
Constraint Databases

and

Quantifier Elimination

Bart Kuijpers
Hasselt University, Belgium
bart.kuijpers@uhasselt.be

1

Conclusion

• Constraint databases have a well-developed theory

– data model

– many query languages (expressive power)

– applications (spatial databases, geographic information sys-

tems)

• but have not been developed into real systems

– efficient query evaluation is bottleneck for developing real

systems

– efficient query evaluation requires efficient quantifier-elimination

algorithms

2

Outline

Part I: Basic ideas behind constraint databases

- data model

- query languages: FO, FO+TC, FO+While

- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation

- algorithms for query evaluation

- the importance of data structures

- open problems

3

In the beginning there was ... the relational database model

• a relational database is a finite set of tables

• a table has a finite number of tuples

TaxRecord
Name PhoneNr Income

Bart 2305950 5000
Joos 47715760 10000
Bill 666 2000000
...

TaxTable
Income Tax

0 0
... ...
5000 0
... ...
10000 1000
... ...
2000000 697500
... ...

4

Logic as a relational query language

The relational calculus (first-order logic) is used to query relational

databases [Codd, 1970]:

ϕR(z) ≡ ∃x∃yTaxRecord(x, y, z) defines a unary relation R

TaxRecord R
Name PhoneNr Income

Bart 2305950 5000
Joos 47715760 10000
Bill 666 2000000
...

Income

5000
10000
2000000
...

5

More formally: relational database theory

• Relational database: finite collection of finite relations R,S, T, ...
over a universe U of atomic values.
E.g., U = N ∪ {A,B, ..., Z, a, b, ..., z}∗.

• First-order logic over (R,S, T, ...) is used as a query language.

• But! in SQL we can write: select x+ y
from R
where x < y

• ψ(z) ≡ ∃x∃y(R(x, y) ∧ x < y ∧ z = x+ y)

• The universe U typically has a structure of its own.
E.g.:
− Numbers with <, +, ×, ...
− Strings with length, concat, ...

6

Relational database viewed as structure

• U can be viewed as a structure in mathematical logic:

a set with functions, predicates and constants on it.

E.g.: U = (U;Number,<,+,×,0,1, String, length, concat)

• We can look at a relational database as an extension of U with

finite relations: db = (U;R,S, T, ...).

• We can use classical logic-based languages over the extended

alphabet of the structure U to query (FO, Datalog).

E.g., ψ(z) ≡ ∃x∃y(R(x, y) ∧ x < y ∧ z = x+ y)

• select x+ y variables range over U!!
from R
where x < y

7

Some problems with this approach: safety

• Safety problem: The FO-queries

– ϕ(z) ≡ ∃x∃y(z = x+ y ∧ (S(x) ∨ T (y))) and

– ψ(x) ≡ ∃y(Number(y) ∧ x = y+ y)

return infinite outputs (on finite inputs).

• Idea!: We can represent these infinite sets by their defining for-

mulas. The string

∃y(Number(y) ∧ x = y+ y)

finitely represents the unary relation

{x ∈ U | ∃y(Number(y) ∧ x = y+ y)}.

8

Some problems with this approach: closure, compositionality

• Closure: output relations can be used later as input to other
queries (compositionality, views).

• Idea! (continued): The output of a query

ϕ(z) ≡ ∃x∃y(R(x, y) ∧ x < y ∧ z = x+ y)

applied to the finite input R = {(1,2), (3,4)} can be obtained
by plugging in the defining formula

(x = 1 ∧ y = 2) ∨ (x = 3 ∧ y = 4)

of R in the query-formula ϕ(z). This gives a formula defining a
set S:

ψS(z) ≡ ∃x∃y(((x = 1∧y = 2)∨(x = 3∧y = 4))∧x < y∧z = x+y)

• ψS(z) can in turn be plugged in in query-formulas that talk
about S.

9

Constraint databases (1st definition)

• A constraint database over U = (U;Number,<,+, ...) is a finite

collection of FO-formulas over U: (ϕR, ϕS, ϕT , . . .).

