
Abstract. The goal of this study is to quantify and
determine the way in which the emotional response to
music is re¯ected in the electrical activities of the brain.
When the power spectrum of sequences of musical notes
is inversely proportional to the frequency on a log-log
plot, we call it 1=f music. According to previous
research, most listeners agree that 1=f music is much
more pleasing than white (1=f 0) or brown (1=f 2) music.
Based on these studies, we used nonlinear methods to
investigate the chaotic dynamics of electroencephalo-
grams (EEGs) elicited by computer-generated 1=f music,
white music, and brown music. In this analysis, we used
the correlation dimension and the largest Lyapunov
exponent as measures of complexity and chaos. We
developed a new method that is strikingly faster and
more accurate than other algorithms for calculating the
nonlinear invariant measures from limited noisy data.
At the right temporal lobe, 1=f music elicited lower
values of both the correlation dimension and the largest
Lyapunov exponent than white or brown music. We
observed that brains which feel more pleased show
decreased chaotic electrophysiological behavior. By
observing that the nonlinear invariant measures for the
1=f distribution of the rhythm with the melody kept
constant are lower than those for the 1=f distribution of
melody with the rhythm kept constant, we could
conclude that the rhythm variations contribute much
more to a pleasing response to music than the melody
variations do. These results support the assumption that
chaos plays an important role in brain function,
especially emotion.

1 Introduction

Understanding the functional mechanism of music
perception is lagued with a wide variety of di�culties

inherent in the artistic and subjective nature of the
musical experience. Listening to music is a very personal
experience determined by many factors, such as person-
ality, interest, education, learning, culture, and so on. In
spite of its universality among cultures, music is not a
biological necessity, and there are very large variations
in musical sensitivity and ability among people (Meyer
1956). Music perception is, therefore, a human activity
that does not easily lend itself to scienti®c experimental
inquiry, which usually requires an overt response that
can be quanti®ed and which relies on group homogene-
ity for generalization. Hence, we know little about how
the physical features of acoustic stimuli are processed to
form psychological representations of the sound and
how knowledge about sound contributes to sensory
integration and percept formation.

Some research on 1=f noise has given us insight into
overcoming the di�culties in the scienti®c study of
music perception and understanding the origin of the
universal emotional response to music (Voss and Clarke
1975, 1978; Schroeder 1991; Gardner 1992). When the
power spectrum of a time signal is inversely proportional
to frequency on a log-log plot, we call it a 1=f distri-
bution. According to Voss and Clarke, the power spec-
tra of the loudness and frequency ¯uctuations for Bach's
music, averaged over the piece, have 1=f distributions
(Voss and Clarke 1975, 1978). Not only Bach's work,
but also other works of classical music, jazz, blues, and
rock have 1=f power spectra (Voss and Clarke 1975).
This means that our musical pleasure depends not so
much on the absolute value of the pitch or the tone
duration or the loudness, as on how it changes as a
function of time. This is because the power spectrum of
a time signal is a Fourier transform of its autocorrela-
tion, which measures how its ¯uctuations at any moment
are related to previous ¯uctuations. In addition, Man-
delbrot showed that aesthetic structures throughout
nature and artistic works have fractal structures (self-
similarity) that are related to 1=f distributions
(Schroeder 1991; Gardner 1992).

Based on these studies, we decided to estimate the
relative changes of the brain states elicited by 1=f music,
which is pleasing, and by white music and brown music,
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which are less pleasing. White music involves a sequence
of musical notes (e.g., the successive frequencies of a
melody) which is completely independent of its past
(Schroeder 1991; Gardner 1992). Its autocorrelation
function is zero, except at the origin where it must be 1,
and its power spectrum is ¯at over the entire frequency
range. White music has few correlated sequences, so we
cannot predict the next note from the previous ones. By
contrast, brown music has highly correlated sequences
(Schroeder 1991; Gardner 1992). Only the increments
are independent of the past. It has characteristics of
Brownian motion, the random movements of small
particles suspended in a liquid and bu�eted by the
thermal agitation of molecules. Finally, 1=f music has a
degree of correlation intermediate between white and
brown music (Schroeder 1991; Gardner 1992). Its tunes
are moderately correlated, not just over short runs but
throughout runs of any size. Voss and Clarke con®rmed
that 1=f music was judged by most listeners to be much
more pleasing than white music (which is too random)
or brown music (which is too correlated) (Voss and
Clarke 1975, 1978). White music has a power spectrum
of 1=f 0, and brown music has a power spectrum of 1=f 2.
In order to study the universal emotional response to
music, 1=f , white, and brown music were generated by a
simple computer program, independent of the charac-
teristics of musical instruments, culture, and past per-
sonal experiences. Also, the subjects in our experiment
were all non-musicians. For the study, we developed a
simple algorithm to determine the pitch (expressed in
various standard scales) and the duration (expressed as
half, quarter, or eighth notes) of the successive notes of a
melody.

