits slopes suggesting uniform distribution –
average slope is –0.3168 with a standard deviation of 0.1801.  In particular, Schön-
berg’s pieces averaged –0.2801 with a standard deviation of –0.1549.  This was com-
parable to the average for random (white noise) pieces, namely –0.1535.  Obviously, 
this metric is very reliable in identifying twelve-tone music.  For comparison pur-
poses, the next closest average slope for musical pieces was exhibited by Jazz  
(–0.8770), followed by Late Romantic (–1.0741). 

Table 1. Average results across metrics for each genre 

Genre Slope R2 Slope Std R2 Std 
Baroque 
Classical 
Early Romantic 
Romantic 
Late Romantic 
Post Romantic 
Modern Romantic 
Impressionist 
Twelve-Tone 
Jazz 
Rock 
Pop 
Punk Rock 
DNA 
Random (Pink) 
Random (White) 

-1.1784 
-1.2639 
-1.3299 
-1.2107 
-1.1892 
-1.2387 
-1.3528 
-0.9186 
-0.8193 
-1.0510 
-1.2780 
-1.2689 
-1.5288 
-0.7126 
-0.8714 
-0.4430 

0.8114 
0.8357 
0.8215 
0.8168 
0.8443 
0.8295 
0.8594 
0.8372 
0.7887 
0.7864 
0.8168 
0.8194 
0.8356 
0.7158 
0.8264 
0.6297 

0.2688 
0.1915 
0.2006 
0.2951 
0.2613 
0.1577 
0.0818 
N/A 
0.2461 
0.2119 
0.2967 
0.2441 
0.5719 
0.2657 
0.3077 
0.2036 

0.0679 
0.0526 
0.0551 
0.0609 
0.0667 
0.0550 
0.0294 
N/A 
0.0964 
0.0796 
0.0844 
0.0645 
0.0954 
0.1617 
0.0852 
0.1184 

 



Overall, these results suggest that we may have discovered certain necessary but 
not sufficient conditions for aesthetically pleasing music.  It should be noted that the 
original inspiration for this project was how the Zipf-Mandelbrot law is used in many 
other domains to identify “naturally” occurring phenomena – phenomena with a natu-
ral “feel” to them [6].  So, it is not surprising to us that we are finding this correlation 
between pleasant music and instances of Zipf distribution. 

3   Composite Metrics  

These results suggest that aesthetically pleasing aspects of music may be algorithmi-
cally identifiable and classifiable.  Specifically, by combining metrics into a weighted 
composite (consisting of metrics that capture various aspects throughout the possible 
space of measurable aesthetic attributes) we may be able to perform various classifica-
tions tasks. We have experimented with composite metrics having (a) various weights 
assigned to individual metrics and (b) conditional combinations of individual metrics. 

Currently, we are exploring various neural network configurations and classifica-
tion tasks.  In one experiment, we developed an artificial neural network to determine 
if Zipf metrics contained enough information for authorship attribution.  For instance, 
we have used the Stuttgart Neural Network Simulator (SNNS) [20] to build, train and 
test an artificial neural network.  Our corpus consisted of Zipf metrics for two data 
sets: (a) Bach pieces BWV500 through BWV599, and (b) Beethoven sonatas 1 
through 32.  From these we extracted training and test sets.  The trained neural net-

 
One-way ANOVA: Harmonic versus fam 
 
Analysis of Variance for Harmonic 
Source     DF        SS        MS        F        P 
fam         9   13.4172    1.4908    29.80    0.000 
Error     187    9.3550    0.0500 
Total     196   22.7721 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -+---------+---------+---------+----- 
 1         38   -1.3261    0.1947        (-*-)  
 2         18   -1.4124    0.1501     (--*-)  
 3         14   -1.4938    0.1693   (--*--)  
 4         24   -1.3821    0.2315      (-*--)  
 5         13   -1.3707    0.2026      (--*--)  
 9         15   -0.9219    0.1696                 (--*--)  
10         33   -1.2233    0.1631          (-*-)  
11         12   -1.3099    0.1494       (--*--)  
12         18   -1.3709    0.1811      (--*-)  
14         12   -0.3679    0.5572                               (--*--)  
                                   -+---------+---------+---------+----- 

Pooled StDev =   0.2237          -1.60     -1.20     -0.80     -0.40 

 
 

Fig. 1. ANOVA confidence interval graph for the harmonic metric across all genres.  
Genres 9 (twelve-tone) and 14 (DNA) are identifiable through this metric alone 



work was able to identify the composer of a piece it had not seen before with 95% 
accuracy.  We believe that this can easily be improved with a refined training set 
and/or the fractal metrics discussed in the next section.   