• Each formula defines a (possible infinite) relation over U:

(R,S, T, . . .).

• The constraint database represents the infinite structure

(U;Number,<,+, . . . , R, S, T, . . .).

• Relational databases are a trivial case of constraint databases:

TaxRecord= {(n, p, i) | (n = Bart ∧ p = 2305950 ∧ i = 5000) ∨
(n = Joos ∧ p = 47715760 ∧ i = 10000) ∨ · · · }

10

From the relational to the constraint data model

• Key idea: we allow relations that contain infinitely many tuples,

but that are finitely representable

“Finite relations are generalized

to finitely representable relations”

• Query evaluation: To evaluate a FO-query

∀x∃y(x = y+ 1→ S(x))

on a database (U;Number,<,+, . . . , S, . . .), where S, ... are given

by formulas ϕS, ..., we simply plug in these formulas in the query

formula and get

∀x∃y(x = y+ 1→ ϕS(x)).

11

What do we have?

• We allow
- not only finite relations over U
- also definable relations over U

• We have the closure property.

• But what can we do with these defining formulas?

• What would we like to use these defining formulas for?

• Testing membership: Does (1,2) belong to the set R given by

ϕR(u, v) ≡ ∃x∃y(u = x+ y ∧ ((x = 1 ∨ x = 2) ∨ y = 3)) ∨ u = v?

• Testing emptyness: Is the set S given by

ϕS(z) ≡ ∃x∃y(z = x+ y ∧ ((x = 1 ∨ x = 2) ∨ y = 3)) empty?

12

Testing membership/emptiness of definable relations

• Can we decide the truth of sentences?

• If the first-order theory of U is decidable, then these properties
can be decided!

• Some examples theories:

Decidable Undecidable
(Z,+,0,1, <) (N,+,×,0,1, <)

(R,+,×,0,1, <) (Q,+,×,0,1, <)
(R,+,0,1, <)
(Q,+,0,1, <)

Boolean Algebra (Σ∗, (a)a∈Σ, concat)

• Usually huge complexity!, ... in the number of quantifiers.

13

Quantifier elimination

• Originally developed by logicians to test membership.

• Idea: Try to express every formula over U equivalently as a
Boolean combination of certain base formulas.

• U has quantifier elimination: base formulas are atomic formu-
las.

E.g.: (R,+,0,1, <)
(R,+,×,0,1, <) both have q.e.

• Sometimes: base formulas are atomic formulas + extra formulas

E.g.: (Z,+,0,1, <)
- (∃x)(y = x+ x+ x+ x+ 2)
- add all mod n and you have q.e.

14

Constraint databases (2nd definition)

• Assume the structure U has quantifier elimination.

• So, we can assume that formulas describing a constraint database

are quantifier-free (in DNF).

• Query evaluation:

query ψ(R,S, T, ...)
database ϕR, ϕS, ϕT , ...

plug in ψ(ϕR, ϕS, ϕT , ...)
apply q.e. ψ′ represents output relation

15

Research in constraint databases in the 1990s

• New topics made possible by new possibilities of representing

infinite relations (spatial, spatio-temporal databases).

• Classical database theory problems

(about finite databases over U) can be reconsidered.

E.g.: are parity, connectivity,... FO-expressible?.

• And the links between the two!

16

New topics: spatial databases

• For U = (R,+,×,0,1, <), the definable n-ary relations are the
semi-algebraic sets in Rn.

• E.g.: x2/25 + y2/16 ≤ 1 ∧ x2 + 4x+ y2 − 2y ≥ −4
∧x2 − 4x+ y2 − 2y ≥ −4 ∧ (x2 + y2 − 2y 6= 8 ∨ y > −1).

• Topological and geometrical properties of semi-algebraic sets
are well-known [Real Algebraic Geometry]

• Can be extended with classical information.

17

FO-queries on spatial databases

• “Is the spatial relation S a straight line?”

∃a∃b∃c(¬(a = 0∧ b = 0)∧ ((∀x)(∀y)(S(x, y)↔ ax+ by+ c = 0)))

• “Return the topological interior of S.”

