

Lifting and Recombination Techniques for Absolute Factorization

Grégoire Lecerf

CNRS UMI 2615 J.-V. Poncelet Mathematics Laboratory Independant University of Moscow

Joint work with Guillaume Chèze

Definition

Let \mathbb{K} be a field. Let $F \in \mathbb{K}[x_1, \ldots, x_n].$

The absolute factorization of F is its factorization in $\mathbb{\bar{K}}[x_1,\ldots,x_n]$.

Example: $y^2 - 2x^2 = (y + \sqrt{2}x)(y - \sqrt{2}x)$.

To avoid confusion, the factorization over \mathbb{K} is called the rational factorization.

Motivations

- Absolute primary decomposition of ideals and modules [Decker, Pfister, recent implementation in Singular].
- Decomposition of the smooth locus of a Zariski closed set into path-connected components ~> applications in kinematics [Sommese, Verschelde, Wampler, 2004].
- Early use in symbolic integration [Trager, 1984].
- Resolution of linear differential equations [Singer, Ulmer, 1997], [Bronstein, 2001].
- Explicit estimates on the number of solutions of systems of equations over finite fields, [Cafure, Matera, 2005]: use of Bertini's irreducibility theorem.

Usual Representation of the Absolute Factorization

The absolutely irreducible factors of $F \in \mathbb{K}[x_1, \ldots, x_n]$ are written F_1, \ldots, F_r , and are represented by $\{(q_1, F_1), \ldots, (q_s, F_s)\}$, such that:

- $q_i \in \mathbb{K}[z] \setminus \mathbb{K}$, monic, squarefree.
- $\mathsf{F}_i \in \mathbb{K}[x_1, \ldots, x_n, z]$, with $\deg_z(\mathsf{F}_i) \leq \deg(q_i) 1$.
- $deg(F_i(x_1, \ldots, x_n, \alpha))$ is independent of the root α of q_i .

•
$$\{F_1, \ldots, F_r\} = \cup_{i=1}^s \{\mathsf{F}_i(x_1, \ldots, x_n, \alpha) \mid q_i(\alpha) = 0\}.$$

Such a representation is called irredundant if $\sum_{i=1}^{s} \deg(q_i) = r$.

- № No unicity!
- There is a cheap way to compute an irredundant representation from any redundant one.

Examples

Example 1. If $F \in \mathbb{K}[x]$ is squarefree then we can take s := 1, $q_1(z)$ as the monic part of F(z) and $F_1(x, z) := x - z$.

Example 2. If $\mathbb{K} := \mathbb{Q}$ and $F := y^2 - 2x^2$ then we can take s := 1, $q_1(z) := z^2 - 2$, $\mathsf{F}_1(x, y, z) := y - zx$.

 \mathbb{R} Observe that F and q_1 are irreducible over \mathbb{Q} .

Absolute and Rational Factorizations

Assume that the representation is irredundant.

Remark 1. For all i, $P_i := \text{Res}_z(q_i(z), F_i(x_1, \dots, x_n, z)) \in \mathbb{K}[x_1, \dots, x_n]$ is a factor of F, and its absolute factorization can be represented by (q_i, F_i) .

Remark 2. P_i is irreducible if and only if q_i is irreducible.

 \rightsquigarrow The rational factorization of F can thus be computed from the irreducible factors of q_1, \ldots, q_s by arithmetic operations in \mathbb{K} alone.

History

Exponential Time "Algorithms".

- E. Noether, 1922: the absolute factorization problem is a purely rational problem. The proof based on elimination theory.
 ~> Noether's irreducibility forms.
- Schmidt, 1976: first quantitative analysis of Noether's results.

First Breakthrough.

- Heintz, Sieveking, 1981: absolute irreducibility test in time polynomial in the number of variables.
 - Crucial idea = use Bertini's irreducibility theorem to reduce the problem to 2 variables:

The intersection of an irreducible hypersurface by a "generic" plane is an irreducible curve.

Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables

Joos Heintz and Malte Sieveking

<u>Abstract</u>. Let F be a n-variate polynomial with deg F = d over an infinite field k_0 . Absolute primality of F can be decided randomly in time polynomial in n and exponential in d⁵ and determinalistically in time exponential in d⁶ + n² d³.

"Polynomial Time" Algorithms.

Underlined = complexity analysis done for bivariate polynomials.

