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The Fourier Transform

Representation of functions as composition of waves
/ f 1(2mw)x T dw ?
Everything is "legal" for f € L1(R) N L?(R) with

(W) = F(f)(w) = /R F(w)e—iCr gy

The Fourier transform is the unique extension F : L?(R) — L*(R). F
is unitary, F~! = F*,

= Plancherels identity (f, ¢) = (F(f), F(g)) .
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Fourier series

{fn : n € Z} is orthonormal system (ONS)
<> ([, fn) = Ok,n (Kronecker symbol).

Plancherel identity implies: F transforms ONS into ONS.
Let I = [—%, 3], en(z) == '™z for n € Z,
1 Jz| <3

x(@) = xile) = 0 else

Fourier series:

{xen :n €Z} isan ONS in L?(R) and
is a Hilbert basis of L?(I).

Fourier (ca. 1810) 5%
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Sinus cardinalis

With sinc(z) := Sz,

T

1

F Y xen)(z) = /21 pi2rw)(e+n) 4, — W = sinc(z + n)
2
1] " sinc() — |
05| ]
TN T
05| ]
4l ]
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Let PW(I) :={f € I*(R) : f € L2(I)}, sn(z) := sinc(z — n) for n € Z.

= {s,:n €Z} isan ONS in L*(R) and
is a Hilbert basis of PW(I).

fE€PW(I) <= [ =7 ,cz 05y With a, = (f, s, ).
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Sampling Theorem

sy (k) = sinc(k — n) = 0y, (Kronecker symbol).

Thus, with f =" .7 ansy, one gets f(k) = a;, for each k € Z.

Sampling theorem:

fePW(I) = f=) f(n)sn.

nez

More generally, f € PW ([—g, g]) for some B >0, d € R

= flz)=> f(d+% s1nc< (x—d)—n).

neL

Whittaker (1915), Kotelnikov (1933), Shannon (1949)
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Frequency Multiplex Method

f € L2(R,R) a real function = f(—w) = f(w).

Band 0: ), .7 ao,n sinc(z — n)
Band N: Y, .7 (an.n cos(2nN)z + by, sin(2m N)z) sinc(z — n).

Broadband: N =1,...,2",
eg. DAB: n=2,3,...,6, DVB: n =10,...,12.

"Cheat": replace sinc by x and apply frequency filtering.
Downside: orthogonality is lost = ISI: inter-symbol interference 5%
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Generating functions
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Multi—scale properties
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From the sampling theorem on PW ([—%, %]) one obtains e.g.
cos(4mx) sinc(x Z cos (422) sinc (2) sinc(5z — n)
neZ
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Shift—orthonormal Functions and Sequences

¢ € L*(R) is said to be shift-orthonormal, if
{on == 8"p : n € Z}, with the shifts (S"¢)(z) := p(z —n), n € Z,

is an ONS.

Fix M, N € N with 0 < M < N. Given finite sequences
b1 = {bn1}tnez, -, bm = {bn, M }nez, they are said to be
shift— N—orthonormal, if

<SkN b, SN b, > = Z bt kN, mbjiN n = Ok 10m,n (Kronecker symbol).
JEL

g
B @! B
2oypan®
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Wavelet Packets

Let ¢ € L2(R) be a shift-orthonormal function, by, ..., by € R?
shift—N—orthonormal finite sequences.

Define functions ¢;(z) := VN 3.z brje(Nz — k), j=1,..., M.

Wavelet Packet Theorem
Each of 11, ..., is shift-orthonormal and

{'ij,n Z:Sn'gbjij:l,...,M, HEZ}

is an ONS in L?(R).

