Lifting and Recombination Techniques for Absolute Factorization

Grégoire Lecerf

CNRS UMI 2615
J.-V. Poncelet Mathematics Laboratory
Independant University of Moscow

Joint work with Guillaume Chèze

Definition

Let \mathbb{K} be a field.
Let $\boldsymbol{F} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
The absolute factorization of \boldsymbol{F} is its factorization in $\overline{\mathbb{K}}\left[x_{1}, \ldots, x_{n}\right]$.
Example: $y^{2}-2 x^{2}=(y+\sqrt{2} x)(y-\sqrt{2} x)$.
To avoid confusion, the factorization over \mathbb{K} is called the rational factorization.

Motivations

- Absolute primary decomposition of ideals and modules [Decker, Pfister, recent implementation in Singular].
- Decomposition of the smooth locus of a Zariski closed set into path-connected components \rightsquigarrow applications in kinematics [Sommese, Verschelde, Wampler, 2004].
- Early use in symbolic integration [Trager, 1984].
- Resolution of linear differential equations [Singer, Ulmer, 1997], [Bronstein, 2001].
- Explicit estimates on the number of solutions of systems of equations over finite fields, [Cafure, Matera, 2005]: use of Bertini's irreducibility theorem.

Usual Representation of the Absolute Factorization

The absolutely irreducible factors of $\boldsymbol{F} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ are written $\boldsymbol{F}_{1}, \ldots, \boldsymbol{F}_{r}$, and are represented by $\left\{\left(\boldsymbol{q}_{1}, \mathbf{F}_{1}\right), \ldots,\left(\boldsymbol{q}_{s}, \mathbf{F}_{s}\right)\right\}$, such that:

- $q_{i} \in \mathbb{K}[z] \backslash \mathbb{K}$, monic, squarefree.
- $\mathrm{F}_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}, z\right]$, with $\operatorname{deg}_{z}\left(\mathbf{F}_{i}\right) \leq \operatorname{deg}\left(q_{i}\right)-1$.
- $\operatorname{deg}\left(\mathrm{F}_{i}\left(x_{1}, \ldots, x_{n}, \alpha\right)\right)$ is independant of the root α of \boldsymbol{q}_{i}.
- $\left\{F_{1}, \ldots, F_{r}\right\}=\cup_{i=1}^{s}\left\{\mathrm{~F}_{i}\left(x_{1}, \ldots, x_{n}, \alpha\right) \mid q_{i}(\alpha)=0\right\}$.

Such a representation is called irredundant if $\sum_{i=1}^{s} \operatorname{deg}\left(q_{i}\right)=r$.
No unicity!
There is a cheap way to compute an irredundant representation from any redundant one.

Examples

Example 1. If $F \in \mathbb{K}[x]$ is squarefree then we can take $s:=1, \boldsymbol{q}_{1}(z)$ as the monic part of $F(z)$ and $\mathrm{F}_{1}(x, z):=x-z$.

Example 2. If $\mathbb{K}:=\mathbb{Q}$ and $F:=y^{2}-2 x^{2}$ then we can take $s:=1$, $q_{1}(z):=z^{2}-2, \mathrm{~F}_{1}(x, y, z):=y-z x$.

Observe that \boldsymbol{F} and \boldsymbol{q}_{1} are irreducible over \mathbb{Q}.

Absolute and Rational Factorizations

Assume that the representation is irredundant.
Remark 1. For all $i, P_{i}:=\operatorname{Res}_{z}\left(q_{i}(z), F_{i}\left(x_{1}, \ldots, x_{n}, z\right)\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is a factor of \boldsymbol{F}, and its absolute factorization can be represented by ($\boldsymbol{q}_{\boldsymbol{i}}, \mathbf{F}_{\boldsymbol{i}}$).

Remark 2. P_{i} is irreducible if and only if \boldsymbol{q}_{i} is irreducible.
\rightsquigarrow The rational factorization of \boldsymbol{F} can thus be computed from the irreducible factors of $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$ by arithmetic operations in \mathbb{K} alone.

History

Exponential Time "Algorithms".

- E. Noether, 1922: the absolute factorization problem is a purely rational problem. The proof based on elimination theory.
\rightsquigarrow Noether's irreducibility forms.
- Schmidt, 1976: first quantitative analysis of Noether's results.

