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WE INVESTIGATED PEOPLES’ ABILITY TO ADAPT TO THE
fluctuating tempi of music performance. In Experiment 1,
four pieces from different musical styles were chosen, and
performances were recorded from a skilled pianist who
was instructed to play with natural expression. Spectral
and rescaled range analyses on interbeat interval time-
series revealed long-range (1/f type) serial correlations
and fractal scaling in each piece. Stimuli for Experiment 2
included two of the performances from Experiment I,
with mechanical versions serving as controls. Participants
tapped the beat at 74- and s-note metrical levels, suc-
cessfully adapting to large tempo fluctuations in both
performances. Participants predicted the structured
tempo fluctuations, with superior performance at the
Ya-note level. Thus, listeners may exploit long-range cor-
relations and fractal scaling to predict tempo changes in
music.
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Fractal Tempo Fluctuation and Pulse Prediction

A piece of music is never performed precisely as notated.
Musicians produce intentional and unintentional
tempo changes in performance (Palmer, 1997) that
highlight important aspects of musical structure
(Shaffer & Todd, 1987; Sloboda, 1985; Todd, 1985) and
convey affect and emotion (Bhatara, Duan, Tirovolas, &
Levitin, 2009; Chapin, Large, Jantzen, Kelso, &
Steinberg, 2009; Sloboda & Juslin, 2001). Despite such
fluctuations in tempo, listeners perceive temporal regu-
larity, including pulse and meter (Epstein, 1995; Large
& Palmer, 2002). Pulse and meter embody expectancies
for future events, and deviations from temporal

expectancies are thought to be instrumental in musical
communication (Large & Palmer, 2002).

One theoretical framework explains pulse and meter
as neural resonance to rhythmic stimuli (Large, 2008).
Neural resonance predicts spontaneous oscillations,
entrainment to complex rhythms, and higher order res-
onances at small integer ratios, leading to the perception
of meter. Phase entrainment alone does not provide suf-
ficient temporal flexibility to accommodate large
changes in tempo. Therefore, several oscillator models
have included tempo adaptation as a parameter dynam-
ics (e.g., Large & Kolen, 1994; McAuley, 1995). Such
models predict that people track tempo fluctuations;
thus, adaptation of oscillator frequency happens in
response to changes in stimulus tempo. The empirical
literature supports the case for nonlinear resonance (see
Large, 2008), and a number of findings support tempo
tracking (e.g., Dixon, Goebl, & Cambouropoulos, 2006).
However, recent results have called into question the
intrinsic periodicity of pulse, and the notion that people
follow, or track, changes in tempo.

As measured by continuation tapping (e.g., Stevens,
1886) spontaneous oscillations are pseudoperiodic.
When hundreds of successive intervals are collected
and a spectral analysis is applied to the resultant time-
series, one typically finds that the spectrum is charac-
terized by a linear negative slope of log-power vs.
log-frequency (e.g., Lemoine, Torre, & Delignieres,
2006; Madison, 2004 ). Fractal, or 1/f structure also has
been reported in synchronization with periodic
sequences (Chen, Ding, & Kelso, 1997; Pressing &
Jolley-Rogers, 1997). Thus, longer term temporal fluc-
tuations in endogenous oscillation and entrainment
exhibit 1/f structure, a common feature in biological
systems (West & Shlesinger, 1989, 1990) and psycho-
logical time-series (Gilden, 2001; Van Orden, Holden,
& Turvey, 2003). Pulse in music performance is not
purely periodic either, and research has revealed impor-
tant relationships between music structure and pat-
terns of temporal fluctuation (for a review, see Palmer,
1997). For example, rubato marks group boundaries,
especially phrases, with decreases in tempo and dynam-
ics and amount of slowing at a boundary reflecting the
depth of embedding (Shaffer & Todd, 1987; Todd,
1985). Patterns of temporal fluctuation have further

Music Perception VOLUME 26, ISSUE 5, PP. 401413, 1SSN 0730-7829, ELECTRONIC ISSN 1533-8312 © 2009 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. ALL
RIGHTS RESERVED. PLEASE DIRECT ALL REQUESTS FOR PERMISSION TO PHOTOCOPY OR REPRODUCE ARTICLE CONTENT THROUGH THE UNIVERSITY OF CALIFORNIA PRESS’S
RIGHTS AND PERMISSIONS WEBSITE, HTTP://WWW.UCPRESSJOURNALS.COM/REPRINTINFO.ASP. DOI:10.1525/MP.2009.26.5.401



402  Summer K. Rankin, Edward W. Large, & Philip W. Fink

been shown to reflect metrical structure (Sloboda,
1985). However, it has not been established whether
pulse in music performance exhibits 1/f structure.

