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The Fourier Transform

Representation of functions as composition of waves

f (x ) =

∫
R

f̂ (ω)e i(2πω)x dω ?

Everything is "legal" for f ∈ L1(R) ∩ L2(R) with

f̂ (ω) := F(f )(ω) :=

∫
R

f (x )e−i(2πω)x dx .

The Fourier transform is the unique extension F : L2(R) → L2(R). F
is unitary, F−1 = F∗,

=⇒ Plancherels identity 〈 f , g 〉 = 〈 F(f ), F(g) 〉 .
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Fourier series

{fn : n ∈ Z} is orthonormal system (ONS)

⇐⇒ 〈 fk , fn 〉 = δk ,n (Kronecker symbol).

Plancherel identity implies: F transforms ONS into ONS.

Let I =
[
−1

2 ,
1
2

]
, en(x ) := e i(2πn)x for n ∈ Z,

χ(x ) := χI (x ) :=

{
1 |x | ≤ 1

2
0 else

.

Fourier series:
{χen : n ∈ Z} is an ONS in L2(R) and

is a Hilbert basis of L2(I ).

Fourier (ca. 1810)
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Sinus cardinalis

With sinc(x ) := sin πx
πx :

F−1(χen)(x ) =

∫ 1
2

− 1
2

e i(2πω)(x+n) dω =
sinπ(x + n)

π(x + n)
= sinc(x + n)
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Basis band

Let PW (I ) := {f ∈ L2(R) : f̂ ∈ L2(I )}, sn(x ) := sinc(x − n) for n ∈ Z.

=⇒ {sn : n ∈ Z} is an ONS in L2(R) and
is a Hilbert basis of PW (I ).

f ∈ PW (I ) ⇐⇒ f =
∑

n∈Z ansn with an = 〈 f , sn 〉.
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Sampling Theorem

sn(k) = sinc(k − n) = δk ,n (Kronecker symbol).

Thus, with f =
∑

n∈Z ansn , one gets f (k) = ak for each k ∈ Z.

Sampling theorem:

f ∈ PW (I ) =⇒ f =
∑
n∈Z

f (n)sn .

More generally, f ∈ PW
([
−B

2 ,
B
2

])
for some B > 0, d ∈ R

=⇒ f (x ) =
∑
n∈Z

f
(
d + n

B

)
sinc

(
B(x − d)− n

)
.

Whittaker (1915), Kotelnikov (1933), Shannon (1949)
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Frequency Multiplex Method

f ∈ L2(R,R) a real function =⇒ f̂ (−ω) = f̂ (ω) .

ω
−2 −1 0 1 2

Band N : supp f̂ ∩ [0,∞) ⊂
[
N − 1

2 ,N + 1
2

]
QAM pairs
Band 0:

∑
n∈Z a0,n sinc(x − n)

Band N :
∑

n∈Z
(
aN ,n cos(2πN )x + bN ,n sin(2πN )x

)
sinc(x − n).

Broadband: N = 1, . . . , 2n ,
eg. DAB: n = 2, 3, . . . , 6, DVB: n = 10, . . . , 12.
"Cheat": replace sinc by χ and apply frequency filtering.
Downside: orthogonality is lost =⇒ ISI: inter-symbol interference
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Generating functions
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Multi–scale properties

ω
−2 −1 0 1 2

ω
−0.4 −0.2 0.0 0.2 0.4

From the sampling theorem on PW
([
−5

2 ,
5
2

])
one obtains e.g.

cos(4πx ) sinc(x ) =
∑
n∈Z

cos
(4πn

5

)
sinc

(n
5

)
sinc(5x − n)
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Shift–orthonormal Functions and Sequences

ϕ ∈ L2(R) is said to be shift–orthonormal, if

{ϕn := Snϕ : n ∈ Z}, with the shifts (Snϕ)(x ) := ϕ(x − n), n ∈ Z,

is an ONS.

Fix M ,N ∈ N with 0 < M ≤ N . Given finite sequences
b1 := {bn,1}n∈Z, . . . , bM := {bn,M }n∈Z, they are said to be
shift–N –orthonormal, if〈
SkN bm , S lN bn

〉
:=

∑
j∈Z

bj+kN ,mbj+lN ,n = δk ,lδm,n (Kronecker symbol).
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Wavelet Packets

Let ϕ ∈ L2(R) be a shift–orthonormal function, b1, . . . , bM ∈ RZ

shift–N –orthonormal finite sequences.

Define functions ψj (x ) :=
√

N
∑

k∈Z bk ,jϕ(Nx − k), j = 1, . . . ,M .

