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ALGO EN LO QUE CREIAMOS

Creer que la Eliminacién Geométrica Eficaz tenia algo que aportar a la
resolucion de problemas en la practica.

Creer que la simple reescritura no era la respuesta. Los trabajos |Giusti-
Heintz| [Krick—P.] ya habian demostrado estar por delante de la mera ree-

scritura.

Creer que la semantica condicionaba la complejidad. Ambos éramos con-
scientes de que los invariantes semanticos de la geometria constituian ob-
strucciones a la complejidad en forma de cotas inferiores...Para cuando las

cotas superiores”?.

Creer en la Matematica como creacion colectiva, raramente individual.

4

cada vez menos “ a la mode”.



MAS EN LO QUE CREER.

Creer que la Matematica del final del Milenio no era un instrumento inutil.
Ambos creiamos, sinceramente, que la matematica ain podia aportar algo
a la tecnologia, a pesar de los respectivos entornos de mentes abstrusas.

Creer que la Algoritmica debe ser adaptable a clases particulares de inputs.
Algo asi como un algoritmo que debia aceptar como buenos todos los tipos
de datos que se usasen para representar los polinomios dados como inputs
(SLP’s sélo representaban esa idea) .

Creer en una nueva filosofia de programacion. Que, al final, no fué tan

necesaria.



PERO, SOBRE TODO, CREER QUE.

Y, SOBRE TODO, CREER QUE LA COMPLEJIDAD ALGORITMICA,
POR DURA QUE SEA, PRECEDE A LA PROGRAMACION. Aunque

parezca de perogrullo, solo decimos aquello de:

e Saber qué es un ordenador,

e Saber cOmo se comportara el algoritmo en el ordenador

e vy, finalmente, decidir si vale la pena programarlo.

Por increible que parezca, casi nada de lo que circula por ahi como matematica
computacional o, simplemente como informatica, reine estas cualidades.



The TERA Experience 1993—-1997



ELIMINATION THEORY

Elimination Theory = Computational Algebraic Geometry

Main Goal: Algorithmic Treatment of Problems Defined by
Polynomial Equations and Inequalities

Many (?7) (Potential) Applications:

Central Open Problem: Efficiency



EFFICIENCY (IN A BROAD SENSE)

Time Complexity : Function that relates input length to running time
of best algorithm.

Tractable algorithms :T Time Function bounded by a polynomial N o),
Exponential algorithms : Exponential Time Function 20(N),

Rk. Most algorithms for Elimination Problems run in worse than expo-
nential time wn the number of variables:

Intractable for Practical Applications.

tApplicable for practical purposes



SOLVING

InpuT: A list of multivariate polynomial equations: f1,..., fs € C[X1,..., Xy].

OutpuT: A description of the solution variety

V(f1,...,fs) ={zeC” : fi(z) =0..}.

Description: The kind of description determines the kind of problems/questions
you may answer about V(f1,..., fs)

Example:
Symbolic/algebraic Computing — questions involving quantifiers

Hilbert’s Nulltellensatz (HIN)



TEAMS INVOLDED

Teams :

* Cantabria (P., Morais, Montana, Hagele,...)

* Polytechnique (Giusti, Lecerf, Schost, Bostan, Salvy...)
* Buenos Aires (Heintz, Krick, Matera, Solerno, ...)

* Humboldt (Bank, Mbakop,Lehmann)

Elimination deals with computing information about algebraic varieties:
(Quantifier Elimination, Dimension, Singularities...)

Algebraic Varieties have Intrinsic/Semantic Invariants that surely
dominate Complexity.}

I'Well-known fact in lower bound studies in Algebraic Complexity Theory



EXAMPLES

n
X?-X1=0,...,X2 - Xp=0,k— Y mX; =0.
1=1

n
X?-X1=0,...,X2 - Xp,=0,k— Y 21X, =0
1 =1

n .
X?-X1=0,...,X2 - X, =0,512- Y 2""1x; =0
1=1

X5 -X1{=0,X2—X>=0...,X2—X,_1=0,k— X, =0.