Numerous studies have probed the coordination of
periodic behavior with periodic auditory sequences
(for a review, see Repp, 2005). Between 250 ms and
2000 ms, variability in interval perception and produc-
tion increases with interval duration, following Weber’s
law (Michon, 1967); at intervals larger than 2000 ms or
smaller than 250 ms, variability increases dispropor-
tionately. Asynchronies are less variable in 1:n synchro-
nization; this has been termed the subdivision benefit.
Additionally, one typically observes an anticipation ten-
dency, such that participants’ taps consistently precede
the stimulus. Anticipation tendency is significantly
decreased or absent in entrainment to complex
rhythms such as music (see Repp, 2005).

People adapt to phase and tempo perturbations of
periodic sequences (Large, Fink, & Kelso, 2002; Repp &
Keller, 2004). For randomly perturbed and sinusoidally
modulated sequences, participants’ intertap intervals
(ITTs) echo tempo fluctuations at a lag of one (Michon,
1967; Thaut, Tian, & Azimi-Sadjadi, 1998); this behav-
ior is referred to as tracking. Drake, Penel, and Bigand
(2000) confirmed that people are readily able to coor-
dinate with temporally fluctuating music performances.
Dixon et al. (2006) asked listeners to rate the corre-
spondence of click tracks to temporally fluctuating
music excerpts and to tap along with the excerpts.
Smoothed click tracks were preferred over
unsmoothed, and tapped IBIs were smoother than the
veridical IBI curves. This observation is consistent with
the hypothesis of tempo tracking dynamics for nonlin-
ear oscillators (Large & Kolen, 1994). However, in an
expressive performance of a Chopin Etude, Repp
(2002) found strong lag-0 crosscorrelation between lis-
teners’ ITIs and the interbeat intervals (IBIs), showing
that participants predict tempo changes. Prediction per-
formance increased across trials for music but not for
the series of clicks that mimicked the expressive timing
pattern, suggesting that musical information provided
a structural framework that facilitated pattern learning.

Meter may be another factor in temporal prediction.
In a mechanical excerpt of the Chopin Etude, both per-
ception and synchronization measures exhibited con-
sistent patterns of fluctuation across trials and
participants, reflecting not only phrase structure but
also metrical structure (Repp, 2002, 2005). In entrain-
ment with complex rhythms containing embedded
phase and tempo perturbations, adaptation at one
tapping level reflected information from another met-
rical level (Large et al., 2002). In another study, phase

perturbations at subdivisions perturbed tapping
responses despite the fact that both task instructions
and stimulus design encouraged listeners to ignore the
perturbations (Repp, 2008). Such findings are consis-
tent with the hypothesis of a network of oscillators of
different frequencies, coupled together in the percep-
tion of a complex rhythm (cf. Large, 2000; Large &
Jones, 1999; Large & Palmer, 2002).

The current research considered pseudoperiodicity of
pulse, coordination of pulse with temporally fluctuating
rhythms, and the role of meter in these phenomena.
Experiment 1 assessed whether patterns of temporal
fluctuation in music performances exhibit long-range
correlation and fractal scaling. Experiment 2 used two
of these performances as stimuli, and mechanical ver-
sions were included as controls, in a synchronization
task. Participants were asked to tap the beat at Ys-note
and “s-note metrical levels on different trials for both
versions of both pieces. We asked whether listeners
would track or predict tempo fluctuations.

Experiment 1: Fractal Structure
in Piano Performance

Experiment 1 investigated whether long-range cor-
relation and fractal scaling were evident in the tempo
fluctuations of expressive music performance. Long-
range correlation and fractal scaling are two properties
that are characteristic of fractal temporal processes
(Mandelbrot, 1977), and have been observed in many
natural systems (Chen et al., 1997; Dunlap, 1910; Hurst,
1951; Mandelbrot & Wallis, 1969; van Hateren, 1997;
Yu, Romero, & Lee, 2005). Long-term correlations of a
persistent nature, or memory, can be seen in a time
series if the adjacent values of the stochastic compo-
nent are positively correlated. Long-range correlation
implies fractal structure. Scaling means that measured
properties of the time series depend upon the resolu-
tion of the measurements, and can be seen in a scaling
function, which describes how the values change with
the resolution at which the measurement is done. Both
long-range correlation and fractal scaling imply self-
similarity: the future resembles the past and the parts
resemble the whole.

We measured tempo fluctuations by comparing the
performance with the music score and extracting
beat times. We then performed fractal analyses
(Bassingthwaighte, Liebovitch, & West, 1994; Feder,
1988) on the IBIs to look for long-range correlation.
Such analyses require long time-series, so we recorded
and analyzed entire performances including hundreds
of beats (Delignieres et al., 2006), and assessed structure



at different time scales (i.e., different metrical levels).
To assess whether such structures would be found
across music styles, we collected performances of four
pieces of music from different styles that contain differ-
ent rhythmic and structural characteristics.