Note that Jj = ﬁ/[)\j (%) Q/O\ (%) with /b\j = ZkeZ bkyj €_k-

Daubechies (1992) &a
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Interpretation |: Filling a noisy channel

Shannons channel capacity formula:

A channel with average power P, average noise power N and
bandwidth of B cycles per second allows the transmission of up to

P\ bit
Blog, <1+N> %

The Wavelet packet construction allows to split this channel
orthonormally into M channels of bandwidth % with power % each
and noise levels Ny +---+ Ny = N.

logo (1 + %) is concave, so for the bitrates one gets

M
B P P
Z 3 log, (1 > Blog, (14~ ).
M < Og2< +MNj> = °g2< +N>

Shannon (1949)
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Interpretation Il: Approximating a Function

Suppose M = N and both ¢ and 1 lie "almost" in PW ([—3, 3]).
Any f € L*(R) with
f(a) = VALY cxp(Mz — k)
kEZ
lies almost in PW ([—2£, M),

2772
Define M coefficient sequences by

djy =Y bjnCiiin:
nez

M
Then also f = Y d; x1bj x holds.

j=1 keZ

The sum for j = 1 represents the "trend’, the sums for j =2,...,. M
represent "details" of the function f ga
Haar (1910), Morlet/Grossmann (ca. 1985)

Lutz Lehmann (HUB Mathematics) Real elimination & application to the wavelet TERA 2005 17 / 33



Outline

® Wavelets and their scaling functions
Refinement equation

Lutz Lehmann (HUB Mathematics) Real elimination & application to the wavelet TERA 2005 18 / 33



Make wavelet packets recursive via:
11 becomes the next ¢,
while keeping interpretation II: "Approximation".

Preferably
o =1, le., with a := vV Mb; one gets the

Refinement equation: p(z) = Z ano(Mz — n);
nez
e ¢ should lie "almost" in PW (I);
e ¢ should be "smooth" with compact support;

e ¢ should be symmetric.
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a(Z) = ez anZ" is a Laurent-polynomial,
a(8) :== Y,z anS™ is a bounded linear operator on L*(R).

With Dy : L*(R) — L*(R), (Dyf)(z) = f(Mz), the refinement
equation reads

¢ =Duya(S)p

E.g., fi(z) := max(O, 1—|z— 1|) satisfies B = Dg%ﬂl.
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Conditions for Existence and Smoothness

The Haar-polynomial is Hy(Z) == 4 (1+ Z +---+ ZM~1).

For a continuous solution with compact support of ¢ = Djysa(S)p to
exist,

e it is necessary that a has the structure

a(Z) =M Hy(Z2)* p(Z) with AeN& A >1,
p(Z) is a Laurent—polynomial with p(1) = 1.

e it is sufficient that additionally for some r > 0
5|00 := sup ‘p(ei(%w))‘ = MA~17 holds.
weR

With 7 = n + a where n € N & « € (0, 1], one gets that ¢ is
n times continuously differentiable.

Strang (ca. 1960), Daubechies (1992) &a
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Algebraization of the Supremum

p as sequence is finite and real, i.e. there exists J C Z finite with
P(Z) =2 peg 2" -
With the Cauchy—-Schwarz inequality one gets

p(e) < 3 Ipal < J#?\/W.
neJ neJ

Minimize Y-, o, p2 wrt. further conditions.

Advanced estimates of r = n + «a: Setting p(;y = {pj+m }rez,

A-1—r .
M " is the smaller of jmax, p¢yllr and | 12
J=L5

| . A
Heil (1992), Cabrelli-Heil-Molter (1996), Lehmann (2005)
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® Wavelets and their scaling functions

Orthogonality
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Conditions for Shift—Orthonormality

For {§"¢ : n € Z} to be an ONS and ¢ = Djsa(S)¢ to hold

e it is necessary, that ﬁa is shift—M—orthonormal, i.e., for each

kel
Z n Gny s = Mo i, (Kronecker symbol).
neZ
e it is sufficient, that additionally ¢ is continuous with compact
support.

Cohen (ca. 1990)
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Algebraic simplification

Using the structure a(Z) = M Hy(Z) p(Z), an equivalent condition is

P Dp(27) = Paa (1 2472) 1 (1= 222 R(2),

where R(Z) is a Laurent-polynomial R(Z) =) ., R,Z", that
satisfies Ryy = 0 for all k£ € Z.

Pyr.a € Q[X] is efficiently computable.

