# Computation of the singular locus of a bicubic Bezier surface. 

André Galligo

Université de Nice, France.
A common representation of surfaces in Solid Modeling and Computer Aided Geometric Design (CAGD) uses parametric bicubic patches, i.e. images of maps

$$
\begin{aligned}
\Phi:[0,1] \times[0,1] & \rightarrow \mathbb{R}^{3} \\
(t, u) & \mapsto \Phi(u, v)=\left(\frac{\Phi_{1}(u, v)}{\Phi_{0}(u, v)}, \frac{\Phi_{2}(u, v)}{\Phi_{0}(u, v)}, \frac{\Phi_{3}(u, v)}{\Phi_{0}(u, v)}\right)
\end{aligned}
$$

where $\Phi_{0}, \Phi_{1}, \Phi_{2}, \Phi_{3}$ are polynomials with real coefficients and bidegree $(3,3)$. They are called Bézier when $\Phi_{0}(u, v)=1$. These patches are encountered in many applications [1]. Spline surfaces are made by gluing together such patches.

The difficult step in the computation of the singular locus is to get a point on each loop of the selfintersection curve. This difficulty became a major problem in CAGD

There are many articles presenting methods and algorithms to intersect two patches (see e.g. [5], [3], [2], [4]), but very few papers address the computation of selfintersections.

We consider two distinct techniques for solving this problem. after settting a system of equations via a suited change of variables.

Either, via a bivariate resultant adapted to the corresponding elimination procedure, get a bivariate equation of bidegree $(44,44)$ describing the selfintersection locus and study it further from a computational point of view. Or via a polynomial solver for systems with floating point coefficients with a given accuracy. Examples and timings are provided.

## References

[1] G. Farin, Curves and surfaces for computer aided geometric design. A practical guide, Academic Press, Inc., Boston, MA, 1993.
[2] M. Hosaka, Modeling of Curves and Surfaces in CAD/CAM, Springer-Verlag, New York, NY. 1992.
[3] S. Krishnan and D. Manocha, An Efficient Surface Intersection Algorithm Based on Lower-Dimensional Formulation, ACM Transactions on Graphics, volume 16, number 1, pp 74-106, 1997.
[4] N.M. Patrikalakis, Surface-to-surface intersections, IEEE Computer Graphics and Applications, volume 13, number 1, pp 89-95, 1993.
[5] T. W. Sederberg and R. J. Meyers, Loop detection in surface patch intersections, Computer Aided Geometric Design, volume 5, number 2, pp 161-171, 1988