Method

STIMULI

The stimuli consisted of four music pieces: (1) Aria
from Goldberg Variations, by J. S. Bach; (2) Piano
Sonata No. 8 in C minor Op. 13, Mvt. 1, by Ludwig van
Beethoven (measures 11-182); (3) Etude in E major,
Op. 10, No. 3 by Frédéric Chopin; (4) “I got rhythm” by
George Gershwin. The pieces were chosen as exemplars of
different music styles: baroque (Bach), classical
(Beethoven), romantic (Chopin), and jazz (Gershwin).
These styles differ in meaningful ways, including rhyth-
mic characteristics, level of syncopation, absolute
tempo, and amount of tempo fluctuation. Chopin’s
Etude in E major (the first 5 measures) has been stud-
ied extensively by Repp (1998).

TASK

A piano performance major from The Harid
Conservatory was paid $100 to prepare all four pieces
as if for a concert, including natural tempo fluctua-
tions. The pianist was instructed not to use any orna-
mentation or add notes beyond what was written in the
score. The pieces were recorded on a Kawai CA 950 dig-
ital piano that records the timing, key velocity, and
pedal position via MIDI technology. The pianist was
allowed to record each piece until she was satisfied with
a performance, and then chose her best performance,
which was analyzed as described next.

ANALYSIS
Each performance was matched to its score using a cus-
tom dynamic programming algorithm (Large, 1992;
Large & Rankin, 2007). Chords were grouped by the same
algorithm and onset time was defined to be the average of
all note onset times in the chord. We extracted beat times
as the times of performed events that matched events in
the score. Beats to which no event corresponded were
interpolated using local tempo. Beat times were extracted
at three metrical levels (V1s-note, Ys-note, Ya-note'), and
IBIs were calculated by subtracting successive beat times,

The Beethoven piece was composed of running ¥s-notes. Due to
the fast tempo of the performance, in order to compare it with the
other three pieces, the notated ¥s-note, Y4-note, and Y2-note levels
of the Beethoven were extracted and are referred to as Yie6-, ¥s-, and
Ya-note levels, respectively.
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providing an IBI time-series for each performance at each
of the three levels. We measured entire music perform-
ances and assessed structure at different time scales, which
in our case means different levels of metrical structure.

Mean and variance do not accurately characterize self-
similar temporal processes because they do not take into
account the sequential aspects of fluctuations or the
presence of memory in a process. We considered sequen-
tial aspects of temporal fluctuations in performance with
the goal of determining whether these fluctuations are
random and independent or if they have memory, which
would imply that the underlying process exhibits fractal
structure. Long-range correlations in the IBI time-series
were assessed with both a power spectral density analysis
and a rescaled range analysis (Bassingthwaighte et al.,
1994; Feder, 1988; Rangarajan & Ding, 2000). For the
spectral density analysis, power was plotted against fre-
quency on a log-log plot, and a linear correlation was
used to find the slope, —o. of the best-fit line. A straight
line on a log-log plot suggests that the spectral density,
S(f), scales with frequency, f; as a power law with S(f) ~
f~*. The time-series is considered to have long-range
correlation when o is different from zero (Malamud &
Turcotte, 1999). A second, theoretically equivalent analy-
sis was performed using Hurst’s rescaled range (R/S)
analysis (Mandelbrot & Wallis, 1969). The R/S analysis
yields a parameter, H, as a measure of fractal dimension.
H is theoretically related to o by the identity oo =2H — 1.
H can assume any value between 0 and 1. When H = .5
the points in the time-series are uncorrelated, H > .5
indicates persistence (i.e., deviations are positively cor-
related between time steps), and H < .5 indicates anti-
persistence (i.e., deviations are negatively correlated
between consecutive time steps). Statistical significance
of the parameter H was obtained by performing the
analysis on 1000 runs of the shuffled data (randomly
ordered versions of the same data set) and comparing
the results. Shuffling the data eliminates correlational
structure and yields a result near H = .5. Both the spec-
tral method and the R/S method can be susceptible to
artifacts (e.g., in estimation of the spectral slope), such
that reliance on either method in isolation can lead to
faulty conclusions. Therefore, we use both methods and
require convergence to establish long-range correlation
(Rangarajan & Ding, 2000).

Results

Results of the beat extraction process are shown in
Table 1 for each of three metrical levels along with
tempo. The shortest time-series yielded 143 events
(Gershwin, Ys-note level) while the longest time-series
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TABLE 1. Mean Fractal Statistics—Performance Data.