A nonlinear analysis of an electroencephalogram
(EEG) was used to quantify the emotional change of the
brain in our study. The brain is a highly nonlinear and
very chaotic system. In addition, research with nonlinear
methods has revealed that the EEG is not a simple noise,
but a deterministic chaotic signal (Rapp et al. 1985;
Babloyantz 1986; BasË ar 1988; RoÈ schke and BasË ar 1988;
Soong and Stuart 1989; RoÈ schke and Aldenho� 1991;
Ravelli and Antolini 1992; Fell et al. 1993). Further-
more, it has been shown that distinct states of brain
activity have di�erent chaotic dynamics, which can be
quanti®ed by nonlinear invariant measures such as the
correlation dimension and the largest Lyapunov expo-
nent. Linear spectral analysis may not clarify the basic
mechanism of complex brain function, although it has
worked well in a clinical environment for several de-
cades.

Freeman suggested that chaos plays an important
role in olfactory information processing in the brain
(Freeman 1991). When an animal inhales a familiar
scent, a burst can be seen in each EEG tracing. After-
wards, all the waves from the array of electrodes sud-
denly become more regular and ordered for a few cycles
until the animal exhales. His studies suggested that
nonlinear analysis of an EEG should be a good tool for
understanding the mechanism of perception.

Birbaumer et al. estimated the pointwise dimensions
of an EEG during perception of periodic, weakly cha-

otic, and stochastic music similar to the music in our
experiments (Birbaumer et al. 1994). Their study showed
that the low-dimensional chaotic music induced a re-
duction of the EEG dimension, mainly in the frontal
electrodes, compared with the periodic and stochastic
music. Their results, however, are somewhat di�erent
from ours. We found meaningful correlations between
chaotic brain activities at the right temporal electrode
and di�erent types of music. We calculated two non-
linear invariant measures of the EEGs, the correlation
dimension and the largest Lyapunov exponent, in our
analysis (Takens 1981; Grassberger and Procaccia 1983;
Babloyantz and Salazar 1985; Eckmann and Ruelle
1985; Wolf et al. 1985; Fraser and Swinney 1986; Theiler
1986; Smith 1988; Dvo�rak and Klaschka 1990; Kennel
et al. 1992; Ott 1993). They are e�ective measures for the
complexity and the chaos of the EEG, respectively. In
particular, the correlation dimension is a measure of
complexity. While periodic and quasi-periodic systems
have integer correlation dimensions, a system with de-
terministic chaos has a noninteger dimension (fractal).
The Lyapunov exponents estimate the mean exponential
divergence or convergence of nearby trajectories in
phase space. A system possessing at least one positive
Lyapunov exponent is chaotic. This fact re¯ects a sen-
sitive dependence on initial conditions.

In Section 2, we present the algorithm for generating
1=f , white, and brown music. How to reconstruct brain
dynamics from the EEG and to analyze the EEG by
using nonlinear methods is given in Section 3. The al-
gorithms for the correlation dimension and the Lyapu-
nov exponents are also presented. Section 4 brie¯y
presents the procedures for data recording and for the
experiments. Section 5 shows the di�erence in the values
of the correlation dimension and the largest Lyapunov
exponent of EEG for the di�erent types of music. We
discuss our results with respect to the role of chaos in
emotion during music perception in Section 6. Our
conclusions are given in Section 7.

2 Computer-generated music: 1/f, white
and brown music

A computer program with the following algorithms,
proposed by Gardner (1992), was designed to produce
musical stimuli with di�erent spectral densities. The
di�erent musical stimuli were produced according to a
sequence of numbers selected by tossing imaginary dice
successively.

1. White music. We need only one imaginary die with
120 sides to produce white music. We successively throw
the die. The sequence is made from the selected number
on the die. Each value has the same probability of 1/120
of being chose, and one quantity is not a�ected by any of
its preceding quantities.