Trager, 1984 Dicrescenzo, Duval, 1984 Kaltofen, 1985 von zur Gathen, 1985 Ruppert, 1986 Dvornicich, Traverso, 1987 Bajaj, Canny, Garrity, Warren, 1989 Duval, 1990 Sasaki *et al.*, 1991-1993 Kaltofen, 1995: cubic time! Ragot, 1997

Ruppert, 1999 Cormier, Singer, Ulmer, Trager, 2002 Galligo, Rupprecht, 2002 Coreless, Galligo, et al., 2002 Rupprecht, 2004 Bronstein, Trager, 2003 Gao, 2003: almost quadratic time! Sommese, Verschelde, Wampler, 2004 Chèze, Galligo, 2004 Chèze, Lecerf, 2005: sub-quadratic!

Complexity Issues

► $\mathcal{O}(d^{\omega})$ = cost for multiplying two $d \times d$ matrices ($2 \le \omega \le 3$).

Until [Gao, 2003] absolute factorization was known to be much more expensive than rational factorization.

Even Gao's algorithm is much slower than the fastest known algorithms for rational factorization: $\tilde{\mathcal{O}}(d^4)$ versus $\tilde{\mathcal{O}}(d^{\omega})$ [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004].

- Solution of $\mathcal{O}(d^{(\omega+3)/2})$.
- \bowtie The two costs are now asymptocally equivalent when $\omega = 3$.
- Remark that we discard the cost of one univariate factorization in degree *d* in the rational factorization algorithm.

About Rational Factorization

So far, the fastest known factorization algorithms are based on the lifting and recombination technique introduced in [Zasshaus, 1969]: [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004], [Lecerf, 2005 (Math. Comp. and MEGA)].

Input: $F \in \mathbb{K}[x_1, \ldots, x_n, y]$ square-free.

Output: the irreducible rational factors of *F*.

Normalization hypothesis:

 $\deg_y(F) = \deg(F) =: d$ and $\operatorname{Res}_y\left(\frac{\partial F}{\partial y}, F\right)(0, \dots, 0) \neq 0.$

Lifting and recombination technique:

- 1. Factor $F(0, \ldots, 0, y)$ in $\mathbb{K}[y]$.
- 2. Lift the factors to a certain precision $(x_1, \ldots, x_n)^{\sigma}$.
- 3. Find out how the lifted factors recombine into the rational factors.

~> Can we benefit of this technique for absolute factorization?

[Gao, 2003]

"In practice rational factorization of most polynomials can be computed efficiently using Hensel lifting.[...] Absolute factorization is fundamental in computation in commutative algebra, algebraic geometry and number theory. Here Hensel lifting technique seems no longer applicable."

- It is true that the construction of the splitting field of F(0, ..., 0, y) is in general too expensive!
- The only known exception concerns $\mathbb{K} = \mathbb{Q}$. Numerical computations can be performed in \mathbb{C} : Sasaki, Galligo, Chèze,...

Our "Absolute Lifting and Recombination" Technique

- 1. Compute the absolute factorization of $F(0, \ldots, 0, y)$.
- 2. Lift the absolute factorization to a certain precision $(x_1, \ldots, x_n)^{\sigma}$.
- 3. Find out how the lifted factors recombine.
- Issee 1 costs nothing.
- \mathbb{R} We need to detail steps 2 and 3.

Assumptions:

- $F \in \mathbb{K}[x,y]$.
- F is monic in y and $\deg_y(F) = \deg(F) = d$.

•
$$\operatorname{Res}\left(F(0,y), \frac{\partial F}{\partial y}(0,y)\right) \neq 0.$$

INOT restrictive!

Lifting Step

Let f(y) := F(0, y) and $\mathbb{A} := \mathbb{K}[y]/(f(y))$. (f(z), y - z) represents the absolute factorization of f(y).

Let φ denote the residue class of y in A. Then there exists a unique series $\phi \in \mathbb{A}[[x]]$ such that:

- $\phi \varphi \in (x)$,
- $F(x,\phi)=0.$

 ϕ can be approximated to any precision (x^{σ}) by means of Newton's operator.

 $ightarrow (f(z),y-\phi(z,x))$ represents the factorization of F(x,y) seen in $ar{\mathbb{K}}[[x]][y].$

For efficiency, we use Paterson and Stockmeyer's evaluation scheme [1973].

Recombination Step

It divides into:

- Linear System Solving,
- Absolute Partial Fraction Decomposition.