# Events H
Tempo
Piece Y16 Vg Yy Y16 Vg Va IBI / Ya-note
Bach 767 384 192 .68% 73%% 76%* 1259 ms
Beethoven 1945 973 487 69%* T T2* 487 ms
Chopin 611 306 153 .90%* .92%* 94%* 1383 ms
Gershwin 572 286 143 75%* 75%* 76%* 626 ms

Note. Number of events and mean H for the interbeat intervals (IBIs) of each performance at three metrical levels. The mean tempo for each piece is listed in the last column.

p <015 p < .001

yielded 1945 events (Beethoven, Y16-note level). Thus,
each time-series had a sufficient number of data points
for fractal analysis (Deligniéres et al., 2006). Most beats
corresponded to note onsets and others were inserted
in the time-series as described above. At the Ys-note
level, a total of 20 beats (5.2%) were added to the Bach,
2 beats (0.7%) to the Chopin, 10 beats (1.5%) to the
Beethoven, and 15 beats (5.2%) to the Gershwin.? More
events were added at the Yis-note level, while fewer
were added at the Y4-note level. At the ¥s- and Ys-note
levels, the IBI time-series for the first 5 measures of the
Chopin was significantly correlated with Repp’s typical
timing profile (1998) for this piece, r(16) = .86, p < .001
(Ys-note), r(7) = .54, p = .13 (Ya-note).

Spectral density plots for the Ys-note level IBI time-
series are shown in Figure 1 (A-D). For each piece, log
power decreased with log frequency in a manner con-
sistent with a 1/f power-law distribution. Using linear
regression, all slopes were estimated to be different
from zero, which implies long-range memory processes.
The results for the R/S analysis are shown in Figure 1
(E-H). All Hurst coefficients were significantly greater
than the shuffled data (p < .001), which is indicative of
persistent (nonrandom) processes that can be charac-
terized as fractal. Thus, the spectral and R/S analyses
revealed long-range memory processes.

Next, we considered fractal scaling, applying spectral
analyses and R/S analyses at each of the three metrical
levels. Table 1 provides H values at Y16-, s-, and Y4-note
levels for each piece. The R/S analysis exhibits a slightly
increasing H value at each level. This is expected, and it
indicates that the amount of structure in the temporal
fluctuations does not change with metrical level. This
result is considered to be a clear indication of fractal

Analysis of a created fractal time series containing the same vari-
ance and number of points showed no effect on estimates of oo and H
following removal of the same number of points as in our experiment.

scaling (Malamud & Turcotte, 1999). The meaning of
this result is underscored in Figure 4 below, which
shows tempo maps for the Chopin at each of the three
metrical levels for visual comparison. The same struc-
ture is apparent, regardless of the time scale at which
the process is measured.

Discussion

Our analysis of IBIs revealed both long-term correla-
tion and fractal scaling. Long-term correlation (persist-
ence) means that fluctuations are systematic, such that
increases in the tempo tend to be followed by further
increases, and decreases followed by further decreases.
Moreover, IBIs early in the time-series are correlated
with IBIs found much later in the time-series, implying
structure in the performer’s dynamic expression of
tempo. Although differences between the music styles
were apparent, all were significantly fractal, suggesting
that this finding generalizes across musical and rhyth-
mic styles. We found similar H values at each metrical
level (Table 1), showing similar fluctuations at each
time scale. The finding of fractal structure is considered
evidence against a central time-keeper mechanism (cf.
Madison, 2004), a functional clock that produces near-
isochronous intervals with stationary, random variabil-
ity (e.g.,Vorberg & Wing, 1996). Admittedly, our pianist
did not intend to produce isochronous intervals.
However, if the intention was to play the same pieces
without tempo fluctuation, the timing profiles would
likely correlate with those of the expressive perform-
ances (Penel & Drake, 1998; Repp, 1999), and if so, they
would display similar fractal structure. Chen, Ding, &
Kelso (2001) proposed that long-range correlated tim-
ing fluctuations are likely the outcome of distributed
neural processes acting on multiple time scales.

As discussed above, there are important relationships
between music structure (such as phrasing patterns)
and patterns of temporal fluctuation (see Palmer,
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FIGURE 1. Spectral density (A-D) and rescaled range (E-H) analyses of the interbeat intervals (IBls) at the /s-note level of the performances for

Bach (A, E), Beethoven (B, F), Chopin (C, G), and Gershwin (D, H).

1997). Fractal structures also include embedded regu-
larities (i.e., scaling), so the types of regularities we
observe here are not different from previously observed
patterns; rather, they represent a different approach to
measuring music structure. This approach facilitates
the analysis of long performances, and does not require
measurement of—or correlation with—other aspects

of music structure. However, such correlations may
be assumed to exist based on previous studies.
Additionally, we found correlation with Repp’s typical
timing profile for the Chopin, so we know that they
exist in these data as well. Moreover, 1/f distributions
have been shown along other musical dimensions,
including frequency fluctuation (related to melody) for
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a wide variety of musical styles including classical, jazz,
blues, and rock (Voss & Clarke, 1975). Thus, the meas-
urement of structure along one dimension may reflect
structure along other dimensions. It also is possible that
there would be individual differences in the amount of
fractal structure produced by different performers; this
issue is currently under investigation. In Experiment 2
we consider the implications of 1/f structure of per-
formance tempo for temporal coordination with
expressively performed rhythms.

