Real elimination \& application to the wavelet design

Lutz Lehmann
Department of Mathematics
Humboldt-Universität zu Berlin
28th October 2005
TERA 2005-60th anniversary of Joos Heintz

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands
Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

The Fourier Transform

Representation of functions as composition of waves

$$
f(x)=\int_{\mathbb{R}} \widehat{f}(\omega) e^{i(2 \pi \omega) x} \mathrm{~d} \omega ?
$$

Everything is "legal" for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ with

$$
\widehat{f}(\omega):=\mathcal{F}(f)(\omega):=\int_{\mathbb{R}} f(x) e^{-i(2 \pi \omega) x} \mathrm{~d} x .
$$

The Fourier transform is the unique extension $\mathcal{F}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}) . \mathcal{F}$ is unitary, $\mathcal{F}^{-1}=\mathcal{F}^{*}$,
\Longrightarrow Plancherels identity $\langle f, g\rangle=\langle\mathcal{F}(f), \mathcal{F}(g)\rangle$.

Fourier series

$\left\{f_{n}: n \in \mathbb{Z}\right\}$ is orthonormal system (ONS)

$$
\Longleftrightarrow\left\langle f_{k}, f_{n}\right\rangle=\delta_{k, n}(\text { Kronecker symbol })
$$

Plancherel identity implies: \mathcal{F} transforms ONS into ONS.
Let $I=\left[-\frac{1}{2}, \frac{1}{2}\right], e_{n}(x):=e^{i(2 \pi n) x}$ for $n \in \mathbb{Z}$,
$\chi(x):=\chi_{I}(x):=\left\{\begin{array}{ll}1 & |x| \leq \frac{1}{2} \\ 0 & \text { else }\end{array}\right.$.

Fourier series:

$$
\begin{array}{ll}
\left\{\chi e_{n}: n \in \mathbb{Z}\right\} & \text { is an ONS in } L^{2}(\mathbb{R}) \text { and } \\
& \text { is a Hilbert basis of } L^{2}(I) .
\end{array}
$$

Fourier (ca. 1810)

Sinus cardinalis

With $\operatorname{sinc}(x):=\frac{\sin \pi x}{\pi x}$:

$$
\mathcal{F}^{-1}\left(\chi e_{n}\right)(x)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{i(2 \pi \omega)(x+n)} \mathrm{d} \omega=\frac{\sin \pi(x+n)}{\pi(x+n)}=\operatorname{sinc}(x+n)
$$

Basis band

$$
\text { Let } P W(I):=\left\{f \in L^{2}(\mathbb{R}): \widehat{f} \in L^{2}(I)\right\}, s_{n}(x):=\operatorname{sinc}(x-n) \text { for } n \in \mathbb{Z} \text {. }
$$

$$
\begin{array}{ll}
\Longrightarrow\left\{s_{n}: n \in \mathbb{Z}\right\} & \text { is an ONS in } L^{2}(\mathbb{R}) \text { and } \\
& \text { is a Hilbert basis of } P W(I) .
\end{array}
$$

$$
f \in P W(I) \Longleftrightarrow f=\sum_{n \in \mathbb{Z}} a_{n} s_{n} \text { with } a_{n}=\left\langle f, s_{n}\right\rangle .
$$

Sampling Theorem

$$
s_{n}(k)=\operatorname{sinc}(k-n)=\delta_{k, n}(\text { Kronecker symbol })
$$

Thus, with $f=\sum_{n \in \mathbb{Z}} a_{n} s_{n}$, one gets $f(k)=a_{k}$ for each $k \in \mathbb{Z}$.

Sampling theorem:

$$
f \in P W(I) \Longrightarrow f=\sum_{n \in \mathbb{Z}} f(n) s_{n}
$$

More generally, $f \in P W\left(\left[-\frac{B}{2}, \frac{B}{2}\right]\right)$ for some $B>0, d \in \mathbb{R}$

$$
\Longrightarrow f(x)=\sum_{n \in \mathbb{Z}} f\left(d+\frac{n}{B}\right) \operatorname{sinc}(B(x-d)-n) .
$$

Whittaker (1915), Kotelnikov (1933), Shannon (1949)

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands
Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Frequency Multiplex Method

$f \in L^{2}(\mathbb{R}, \mathbb{R})$ a real function $\Longrightarrow \widehat{f}(-\omega)=\bar{f}(\omega)$.