First Breakthrough.

- Heintz, Sieveking, 1981: absolute irreducibility test in time polynomial in the number of variables.

Crucial idea = use Bertini's irreducibility theorem to reduce the problem to 2 variables:

The intersection of an irreducible hypersurface by a "generic" plane is an irreducible curve.

Absolute Primality of Polynomials is Decidable in
 Random Polynomial Time in the Number of Variables

Joos Helntz and Halte Sieveking

Abstract, Let F be a n-variate polymomial with deg $F=d$ over an infinite field $k_{\text {. . Aboolute primality of }} F$ can be decided randmily in tine polynamal in n and exponential in d^{5} and deteminalistically in time exponential in $d^{6}+n^{2} d^{3}$.
"Polynomial Time" Algorithms.
Underlined = complexity analysis done for bivariate polynomials.

Trager, 1984
Dicrescenzo, Duval, 1984
Kaltofen, 1985
von zur Gathen, 1985
Ruppert, 1986
Dvornicich, Traverso, 1987
Bajaj, Canny, Garrity, Warren, 1989
Duval, 1990
Sasaki et al., 1991-1993
Kaltofen, 1995: cubic time!
Ragot, 1997

Ruppert, 1999
Cormier, Singer, Ulmer, Trager, 2002
Galligo, Rupprecht, 2002
Coreless, Galligo, et al., 2002
Rupprecht, 2004
Bronstein, Trager, 2003
Gao, 2003: almost quadratic time!
Sommese, Verschelde, Wampler, 2004
Chèze, Galligo, 2004
Chèze, Lecerf, 2005: sub-quadratic!

Complexity Issues

$-\mathcal{O}\left(d^{\omega}\right)=$ cost for multiplying two $d \times d$ matrices $(2 \leq \omega \leq 3)$.
Until [Gao, 2003] absolute factorization was known to be much more expensive than rational factorization.

Even Gao's algorithm is much slower than the fastest known algorithms for rational factorization: $\tilde{\mathcal{O}}\left(d^{4}\right)$ versus $\tilde{\mathcal{O}}\left(d^{\omega}\right)$ [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004].

Our new algorithm reduces this gap: we can now compute the absolute factorization in $\tilde{\mathcal{O}}\left(\boldsymbol{d}^{(\omega+3) / 2}\right)$.

The two costs are now asymptocaly equivalent when $\omega=3$.
Remark that we discard the cost of one univariate factorization in degree d in the rational factorization algorithm.

About Rational Factorization

So far, the fastest known factorization algorithms are based on the lifting and recombination technique introduced in [Zasshaus, 1969]: [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004], [Lecerf, 2005 (Math. Comp. and MEGA)].

Input: $\boldsymbol{F} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}, y\right]$ square-free.
Output: the irreducible rational factors of \boldsymbol{F}.
Normalization hypothesis:

$$
\operatorname{deg}_{y}(F)=\operatorname{deg}(F)=: d \quad \text { and } \quad \operatorname{Res}_{y}\left(\frac{\partial F}{\partial y}, F\right)(0, \ldots, 0) \neq 0
$$

Lifting and recombination technique:

1. Factor $\boldsymbol{F}(\mathbf{0}, \ldots, 0, \boldsymbol{y})$ in $\mathbb{K}[\boldsymbol{y}]$.
2. Lift the factors to a certain precision $\left(x_{1}, \ldots, x_{n}\right)^{\sigma}$.
3. Find out how the lifted factors recombine into the rational factors.
\rightsquigarrow Can we benefit of this technique for absolute factorization?

[Gao, 2003]

"In practice rational factorization of most polynomials can be computed efficiently using Hensel lifting.[. . .] Absolute factorization is fundamental in computation in commutative algebra, algebraic geometry and number theory. Here Hensel lifting technique seems no longer applicable."

It is true that the construction of the splitting field of $\boldsymbol{F}(\mathbf{0}, \ldots, \mathbf{0}, \boldsymbol{y})$ is in general too expensive!

The only known exception concerns $\mathbb{K}=\mathbb{Q}$. Numerical computations can be performed in \mathbb{C} : Sasaki, Galligo, Chèze,...