2. Brown music. The ®rst note, say middle C, is de-
termined by a random number generator. The next note
of the pitch, or the duration, for brown music is deter-
mined by throwing a die with three sides (�1, 0, ÿ1).
For �1, the ¯uctuating quantity (pitch or duration) in-
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creases by one step. For 0, it stays the same, and for ÿ1,
it decreases one step. In this way, we produce successive
quantities that are highly correlated over long periods of
time.

3. 1/f music. We use twenty dice, each with six sides,
to produce 1=f music. First, we throw all twenty dice
and calculate their sum. For the next trial, we randomly
choose seven dice and throw only those chosen dice
again. We recalculate the sum of all twenty dice; then,
we repeat the procedures as many times as we like. The
resulting sequence of sums has a correlation about half-
way between those of white and brown music.

The pitch range in the computer-generated music was
3 octaves, with the fundamental frequencies of the tones
falling roughly in the range of 100 to 8000 Hz. The
duration was between 0.1 and 2 s.

The wave patterns for these processes are shown in
Fig. 1. Since two variables were needed to identify each
note (its pitch and tone duration), two sequences were
made and then combined to produce each musical
stimulus. With the program, it was possible to choose

the type of variation or the range of the pitch/duration
(melody/rhythm) and to make as many combinations as
needed.

To verify whether the programmed music could be
considered as 1=f , brown, or white music, samples of
7200 data points for each type of music were plotted
(spectral density vs frequency) on a log-log graph. It was
found that each form could be characterized by the
value of the slope: 1=f music had a slope of ÿ1:032,
white music a slope of ÿ0:019, and brown music a slope
of ÿ1:850. The spectral density was a measure of the
mean-square variation of a quantity. The slope of the
log-log plot was estimated by the least-squares method
to quantify the degree of correlation over successive
notes. In general, a negative slope for spectral density
implied some degree of correlation over time, and a
steep slope implied a higher degree of correlation than a
shallow slope (Gardner 1992).

3 Nonlinear analysis

The brain may be considered as a dissipative dynamic
system. A dynamic nth-order system is de®ned by a set
of n ®rst-order di�erential equations. The states of the
system can be represented by points in n-dimensional
space, where the coordinates are simply the values of the
state variables x1; x2; x3; . . . ; xn. The phase space is the set
of all possible states that can be reached by the system.
In general, a phase space is identi®ed with a topological
manifold. The sequence of such states over the time scale
de®nes a curve in the phase space called a trajectory. In
dissipative systems, as time increases, the trajectories
converge to a low-dimensional indecomposable subset
called an attractor (Eckmann and Ruelle 1985).

In experiments, one cannot always measure all the
components of the vector giving the state of the system.
Therefore, we have to reconstruct brain dynamics from a
one-dimensional EEG by using delay coordinates and
embedding theorem. Takens showed that an attractor,
which is topologically equivalent to the original data set,
can be reconstructed from a dynamic system of n vari-
ables x1; x2; x3; . . . ; xn by using the so-called delay coor-
dinates y�t� � �xj�t�; xj�t � T �; . . . ; xj�t � �d ÿ 1�T � from
a single time series xj and by performing an embedding
procedure, where d is the embedding dimension. The
purpose of time-delay embedding is to unfold the pro-
jection back to a multivariate state space that is a rep-
resentation of the original system (Takens 1981;
Eckmann and Ruelle 1985).

Attractors of dynamic systems can be characterized
by their correlation dimensions. The correlation di-
mension D2 is a metric property of the attractor that
estimates the degree of freedom of the EEG signal in our
study. It determines the number of independent vari-
ables which are necessary to describe the dynamics of the
central nervous system. In other words, it is a measure of
complexity. While periodic and quasiperiodic systems
have integer dimensions, systems of deterministic chaos
have noninteger dimensions (fractals). In the latter case,
the attractor is called a strange attractor. Strange at-

Fig. 1. Wave patterns of (a) brown, (b) 1/f, and (c) white music as a
function of time
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tractors are identi®ed with deterministic chaos, which
means that the di�erent states of the system, that are
initially arbitrarily close, will become macroscopically
separated after su�ciently long times (Fell et al. 1993).