ComPLEXITY IIT (END OF A CENTURY)

Attacks based on Semantical Invariants:

Degree of V ([Heintz,83], [Vogel, 83|, [Fulton, 81]) :# of intersection with
generic linear mandifolds.

Height of V:
Bit length of the coefficients

* Geometric Degree of a Sequence:

o(V1, ..., Vi) i= max{deg(V;) : 1 <i<r}.



COMPLEXITY IV (INTRINSIC SYMBOLIC APPROACH)

Theorem 1 [Giusti-Heintz-Morais-P., 94-97] There is a bounded
error probability Turing machine that answers HN in time polynomial in

L6 H,

where

L is the input length (whatever usual data structure),

d is the geometric degree of a deformation sequence (Kronecker’s deforma-
tion) and

H 1s the height of the last equi-dimensional variety computed.

Remarks

* The quantities that dominate complexity are 6 and H.

* Meaningful Technical Improv. by Lecerf, Matera, Schost, Bostan..2000—
* Applications to real solving by Bank, Mbakop, Lehmann... 2000-2005

* Tmplemented by Salvy, Lecerf, (2001).



KRONECKER’S DEFORMATION
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A deformation inside the variety of zero-dimensional varieties (Chow form).



KRONECKER'S DEFORMATION (I)

Unramified fiber points (Lifting Points)



KRONECKER'S DEFORMATION (II)

o:= Intermediate zero-dimensional Varieties to be solved (V;)
From a description (solving) of V; compute a description (solving) of V; 1.



And so on....

KRONECKER'S DEFORMATION (III)




KRONECKER'S DEFORMATION (IV)
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Until you compute a Description of the variety defined by the input sys-
tem.



GREAT SUCCESS

But...
Is that Efficiently Optimal as Algorithm?



Universal Solving 7

A TERA notion



UNIVERSAL SOLVING

Algorithms based on deformation scheme:

A sequence V7,...,V, of intermediate varieties that are solved before
“eliminating”

Universal Solving

An algorithm that is called Universal if its output contains information
enough to answer all elimination questions.

Remark 2 All known symbolic algorithms in Computational Algebraic
Geometry are Universal.



LOWER COMPLEXITY BOUNDS

Theorem [Castro-Giusti-Heintz-Matera-P.,2003]

All Universal Solving Procedures require exponential running time. Namely,

the (geometric) degree of the output is the lower bound for output length
(of any reasonable encoding) and hence for the time.



Main Idea of the Proof:

* Inputs in Elimination are usually given as unirational (parametrized)
families of problems.

* The embedding dimension of these unirational families is a lower bound
for the output length and, hence, a lower bound for the running time.

* It is easy to exhibit simple families with exponential embedding dimen-

sion...



FIRST CONCLUSIONS

* The TERA algorithm is essentially optimal.
*The running time is greater than the Bézout Number :

11 deg(f) > 2™

1=1
*No other symbolic computation algorithm can improve this ex-

ponential lower bound.
But...

Applications demand a *“causal” algorithm.



MAIN CONCLUSION

An “efficient” Polynomial Equation Solver must satisfy:
It is Non- Universal:

Its complexity will depend on intrinsic/semantic quantities.

It should run efficiently on “most” input systems?

$sWe give up to solve efficiently some of the input systems.



Is there anything like this?



Shub & Smale Approximate Zero Theory



APPROXIMATE ZEROS

* Invut: A System of Polynomial Equations

F = [fl?"'?fn] S H(d)a
deg(f;) = di, (d) := (d1,...,dn).

A zero ¢ € V(F)

Approximate Zero(Smale’81) a point z where Newton operator Ng con-

verges very fast to the zero.