Wavelet Packet Theorem
Each of ψ1, . . . , ψM is shift–orthonormal and

{ψj ,n := Snψj : j = 1, . . . ,M , n ∈ Z}

is an ONS in L2(R).

Note that ψ̂j = 1√
N

b̂j
(

ω
N

)
ϕ̂

(
ω
N

)
with b̂j =

∑
k∈Z bk ,j e−k .

Daubechies (1992)

Lutz Lehmann (HUB Mathematics) Real elimination & application to the wavelet design TERA 2005 15 / 33



Interpretation I: Filling a noisy channel

Shannons channel capacity formula:
A channel with average power P , average noise power N and
bandwidth of B cycles per second allows the transmission of up to

B log2

(
1 +

P
N

)
bits
s
.

The Wavelet packet construction allows to split this channel
orthonormally into M channels of bandwidth B

M with power P
M each

and noise levels N1 + · · ·+ NM = N .
log2

(
1 + 1

x

)
is concave, so for the bitrates one gets

B
M

M∑
j=1

log2

(
1 +

P
MNj

)
≥ B log2

(
1 +

P
N

)
.

Shannon (1949)
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Interpretation II: Approximating a Function

Suppose M = N and both ϕ and ψ1 lie "almost" in PW ([−1
2 ,

1
2 ]).

Any f ∈ L2(R) with

f (x ) =
√

M
∑
k∈Z

ckϕ(Mx − k)

lies almost in PW ([−M
2 ,

M
2 ]).

Define M coefficient sequences by

dj ,k =
∑
n∈Z

bj ,nckM+n .

Then also f =
M∑

j=1

∑
k∈Z

dj ,kψj ,k holds.

The sum for j = 1 represents the "trend", the sums for j = 2, . . . ,M
represent "details" of the function f
Haar (1910), Morlet/Grossmann (ca. 1985)
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Wishlist

Make wavelet packets recursive via:
ψ1 becomes the next ϕ,

while keeping interpretation II: "Approximation".

Preferably
• ϕ = ψ1, i.e., with a :=

√
M b1 one gets the

Refinement equation: ϕ(x ) =
∑
n∈Z

anϕ(Mx − n);

• ϕ should lie "almost" in PW (I );
• ϕ should be "smooth" with compact support;
• ϕ should be symmetric.
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Notations

a(Z ) =
∑

n∈Z anZ n is a Laurent–polynomial,
a(S) :=

∑
n∈Z anSn is a bounded linear operator on L2(R).

With DM : L2(R) → L2(R), (DM f )(x ) = f (Mx ), the refinement
equation reads

ϕ = DM a(S)ϕ

E.g., β1(x ) := max
(
0, 1− |x − 1|

)
satisfies β1 = D2

(1+S)2

2 β1.

 0
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β1(x)
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Conditions for Existence and Smoothness

The Haar–polynomial is HM (Z ) := 1
M

(
1 + Z + · · ·+ Z M−1).

For a continuous solution with compact support of ϕ = DM a(S)ϕ to
exist,
• it is necessary that a has the structure

a(Z ) = M HM (Z )A p(Z ) with A ∈ N & A ≥ 1,

p(Z ) is a Laurent–polynomial with p(1) = 1.

• it is sufficient that additionally for some r > 0

‖p̂‖∞ := sup
ω∈R

∣∣∣p(e i(2πω))
∣∣∣ = M A−1−r holds.

With r = n + α where n ∈ N & α ∈ (0, 1], one gets that ϕ is
n times continuously differentiable.

Strang (ca. 1960), Daubechies (1992)
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Algebraization of the Supremum

p as sequence is finite and real, i.e. there exists J ⊂ Z finite with
p(Z ) =

∑
n∈J pnZ n .

With the Cauchy–Schwarz inequality one gets

|p(e iω)| ≤
∑
n∈J

|pn | ≤
√

#J
√∑

n∈J
|pn |2.

Task:
Minimize

∑
n∈Z p2

n wrt. further conditions.

Advanced estimates of r = n + α: Setting p(j ) = {pj+kM }k∈Z,

M A−1−r is the smaller of max
j=1,...,M

‖p(j )‖1 and
√ ∑

j=1,...,M

‖p̂(j )‖2
∞.

Heil (1992), Cabrelli-Heil-Molter (1996), Lehmann (2005)
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Conditions for Shift–Orthonormality

For {Snϕ : n ∈ Z} to be an ONS and ϕ = DM a(S)ϕ to hold

• it is necessary, that 1√
M

a is shift–M –orthonormal, i.e., for each
k ∈ Z ∑

n∈Z
anan+kM = M δ0,k (Kronecker symbol).

• it is sufficient, that additionally ϕ is continuous with compact
support.

