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Definition

Let K be a field.
Let F ∈ K[x1, . . . , xn].

The absolute factorization of F is its factorization in K̄[x1, . . . , xn].

Example: y2 − 2x2 = (y +
√

2x)(y −
√

2x).

To avoid confusion, the factorization over K is called the rational factorization.
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Motivations

• Absolute primary decomposition of ideals and modules [Decker, Pfister,
recent implementation in Singular].

• Decomposition of the smooth locus of a Zariski closed set into
path-connected components applications in kinematics [Sommese,
Verschelde, Wampler, 2004].

• Early use in symbolic integration [Trager, 1984].

• Resolution of linear differential equations [Singer, Ulmer, 1997], [Bronstein,
2001].

• Explicit estimates on the number of solutions of systems of equations over
finite fields, [Cafure, Matera, 2005]: use of Bertini’s irreducibility theorem.
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Usual Representation of the Absolute Factorization

The absolutely irreducible factors of F ∈ K[x1, . . . , xn] are written F1, . . . , Fr,
and are represented by {(q1, F1), . . . , (qs, Fs)}, such that:

• qi ∈ K[z] \ K, monic, squarefree.

• Fi ∈ K[x1, . . . , xn, z], with degz(Fi) ≤ deg(qi) − 1.

• deg(Fi(x1, . . . , xn, α)) is independant of the root α of qi.

• {F1, . . . , Fr} = ∪s
i=1{Fi(x1, . . . , xn, α) | qi(α) = 0}.

Such a representation is called irredundant if
∑s

i=1 deg(qi) = r.

+ No unicity!

+ There is a cheap way to compute an irredundant representation from any
redundant one.
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Examples

Example 1. If F ∈ K[x] is squarefree then we can take s := 1, q1(z) as the
monic part of F (z) and F1(x, z) := x − z.

Example 2. If K := Q and F := y2 − 2x2 then we can take s := 1,
q1(z) := z2 − 2, F1(x, y, z) := y − zx.

+ Observe that F and q1 are irreducible over Q.
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Absolute and Rational Factorizations

Assume that the representation is irredundant.

Remark 1. For all i, Pi := Resz(qi(z), Fi(x1, . . . , xn, z)) ∈ K[x1, . . . , xn] is
a factor of F , and its absolute factorization can be represented by (qi, Fi).

Remark 2. Pi is irreducible if and only if qi is irreducible.

 The rational factorization of F can thus be computed from the irreducible
factors of q1, . . . , qs by arithmetic operations in K alone.
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History

Exponential Time “Algorithms”.

• E. Noether, 1922: the absolute factorization problem is a purely rational
problem. The proof based on elimination theory.
 Noether’s irreducibility forms.

• Schmidt, 1976: first quantitative analysis of Noether’s results.

First Breakthrough.

• Heintz, Sieveking, 1981: absolute irreducibility test in time polynomial in the
number of variables.

+ Crucial idea = use Bertini’s irreducibility theorem to reduce the problem to
2 variables:

The intersection of an irreducible hypersurface by a “generic” plane is an
irreducible curve.
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“Polynomial Time” Algorithms.

Underlined = complexity analysis done for bivariate polynomials.

Trager, 1984

Dicrescenzo, Duval, 1984

Kaltofen, 1985

von zur Gathen, 1985

Ruppert, 1986

Dvornicich, Traverso, 1987

Bajaj, Canny, Garrity, Warren, 1989

Duval, 1990

Sasaki et al., 1991-1993

Kaltofen, 1995: cubic time!

Ragot, 1997

Ruppert, 1999

Cormier, Singer, Ulmer, Trager, 2002

Galligo, Rupprecht, 2002

Coreless, Galligo, et al., 2002

Rupprecht, 2004

Bronstein, Trager, 2003

Gao, 2003: almost quadratic time!

Sommese, Verschelde, Wampler, 2004

Chèze, Galligo, 2004

Chèze, Lecerf, 2005: sub-quadratic!
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Complexity Issues

I O(dω) = cost for multiplying two d × d matrices (2 ≤ ω ≤ 3).

Until [Gao, 2003] absolute factorization was known to be much more expensive
than rational factorization.

Even Gao’s algorithm is much slower than the fastest known algorithms for
rational factorization: Õ(d4) versus Õ(dω) [Bostan, Lecerf, Salvy, Schost,
Wiebelt, 2004].

+ Our new algorithm reduces this gap: we can now compute the absolute
factorization in Õ(d(ω+3)/2).

+ The two costs are now asymptocaly equivalent when ω = 3.