1
dr(NE(2),0) < e

dp .= some distance function




NUMERICAL ANALYSIS AS NON-UNIVERSAL SOLVER

* QOUTPUT:

UNIVERSAL SoruTioN: One Approximate Zero z for each zero ¢ € V(F).
Running time of Universal Numerical Analysis solving is greater
than number of solutions

Bézout’s number > [[_; d; = Intractable

From now on:

NON-UNIVERSAL SoruTioN: One Approximate Zero z for some zero ( €

V(F).

Complexity of Non—Universal Numerical Analysis Pol’s Solver 7



COMPUTING APPROXIMATE ZEROS

INPUT SPACE H(g) space of systems of polynomial equations, dense encod-
ing, degree list (d) = (d1,...,dn)

Ni= Y (dﬁ'”) = dimH y).

i=1 n

Deep advances in Shub & Smale (1987-95):[Bézout I to V]|.
See also contributions by Kim, Dedieu, Malajovich, Renegar, Yakoub-
sohn,...



AN ALGORITHMIC SCHEME

InpuT F E H(d)

Newton’s Homotopic Deformation Scheme (NHD) on initial pair
(G,¢) € Hig)y x IPn(C)
Following a line of systems of equations:
Fr ' =(1—-t)F +tG, te]o,1].
(A curve of equations/solutions {(F}, () : ¢ € V(F:), t € [0,1]})

From some Appr. Zero of (G,{) (t = 1), compute some Appr.
Zero of F' (t = 0)

OUTPUT:
— either failure
— or an approximate zero of F.



HoMoTOPIC DEFORMATION

-0, 4

Fixing the initial pair (G, () you fix a smooth curve inside the incidence
variety:
{(F1,¢) @ t€[0,1], Fi(¢) = O}



HomoToric DEFORMATION (IT)

A tube about (F}, ;) of approximate zeros.



HomoToric DEFORMATION (I11)

Starting at (G, () = (Fp, (o) perform “Newton homotopic steps” to some
approximate zero of Fy,



It goes on..

HomoToric DEFORMATION (IV)

'
o
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Still going on..

HomoToriCc DEFORMATION (V)




Still going on..

HomMmoTOPIC DEFORMATION (V1)




HomoToric DEFORMATION (VII)

A Polygonal from one Approx. Zero of G = Fy to one Approx. Zero of
F = F

Complexity is dominated by number of homotopy steps.

Everything depends on where you start (G, ().



THE SCHEME AGAIN

InpuT: A System of Equations F' € Ha
Guess some initial pair (G, ()
Apply Newton’s Homotopic Deformation to G and F', starting at (.

OUTPUT:
— either failure
— or an approximate zero of F.




MAIN PROBLEM OF NHD

Where to Begin the Homotoy?



EFFICIENT INITIAL SYSTEMS

e > 0 a positive real number.
A data (G,() € H(gy X IPp(C) is e—efficient for NHD if
— The running time is polynomial in =1, n, N, d.

— NHD with initial data (G, ) solves "most” input systems F' € Ha):

Probability| F € Hegy @ NHD solves F from (G,0)] >1—e.

The probability that the scheme outputs “failure” is less than ¢.



SHUB & SMALE (BEzouT 5)

Theorem 3 (Shub-Smale, Béz. V, 95) For every e > 0 there is
a e—efficient initial pair (Ge, Cc) € Hgy XIPn(C), where ¢ € V(G). The
running time is polynomaial in the combinatorial number

N.

Namely, for every € > 0, there is some initial pair for NHD that solves
“most” systems, but it depends on &.

DOES IT SUFFICES?




SHUB & SMALE (BEz. 5)

Algorithmic Scheme:

INpUT '€ H(g),€ > 0
Construct (Ge¢, () an e—efficient Initial System

Apply Newton’s Homotopic Deformation to G¢ and F', starting at
Ce-

OUTPUT:
— either failure (with probability at most ¢)
— or an approximate zero of F' (with probability at least 1 — ¢).

The Number of steps is polynomial in e 1 N.



[Shub& Smale, Bez. 5] "In Theorem 7.4 we employ a quasi-algorithm.
This constructions fails to be an algorithm because it employs an infinite
sequence (g;,¢(;) € V,i=1,2,3,.... without exhibiting them.”