Cohen (ca. 1990)
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Algebraic simplification

Using the structure a(Z ) = M HM (Z ) p(Z ), an equivalent condition is

p(Z )p(Z−1) = PM ,A

(
1− Z+Z−1

2

)
+

(
1− Z+Z−1

2

)A
R(Z ),

where R(Z ) is a Laurent–polynomial R(Z ) =
∑

n∈Z RnZ n , that
satisfies RkM = 0 for all k ∈ Z.

PM ,A ∈ Q[X ] is efficiently computable.

One obtains further simplifications if p is symmetric, i.e.
p(Z ) = q

(
1− Z+Z−1

2

)
with q(X ) = QM ,A(X ) + X Ar(X ).

QM ,A ∈ Q[X ] is again efficiently computable.
Heller (1995), Belogay/Wang (1999), Han (2002)
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Equations

Parameters: M , A, n ∈ N

Variables: X1, . . . ,Xn , R := Q[X1, . . . ,Xn ],

• Define
q(U ) := QM ,A(U ) + U A (

X1 + X2U + · · ·+ U n−1Xn
)
∈ R[U ],

• C (U ) := 1 unless both M and A are even, then C (U ) := 1− 1
2X ,

• Compute s(U ) from C (U )q(U )2 − PM ,A(U ) = U As(U ),

• Expand r(Z ) = s
(

1− Z+Z−1

2

)
∈ R[Z ,Z−1],

• Extract coefficients f1+n := Rsn ∈ R, n = 0, . . . , p − 1,
sp − s ≤ degU s(U ) < sp,

• Expand p(Z ) := q
(

1− Z+Z−1

2

)
and define g :=

∑n−1
k=1 p2

k ∈ R.

Minimize g(x ) under the conditions f1(x ) = · · · = fp(x ) = 0.
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Varieties and Geometric Degree

Let f1, . . . , fp ∈ Q[X1, . . . ,Xn ] be polynomials of degree bounded by d .
VC(f1, . . . , fp) := {x ∈ Cn : f1(x ) = · · · = fp(x ) = 0} and
VR(f1, . . . , fp) := VC(f1, . . . , fp) ∩ Rn .

Suppose V ⊂ Cn is an irreducible and equidimensional algebraic
variety, dim V = n − p. Define deg(V ,H ) := #(VC ∩H ) for every
hyperplane of dimension p.

deg V := max
{

deg(V ,H ) : H hyperplane with deg(V ,H ) <∞
}
.

If V = C1 ∪ · · · ∪ CN , then deg V := deg C1 + · · ·+ deg CN .

Bezout–inequality: =⇒ deg VC(f1, . . . , fp) ≤ dn .
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Critical points

x ∈ VC(f1, . . . , fp) is regular ⇐⇒ rk ∂(f1,...,fp)
∂(x1,...,xn )(x ) = p.

Consider g ∈ Q[X1, . . . ,Xn ] as function on VR(f1, . . . , fp).

x ∈ VC(f1, . . . , fp) is critical ⇐⇒ rk∂(f1,...,fp ,g)
∂(x1,...,xn ) (x ) ≤ p.

(f1, . . . , fp) has evaluation complexity L ⇐⇒ it exists an arithmetic
circuit of size L that evaluates (f1, . . . , fp).
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Linear Functionals

From the theory of classical polar varieties:

Given (f1, . . . , fp) with degree bound d and evaluation complexity L
that is a regular sequence with geometric degree δ.

Then there is a dense subset A ⊂ Qn so that for any a ∈ A and the
function aT : Rn → R, x 7→ aT x

• all of the critical points of aT on VR(f1, . . . , fp) are regular and
• a "numerical easy" representation of them can be computed in

time
(n

p

)
L2 (ndδ)O(1).

TERA (since 1995), Mbakop (1999), Bank/Giusti/Heintz/Mbakop
(2001),Lecerf (2001), B/G/H/Pardo (2003)
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Nonlinear functionals

f1, . . . , fp , g ∈ Q[X1, . . . ,Xn ] ⊂ Q[X1, . . . ,Xn ,Xn+1] as above.

V := VR(f1, . . . , fp) ⊂ Rn and Vg := VR(f1, . . . , fp , g −Xn+1) ⊂ Rn+1

(x , xn+1) ∈ Vg ⇐⇒ x ∈ V and aT x + xn+1 = aT x + g(x )

(x , xn+1) ∈ Vg regular ⇐⇒ x ∈ V regular

(x , xn+1) ∈ Vg critical for (a, 1)T ⇐⇒ x ∈ V critical for g + aT

=⇒ we can—in a probabilistic way—decide if critical points of g on
V (case a = 0) are regular and compute them.
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Some examples for M = 5
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