+ Remark that we discard the cost of one univariate factorization in degree d in
the rational factorization algorithm.
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About Rational Factorization

So far, the fastest known factorization algorithms are based on the lifting and
recombination technique introduced in [Zasshaus, 1969]: [Bostan, Lecerf, Salvy,
Schost, Wiebelt, 2004], [Lecerf, 2005 (Math. Comp. and MEGA)].

Input: F ∈ K[x1, . . . , xn, y] square-free.

Output: the irreducible rational factors of F .

Normalization hypothesis:
degy(F ) = deg(F ) =: d and Resy

(
∂F
∂y

, F
)

(0, . . . , 0) 6= 0.

Lifting and recombination technique:

1. Factor F (0, . . . , 0, y) in K[y].

2. Lift the factors to a certain precision (x1, . . . , xn)σ.

3. Find out how the lifted factors recombine into the rational factors.

 Can we benefit of this technique for absolute factorization?
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[Gao, 2003]

“In practice rational factorization of most polynomials can be computed efficiently
using Hensel lifting.[. . . ] Absolute factorization is fundamental in computation in
commutative algebra, algebraic geometry and number theory. Here Hensel lifting
technique seems no longer applicable.”

+ It is true that the construction of the splitting field of F (0, . . . , 0, y) is in
general too expensive!

+ The only known exception concerns K = Q. Numerical computations can be
performed in C: Sasaki, Galligo, Chèze,. . .
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Our “Absolute Lifting and Recombination” Technique

1. Compute the absolute factorization of F (0, . . . , 0, y).

2. Lift the absolute factorization to a certain precision (x1, . . . , xn)σ.

3. Find out how the lifted factors recombine.

+ Step 1 costs nothing.

+ We need to detail steps 2 and 3.

Assumptions:

• F ∈ K[x, y].

• F is monic in y and degy(F ) = deg(F ) = d.

• Res
(

F (0, y),
∂F

∂y
(0, y)

)
6= 0.

+ Not restrictive!
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Lifting Step

Let f(y) := F (0, y) and A := K[y]/(f(y)).
(f(z), y − z) represents the absolute factorization of f(y).

Let ϕ denote the residue class of y in A. Then there exists a unique series
φ ∈ A[[x]] such that:

• φ − ϕ ∈ (x),

• F (x, φ) = 0.

φ can be approximated to any precision (xσ) by means of Newton’s operator.

 (f(z), y − φ(z, x)) represents the factorization of F (x, y) seen in K̄[[x]][y].

+ For efficiency, we use Paterson and Stockmeyer’s evaluation scheme [1973].
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Recombination Step

It divides into:

• Linear System Solving,

• Absolute Partial Fraction Decomposition.
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Linear System Solving

From φ computed to the precision (xσ), we construct the following linear system
where F̂ := F/F ∈ A[[x]][y] and F := y − φ:

Lσ :=
{
((`1, . . . , `d), G, H) ∈ Kd × K[x, y]d−1 × K[x, y]d−1 |

G −
d∑

i=1

`i coeff
(

F̂
∂F

∂y
, ϕi−1

)
∈ (x, y)σ,

H −
d∑

i=1

`i coeff
(

F̂
∂F

∂x
, ϕi−1

)
∈ (x, y)σ + (xσ−1)

}
.

Let σ = 2d if char(K) = 0 or > d(d − 1), otherwise let σ = d(d − 1) + 1.
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Theorem.

K̄⊗Lσ =
〈(

µi,
F

Fi

∂Fi

∂y
,

F

Fi

∂Fi

∂x

)
| i ∈ {1, . . . , r}

〉
,

where µi := (Tr0(Fi(0, y)), . . . , Trd−1(Fi(0, y))).

+ The proof is based on the first algebraic de Rham cohomology group of the
complementary of F = 0 (as for Gao’s algorithm).

+ For efficiency reasons we compute a basis of π(Lσ), defined as the
projection of Lσ to Kd.
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Absolute Partial Fraction Decomposition

For any ((`1, . . . , `d), G, H) ∈ Lσ, the previous theorem implies that:

G

F
=

r∑
i=1

ρi

∂Fi

∂y

Fi

, with ρi ∈ K̄.

For almost all G, the ρi are pairwise distinct, and thus F1, . . . , Fr can be directly
obtained from the partial fraction decomposition of G/F :

1. Let Q(z) = Resy

(
F (0, y), z

∂F

∂y
(0, y) − G(0, y)

)
.

2. The set of roots of Q is {ρ1, . . . , ρr}, and Fi = gcd
(

F, ρi

∂F

∂y
− G

)
.