Experiment 2: Synchronizing with Performances

The aim of Experiment 2 was to understand how peo-
ple adapt to naturally fluctuating tempi in music per-
formance. Specifically, we asked to what extent people
track and/or predict tempo changes.

Method

STIMULI
Two of the four pieces analyzed in Experiment 1,
Goldberg Variations, Aria by J. S. Bach and Etude in E
major, Op. 10, No. 3 by Frédéric Chopin, were chosen as
stimuli for Experiment 2 because they had similar mean
tempi but different rhythmic characterizations and lev-
els of tempo fluctuations. The expressive performances
recorded in Experiment 1 were used as one set of
stimuli, and controls (mechanical performances) were
created from the score using Cubase, running on a
Macintosh G3 450 MHz computer. No timing or
dynamic changes/fluctuations were contained in the
mechanical versions; each note value was produced as it
appeared in the score. The tempo was set to the mean
tempo of the corresponding expressive version (Bach
Ya-note IBI = 1259 ms; Chopin Ys-note IBI = 1383 ms).

PARTICIPANTS

Seven right-handed volunteers from the FAU commu-
nity participated (1 female, 6 male). Music training
ranged from zero to eight years. Each participant signed
an informed consent form that was approved by the
Institutional Review Board of FAU. One of the partici-
pants was excluded from the analysis due to incomplete
data.

PROCEDURE
Participants were seated in an IAC sound-attenuated
experimental chamber wearing Sennheiser HD250 lin-
ear II headphones. The music was presented by a custom
Max/MSP program running on a Macintosh G3 com-
puter. Sounds were generated using the “Piano 1” patch
on a Kawai digital CA 950 piano. Participants tapped
on a Roland Handsonic HPD-15 drumpad that sent the

time and velocity of the taps to the Max/MSP program.
An induction sequence of 8 beats was provided to illus-
trate the correct phase and period (Y4- or “s-note) at
which to tap. Continuing from the induction sequence,
participants tapped the beat with their index finger on the
drumpad for the entire duration of the piece. Six trials
were collected for the mechanical and expressive versions
at both the Y4- and “s-note level. To minimize learning
effects trials were blocked by piece, performance, and
metrical level. Data for different pieces were collected on
different days within one week, and the order of pieces
was randomized. On each day, tapping with mechanical
performances was recorded first, and “s—note trials were
followed by Ys-note trials. This procedure was intended to
maximize learning of each piece during the mechanical
trials and minimize learning while tapping to expressive
performances (cf. Repp, 2002).

ANALYSIS
Phase, ¢,, of each tap relative to the local beat was cal-
culated as

o= BB

B m_B m—1
where T, is the time of the tap, B,, is the time of the
closest beat in the musical piece, and B,, _; is the pre-
ceding beat, and ¢, is the relative phase of tap n. The
resulting variable is circular on the interval (0, 1), and
was reset to the interval (—.5, .5) by subtracting 1 from
all values greater than 0.5. Although past research often
has used mean and standard deviation of timing errors,
those methods ignore the circular nature of relative
phase and treat —.5 and .5 as describing different values.
Instead, circular statistics (Batschelet, 1981; Beran,
2004) were used to calculate the mean and angular
deviation (analogous to standard deviation of a linear
variable) of relative phase. In addition to the mean and
angular deviation of relative phase, ITI (defined as the
time between successive taps) and relative phase were
analyzed using the spectral density and R/S analyses
used in Experiment 1.

Finally, a prediction index and a tracking index
(Repp, 2002) were used to describe how participants
adapted to changes in tempo. These measures are based
on crosscorrelation between the ITIs and the IBIs of the
expressive performance. The prediction index (r,*) is a
(normalized) lag-0 crosscorrelation of ITIs with IBIs; it
therefore, indicates how well participants predict when
the next beat will occur.

. (r,—ac)

r =
0 (I-ac,)



Where 1, is the lag-0 crosscorrelation between ITI and
IBI, and ac, is the lag-1 autocorrelation of the IBIs.
Perfect anticipation of tempo changes results in ¥ =
The tracking index (r*) is a (normalized) lag-1
crosscorrelation of ITI with IBI; and therefore, indi-
cates the extent that participants track tempo change.