A PROBLEM

No idea on how to construct e—eflicient initial pairs.

Implementation available?

Open Problem: Smale’s Conjecture, Smale’s 17th Problem.

101 a proven efficient algorithm.

IEfficient initial pairs in Verschelde—Sommesse—Wampler programs never
proved...?



A recent small step forwards

Solving Smal’es 17th Problem (Bezout 51)

Joint work with C. Beltran.



CORRECT TEST CLASSES (A QUESTOR SET ) FOR NHD

[Beltran- P.; 2005]

A class G C Hag)y X IP,(C) is a questor **set for NHD if the following
holds:

For every € > O the probability that a randomly chosen data (G,{) € G
is e—eflicient for NHD is greater than

1 — (nNd)©Dg.

**Note that the questor class is independent of . In particular, an algorithm
can be defined from a fixed questor class.



ALGORITHMIC SCHEME

INpUT F' € H(d),e >0
Choose at random (G,¢) € G

Apply Newton’s Homotopic Deformation to G and F', starting at
(G, Q).

OUTPUT:
— either failure (with probability at most ¢)

— or an approximate zero of F' (with probability at least 1 — &).




PROBLEMS

Minor: It’s a Probabilistic Algorithm

Relevant: The class G should be constructible (and easy-to-compute).



BEzoUT 5%

Theorem |Beltran, P. 2005] We succeeded to exhibit a constructible and
easy-to-compue questor class for efficient initial pais in the homogeneous
case



TOWARDS A QUESTOR CLASS I

e:=(1:0:...:0) €eIP,(C) a “pole” in the complex sphere, represent-
ing the origin.

Ve :={F € Hay F(e) = 0}. Systems that vanishes at the pole e.
FeV,— F:Crtl ., Cn,

Tangent Mapping T. F' := DF(e) restricted to the orthogonal complement
el =Crccrntl.



UNCOMPLETE IDEA

Le :=A{F € Ve : TeF = F}. “linear part” of systems in V.

LeL:: Systems in Ve, of order at least 2 on e.

Remark.- V¢, L, LeL a linear subspaces of H(q) given by coefficient lists.

Idea: Use
G:={(G,e) : GeVe=LIPLe}.(?)



TOWARDS A QUESTOR SET IT (Lg)

U(n + 1):= unitary matrices on C*t1.

H(py 1= M, «n+1(C) space of complex n x (n + 1) matrices.

 dn1
O XO

Ve(l) ={(M,U) : M GH(l),UEZ/{,UKeT(M) = e}.



THE LINEAR PART Le

Ve e(l) — Le

X1
ve(M,U) = XD (MUY |
Xn

Le := Im(¢e(M,U)).

A useful constant



TOWARDS A QUESTOR CLASS III

G:=[0,T] x Lt x vV,
G:G—>Ve,
(t, L M,U)e G— G, L,M,U) € Ve

1 1
G(t, L, M,U) := (1 — trn2+n) /2 4 ¢n2+nepo (M, U) € Ve,



TOWARDS A CONSTRUCTIBLE QUESTOR CLASS IV BezoutS%

Theorem 4 (Beltran-P., 2005a) For every degree list (d) := (d1,. ..

the class
1s a questor class of efficient initial pairs for NHD. Namely,

A randomly chosen system (G,e) € 9(a) is e—efficient for NHD
with probability greater than

1 — (ndN)>e.



THE ALGORITHM

Input: f € Hgy, € > 0.
Guess at random (G, e) € Gy (Guess (t, L, M)...)
Apply Projective Newton’s Deformation O(e~2d?) times

Output: either “failure” or an approximate zero z of f.



MEANING (I)

Corollary 5 There is a bounded error probability (Monte—Carlo) numer-
wcal analysis algorithm that verifies :

o The running time is at most O(e~2d?).

e The probability that a randomly chosen (G,e) € G is e—efficient is at
least

1 — (ndN)>e.

e The probability that an input system s solved 1s at least:

1 —e.