Our "Absolute Lifting and Recombination" Technique

1. Compute the absolute factorization of $\boldsymbol{F}(0, \ldots, 0, y)$.
2. Lift the absolute factorization to a certain precision $\left(x_{1}, \ldots, x_{n}\right)^{\sigma}$.
3. Find out how the lifted factors recombine.

Step 1 costs nothing.
We need to detail steps 2 and 3 .

Assumptions:

- $F \in \mathbb{K}[x, y]$.
- \boldsymbol{F} is monic in y and $\operatorname{deg}_{y}(\boldsymbol{F})=\operatorname{deg}(\boldsymbol{F})=\boldsymbol{d}$.
- $\operatorname{Res}\left(F(0, y), \frac{\partial F}{\partial y}(0, y)\right) \neq 0$.

Not restrictive!

Lifting Step

Let $f(y):=F(0, y)$ and $\mathbb{A}:=\mathbb{K}[y] /(f(y))$.
$(f(z), y-z)$ represents the absolute factorization of $f(y)$.

Let φ denote the residue class of y in \mathbb{A}. Then there exists a unique series $\phi \in \mathbb{A}[[x]]$ such that:

- $\phi-\varphi \in(x)$,
- $\boldsymbol{F}(x, \phi)=0$.
ϕ can be approximated to any precision (x^{σ}) by means of Newton's operator.
$\rightsquigarrow(f(z), y-\phi(z, x))$ represents the factorization of $\boldsymbol{F}(x, y)$ seen in $\overline{\mathbb{K}}[[x]][y]$.
For efficiency, we use Paterson and Stockmeyer's evaluation scheme [1973].

Recombination Step

It divides into:

- Linear System Solving,
- Absolute Partial Fraction Decomposition.

Linear System Solving

From ϕ computed to the precision $\left(x^{\sigma}\right)$, we construct the following linear system where $\hat{\mathfrak{F}}:=\boldsymbol{F} / \mathfrak{F} \in \mathbb{A}[[x]][y]$ and $\mathfrak{F}:=\boldsymbol{y}-\phi$:

$$
\begin{aligned}
L_{\sigma}:=\{ & \left(\left(\ell_{1}, \ldots, \ell_{d}\right), G, H\right) \in \mathbb{K}^{d} \times \mathbb{K}[x, y]_{d-1} \times \mathbb{K}[x, y]_{d-1} \mid \\
& G-\sum_{i=1}^{d} \ell_{i} \operatorname{coeff}\left(\hat{\mathfrak{F}} \frac{\partial \mathfrak{F}}{\partial y}, \varphi^{i-1}\right) \in(x, y)^{\sigma}, \\
& \left.H-\sum_{i=1}^{d} \ell_{i} \operatorname{coeff}\left(\hat{\mathfrak{F}} \frac{\partial \mathfrak{F}}{\partial x}, \varphi^{i-1}\right) \in(x, y)^{\sigma}+\left(x^{\sigma-1}\right)\right\} .
\end{aligned}
$$

Let $\sigma=2 d$ if $\operatorname{char}(\mathbb{K})=0$ or $>d(d-1)$, otherwise let $\sigma=d(d-1)+1$.

Theorem.

$$
\overline{\mathbb{K}} \otimes L_{\sigma}=\left\langle\left.\left(\mu_{i}, \frac{F}{F_{i}} \frac{\partial F_{i}}{\partial y}, \frac{F}{F_{i}} \frac{\partial F_{i}}{\partial x}\right) \right\rvert\, i \in\{1, \ldots, r\}\right\rangle,
$$

where $\mu_{i}:=\left(\operatorname{Tr}_{0}\left(F_{i}(0, y)\right), \ldots, \operatorname{Tr}_{d-1}\left(F_{i}(0, y)\right)\right)$.
The proof is based on the first algebraic de Rham cohomology group of the complementary of $\boldsymbol{F}=\mathbf{0}$ (as for Gao's algorithm).

For efficiency reasons we compute a basis of $\boldsymbol{\pi}\left(\boldsymbol{L}_{\sigma}\right)$, defined as the projection of L_{σ} to \mathbb{K}^{d}.