Composite metrics, implemented through neural network classifiers, could be used 
to identify pieces that have similar aesthetic characteristics to a given piece. Compos-
ite metrics may also help derive a statistical signature (identifier) for a piece.  Such an 
identifier may be very useful in data retrieval applications, where one searches for 
different performances of a given piece among volumes of music.  For instance, dur-
ing an earlier study [8], we discovered a mislabeled MIDI piece by noticing that it had 
identical Pitch-mod-12 slope and R2 values with another MIDI piece.  The two files 
contained different performances of Bach’s Toccata and Fugue in D minor.   

3.1   Fractal Metrics  

The Zipf metrics presented so far are very promising.  However, they have a signifi-
cant weakness.  They measure the global balance of a piece.  For instance, consider 
the sample shown in figure 2.a.  The pitch metric of this sample is perfectly Zipfian 
(slope = –1.0, R2 = 1.0). However, locally, the sample is extremely monotonous.   

This problem can be easily addressed using a fractal method of measurement.  The 
metric is applied recursively at different levels of resolution:  We measure the whole 
sample, then split it into two equal phrases and measure each of these, then split it into 
four equal phrases, and so on.   For instance, at resolution 2 (see sample at figure 2.b), 
the slope of the left side is negative infinity (monotone).  The slope of the right side is 
–0.585.  By dividing the sample into two parts, the lack of local balance was quickly 
exposed. 

Preliminary tests with music corpora indicate that aesthetically pleasing music ex-
hibits Zipf distributions at various levels of resolution.  Depending on the piece of 
music, this will go on until the resolution reaches a small number of measures.  For 
instance, in Bach’s Two-Part Invention No. 13 in A minor (BWV.784), this balance 
exists until a resolution of three measures per subdivision. 

This recursive measuring process may be used to calculate the fractal dimension of 
a sample relative to a specific metric.  This is known as the box-counting method.  
Taylor [21] has used this approach in visual art to authenticate and date paintings by 
Jackson Pollock using their fractal dimension, D.  For instance, he discovered two 
different fractal dimensions: one attributed to Pollock’s dripping process, and the 
other attributed to his motions around the canvas.  Also, he was able to track how 
Pollock refined his dripping technique – the fractal dimension increased through the 
years (from D ≈ 1 in 1943 to D = 1.72 in 1952). 

  

Fig. 2.a Sample at resolution 1 Fig. 2.b Sample at resolution 2 



Preliminary results suggest that, as observed for simple Zipf metrics, aesthetically 
pleasing music exhibits several fractal dimensions near 1, as opposed to aesthetically 
non-pleasing music or non-music.  For instance, the pitch fractal dimension for Bach’s 
2-Part Invention in A minor is 0.9678. The results of these experiments are only pre-
liminary.  We believe that these fractal metrics will prove much more powerful than 
simple metrics for ANN-based classification purposes.  

4   Evolutionary Music Framework  

We have shown that Zipf-based metrics are capable of capturing aspects of the econ-
omy exhibited by socially sanctioned music.  This capability should be very useful in 
computer-assisted composition systems.  Such systems are developed using various AI 
frameworks including formal grammars, probabilistic automata, chaos and fractals, 
neural networks, and genetic algorithms [2], [3], [14].   

We are currently evaluating the promise of Zipf-based metrics for guiding evolu-
tionary experiments.  Based on our results, we believe that Zipf-based fitness func-
tions should produce musical samples that resemble socially sanctioned (aesthetically 
pleasing) music.  If nothing else, since Zipf distributions appear to be a necessary, but 
not sufficient condition for aesthetically pleasing music, such fitness functions could 
minimally serve as an automatic filtering mechanism to prune unpromising musical 
samples.   

4.1  Genotype Operations 

Our system is based loosely on Machado’s NEvAR system [7] – a powerful system for 
evolutionary composition of visual art.  In our adaptation of the NEvAR framework, a 
phenotype is a music score.  A genotype is represented as a tree.  Leaf nodes are mu-
sic phrases.  Non-leaf nodes are operators that, when interpreted, generate a phenotype 
(see figure 3).   

Genotype operators, such as +, –, and * are related, but not completely analogous, 
to their mathematical definitions.  The following is an overview of low-level genotype 
operators.  We use the word “element” to refer to an arbitrary genotype sub-tree.   