∃ε(ε 6= 0 ∧ ∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 → S(x′, y′))

• “Are the spatial relations S and T overlapping?”

∃x∃y(S(x, y) ∧ T (x, y))

18

Linear spatial databases: geographic information systems (GIS)

For U = (R,+,0,1, <), we get definable n-ary relations are the
semi-linear sets in Rn.

Liège

18

17

16

15

14

13

12

11

10

9

8

1

2

3

4

5

7

23222120191817161514131211101 2 3 4 5 6 7 8 9

Bastogne

Bruges

Hasselt

Charleroi

Scheldt

Brussels

Antwerp

Brussels

Meuse

Flanders

Walloon Region

6

Regions
Name x y Geometry
Brussels x y (y ≤ 13) ∧ (x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)
Flanders x y (y ≤ 17) ∧ (5x− y ≤ 78) ∧ (x− 14y ≤ −150) ∧ (x+ y ≥ 45)∧

(3x− 4y ≥ −53) ∧ (¬((y ≤ 13) ∧ (x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)))
Walloon Region x y ((x− 14y ≥ −150) ∧ (y ≤ 12) ∧ (19x+ 7y ≤ 375) ∧ (x− 2y ≤ 15)∧

(5x+ 4y ≥ 89) ∧ (x ≥ 13)) ∨ ((−x+ 3y ≥ 5) ∧ (x+ y ≥ 45)∧
(x− 14y ≥ −150) ∧ (x ≥ 13))

19

FO-queries on linear spatial databases

?• “Is the spatial relation S a straight line?”

This is not expressible in FO(R,+,0,1, <, S). [E-F-game]

• “Return the topological interior of S.”

∃ε(ε > 0 ∧ ∀x′∀y′((| x− x′ |< ε∧ | y − y′ |< ε)→ S(x′, y′))

20

More classical approaches to geographic information systems

• Polyhedral subdivisions of Rn.

• Finite number of abstract spatial data types:

– point, line segment, polyline, polyhedron

– circle, arc segment, ...

• Elegant, flexible, closed, logical query languages are harder to
get here.

• But more efficient implementations of specific operators.

21

Classical database theory problems:

expressive power of FO on finite databases

• Generic collapse: any formula in FO(×,+,0,1, <, S, T, ...) that

is invariant under monotone bijections from R to R is equiva-

lently expressible on finite db in FO(<,S, T, ...).

• Connectivity of a finite graph (embedded in R) is not FO-

expressible.

22

Links between finite and spatial: Expressiveness results

and are indistinguishable
by a topological FO-query

Theorem:

Topological connectivity of spatial databases is not FO-expressible.

⇒ More powerful query languages are needed to express topological

connectivity (e.g., FO+While, Datalog, FO+TC).

23

Spatial Datalog

Spatial Datalog = Datalog + polynomial inequalities in the body
of rules (with the underlying domain is R; the only EDB predicate
is S; relations can be infinite).

Obstr(x, y, x′, y′) ←− ¬S(x̄, ȳ), S(x, y), S(x′, y′),
x̄ = a1t+ b1,
ȳ = a2t+ b2,0 ≤ t, t ≤ 1,
b1 = x, b2 = y,
a1 + b1 = x′,
a2 + b2 = y′

Path(x, y, x′, y′) ←− ¬Obstr(x, y, x′, y′)
Path(x, y, x′, y′) ←− Path(x, y, x′′, y′′),

Path(x′′, y′′, x′, y′)
Disconnected ←− S(x, y), S(x′, y′),

¬Path(x, y, x′, y′)
Connected ←− ¬Disconnected .

24

Extensions of FO with transitive closure: FO+TC

• FO extended with

[TC~x;~y ψ(~x, ~y)](~s,~t)

with ~x, ~y k-tuples of real variables.

• Evaluation on input database A:

– X0 := ψ(A),

– Xi+1 := Xi ∪ {(~x, ~y) ∈ R2k | (∃~z) (Xi(~x, ~z) ∧X0(~z, ~y))},

– and stop as soon as Xi+1 = Xi.