Band $N: \operatorname{supp} \widehat{f} \cap[0, \infty) \subset\left[N-\frac{1}{2}, N+\frac{1}{2}\right]$

QAM pairs

Band 0: $\sum_{n \in \mathbb{Z}} a_{0, n} \operatorname{sinc}(x-n)$
Band $N: \sum_{n \in \mathbb{Z}}\left(a_{N, n} \cos (2 \pi N) x+b_{N, n} \sin (2 \pi N) x\right) \operatorname{sinc}(x-n)$.
Broadband: $N=1, \ldots, 2^{n}$, eg. $D A B: n=2,3, \ldots, 6, D V B: n=10, \ldots, 12$.
"Cheat": replace sinc by χ and apply frequency filtering.
Downside: orthogonality is lost \Longrightarrow ISI: inter-symbol interference

Generating functions

Multi-scale properties

From the sampling theorem on $P W\left(\left[-\frac{5}{2}, \frac{5}{2}\right]\right)$ one obtains e.g.

$$
\cos (4 \pi x) \operatorname{sinc}(x)=\sum_{n \in \mathbb{Z}} \cos \left(\frac{4 \pi n}{5}\right) \operatorname{sinc}\left(\frac{n}{5}\right) \operatorname{sinc}(5 x-n)
$$

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands
Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Shift-orthonormal Functions and Sequences

$\varphi \in L^{2}(\mathbb{R})$ is said to be shift-orthonormal, if
$\left\{\varphi_{n}:=\mathcal{S}^{n} \varphi: n \in \mathbb{Z}\right\}$, with the shifts $\left(\mathcal{S}^{n} \varphi\right)(x):=\varphi(x-n), n \in \mathbb{Z}$,
is an ONS.

Fix $M, N \in \mathbb{N}$ with $0<M \leq N$. Given finite sequences $b_{1}:=\left\{b_{n, 1}\right\}_{n \in \mathbb{Z}}, \ldots, b_{M}:=\left\{b_{n, M}\right\}_{n \in \mathbb{Z}}$, they are said to be shift- N-orthonormal, if
$\left\langle\mathcal{S}^{k N} b_{m}, \mathcal{S}^{l N} b_{n}\right\rangle:=\sum_{j \in \mathbb{Z}} b_{j+k N, m} b_{j+l N, n}=\delta_{k, l} \delta_{m, n}$ (Kronecker symbol).

Wavelet Packets

Let $\varphi \in L^{2}(\mathbb{R})$ be a shift-orthonormal function, $b_{1}, \ldots, b_{M} \in \mathbb{R}^{\mathbb{Z}}$ shift- N-orthonormal finite sequences.

Define functions $\psi_{j}(x):=\sqrt{N} \sum_{k \in \mathbb{Z}} b_{k, j} \varphi(N x-k), j=1, \ldots, M$.

Wavelet Packet Theorem

Each of $\psi_{1}, \ldots, \psi_{M}$ is shift-orthonormal and

$$
\left\{\psi_{j, n}:=\mathcal{S}^{n} \psi_{j}: j=1, \ldots, M, n \in \mathbb{Z}\right\}
$$

is an ONS in $L^{2}(\mathbb{R})$.

Note that $\widehat{\psi}_{j}=\frac{1}{\sqrt{N}} \widehat{b}_{j}\left(\frac{\omega}{N}\right) \widehat{\varphi}\left(\frac{\omega}{N}\right)$ with $\widehat{b}_{j}=\sum_{k \in \mathbb{Z}} b_{k, j} e_{-k}$.
Daubechies (1992)

Interpretation I: Filling a noisy channel

Shannons channel capacity formula:

A channel with average power P, average noise power N and bandwidth of B cycles per second allows the transmission of up to

$$
B \log _{2}\left(1+\frac{P}{N}\right) \frac{\text { bits }}{s}
$$

The Wavelet packet construction allows to split this channel orthonormally into M channels of bandwidth $\frac{B}{M}$ with power $\frac{P}{M}$ each and noise levels $N_{1}+\cdots+N_{M}=N$.
$\log _{2}\left(1+\frac{1}{x}\right)$ is concave, so for the bitrates one gets

$$
\frac{B}{M} \sum_{j=1}^{M} \log _{2}\left(1+\frac{P}{M N_{j}}\right) \geq B \log _{2}\left(1+\frac{P}{N}\right)
$$

Shannon (1949)

Interpretation II: Approximating a Function

Suppose $M=N$ and both φ and ψ_{1} lie "almost" in $P W\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$. Any $f \in L^{2}(\mathbb{R})$ with

$$
f(x)=\sqrt{M} \sum_{k \in \mathbb{Z}} c_{k} \varphi(M x-k)
$$

lies almost in $P W\left(\left[-\frac{M}{2}, \frac{M}{2}\right]\right)$.
Define M coefficient sequences by

$$
d_{j, k}=\sum_{n \in \mathbb{Z}} b_{j, n} c_{k M+n}
$$

Then also $f=\sum_{j=1}^{M} \sum_{k \in \mathbb{Z}} d_{j, k} \psi_{j, k}$ holds.
The sum for $j=1$ represents the "trend", the sums for $j=2, \ldots, M$ represent "details" of the function f
Haar (1910), Morlet/Grossmann (ca. 1985)

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Wishlist

Make wavelet packets recursive via: ψ_{1} becomes the next φ, while keeping interpretation II: "Approximation".

Preferably

- $\varphi=\psi_{1}$, i.e., with $a:=\sqrt{M} b_{1}$ one gets the

$$
\text { Refinement equation: } \varphi(x)=\sum_{n \in \mathbb{Z}} a_{n} \varphi(M x-n) ;
$$

- φ should lie "almost" in $P W(I)$;
- φ should be "smooth" with compact support;
- φ should be symmetric.

Notations

$a(Z)=\sum_{n \in \mathbb{Z}} a_{n} Z^{n}$ is a Laurent-polynomial, $a(\mathcal{S}):=\sum_{n \in \mathbb{Z}} a_{n} \mathcal{S}^{n}$ is a bounded linear operator on $L^{2}(\mathbb{R})$.
With $\mathcal{D}_{M}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}),\left(\mathcal{D}_{M} f\right)(x)=f(M x)$, the refinement equation reads

$$
\varphi=\mathcal{D}_{M} a(\mathcal{S}) \varphi
$$

E.g., $\beta_{1}(x):=\max (0,1-|x-1|)$ satisfies $\beta_{1}=\mathcal{D}_{2} \frac{(1+\mathcal{S})^{2}}{2} \beta_{1}$.

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Conditions for Existence and Smoothness

The Haar-polynomial is $H_{M}(Z):=\frac{1}{M}\left(1+Z+\cdots+Z^{M-1}\right)$.
For a continuous solution with compact support of $\varphi=\mathcal{D}_{M} a(\mathcal{S}) \varphi$ to exist,

- it is necessary that a has the structure

$$
a(Z)=M H_{M}(Z)^{A} p(Z) \quad \text { with } A \in \mathbb{N} \& A \geq 1
$$

$p(Z)$ is a Laurent-polynomial with $p(1)=1$.

- it is sufficient that additionally for some $r>0$

$$
\|\widehat{p}\|_{\infty}:=\sup _{\omega \in \mathbb{R}}\left|p\left(e^{i(2 \pi \omega)}\right)\right|=M^{A-1-r} \text { holds. }
$$

With $r=n+\alpha$ where $n \in \mathbb{N} \& \alpha \in(0,1]$, one gets that φ is n times continuously differentiable.