Lyapunov exponents estimate the mean exponential
divergence or convergence of nearby trajectories of the
attractor. Lyapunov exponents are usually ordered in a
descending fashion from L1 (the highest value) to Ln
(the lowest value). Here, n is equal to the topological
dimension of the phase space. At least one Lyapunov
exponent is zero for each attractor (except that of a ®xed
point). It is the one corresponding to the forward di-
rection of the ¯ow. For dissipative dynamic systems, the
sum of all Lyapunov exponents is less than zero. A
system possessing at least one positive Lyapunov expo-
nent is chaotic. This fact re¯ects the sensitive depen-
dence on the initial conditions (Fell et al. 1993).

We applied a reconstruction procedure to each EEG
segment. For the time delay T, we used the ®rst local
minimum of the average mutual information between the
set of measurements v�t� and v�t � T �. Mutual informa-
tion measures the general dependence of two variables.
Therefore, it provides a better criterion for the choice of
T than the autocorrelation function, which only mea-
sures the linear dependence (Fraser and Swinney 1986).

Classical algorithms for calculating the nonlinear in-
variant measures, such as the correlation dimension and
the largest Lyapunov exponent for time signals, require
a very large number of computations. We calculate a
nonlinear invariant measure by increasing the embed-
ding dimension until the value of the invariant measure
is saturated. The value is independent of the embedding
dimension d for d � dmin (i.e., after the geometry is un-
folded), where dmin is the minimum embedding dimen-
sion. However, working in a dimension larger than the
minimum embedding dimension leads to excessive
computation. It also enhances the problem of contami-
nation by roundo� or instrumental error because such
noise will populate and dominate the additional d ÿ dmin
dimensions of the embedding space in which no dy-
namics is operating. In our new algorithm, we calculate

the D2 and the L1 in the minimum embedding dimen-
sion.

We determined the minimum embedding dimension
by using the calculation method, presented by Kennel
et al. (1992), which is based on the idea that in the
passage from dimension d to dimension d � 1, one can
di�erentiate between points on the orbit that are `true'
neighbors and those on the orbit that are `false' neigh-
bors. A false neighbor is a point in the data set that is a
neighbor solely because we are viewing the orbit (the
attractor) in too small an embedding space �d < dmin�.
When we have achieved a large enough embedding space
�d � dmin�, all neighbors of every orbit point in the
multivariate phase space will be true neighbors. We de-
®ne the embedding rate as the ratio of the true neighbors
to the neighbors in the embedding dimension. Figure 2
shows a typical example of the embedding rate as a
function of the embedding dimension for 16 384 EEG
data points in a patient with Alzheimer's disease. The
proper minimum embedding dimension was selected as
11 in this case. Next, we can estimate the invariant
measures by calculating them only in the minimum
embedding dimension, which is di�erent from the con-
ventional method (Grassberger and Procaccia 1983).
Figure 3 shows a comparison of the new method for
calculating D2 with the old. Both estimate the D2 of the
EEG at T4 in a patient with Alzheimer's disease. The
calculation of D2 is done once in the determined mini-
mum embedding dimension with our new method,
whereas the older methods require several calculations
of D2 at di�erent embedding dimensions. This shows the
increased e�ciency and accuracy of the new method
relative to the old one.

We evaluate the correlation dimension D2 of the at-
tractors from the EEG by using the GPA (Grassberger
and Procaccia 1983). In order to calculate D2, one
computes the correlation integral function

C�r� � 1

N 2

XN

i;j�1
i 6�j

h�r ÿ jxi ÿ xjj� �1�

Fig. 2. Embedding rates with increasing
embedding dimension for 8000 electro-
encephalography (EEG) data points at T6
for the rest state. The proper minimum
embedding dimension was selected as 11 in
this case to calculate the invariant measures
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where h is the Heaviside function, h�x� � 0 if x < 0; and
h�x� � 1 if x > 0: C�r� measures the spatial correlation
of the points on the attractor obtained from the time
series data. For small r, it is known that C�r� behaves
according to a power law:

C�r� / r D2 �2�
The value of D2 for the attractor is, therefore, given by
the slope of the log C�r� versus log r curve:

D2 � d logC�r�
d log r

�3�

The graph of log C�r� versus log r has a linear region
called the scaling region. The GPA assumes that most of
the information about the dimension is contained in the
scaling region (Babloyantz and Salazar 1985).