Absolute Partial Fraction Decomposition

For any $\left(\left(\ell_{1}, \ldots, \ell_{d}\right), \boldsymbol{G}, \boldsymbol{H}\right) \in \boldsymbol{L}_{\boldsymbol{\sigma}}$, the previous theorem implies that:

$$
\frac{G}{\boldsymbol{F}}=\sum_{i=1}^{r} \rho_{i} \frac{\frac{\partial F_{i}}{\partial y}}{\boldsymbol{F}_{i}}, \quad \text { with } \rho_{i} \in \overline{\mathbb{K}} .
$$

For almost all G, the ρ_{i} are pairwise distinct, and thus F_{1}, \ldots, F_{r} can be directly obtained from the partial fraction decomposition of $\boldsymbol{G} / \boldsymbol{F}$:

1. Let $Q(z)=\operatorname{Res}_{y}\left(F(0, y), z \frac{\partial F}{\partial y}(0, y)-G(0, y)\right)$.
2. The set of roots of Q is $\left\{\rho_{1}, \ldots, \rho_{r}\right\}$, and $F_{i}=\operatorname{gcd}\left(F, \rho_{i} \frac{\partial F}{\partial y}-G\right)$.

The partial fraction decomposition of $\boldsymbol{G} / \boldsymbol{F}$ can be computed with the classical Rothstein-Trager of Lazard-Rioboo-Trager algorithms.

Example

$$
\begin{aligned}
& \mathbb{K}:=\mathbb{Q}, F:=y^{4}+(2 x+14) y^{2}-7 x^{2}+6 x+47 . \\
& f:=y^{4}+14 y^{2}+47, \text { with } \sigma:=2 \operatorname{deg}(F)=8, \text { we obtain: } \\
& \phi=\varphi-\left(\frac{13}{94} \varphi^{3}+\frac{44}{47} \varphi\right) x+\left(\frac{39}{8836} \varphi^{3}+\frac{199}{17672} \varphi\right) x^{2} \\
&-\left(\frac{4745}{1661168} \varphi^{3}+\frac{15073}{830584} \varphi\right) x^{3} \\
&+\cdots-\left(\frac{26241896109}{1037564150708224} \varphi^{3}+\frac{76656876747}{518782075354112} \varphi\right) x^{7}+\mathcal{O}\left(x^{8}\right) .
\end{aligned}
$$

A possible basis of $\pi\left(L_{\infty}\right)$ is $(1,0,0,0),(0,0,1,0)$. We take $G:=(2 x+1) y$, and the partial fraction decomposition gives us the absolute factorization $\left(z^{2}-1 / 32, y^{2}+(1-16 z) x-8 z+7\right)$.

Main Complexity Results

Assume $\operatorname{char}(\mathbb{K})=0$ of $\operatorname{char}(\mathbb{K})>d(d-1)$.
$\mathrm{M}(d)=$ cost for multiplying two polynomials in degree d.
$\mathcal{O}\left(d^{\omega}\right)=$ cost for multiplying two $d \times d$ matrices.
Theorem. Cost of the absolute factorization:

- $\mathcal{O}\left(d^{3} \mathrm{M}(d) \log (d)\right)$ or $\tilde{\mathcal{O}}\left(d^{4}\right)$ arithmetic operations in \mathbb{K} deterministically.
- $\mathcal{O}\left(d^{(\omega+3) / 2}+d^{3 / 2} \mathrm{M}(d)\left(\mathrm{M}(d)^{2} / d^{2}+\log (d)\right)\right)$ or $\tilde{\mathcal{O}}\left(d^{(\omega+3) / 2}\right)$ arithmetic operations in \mathbb{K}, with a Las Vegas probabilistic algorithm.

The The algorithms do not use rational factorization, hence do not depend on the base field.

Discarding one univariate factorization in degree d, the rational factorization costs [Bostan et al., 2004], [Lecerf, 2005]:

- $\mathcal{O}\left(d^{\omega+1}\right)$, deterministically,
- $\mathcal{O}\left(d^{\omega}\right)$, probabilistically \rightsquigarrow the overhead is much less than d.

Timings

$\mathbb{K}:=\mathbb{Z} / \mathbf{7 5 4 9 7 4 7 2 1 Z} \mathbb{Z}, \boldsymbol{F}$ irreducible with r absolutely irreducible factors.
Magma V2.11-14 on a 1.8 GHz Pentium M processor.