Strang (ca. 1960), Daubechies (1992)

Algebraization of the Supremum

p as sequence is finite and real, i.e. there exists $\mathcal{J} \subset \mathbb{Z}$ finite with $p(Z)=\sum_{n \in \mathcal{J}} p_{n} Z^{n}$.
With the Cauchy-Schwarz inequality one gets

$$
\left|p\left(e^{i \omega}\right)\right| \leq \sum_{n \in \mathcal{J}}\left|p_{n}\right| \leq \sqrt{\# \mathcal{J}} \sqrt{\sum_{n \in \mathcal{J}}\left|p_{n}\right|^{2}}
$$

Task:

Minimize $\sum_{n \in \mathbb{Z}} p_{n}^{2}$ wrt. further conditions.
Advanced estimates of $r=n+\alpha$: Setting $p_{(j)}=\left\{p_{j+k M}\right\}_{k \in \mathbb{Z}}$,

$$
M^{A-1-r} \text { is the smaller of } \max _{j=1, \ldots, M}\left\|p_{(j)}\right\|_{1} \text { and } \sqrt{\sum_{j=1, \ldots, M}\left\|\widehat{p}_{(j)}\right\|_{\infty}^{2}} .
$$

Heil (1992), Cabrelli-Heil-Molter (1996), Lehmann (2005)

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Conditions for Shift-Orthonormality

For $\left\{\mathcal{S}^{n} \varphi: n \in \mathbb{Z}\right\}$ to be an ONS and $\varphi=\mathcal{D}_{M} a(\mathcal{S}) \varphi$ to hold

- it is necessary, that $\frac{1}{\sqrt{M}} a$ is shift $-M$-orthonormal, i.e., for each $k \in \mathbb{Z}$

$$
\sum_{n \in \mathbb{Z}} a_{n} a_{n+k M}=M \delta_{0, k}(\text { Kronecker symbol })
$$

- it is sufficient, that additionally φ is continuous with compact support.

Cohen (ca. 1990)

Algebraic simplification

Using the structure $a(Z)=M H_{M}(Z) p(Z)$, an equivalent condition is

$$
p(Z) p\left(Z^{-1}\right)=P_{M, A}\left(1-\frac{Z+Z^{-1}}{2}\right)+\left(1-\frac{Z+Z^{-1}}{2}\right)^{A} R(Z)
$$

where $R(Z)$ is a Laurent-polynomial $R(Z)=\sum_{n \in \mathbb{Z}} R_{n} Z^{n}$, that satisfies $R_{k M}=0$ for all $k \in \mathbb{Z}$.
$P_{M, A} \in \mathbb{Q}[X]$ is efficiently computable.
One obtains further simplifications if p is symmetric, i.e. $p(Z)=q\left(1-\frac{Z+Z^{-1}}{2}\right)$ with $q(X)=Q_{M, A}(X)+X^{A} r(X)$.
$Q_{M, A} \in \mathbb{Q}[X]$ is again efficiently computable.
Heller (1995), Belogay/Wang (1999), Han (2002)

Equations

Parameters: $M, A, n \in \mathbb{N}$
Variables: $X_{1}, \ldots, X_{n}, \mathcal{R}:=\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$,

- Define

$$
q(U):=Q_{M, A}(U)+U^{A}\left(X_{1}+X_{2} U+\cdots+U^{n-1} X_{n}\right) \in \mathcal{R}[U]
$$

- $C(U):=1$ unless both M and A are even, then $C(U):=1-\frac{1}{2} X$,
- Compute $s(U)$ from $C(U) q(U)^{2}-P_{M, A}(U)=U^{A} s(U)$,
- Expand $r(Z)=s\left(1-\frac{Z+Z^{-1}}{2}\right) \in \mathcal{R}\left[Z, Z^{-1}\right]$,
- Extract coefficients $f_{1+n}:=R_{s n} \in \mathcal{R}, n=0, \ldots, p-1$, $s p-s \leq \operatorname{deg}_{U} s(U)<s p$,
- Expand $p(Z):=q\left(1-\frac{Z+Z^{-1}}{2}\right)$ and define $g:=\sum_{k=1}^{n-1} p_{k}^{2} \in \mathcal{R}$.

Minimize $g(x)$ under the conditions $f_{1}(x)=\cdots=f_{p}(x)=0$.