A ®nite sequence of EEG data exhibits an anomalous
structure in the correlation integral by overcontributing
early terms from the start in the correlation integral.
Realistic values for the average additive noise levels can
be extracted from the curves of the correlation integral
function which are used to calculate D2. Intermediate
knees in the correlation integral are related to noise
contamination. The value of r for which the knee starts
to appear can be used as an estimate of the noise scale.
The criteria to establish the maximum scale are derived
from the upper boundary of the scaling region in the
correlation function (Principe and Lo 1991). We use a
slight modi®cation of the GPA proposed by Theiler
(1986), to prevent the anomalous structure in the cor-
relation integral:

C�r;N ;M� � 2

N 2

XN

n�W

XNÿn

i�1
h�r ÿ jxi�n ÿ xij� �4�

In our study, W is determined by the ®rst local minimum
of the mutual information, i.e., by the delay time T .

When we analyze real data, the scaling region is very
often observed to oscillate around some straight line.
These oscillations may be either intrinsic sample oscil-
lations caused by the lacunarity of the attractor or ®nite
sample oscillations caused by the limited amount of data
(the edge e�ect). We analyzed a modi®cation of the GPA
proposed by DvorÏ ak and Klaschka (1990), to compen-
sate for the edge e�ect.

We calculate the largest Lyapunov exponent Ll by
applying a modi®ed version of the Wolf algorithm (Wolf
et al. 1985) and by following a proposal by Frank et al.
(1990). Essentially, the Wolf algorithm computes the
initial vector distance di of two nearby points and
evolves its length at a certain propagation time. If the
vector length df between the two points becomes too
large, a new reference point is chosen with properties
minimizing the replacement length and the orientation
change. Now, the two points are evolved again and so
on. After m propagation steps, Ll results from the sum
of the logarithm of the ratios of the vector distances
divided by the total evolving time:

L1 � l
m

Xm

i�l

ln dfi
dii

EVOLV � dt � ln 2 �bits/s� �5�

where dt; di, and df are the sampling interval and the
initial and the ®nal separations between the points in the
®ducial trajectory and in the nearest-neighbor trajectory
separated in time by ith EVOLV step, respectively (Wolf
et al. 1985).

By using the weight function proposed by Frank et al.
(1990), we improve the Ll estimate by widening the
search to allow replacements to be well-aligned points
lying further apart but still within the region of linear
dynamics:

W �r; h� � a� b
bÿ r
bÿ a

� �r� �
� cos h �6�

where b and a are distances over which the dynamics is
assumed to be linear and to be noise-dominated,
respectively, r is the radial separation between the
candidate and the evolved benchmarks, and h is the
angular separation between the evolved displacement
and the candidate replacement vectors. The numeric
parameters a; b; and c control the relative importance of
the proximity to the alignment priority.

As suggested by Principe and Lo (1991), we use the
information contained in the power spectrum of the
signal segment for the proper evolving time EVOLV. We
select the 1=e spectral frequency ± the frequency that
divides the power spectrum in the ratio of 1=e ± as the
frequency to be used to obtain the number of points for
the EVOLV step.

4 Experiments

The experiment consisted of three blocks. Each block
contained three trials which lasted for 30 s. Trials were
separated from one another by an interval of 1min.

Fig. 3. Comparison of the two slope estimates derived from 16 384
EEG data points. Dotted line: slopes corresponding to a minimum
embedding dimension of 11 derived from 16 384 EEG data points for
a resting state using Grassberger-Procaccia-Algorithm (GPA) with
DvorÏ ak and Theiler's correction. Cross symbol line: slopes corre-
sponding to a higher embedding dimension of 32 derived from the
same data using the classical GPA. The former has a larger scaling
region, which is evidence of a reliable estimate
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Nine distinct computer-generated musical sequences
were played through a computer speaker, recorded on
an analogue tape, and replayed from the tape recorder.
The sequences of music were identical for all subjects.

During block 1, both the pitch (melody) and the du-
ration (rhythm) of the music was varied. The variations
of the pitch and the duration of the musical stimuli had
1=f , white, and brown distributions; the ®rst trial con-
tained a 1=f melody and a 1=f rhythm, the second a
white melody and a white rhythm, and the third a brown
melody and a brown rhythm.

During block 2, only the pitch of the musical stimuli
was varied, with the duration being kept constant
(250ms). During block 3, only the duration was varied,
with the tone frequency being kept constant (440Hz).
These variations also had 1=f white, and brown distri-
butions. The nine distinct music inputs of the various
patterns are summarized below.