. (n—ac)
r] -
(I-ac,)

Where r, is the lag-1 correlation between ITT and IBI,
and ac, is the lag-1 autocorrelation of the IBIs. If the
participants are responding to the tempo fluctuations
by matching the previous IBI, they will lag the expres-
sive performance by one beat (e.g., Michon, 1967),
thus, r,* = 1.
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Results

MEAN AND ANGULAR DEVIATION OF RELATIVE PHASE

Four-way ANOVAs, with factors Performance Type
(mechanical, expressive), Metrical Level (Y-, s-note),
Piece (Bach, Chopin), and Trial (X 6) were used to ana-
lyze the mean and angular deviation of relative phase.
Pairwise t-tests were used for posthoc comparisons.
Because no significant effects of Trial or interactions
containing Trial were found, implying that no learning
had taken place, the ANOVAs were rerun without the
factor Trial, as three-way ANOVAs. Mean relative phas-
es, shown in Figure 2 (A, B), were relatively small—less
than 3% of the IBI—indicating that participants were
able to do the task. We did not observe an anticipation
tendency; on average, taps fell slightly after the beat,
regardless of performance type. Statistical testing

Relative Phase Analysis
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FIGURE 2. Mean (A, B) and angular deviation (C, D) of relative phase, averaged across the entire performance, as a function of performance type
for each piece (A, C) and tapping level (B, D). Error bars represent one standard error.
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FIGURE 3. Prediction and tracking indices for the expressive versions of Bach and Chopin at the '/s- and /a-note levels. Error bars represent one

standard error.

revealed that mean relative phase was greater for
Chopin than for Bach, F(1, 5) = 17.00, p < .0l.
Significant two-way interactions were also found for
Piece and Performance Type, F(1, 5) = 31.75, p < .01,
and Performance Type and Metrical Level, F(1, 5) =
5.42, p < .05. These interactions arose because mean
relative phase was greater in expressive performances
for Chopin (p <.001), and mean relative phase was sig-
nificantly greater for the Ys-note level in the expressive
performances (p < .02). No other significant effects
were found.

For angular deviation of relative phase, shown in
Figure 2 (C, D), the ANOVA revealed significant main
effects of Performance Type, F(1, 5) = 214.26, p < .001,
Piece, F(1, 5) = 18.18, p < .01, and Metrical Level, F(1,
5) =137.79, p < .001. Mechanical was less variable than
expressive; Bach was less variable than Chopin, and the
Ya-note level was less variable than the Ys-note level. A
significant two-way interaction was found between
Performance Type and Piece, F(1, 5) = 38.64, p < .01.
Both pieces were more variable for the expressive per-
formance (p <.001), and the Chopin expressive was sig-
nificantly more variable than the Bach expressive
performance (p < .001). Also, a significant two-way
interaction was found between Performance Type and
Metrical Level, F(1, 5) = 81.56, p < .001; the expressive
performances were much more variable than the
mechanical at both the V4- and Vs-note levels (p <.001),
and the Ys-note variability for the expressive perform-
ance was significantly greater than the Ys-note variabil-
ity for the expressive (p < .001). The results for the
mean and angular deviation of relative phase indicate
that overall, participants were able to entrain. For the

expressive performances, participants were more accu-
rate and more precise at the Ys-note level. Moreover,
participants were less accurate and more variable for
the Chopin expressive performance, whose IBIs showed
greater variability than the Bach. No other significant
main effects or interactions were found.

PREDICTION AND TRACKING

Four-way ANOVAs, with factors Index (prediction,
tracking), Metrical Level (Y-, Ys-note), Piece (Bach,
Chopin), and Trial (X 6) were used to analyze the predic-
tion and tracking indices. Because no significant effects
of trial or interactions containing trial were found,
implying that no learning had taken place, the ANOVAs
were rerun without the factor trial, as three-way
ANOVAs. Pairwise t-tests were used for posthoc compar-
isons. Prediction and tracking indices, shown in Figure 3,
were used to identify patterns of anticipation and reac-
tion to changes in tempo. Because changes in tempo are
required for the calculation of these measures, they were
only calculated for the expressive performances.
Significant main effects of Piece, F(1, 5) =70.95, p <.001,
and Index, F(1,5) =50.18, p <.001, were found, and their
interaction was significant, F(1, 5) = 19.76, p < .01. In
general, participants predicted tempo changes and pre-
diction was more efficient for the Chopin than for the
Bach. No other two-way interactions were significant.
However, the three-way interaction between, Index,
Level, and Piece was significant F(1, 5) = 10.69, p < .02.
For the Chopin, prediction was significantly stronger
than tracking at both metrical levels (p < .01). For the
Bach, prediction was significantly greater than tracking
at the Ys-note level (p < .05), but at the Ys-note level