+ The partial fraction decomposition of G/F can be computed with the
classical Rothstein-Trager of Lazard-Rioboo-Trager algorithms.
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Example

K := Q, F := y4 + (2x + 14)y2 − 7x2 + 6x + 47.

f := y4 + 14y2 + 47, with σ := 2 deg(F ) = 8, we obtain:

φ = ϕ −
(

13

94
ϕ3 +

44

47
ϕ

)
x +

(
39

8836
ϕ3 +

199

17672
ϕ

)
x2

−
(

4745

1661168
ϕ3 +

15073

830584
ϕ

)
x3

+ · · · −
(

26241896109

1037564150708224
ϕ3 +

76656876747

518782075354112
ϕ

)
x7 + O(x8).

A possible basis of π(L∞) is (1, 0, 0, 0), (0, 0, 1, 0). We take G := (2x + 1)y,
and the partial fraction decomposition gives us the absolute factorization
(z2 − 1/32, y2 + (1 − 16z)x − 8z + 7).
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Main Complexity Results

Assume char(K) = 0 of char(K) > d(d − 1).

M(d) = cost for multiplying two polynomials in degree d.
O(dω) = cost for multiplying two d × d matrices.

Theorem. Cost of the absolute factorization:

• O(d3M(d) log(d)) or Õ(d4) arithmetic operations in K deterministically.

• O(d(ω+3)/2 + d3/2M(d)(M(d)2/d2 + log(d))) or Õ(d(ω+3)/2) arithmetic
operations in K, with a Las Vegas probabilistic algorithm.

+ These algorithms do not use rational factorization, hence do not depend on
the base field.

+ Discarding one univariate factorization in degree d, the rational factorization
costs [Bostan et al., 2004], [Lecerf, 2005]:

• O(dω+1), deterministically,

• O(dω), probabilistically the overhead is much less than d.
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Timings

K := Z/754974721Z, F irreducible with r absolutely irreducible factors.

MAGMA V2.11-14 on a 1.8 GHz Pentium M processor.

d r = 1 r = 2 r = 2blog2(d)/2c r = d/2 r = d

8 0.08 s 0.03 s 0.03 s 0.03 s 0.02 s

16 0.41 s 0.20 s 0.18 s 0.17 s 0.12 s

32 2.36 s 1.55 s 2.96 s 1.42 s 0.78 s

64 18.8 s 21.0 s 21.8 s 20.5 s 15.8 s

128 147 s 175 s 170 s 179 s 119 s

256 1239 s 1423 s 1419 s 1520 s 973 s

 Reflects well the cost in Õ(d3).

+ These computations were previously out of reach.
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Sharp Bertini’s Theorem in the Normalized Case

I char(K) = 0 or char(K) ≥ d(d − 1) + 1.
I F ∈ K[x1, . . . , xn, y] is irreducible.
I S is a finite subset of K.

Normalization hypothesis:

degy(F ) = deg(F ) =: d and Resy

(
∂F

∂y
, F

)
(0, . . . , 0) 6= 0.

Upper bound: |{(a1, . . . , an) ∈ Sn | F (a1x, . . . , anx, y) is reducible}|

≤ 1
8
(3d − 1)(5d − 3)|S|n−1.

Lower bound: K := C, F := yd + xd−1
1 y − xd−1

2 − 1. Let S be the set of
roots of zd(d−1) − 1.
|{(a1, . . . , an) ∈ Sn | F (a1x, . . . , anx, y) is reducible}| = Sn.

 |S| � d2 is necessary and sufficient to reach small probabilities of failure.

22



Quantitative Version of Bertini’s Irreducibility Theorem

I P ∈ K[v1, . . . , vn] is irreducible of total degree d.

Problem: for a finite subset S of K, upper bound the density of points
(a, b, c) ∈ (Sn)3 for which P (a1x + b1y + c1, . . . , anx + bny + cn) is
reducible.

• Hilbert (1892) (before Bertini): the density tends to 0 for large S.

• Heintz & Sieveking (1981), Kaltofen (1982): use in computer algebra.

• von zur Gathen (1985): 9d2

/|S|.

• Bajaj, Canny, Garrity & Warren (1993): d4/|S|, when K = C.

• Kaltofen (1995): 2d4/|S|, when K is perfect.

• Gao (2003): 2d3/|S|, when char(K) = 0 or ≥ 2d2.

• Chèze (2004): d3/|S|, when char(K) = 0 or ≥ d(d − 1) + 1.

• Lecerf (2005): 23
8

d2/|S|, when char(K) = 0 or ≥ d(d − 1) + 1.
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Further Work

• Unified approach to factorizations: rational, absolute, over an algebraic
extension and over the splitting field of a given univariate polynomial (in
preparation).

• Improve the “small characteristic” case.

• Improve the “sparse” case, via analytic factorization.
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