CuBIC EQUATIONS

Corollary 6 Assume (d) = (3,3,...,3). There is a bounded error
probability numerical analysis algorithm that verifies :

o The running time is at most O(n®9).

e The probability that a randomly chosen (G, e) € G is e—efficient is at

least

1
1 — ——

(n)>

e The probability that an input system is solved is at least:

1

1l — ——.
1,30



TURING MACHINE COMPLEXITY

Using the transfer methods of [Castro, Montana, San Martin, P., 2002] and
(Castro, San Martin, P. 2003], we also have a‘“translation to the Turing
machine world”:(i.e. real life computing world)

Corollary 7 (Beltran—P., 2005) There is a bounded error probabil-
ity Turing machine that solves “most” systems of multivariate polynomaial

equations in time which depends polynomially on the dense encoding of
multivariate polynomaials.

Corollary 8 (Beltran—P., 2005) Computing a zero of homoge-
neous polynomial equations is in BPP (dense encoding of inputs).



LINES OF THE PROOF

Too Technical for a talk like this one!

A series of Geometric Reductions From great circles to pairs, from
pairs to incidence variety, from incidence variety to tangent mapping,...

Integral Geometry at every geometric reduction... Federer’'s Coarea
Formula, Santalé,..., some “tricks” when manipulating integrals...



ONGOING RESEARCH

Smale’s Conjecture still open :
Is there any deterministic procedure to find s—efficient data?.

Replace questor classes by deterministically defined efficient initial systems.

Behaviour of the condition number pnorm on smaller (not neces-
sarily linear) data?.

Input systems (in real life) are not given by their dense encoding

Search for a treatment adapted to special classes (also different
data structures) of inputs.Interesting results on the sparse case by
[Malajovich-Rojas]




Una pregunta TERA.

A Technical Example of treatment of special data:

Eistimates on the Probability Distribution
of Condition Numbers of SINGULAR matrices

Joint work work C. Beltran, 2005



CONDITION NUMBER OF COMPLEX MATRICES

OTwo Condition Numbers: M, (C) complex space of all n x n matrices.

* Turing, von Neumann, Wilkinson...

* Demmel, Smale, Edelmann

kp(A) == ||Al|F||A™ 2.

| - ||2 := norm as linear operator

1/2
Al p = (Zi,j |ai,j|2) / := Frobenius norm.

Rk Both condition numbers are (essent. equiv.) homogeneous (and hence
projective) functions, i.e. kK(A) < kp(A) < /nky

k,kp : IP(Mp(C)) — R U {oco}.



RIEMANNIAN DISTANCES

O IP(My(C)) is a complex Riemannian manifold with a Riemannian met-
ric (Fubini-Study) and a volume form dvp which agrees with the standard
Gaussian distribution in the affine space.

Riemannian (Fubini-Study) :

dp(m(z),7(z")) := arccos (%) :

Projective :

dp(n(z), 7(z")) := sen dp(n(z), w(z)).

Theorem 9 (Eckart-Young-Schmidt-Mirsky) > C IP(M,(C)
the algebraic variety of singular matrices. Then

1
dp (A, =)

K:D(A) L=



PROBABILITY IN PROJECTIVE SPACES

@ Some Notations:
€7\ {0} — P (M (C)):=
* A CIP(Mup(C)),A:=7n"1(A)u{0}:=

vp (A) |
vp [IP (C7?)]

v(A) =

~:= the gaussian volume in cn’.
= the Riemannian volume in IP (M (C)).
® Probability in IP (M, (C))
vp [2]
vp [IP (Mn(C))]’

1
>ci={A : kp(A)>—}={A4 : dp(4,X) <e}.
3
> ;= Tube of radius € about >_.



KNOWN RESULTS

* Smale, Edelmann,..