Outline

(1) Orthonormal systems

Sampling
Frequency bands and subbands Wavelet Packets
(2) Wavelets and their scaling functions

Refinement equation
Existence
Orthogonality
(3) Real algebraic theory

Lagrange Theory

Varieties and Geometric Degree

Let $f_{1}, \ldots, f_{p} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be polynomials of degree bounded by d.
$V_{\mathbb{C}}\left(f_{1}, \ldots, f_{p}\right):=\left\{x \in \mathbb{C}^{n}: f_{1}(x)=\cdots=f_{p}(x)=0\right\}$ and
$V_{\mathbb{R}}\left(f_{1}, \ldots, f_{p}\right):=V_{\mathbb{C}}\left(f_{1}, \ldots, f_{p}\right) \cap \mathbb{R}^{n}$.
Suppose $V \subset \mathbb{C}^{n}$ is an irreducible and equidimensional algebraic variety, $\operatorname{dim} V=n-p$. Define $\operatorname{deg}(V, H):=\#\left(V_{\mathbb{C}} \cap H\right)$ for every hyperplane of dimension p.
$\operatorname{deg} V:=\max \{\operatorname{deg}(V, H): H$ hyperplane with $\operatorname{deg}(V, H)<\infty\}$.

If $V=C_{1} \cup \cdots \cup C_{N}$, then $\operatorname{deg} V:=\operatorname{deg} C_{1}+\cdots+\operatorname{deg} C_{N}$.
Bezout-inequality: $\Longrightarrow \operatorname{deg} V_{\mathbb{C}}\left(f_{1}, \ldots, f_{p}\right) \leq d^{n}$.

Critical points

$x \in V_{\mathbb{C}}\left(f_{1}, \ldots, f_{p}\right)$ is regular $\Longleftrightarrow \operatorname{rk} \frac{\partial\left(f_{1}, \ldots, f_{p}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}(x)=p$.

Consider $g \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ as function on $V_{\mathbb{R}}\left(f_{1}, \ldots, f_{p}\right)$.
$x \in V_{\mathbb{C}}\left(f_{1}, \ldots, f_{p}\right)$ is critical $\Longleftrightarrow \operatorname{rk} \frac{\partial\left(f_{1}, \ldots, f_{p}, g\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}(x) \leq p$.
$\left(f_{1}, \ldots, f_{p}\right)$ has evaluation complexity $L \Longleftrightarrow$ it exists an arithmetic circuit of size L that evaluates $\left(f_{1}, \ldots, f_{p}\right)$.

Linear Functionals

From the theory of classical polar varieties:
Given $\left(f_{1}, \ldots, f_{p}\right)$ with degree bound d and evaluation complexity L that is a regular sequence with geometric degree δ.

Then there is a dense subset $\mathcal{A} \subset \mathbb{Q}^{n}$ so that for any $a \in \mathcal{A}$ and the function $a^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto a^{T} x$

- all of the critical points of a^{T} on $V_{\mathbb{R}}\left(f_{1}, \ldots, f_{p}\right)$ are regular and
- a "numerical easy" representation of them can be computed in time $\binom{n}{p} L^{2}(n d \delta)^{O(1)}$.

TERA (since 1995), Mbakop (1999), Bank/Giusti/Heintz/Mbakop (2001),Lecerf (2001), B/G/H/Pardo (2003)

Nonlinear functionals

$$
\begin{aligned}
& f_{1}, \ldots, f_{p}, g \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right] \subset \mathbb{Q}\left[X_{1}, \ldots, X_{n}, X_{n+1}\right] \text { as above. } \\
& V:=V_{\mathbb{R}}\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}^{n} \text { and } V_{g}:=V_{\mathbb{R}}\left(f_{1}, \ldots, f_{p}, g-X_{n+1}\right) \subset \mathbb{R}^{n+1} \\
& \left(x, x_{n+1}\right) \in V_{g} \Longleftrightarrow x \in V \text { and } a^{T} x+x_{n+1}=a^{T} x+g(x) \\
& \left(x, x_{n+1}\right) \in V_{g} \text { regular } \Longleftrightarrow x \in V \text { regular } \\
& \left(x, x_{n+1}\right) \in V_{g} \text { critical for }(a, 1)^{T} \Longleftrightarrow x \in V \text { critical for } g+a^{T}
\end{aligned}
$$

\Longrightarrow we can-in a probabilistic way-decide if critical points of g on V (case $a=0$) are regular and compute them.

Some examples for $M=5$

sinc as ideal

$A=2, n=2$

$A=4, n=9$

$A=3, n=8$

$A=4, n=5$