Linear System Solving

From ϕ computed to the precision (x^{σ}) , we construct the following linear system where $\hat{\mathfrak{F}} := F/\mathfrak{F} \in \mathbb{A}[[x]][y]$ and $\mathfrak{F} := y - \phi$:

$$egin{aligned} L_{\sigma} :=& \Big\{ ((\ell_1,\ldots,\ell_d),G,H) \in \mathbb{K}^d imes \mathbb{K}[x,y]_{d-1} imes \mathbb{K}[x,y]_{d-1} \mid \ & G - \sum_{i=1}^d \ell_i \operatorname{coeff} \left(\hat{\mathfrak{F}} rac{\partial \mathfrak{F}}{\partial y}, arphi^{i-1}
ight) \in (x,y)^{\sigma}, \ & H - \sum_{i=1}^d \ell_i \operatorname{coeff} \left(\hat{\mathfrak{F}} rac{\partial \mathfrak{F}}{\partial x}, arphi^{i-1}
ight) \in (x,y)^{\sigma} + (x^{\sigma-1}) \Big\}. \end{aligned}$$

Let $\sigma = 2d$ if $\operatorname{char}(\mathbb{K}) = 0$ or > d(d-1), otherwise let $\sigma = d(d-1) + 1$.

Theorem.

$$ar{\mathbb{K}} \otimes L_{\sigma} = \left\langle \left(\mu_i, rac{F}{F_i} rac{\partial F_i}{\partial y}, rac{F}{F_i} rac{\partial F_i}{\partial x}
ight) \mid i \in \{1, \dots, r\}
ight
angle,$$

where $\mu_i := (\operatorname{Tr}_0(F_i(0, y)), \dots, \operatorname{Tr}_{d-1}(F_i(0, y))).$

- The proof is based on the first algebraic de Rham cohomology group of the complementary of F = 0 (as for Gao's algorithm).
- For efficiency reasons we compute a basis of $\pi(L_{\sigma})$, defined as the projection of L_{σ} to \mathbb{K}^d .

Absolute Partial Fraction Decomposition

For any $((\ell_1, \ldots, \ell_d), G, H) \in L_{\sigma}$, the previous theorem implies that:

$$rac{G}{F} = \sum_{i=1}^r
ho_i rac{rac{\partial F_i}{\partial y}}{F_i}, \qquad ext{with }
ho_i \in ar{\mathbb{K}}.$$

For almost all G, the ρ_i are pairwise distinct, and thus F_1, \ldots, F_r can be directly obtained from the partial fraction decomposition of G/F:

1. Let
$$Q(z) = \operatorname{Res}_y \left(F(0,y), z \frac{\partial F}{\partial y}(0,y) - G(0,y)
ight).$$

2. The set of roots of
$$Q$$
 is $\{\rho_1, \ldots, \rho_r\}$, and $F_i = \gcd\left(F, \rho_i \frac{\partial F}{\partial y} - G\right)$.

The partial fraction decomposition of G/F can be computed with the classical Rothstein-Trager of Lazard-Rioboo-Trager algorithms.

Example

$$\begin{split} \mathbb{K} &:= \mathbb{Q}, F := y^4 + (2x + 14)y^2 - 7x^2 + 6x + 47. \\ f &:= y^4 + 14y^2 + 47, \text{with } \sigma := 2 \deg(F) = 8, \text{ we obtain:} \\ \phi &= \varphi - \left(\frac{13}{94}\varphi^3 + \frac{44}{47}\varphi\right)x + \left(\frac{39}{8836}\varphi^3 + \frac{199}{17672}\varphi\right)x^2 \\ &- \left(\frac{4745}{1661168}\varphi^3 + \frac{15073}{830584}\varphi\right)x^3 \\ &+ \dots - \left(\frac{26241896109}{1037564150708224}\varphi^3 + \frac{76656876747}{518782075354112}\varphi\right)x^7 + \mathcal{O}(x^8). \end{split}$$

A possible basis of $\pi(L_{\infty})$ is (1, 0, 0, 0), (0, 0, 1, 0). We take G := (2x + 1)y, and the partial fraction decomposition gives us the absolute factorization $(z^2 - 1/32, y^2 + (1 - 16z)x - 8z + 7)$.

Main Complexity Results

Assume $\operatorname{char}(\mathbb{K}) = 0$ of $\operatorname{char}(\mathbb{K}) > d(d-1)$.