The experiments were conducted in a dimly illumi-
nated, soundproof room. The EEGs were recorded from
ten healthy subjects, ®ve men and ®ve women, aged
between 7 and 26 years (mean age 20.3 years). All sub-
jects were informed verbally about all aspects of the
experimental procedure and then asked to sign an in-
formed consent form according to the Helsinki con-
vention on human studies. No subject was taking any
medication. At the beginning of the experiment, the
subjects were given earphones to listen to the musical
stimuli and were instructed to relax in a comfortable
reclining chair with eyes closed; electrodes were attached
to their heads. They were told not to move any part of
their bodies during the recording of the EEG.

The EEGs were recorded from 6 channels using Ag/
AgCl electrodes according to the international 10±20
system. The electrical impedence was 5 kOhms for all
electrodes. To study the limbic system, which is thought
to be responsible for our emotions, the electrodes were
placed concentrically at the following areas: frontal
lobes 7 and 8 and temporal lobes 3, 4, 5, and 6 (F7, F8,
T3, T4, T5, T6) against `linked earlobes'. The data were
ampli®ed by a Nihon Kohden EEG-4421K using a time
constant of 0.1 s and a high-frequency cut-o� of 35 Hz.
The data were digitized using an IBM personal com-
puter (PC). The sampling frequency was 400Hz for all
trials. For comparison, data were collected for 30 s
without any sound; this was the `rest state'.

Twenty seconds of EEG data (only 8000 data points)
were selected for the computation because most subjects
commented that they could concentrate on each stimu-
lus for about 20 s. After experiment, the subjects had to
record informally their subjective ratings regarding their
interest elicited by the musical stimuli.

The di�erences of the nonlinear measures between
groups were analyzed using analysis of variance (AN-
OVA) and subsequent t-test.

5 Results

First, we constructed phase spaces using the delay
coordinates proposed by Takens. We used the time

delays estimated by the method of mutual information
to reconstruct the attractor. The time delay, T, in each
case was about 25±30ms, which was determined from
the ®rst local minimum of the mutual information. D2s
were calculated by a slightly modi®ed version of the
GPA. Embedding of 11±18 were used for all subjects.
The slope of the correlation integral curve in the scaling
region was estimated by a least-squares ®tting method
(Fig. 3).

All the subjects gave ratings of interest right after the
experiment. They all agreed that the musical stimulus
with both a 1=f melody and a 1=f rhythm was more
pleasing than the other music. This con®rms that the
pleasure from music is partly related to the 1=f spectral
density.

In all the experiments, the nonlinear invariant mea-
sures had nonuniform distributions all over the head.
For the block 1 experiments, D2s with their standard
deviations were calculated in all channels for the 1=f ,
white, and brown music (melody and rhythm) and for
the rest state. The subjects had lower values of D2 at the
T6 channel (a right temporal electrode) when they were
listening to 1=f music, as shown in Fig. 4 (F tests,

Fig. 4. Mean values of D2s for 10 subjects, with standard deviations,
derived from time series of EEGs at T6 for the rest state and various
music states (block 1)

Table 1. Distinct music inputs of various patterns

Melody variations Rhythm variations

Block 1
1/f 1/f
White White
Brown Brown

Block 2
1/f Constant
White Constant
Brown Constant

Block 3
Constant 1/f
Constant White
Constant Brown
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F �3; 36� � 6:78; P < 0:01). The di�erences in D2s be-
tween 1=f music and white or brown music were about
1:0±1:5 units, with the white and brown music inducing
somewhat higher D2s at that electrode. D2 for 1=f music
is signi®cantly lower than that for white music (pairwise
t-test, P < 0:01), for brown music (P < 0.01) and for the
rest state (P < 0:01). The di�erences of D2 between the
rest state and white music and brown music are also
statistically signi®cant (white music, P < 0:05; brown
music, P < 0:01). However, D2 for white music at the T6

channel is not statistically di�erent from that for brown
music (P > 0:05). Other channels showed no signi®cant
di�erences between the di�erent musical stimuli
�P > 0:05�. Since all the subjects reported that 1=f was
the most pleasing music among the di�erent stimuli, we
can infer from this result that the emotional state of
musical pleasure corresponds to a lower dimension of
the attractor.

The other nonlinear invariant measure, the largest
Lyapunov exponent Ll, was calculated for all subjects in
all channels. The evolving time, EVOLV, was selected as
the 1=e spectral frequency and was about 200ms. The
calculation of Ll naturally depended on the time over
which the trajectory was evaluated. After 200 propaga-
tion steps, the values converged in an interval of ca.0.9%
around the ®nal value of Ll.