One obtains further simplifications if p is symmetric, i.e.
p(2) = g (1= 222 with g(X) = Qua(X) + XA7(X).

Qum,a € Q[X] is again efficiently computable.
Heller (1995), Belogay/Wang (1999), Han (2002)
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Parameters: M, A, n € N
Variables: Xi,...,X,, R :=Q[X1,...,X,],

e Define
q(U) = Qua(U)+ U4 (X1 + XU +--- + U LX,) € R[U],
e C(U):=1 unless both M and A are even, then C(U):=1— X,
o Compute s(U) from C(U)q(U)? — Py a(U) = UAs(U),
e Expand r(Z) = s (1 - Z%F) e R[Z,Z7],
e Extract coefficients fi1, .= Ry € R, n=0,...,p — 1,
sp—s <degy s(U) < sp,
e Expand p(Z) := ¢ (1 - Z+QZ_1) and define g := 22;11 pi €R.

Minimize g(z) under the conditions fi(z) =--- = f,(z) = 0. &a
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Varieties and Geometric Degree

Let fi,...,f, € Q[Xi,..., X;] be polynomials of degree bounded by d.
Velfi,.. o fp) ={z e C": fi(z) =--- = f,(z) = 0} and
VR(fl, e ,fp) = V((j(fl, ce ,fp) NR™.

Suppose V' C C" is an irreducible and equidimensional algebraic
variety, dim V = n — p. Define deg(V, H) := #(Vc N H) for every
hyperplane of dimension p.

deg V := max{deg(V, H) : H hyperplane with deg(V, H) < oo}.

IfV==CU---UCh,then deg V :=deg C; + - - - 4+ deg Cy.

Bezout-inequality: = deg Vc(fi,....fp) < d™
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Critical points

v € Velh,. .. f) is reqular < rkodi= ’fp)( )=

A(x1,...,xn

Consider g € Q[Xi, ..., X,] as function on Vr(fi,...,f).

z e Ve(h,....fp) is critical <= rkM( ) < p.

(zla »Tn

(fi,--.,fp) has evaluation complezity L <= it exists an arithmetic
circuit of size L that evaluates (fi,...,f,).
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Linear Functionals

From the theory of classical polar varieties:

Given (fi,...,fp,) with degree bound d and evaluation complexity L
that is a regular sequence with geometric degree 9.

Then there is a dense subset 4 C Q" so that for any ¢ € A and the
function a7 :R"” - R, 2 +— aTz

e all of the critical points of a” on Vg(fi,...,f,) are regular and

¢ a "numerical easy" representation of them can be computed in

time (}) L? (ndd)°M),

TERA (since 1995), Mbakop (1999), Bank/Giusti/Heintz/Mbakop
(2001),Lecerf (2001), B/G/H/Pardo (2003)

g
B @! B
2oypan®
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Nonlinear functionals

fiyo 9 € QX ., X)) CQ[Xy, ..., Xy, X;11] as above.
Vi=Vr(fi,...f,) CR® and V, := VR(fi,...,fo, 9 — Xpn+1) C R
(z,7p41) € Vy <= z€ Vand a’z + 1,41 = aTz + g(2)

(z,2p41) € Vg regular <= z € V regular

(7, 7p41) € Vy critical for (a,1)T <= z € V critical for g + a”

= we can—in a probabilistic way—decide if critical points of g on
V (case a = 0) are regular and compute them.

RN
B @! B
2oypan®
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Some examples for M =5

1. 12
e by R2V2'A2 D000 dal 3 [ symway-RaVE-A1GHDOS00.dat
o ! 08
o8 06
. !

04 04
os 02 02
. 0 0
c T z o 7 T . 02 02

2 45 1 05 0 05 1 15 2 3 2 4 0 1 2 3

sinc as ideal A=9 n=29 A=3n=28

1'?data/belwa5-R4V5-A1 D0S00.dat" 1’? 'symwav-R4V9-A1Q\-D0S00.dat"
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2

0 0
P v . Ve N

4 3 2 4 0 1 2 3 4 4 3 2 4 0 1 2 3 4

g

$uma,
2yars®’
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