TABLE 2. Mean Fractal Statistics—Tapping Data.
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Relative Phase
Intertap Interval H % Persistent % Antipersistent H % Persistent % Antipersistent
Bach Mechanical s 408 0 94 692 72 0
Bach Mechanical V4 466 0 77 633 22 0
Bach Expressive 7s 725 100 0 .654 36 0
Bach Expressive Y4 72 100 0 .671 36 0
Chopin Mechanical s 428 0 80 .696 63 0
Chopin Mechanical Y4 402 0 97 .666 27 0
Chopin Expressive Vs .86 100 0 .679 47 0
Chopin Expressive Y4 .898 100 0 .682 30 0

Note. Mean H for the intertap intervals (ITIs) and relative phase, averaged across participants and trials. Percentage of significant trials (persistent or antipersistent, p < .05)

based on the R/S analysis, are shown.

prediction was not significantly different from tracking
(p = .80). In the Bach performances, temporal intervals
were highly variable so that the Ys-note level was not
consistently subdivided; whereas, from the point of view
of a Ya-note referent, more subdivisions were available.
The Chopin performances contained running 16-notes
throughout the piece; thus, subdivisions were present at
both tapping levels. Overall, this suggests that the pres-
ence of subdivisions may aid or be partially responsible
for the prediction effect.

SPECTRAL DENSITY AND RESCALED RANGE ANALYSIS

We also performed spectral and R/S analyses on the
ITIs and the relative phases for each trial. In general, the
H and o. values agreed according to the equation o =
2H — 1. Note that a significance measure is available for
each trial using the R/S analysis; the results for the R/S
analysis (H) are reported in Table 2. Repp (2002) found
phrase structure modulations in the ITIs of people tap-
ping to music without tempo fluctuations. Therefore, it
might be expected that tapping to mechanical perform-
ances would show some rudiments of fractal structure.
However, for ITIs to the mechanical performances, 77-
97% of trials were antipersistent (p < .05; H < .5, which
implies negative long-range correlation); a result that is
comparable to synchronization with a metronome
(Chen et al., 1997). Chen et al. (1997) attributed this to
the nature of the ITT calculation, suggesting that ITT is
not an appropriate variable for fractal analysis in syn-
chronization tasks. However, our results indicate a clear
difference when compared to the expressive perform-
ances, in which 100% of the ITIs were significantly
persistent (p <.05; H > .5, which implies positive long-
range correlation). Moreover, mean H values for the
expressive trials matched H values for the respective
performances, suggesting that ITIs for the expressive

performances reflected the fractal structure of the per-
formances, as might be expected.

The H values for the relative phases also told an inter-
esting story. For relative phases to the mechanical per-
formances, 63-72% of the trials were significantly
persistent (p <.05) at the 7s-note level. While this is less
than the 100% expected from the literature (Chen et al.,
1997; Chen et al., 2001), it is still a large percentage of
trials. However, when tapping to mechanical perform-
ances at the Ys-note level, only 22-27% of the trials were
significantly persistent (p < .05). Thus, at the Ya-note
level, relative phase time-series were less fractal for
mechanical performances. We found an even more sur-
prising result for relative phase in the expressive per-
formances. Overall, only about 1/3 of the trials were
significantly persistent. While that number is far greater
than chance, it is far fewer than would be expected
based on synchronization with periodic sequences
(Chen et al., 1997; Chen et al., 2001). Note that these are
the trials in which the ITIs were 100% persistent, sug-
gesting that the fractal structure somehow migrates
from the asynchrony measure to the ITI when tapping
to expressive performances with fractal structure. An
ANOVA on the relative phase H values revealed an
interaction between Performance Type and Metrical
Level, F(1,5) =9.29, p < .05, confirming our findings.

Discussion

Our results show that people successfully entrain to
complex musical rhythms, and their performance can
be comparable for mechanical and expressive versions
even when tempo fluctuations are large. For mechani-
cal versions, there was no difference in accuracy (i.e.,
mean relative phase) between Ys- and Ys-note levels,
but there was a small, significant advantage in terms of
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precision (i.e., low variability) at the Ya-note level, a
subdivision benefit. The large drop in number of per-
sistent trials for relative phase at the ¥s- vs. Y4-note levels
suggests a related effect of time scale. For the expressive
performances there was a large improvement in both
mean relative phase and angular deviation time-series
between Ys- and Ya-note levels. Participants were equally
accurate for expressive and mechanical performances
at the Ys-note level, and nearly as precise.

Crosscorrelational measures yielded significantly
higher prediction than tracking indices; thus, people
tend to anticipate, rather than react to, tempo fluctua-
tions. For the expressive performances, 100% of the tri-
als (ITTs) showed significant persistence-with fractal
coefficients matching their respective performances,
whereas fractal analysis on relative phase time-series
showed far fewer persistent trials than would be expected
from the synchronization literature. This suggests—
albeit in a nonspecific way—that fractal structure is
related to the prediction of tempo fluctuations.
Moreover, for the expressive Bach performance, predic-
tion increased at the Y4-note level. The same increase was
not observed in the Chopin, however, indicating that it
was not an artifact of the blocked design. The rhythm of
the Bach consisted of highly varied temporal intervals,
such that subdivisions were more often available at the
Ys-note level, whereas for the Chopin, subdivisions
were always present at both levels. Thus, prediction
may have been partially due to the existence of subdivi-
sions of the beat, providing information about the length
of the IBI in progress. This interpretation is supported by
the finding that accuracy and precision were superior at
the Ya-note level for the Bach and Chopin.