A 
  

B 

 

A B 
   

 
Fig. 3.  Example of the addition operation.  The tree at the center is the genotype 

representation.  The music scores at left and right are phenotype representations of 
the two operands and the result of their addition, respectively. 



 
+  (addition) takes two elements, A and B, and returns the union of the two preserv-

ing their respective start times, end times, and pitches. 
–  (subtraction) takes two elements, A and B, and returns the set of notes in which 

B is NOT enveloped by A.                  
&  (concatenation) takes two elements, A and B, and appends B to the end of A. 
*  (multiplication) takes two elements, A and B, and replaces each instance of B 

with a complete repetition of A, but transposed from A’s starting note to B.  
Each repetition is appended to the last.   

 
These low-level operations are used to evolve themes.  Once a theme has been 

evolved, higher-level operations are applied to evolve other aspects of the notes, 
phrases, and piece as a whole.  These operations include common compositional  
devices such as retrograde, diminution, augmentation, inversion, imitation, harmoniza-
tion, temporal quantization, harmonic quantization, and transposition.    

Finally, we include genetic operators for evolving sub-trees such as mutate (sub-
tree mutation), and fit (sub-tree evaluation).  These allow for introducing improvised 
phrases within larger compositions.  

We maintain control over the probabilities and complexity restrictions of when 
these operations take place.  For instance, if within a certain genre an operation is 
found to be more prevalent in the first few levels of the tree than the last few, this fact 
can be used to weight the corresponding probabilities of that operation taking place 
among the various levels of the generations.     

In the NEvAr system, elements are composed of collections of pixels that form a 
two-dimensional image.  Expressions are evaluated on a pixel-by-pixel basis, and the 
results can be used as the arguments in the next operation in the expression tree.  Any 
sub-tree can be mutated in one of five ways:  1) swapping arbitrary sub-trees, 2) re-
placing arbitrary sub-trees with randomly created ones, 3) inserting a randomly cre-
ated node at a random insertion point, 4) deleting a randomly selected node, and 5) 
randomly selecting an operator and changing it [7]. 

These sub-tree mutations could prove to be valuable in the context of music, since, 
unlike most visual art, music is defined almost exclusively by an abstract (in the sense 
of layers building upon other layers) composition of notes to phrases, phrases to mel-
ody, melody to section, and sections to piece. Since this method is closer to the actual 
process of composition, the results of these operations should minimally produce 
something that resembles a “standard” musical piece, at least in structure.  

The most important question to be answered is, “to what degree should we have 
certain operations, and where?”  If the answer to this is, “anywhere, anytime,” then 
there will likely be many more non-standard compositions created than if the answer 
were based on music theory or probability (dependent on whatever genre of music one 
is attempting to emulate).  Although a fitness test (in the case of NEvAr, a human) 
would usually decide which generations stayed and which did not, a valid fitness test, 
in terms of musical beauty, is nearly impossible to formulate, since the goal is so hard 
to articulate in the first place.  A better solution may be somewhere in between these 
answers, where there are weightings and restrictions applied to the generation process 
(to both elemental operations and sub-tree operations), and a fitness test that at least 



discards the generations which are not minimally “musical.”  The generations pro-
duced would more likely be of a structured type, but there is still the possibility that a 
less structured generation would make it, provided it passed the fitness test.  Among 
the possible fitness tests, combined Zipf metrics are worthy candidates since they do 
not depend solely on musical tastes or rules of theory, but on the more abstract idea of 
balance begetting beauty. 

5   Conclusion 

We have shown the promise of using the Zipf-Mandelbrot law to measure the balance, 
and to a certain degree, pleasantness of musical pieces by applying this law to various 
musical attributes, such as pitch, duration, and note distances.  The results of the ANN 
experiment suggest that a neural network is capable of distinguishing pieces based on 
their Zipf metrics, and so can be used in part or whole as a fitness test for each genera-
tion.  Using a neural network as a fitness test could also be used to constrain the gen-
eration process to create certain types of music, like Classical, Jazz, etc., or to create 
pieces that are similar to particular composers. 

We also discussed the generation of musical pieces through an evolutionary frame-
work comprised of genetic operations similar to those of the NEvAr framework.  This 
will allow the structured formulation of music, either with or without human interac-
tion.  Although this system may produce music that is statistically similar to socially 
sanctioned music, it is not clear if the result will be truly aesthetically pleasing music.  
Therefore, this tool could at least assist a human composer by enforcing minimal 
conditions for aesthetically pleasing music and, thus, producing rough musical 
sketches for inspiration and further refinement. 
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