\boldsymbol{d}	$r=\mathbf{1}$	$r=\mathbf{2}$	$r=\mathbf{2}^{\left\lfloor\log _{\mathbf{2}}(\boldsymbol{d}) / \mathbf{2}\right\rfloor}$	$r=\boldsymbol{d} / \mathbf{2}$	$r=\boldsymbol{d}$
$\mathbf{8}$	0.08 s	0.03 s	0.03 s	0.03 s	0.02 s
$\mathbf{1 6}$	0.41 s	0.20 s	0.18 s	0.17 s	0.12 s
$\mathbf{3 2}$	2.36 s	1.55 s	2.96 s	1.42 s	0.78 s
$\mathbf{6 4}$	18.8 s	21.0 s	21.8 s	20.5 s	15.8 s
$\mathbf{1 2 8}$	147 s	175 s	170 s	179 s	119 s
$\mathbf{2 5 6}$	1239 s	1423 s	1419 s	1520 s	973 s

\rightsquigarrow Reflects well the cost in $\tilde{\mathcal{O}}\left(d^{3}\right)$.
These computations were previously out of reach.

Sharp Bertini's Theorem in the Normalized Case

$-\operatorname{char}(\mathbb{K})=0$ or $\operatorname{char}(\mathbb{K}) \geq d(d-1)+1$.
$-F \in \mathbb{K}\left[x_{1}, \ldots, x_{n}, y\right]$ is irreducible.
$-S$ is a finite subset of \mathbb{K}.
Normalization hypothesis:

$$
\operatorname{deg}_{y}(F)=\operatorname{deg}(F)=: d \quad \text { and } \quad \operatorname{Res}_{y}\left(\frac{\partial F}{\partial y}, F\right)(0, \ldots, 0) \neq 0
$$

Upper bound: $\mid\left\{\left(a_{1}, \ldots, a_{n}\right) \in S^{n} \mid F\left(a_{1} x, \ldots, a_{n} x, y\right)\right.$ is reducible $\} \mid$

$$
\leq \frac{1}{8}(3 d-1)(5 d-3)|S|^{n-1}
$$

Lower bound: $\mathbb{K}:=\mathbb{C}, F:=y^{d}+x_{1}^{d-1} y-x_{2}^{d-1}-1$. Let S be the set of roots of $z^{d(d-1)}-1$.
$\mid\left\{\left(a_{1}, \ldots, a_{n}\right) \in S^{n} \mid F\left(a_{1} x, \ldots, a_{n} x, y\right)\right.$ is reducible $\} \mid=S^{n}$.
$\rightsquigarrow|S| \gg d^{2}$ is necessary and sufficient to reach small probabilities of failure.

Quantitative Version of Bertini's Irreducibility Theorem

- $P \in \mathbb{K}\left[v_{1}, \ldots, v_{n}\right]$ is irreducible of total degree d.

Problem: for a finite subset S of \mathbb{K}, upper bound the density of points $(a, b, c) \in\left(S^{n}\right)^{3}$ for which $P\left(a_{1} x+b_{1} y+c_{1}, \ldots, a_{n} x+b_{n} y+c_{n}\right)$ is reducible.

- Hilbert (1892) (before Bertini): the density tends to 0 for large \boldsymbol{S}.
- Heintz \& Sieveking (1981), Kaltofen (1982): use in computer algebra.
- von zur Gathen (1985): $\mathbf{9}^{d^{2}} /|\boldsymbol{S}|$.
- Bajaj, Canny, Garrity \& Warren (1993): $\boldsymbol{d}^{4} /|\boldsymbol{S}|$, when $\mathbb{K}=\mathbb{C}$.
- Kaltofen (1995): $\mathbf{2 d ^ { 4 }} /|\boldsymbol{S}|$, when \mathbb{K} is perfect.
- Gao (2003): $\mathbf{2 d ^ { 3 }} /|\boldsymbol{S}|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq \mathbf{2 d} \boldsymbol{d}^{2}$.
- Chèze (2004): $d^{3} /|S|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq d(d-1)+1$.
- Lecerf (2005): $\frac{23}{8} d^{2} /|S|$, when $\operatorname{char}(\mathbb{K})=0$ or $\geq d(d-1)+1$.

Further Work

- Unified approach to factorizations: rational, absolute, over an algebraic extension and over the splitting field of a given univariate polynomial (in preparation).
- Improve the "small characteristic" case.
- Improve the "sparse" case, via analytic factorization.