M(d) = cost for multiplying two polynomials in degree d. $\mathcal{O}(d^{\omega}) = \text{cost for multiplying two } d \times d \text{ matrices.}$

Theorem. Cost of the absolute factorization:

- $\mathcal{O}(d^3\mathsf{M}(d)\log(d))$ or $\tilde{\mathcal{O}}(d^4)$ arithmetic operations in \mathbb{K} deterministically.
- O(d^{(ω+3)/2} + d^{3/2}M(d)(M(d)²/d² + log(d))) or Õ(d^{(ω+3)/2}) arithmetic operations in K, with a Las Vegas probabilistic algorithm.
- These algorithms do not use rational factorization, hence do not depend on the base field.
- Discarding one univariate factorization in degree d, the rational factorization costs [Bostan et al., 2004], [Lecerf, 2005]:
 - $\mathcal{O}(d^{\omega+1})$, deterministically,
 - $\mathcal{O}(d^{\omega})$, probabilistically \rightsquigarrow the overhead is much less than d.

Timings

 $\mathbb{K} := \mathbb{Z}/754974721\mathbb{Z}$, *F* irreducible with *r* absolutely irreducible factors. MAGMA V2.11-14 on a 1.8 GHz Pentium M processor.

d	r = 1	r=2	$r = 2^{\lfloor \log_2(d)/2 \rfloor}$	r=d/2	r = d
8	0.08 s	0.03 s	0.03 s	0.03 s	0.02 s
16	0.41 s	0.20 s	0.18 s	0.17 s	0.12 s
32	2.36 s	1.55 s	2.96 s	1.42 s	0.78 s
64	18.8 s	21.0 s	21.8 s	20.5 s	15.8 s
128	147 s	175 s	170 s	179 s	119 s
256	1239 s	1423 s	1419 s	1520 s	973 s

 \rightsquigarrow Reflects well the cost in $ilde{\mathcal{O}}(d^3)$.

Image: These computations were previously out of reach.

Sharp Bertini's Theorem in the Normalized Case

- ► char(\mathbb{K}) = 0 or char(\mathbb{K}) ≥ d(d-1) + 1.
- $\blacktriangleright F \in \mathbb{K}[x_1,\ldots,x_n,y]$ is irreducible.
- ▶ S is a finite subset of \mathbb{K} .

Normalization hypothesis:

$$\deg_y(F) = \deg(F) =: d$$
 and $\operatorname{Res}_y\left(\frac{\partial F}{\partial y}, F\right)(0, \dots, 0) \neq 0.$

Upper bound: $|\{(a_1,\ldots,a_n)\in S^n\mid F(a_1x,\ldots,a_nx,y) ext{ is reducible}\}|$ $\leq rac{1}{8}(3d-1)(5d-3)|S|^{n-1}.$

Lower bound: $\mathbb{K} := \mathbb{C}$, $F := y^d + x_1^{d-1}y - x_2^{d-1} - 1$. Let S be the set of roots of $z^{d(d-1)} - 1$. $|\{(a_1, \dots, a_n) \in S^n \mid F(a_1x, \dots, a_nx, y) \text{ is reducible}\}| = S^n$.

 $\rightsquigarrow |S| \gg d^2$ is necessary and sufficient to reach small probabilities of failure.

Quantitative Version of Bertini's Irreducibility Theorem

 $\blacktriangleright P \in \mathbb{K}[v_1, \ldots, v_n]$ is irreducible of total degree d.

Problem: for a finite subset *S* of \mathbb{K} , upper bound the density of points $(a, b, c) \in (S^n)^3$ for which $P(a_1x + b_1y + c_1, \ldots, a_nx + b_ny + c_n)$ is reducible.

- Hilbert (1892) (before Bertini): the density tends to 0 for large S.
- Heintz & Sieveking (1981), Kaltofen (1982): use in computer algebra.
- von zur Gathen (1985): $9^{d^2}/|S|$.
- Bajaj, Canny, Garrity & Warren (1993): $d^4/|S|$, when $\mathbb{K} = \mathbb{C}$.
- Kaltofen (1995): $2d^4/|S|$, when $\mathbb K$ is perfect.
- Gao (2003): $2d^3/|S|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq 2d^2$.
- Chèze (2004): $d^3/|S|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq d(d-1)+1$.
- Lecerf (2005): $rac{23}{8}d^2/|S|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq d(d-1)+1$.

Further Work

- Unified approach to factorizations: rational, absolute, over an algebraic extension and over the splitting field of a given univariate polynomial (in preparation).
- Improve the "small characteristic" case.
- Improve the "sparse" case, via analytic factorization.