Theorem 10 (Edelman) Same Notations as above,

Vp [Zé)] 1 - n82 n2—1
vp [IP(Mn(C)] 1-a A

® General Question:Is this an specific bound or there are:
SHARP ESTIMATES ON THE VOLUME OF A TUBE ABOUT A PROJECTIVE ALGEBRAIC

VARIETY.

@ EXTENSION OF THESE IDEAS TO GENERAL CLASSES OF MATRICES



WRONG PICTURE I:A CURVE




WRONG PICTURE II:A TUBE ABOUT THE SURFACE

® A Tube about a curve.



ON VOLUMES OF TUBES ABOUT COMPLEX VARIETIES

* A topic of long tradition: Weyl, Wirtinger, Lelong, Wolf,.. (affine)
* Deepest (Main) contributions: A. Gray.

* Drawbacks: Gray’s are only applicable to smooth, complete intersection
varieties and for small values of e (convergence radius of the exponential

function).
[T DRAMATICALLY VANISHES IN PRESENCE OF SINGULARITIES.



VOLUMES OF TUBES IN COMPLEX PROJECTIVE SPACES

Theorem 11 (Beltran-P., 2005) V C 1P, (V) an equidimensional
complex projective algebraic variety.

Ve i={zelPp(C) : dp(x,V) <e}.
Then,

v [VE] < ene ) 2codim(V')

P 0] = 29V i)

Corollary 12 In the linear algebra case

vp [2Z¢] < o <6n2€
vp [IP(Mn(C))] —

2
) = 26277,562.



OUR MOTIVATION:SINGULAR MATRICES

> = A € IP(Mn(C)) : rank(A) < r}.
> (1) C IP (M, (C)) is a projective variety of codimension (n — r)2.

©® Condition Number of a Singular Matrix:4 € =(")

K5 (4) = kp(AD) = kp(A |y 4y 1)

Proposition 13 (Several authors, easy from SVD) The condi-

tion number /@E) (A) measures the relative error if the computation of a
basis of Ker(A). It also verifies:

§ 1
k{7 (A) =

dp (A, =(r=1))




WRONG PICTURE I:A CURVE




WRONG PICTURE II:THE CURVE IN A SURFACE




WRONG PICTURE III: THE TUBE ABOUT THE SURFACE
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WRONG PICTURE IV:THE INTERSECTION
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EXTRINSIC TUBES

O V CIP,(C) an equi-dimensional algebraic variety of dimension m.
O V! C IP,(C) equi-dimensional of dimension 1 < m’' < m.
OV :={z €Pyp(C) : dp(z, V') <e}.(The tube)

Theorem 14 (Beltran-P., 2005) 7he following holds:

vm[VINV]

<2 / N e2(m—m')
DT C(n,m,m' )deg(V")e




MEANING

Corollary 15 The probability that a matrix of rank n — 1 is at distance
bigger than e of > (n—=2) g greater than

1 — Cnl2e5,

for some constant C.

Otherwise said, the probability that a singular matrix satisfies
k5P (A) < ond,

is greater than

1 - —.
nO

Rk. Bounds are easily applicable to studies of some kinds of condition
numbers of non-linear singular systems (based on fixed co-rank singulari-
ties...). But this approach is still ongoing...



PROJECTS

Main 1:Universal Solving Procedures require exponential running time.

Main 2:There is an efficient non—universal (true) algorithm that solves
most multivariate polynomial equations.

Ongoing Projects:
Find a more “aesthetic” questor class.

Find “simpler” questor class...until you get a deterministic efficient algo-
rithm (if any).




CONCLUSIONS AND PROJECTS

Probability Distribution of Condition Numbers and other “spe-
cial” classes of data: encodings (Straight-line Program Encoding,...)geometry
(Singular systems), applications (systems for classes of real life problems)...

Approximate Zeros and Elimination Theory: What can be done
with just a few approximate zeros?
Some results with Castro—Haegele and Morais...



CONCLUSION

Joos,

seguimos buscando nuevas fronteras.

Gracias por tu inspiracion.