The average values of the Lls and their standard de-
viations at the T6 channel for various musical states
(melody and rhythm variations) and the rest state are
shown in Fig. 5. The average values at that channel are
lower for the 1=f music state than for the other states
�F �3; 36� � 5:61; P < 0:01�. The di�erences of Ll be-
tween 1=f music and white and brown music states at
the T6 channel are very signi®cant, about 1:0±1:5 bits/s.
Ll for 1=f music is signi®cantly lower than that for white
music �P < 0:01�, for brown music �P < 0:01� and for
the rest state �P < 0:01�. The di�erences of Ll between
the rest state and white and brown music are also sta-
tistically signi®cant (white music, P < 0:05; brown mu-

sic, P < 0:05�. However, Ll for white music is not
statistically di�erent from that for brown music
�P > 0:05� like D2. Other channels showed no signi®cant
di�erences between the di�erent musical stimuli. The
result for Ll is very consistent with that for D2. This
implies that the emotional state of musical pleasure
corresponds to a less chaotic attractor.

Figures 6 and 7 show the average values of D2s and
Ll, with their standard deviations, at the T6 channel for
the EEGs in blocks 2 and 3. We can see that the subjects
had a reduced D2 and Ll if the melody or rhythm was
1=f . In the case of D2, F �2; 27� � 3:39�P < 0:05� for
melody variations, and F �2; 27� � 5:63�P < 0:01� for
rhythm variations. For melody variations, D2 for 1=f
music is signi®cantly lower than that for white
�P < 0:05� and brown �P < 0:05� music. However, D2

for white music is not di�erent from that for brown
music �P > 0:05�. For rhythm variations, D2 for 1=f
music is also signi®cantly lower than that for white

Fig. 5. Mean values of L1s for 10 subjects, with standard deviations,
derived from time series of EEGs at T6 for the rest state and various
music states (block 1)

Fig. 6. Comparison of mean values of D2s for 10 subjects, with
standard deviations, derived from time series of EEGs at T6 for
melody variations and for rhythm variations (block 2 vs 3)

Fig. 7. Comparison of mean values of L1s for 10 subjects, with
standard deviations, derived from time series of EEGs at T6 for
melody variations and for rhythm variations (block 2 vs 3)
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�P < 0:01� and brown �P < 0:01� music. D2 for white
music is not di�erent from that for brown music
�P > 0:05�.

For L1, F �2; 27� � 3:36�P < 0:05� for melody varia-
tions and F �2; 27� � 5:51�P < 0:01� for rhythm varia-
tions. For melody variations, L1 for 1/f music is
signi®cantly lower than that for white �P < 0:05� and
brown �P < 0:05� music. However, L1 for white music is
not di�erent from that for brown music �P > 0:05�. For
rhythm variations, L1 for 1/f music is also signi®cantly
lower than that for white �P < 0:01� and brown
�P < 0:01� music. However, the di�erences of L1 be-
tween white music and brown music is not signi®cant
�P > 0:05�.

In particular, the changes in the measures were more
distinct for rhythm than for melody variations. By
comparing the results for block 2 with block 3, we can
see that the variation of the rhythm contributes more to
the pleasing response to musical stimuli than the varia-
tion of the melody does.

6 Discussion

The reason interesting music has 1=f spectra for its pitch
and its duration is partially answered by the `theory of
aesthetic value' propounded by the American mathema-
tician Birkho�. Birkho�'s theory states that for a work
of art to be pleasing and interesting, it should be neither
too regular and predictable nor too irregular and
unpredictable (Birkho� 1933; Schroeder 1991). Music
is aesthetically interesting if it has a balanced mixture
between recognition and surprise, i.e., order and com-
plexity. One interpretation of this is that the power
spectrum of the function should behave neither like
boring brown music, with a frequency dependence of
1=f 2, nor like unpredictable white music, with a
frequency dependence of 1=f 0. From our experimental
results, we can assume that people tend to guess the
pattern of successive notes either consciously or uncon-
sciously while listening to music. They enjoy music with
both recognition and surprise. Hence, they will soon
hate or be bored with the music if it is too hard or too
easy to predict the next note.