General Discussion

How are the two main findings of the current
study—fractal structuring of temporal fluctuations in
piano performance and prediction of temporal fluc-
tuations by listeners—related? Two of the properties
implied by our results are fractal scaling and long-range
correlation. Fractal scaling implies that fluctuation at
lower levels of metrical structure (e.g., Y16-note) pro-
vides information about fluctuation at higher levels
of metrical structure (e.g., Ya-note). Thus, the fact
that tempo fluctuations scale implies that small time
scale fluctuations are useful in predicting larger time
scale fluctuations. Perturbations of subdivisions have
been shown to produce positively correlated pertur-
bations in on-beat synchronization responses, even
when participants attempt to ignore the perturbations
(Repp, 2008), and sensitivity to multiple metrical levels

occurs in adapting to both phase and tempo perturba-
tions (Large et al., 2002). Such responses would auto-
matically exploit fractal scaling properties, enabling
short-term prediction of tempo fluctuations. These
observations could be explained by the Large and Jones
(1999) model in which tempo tracking takes place at
multiple time scales simultaneously via neural oscilla-
tions of different frequencies that entrain to stimuli and
communicate with one another. This model successfully
tracked temporal fluctuations in expressive perform-
ances, and systematic temporal structure characteristic
of human performances improved tracking but ran-
domly generated temporal irregularities did not (Large
& Palmer, 2002).

Scaling does not tell the whole story, however. Tempo
tracking would imply smoothed IBIs as found by Dixon
et al. (2006) because tempo adaptations within a stable
parameter range (cf. Large & Palmer, 2002) would effec-
tively low-pass filter the fluctuations. But if participants’
ITIs were smoothed versions of the veridical IBIs, we
would expect greater fractal magnitudes because
smoothing means removing higher frequencies, which
results in steeper slopes. However, the H values for ITIs
were approximately equal to the H values of the IBIs
themselves. Tempo tracking appears to be ruled out by
this finding. Figure 4 illustrates how fractal structure
may enable prediction in two related ways. Scaling
(downward arrow) enables prediction if oscillations
adapting to tempo changes at multiple time scales com-
municate with one another. Persistence (arched arrow)
enables prediction within a given time scale, because it
implies long-range correlation. To date, we are aware of
no specific models that have been proposed to take
advantage of this latter type of predictability.

In general, many natural signals have 1/f characteris-
tics, and some authors hypothesize that neural systems
have evolved to encode these signals more efficiently
than others (Yu et al., 2005). Additionally, humans pre-
fer stochastic compositions in which frequency and
duration are determined by a 1/f noise source (Voss &
Clarke, 1975). Thus, fractal temporal structuring of
performance fluctuations may be well matched with
human perceptual mechanisms. Moreover, several
researchers have suggested a deep relationship between
musical and other biological rhythms (Fraisse, 1984;
Iyer, 1998). Other biological rhythms, such as heart
rate, exhibit 1/f type temporal dependencies (for a
review, see Glass, 2001); thus, if musical rhythm owes
its structure, in part, to other biological rhythms, 1/f
fluctuations would be heard as more natural than
mechanical, or isochronous, rhythms. Indeed, fractal
structure may not only enable prediction of temporal
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FIGURE 4. The tempo map (bpm = 60/1BI) for 3 different metrical levels (V1e-note, /s-note, '/a-note) of Chopin’s Etude in E major, Op. 10, No. 3, illustrat-
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(downward arrows), persistence implies that changes early in the sequence could facilitate prediction of changes later in the sequence (arched arrow).

fluctuations, but may enhance affective or aesthetic
judgments for music performances (cf. Bhatara et al,,
2009; Chapin et al., 2009).

There is a continuous interaction between endoge-
nous control mechanisms and environmental stimuli
(Gibson, 1966); usually, these are impossible to separate
when it comes to physiological rhythms (Glass, 2001).
Our study shows that in music there is structure, in both
the exogenous and endogenous processes, that persists
throughout the interaction. Like many physiological
rhythms, fluctuations in periodic tapping are structured
in the absence of external stimuli, in the presence of
periodic stimuli, and when there is long-term structure
in the external stimulus (i.e., music). Moreover, fractal
structure in stimuli may enhance interaction, such that

endogenous processes are better able to lock on, perceive
structure, and adapt to changes. Such processes may
enable more successful interaction with the environ-
ment and between individuals.
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