To understand in more detail the brain dynamics
during music perception, we calculated two nonlinear
invariant measures after dividing the EEG data into two
consecutive segments (each with 4000 data for 10 s). The
®rst segment had higher values of D2 and L1 than the
second one did. From this result, we may infer that we
try to recognize the pattern of the music when we start to
listen to the music. Therefore, we have more complex
and chaotic brain dynamics in the earlier segment than
in the later one, which is the phase in which music is
enjoyed after the music pattern has been recognized in
the earlier phase.

A nonlinear analysis of the EEG detected signi®cant
di�erences between the brain dynamics of di�erent
emotional states. Our results con®rmed that the EEG,
the excitation of thousands of neurons, is a good indi-
cator of the brain dynamics of perception.

Based on several previous reports (Freeman 1991;
Birbaumer et al. 1994), the reduction of D2 during 1=f
music perception can be explained by cell assemblies.
Cell assemblies are groups of cells with plastic synapses
distributed at any possible distance across the neocortex
with excitatory connections among each other (Birbau-
mer et al. 1994). D2 of the human EEG re¯ects the
number of independently active neuronal cell assemblies
necessary to execute a particular task and mental ac-
tivity. The lower values of D2 for 1=f music means that
the subjects exhibited more synchronous activities of
fewer cell assemblies when listening to interesting music.
This is analogous to the EEGs from the array of elec-
trodes suddenly becoming more regular and ordered for
a few cycles during perception of a familiar scent studies
of animal olfactory systems (Freeman 1991). In contrast,
unpredictable white music and boring brown music ac-
tivate more independent cell assemblies in large cortical
and subcortical regions.

The results for L1 indicate that the attractors have
less chaotic dynamics during 1=f music perception. It is
reasonable that the results of L1s all over the head
should be very similar to those of D2. (However, this is
not always correct, of course.) D2 may indicate the
neurophysiological basis of the richness of associations
(Birbaumer et al. 1994). Rich associations can make the
brain dynamics more chaotic, and chaos in the brain
may be an important factor in changing brain dynamics,
representing a tendency of cell assemblies to shift
abruptly from one complex activity to another in re-
sponse to small inputs.

We obtained a fruitful correlation between emotional
brain states and nonlinear invariant measures at the
right temporal T6 electrode. The right temporal lobe,
especially the limbic system, is thought to be responsible
for the perception of complex acoustic stimuli. Previous
work, however, reported high correlations at the frontal
electrodes by estimating the EEG dimensions (Birbau-
mer et al. 1994). However, we did not measure the EEG
at the frontal electrodes owing to experimental circum-
stances. Further experiments will be done later.

Although we detected a signi®cant correlation be-
tween the invariant measures and the emotional states
only at the right temporal lobe, we cannot assert that the
right temporal lobe is the precise location in the brain of
the cell assemblies responsible for music perception
because the activated brain regions change their inter-
actions continuously during music perception. Electro-
physiological studies have suggested that sensory,
perceptual, and cognitive functions mediating tonal in-
formation processing in music should be neurologically
dissociable (Tramo et al. 1990). Additionally, the spatial
resolution of the EEG is not su�cient to determine the
precise locations of brain activities.

Comparing the results of block 2 with those of block
3, we can see that the subjects responded more to the
rhythm variations than to melody ones. This may be due
somewhat to the fact that Korean popular music tradi-
tionally has a much strong emphasis on rhythms. Ad-
ditionally, we analyzed the EEG data with the linear
method of power spectra. All the magnitudes in the
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frequency ranges of the d�1±5Hz�, h�5±8Hz�,
a�8±13Hz�, and b�13±30Hz� waves were added up in
order to see if any frequency range could be related to a
particular emotional state. However, no correlation was
found, and the deviation was too small to treat the sum
of magnitudes as an important parameter.

In our study, we suggested the possibility of using
nonlinear analysis to quantify emotion during music
perception. This approach gives us an insight into un-
derstanding the mechanism of emotional changes in the
brain with a view to chaos. A nonlinear analysis pro-
vides a promising tool for detecting relative changes of
emotion during the perception of music; D2 and L1 of
the chaotic attractor of the EEG at the right temporal
lobe in the human brain decrease as the pleasure from
the music increases. Based on nonlinear analysis, rhythm
variations contribute more to the pleasing response to
music than melody variations do. This result may pro-
vide a fruitful clue to understanding the dynamical
mechanism of music perception and the modeling of
music perception.
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