• Example: “Is the linear relation S connected?”
(∀~x)(∀~y)(S(~x) ∧ S(~y)→ [TC~r,~s(Seg(~r,~s)](~x, ~y)) with
Seg(~r,~s) ≡ (∃λ)(0 ≤ λ ≤ 1 ∧ (∀~t)((~t = λ · ~r+ (1− λ) · ~s)→ S(~t)))

25

Extension of FO with While-loop: FO+While

R1 := {(x, y) | S(x, y)}
R2 := {(x, y) | (∃z)(R1(x, z) ∧ S(z, y))}
while R1 6= R2

do

R1 := {(x, y) | S(x, y)}
R2 := {(x, y) | (∃z)(R1(x, z) ∧ S(z, y))}
od

• Programming language with assignment and while-loop

• FO+While is computationally complete

26

A short history of constraint databases theory

• 1990-2004: mainstream database research (JACM, SICOMP,

JCSS, JSL, ...; PODS, LICS, ICDT, ...);

practical and mathematical motivations.

• State of the art book (400+ pages): “Constraint databases”

(eds. Kuper, Libkin, Paredaens), Springer-Verlag, 2000.

• Textbook: Revesz, “Introduction to Constraint Databases”,

Springer, 2002.

27

Outline

Part I: Basic ideas behind constraint databases

- data model

- query languages: FO, FO+TC, FO+While

- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation

- algorithms for query evaluation

- the importance of data structures

- open problems

28

Constraint databases in practice

• Fourier-Motzkin quantifier elimination for (R,+,0,1, <):

ϕ(x1, ..., xm−1) ≡ (∃xm)ψ(x1, ..., xm) with ψ(x1, ..., xm) a q.f.f. is
equivalent to ∨

xm=ti or xm=1
2(ti+tj) or xm=±∞

ψ(x1, ..., xm)

• Used in DEDALE [Grumbach et al. at INRIA, Paris]

• Used in PRESTO/MLPQ (didactical) [Revesz in Nebraska],

29

A QEPCAD-based constraint database system

Three test queries:

• Topological interior: ∃ε(ε 6= 0 ∧ ∀u∀v((x− u)2 + (y − v)2 < ε2 → S(u, v)))

• Translation: ∃u∃v(S(u, v) ∧ x = u+ 1 ∧ y = v+ 1)

• Buffer: ∃u∃v(S(u, v) ∧ (x− u)2 + (y − v)2 ≤ 1)

Three inputs:

• Line segment: x = 0 ∧ −1 < y ∧ y < 1

• Square: −1 < x ∧ x < 1 ∧ −1 < y ∧ y < 1

• Disk: x2 + y2 ≤ 4

Int (∃∀∀) Trans (∃∃) Buffer (∃∃)
Segm 330 milliSec 110 milliSec 240 milliSec
Square 9,5 Sec 110 milliSec 800 milliSec
Disk 9 Min 26 Sec 190 milliSec 8 Sec

30

Thoughts about the data structures for constraint databases

• Q: Why are we representing constraint database relations by

quantifier-free formulas?

A: Membership testing!

• Q: Why quantifier-free formulas in DNF? Remark that for a

formula ϕ(x1, ..., xn) in DNF, ¬ϕ can become of size O(2n).

A: OK, let’s not insist on DNF.

• Q: How do you represent a quantifier-free formula?

A: Using dense or sparse representation of polynomials.

31

Dense and sparse representations are unsuitable

• Consider the queries given by the formulas
∃x1 · · · ∃xn(R(a11, . . . , ann, x1, . . . , xn) ∧

∨n
i=1 xi 6= 0).

• When applied to

An = {(α11, . . . , αnn, v1, . . . , vn) ∈ Rn2+n |

 α11 · · · α1n
... ...
αn1 · · · αnn

·
 v1

...
vn

 =

 0
...
0

},

• we obtain a formula expressing that
det(αij) =

∑
σ∈Sn(−1)sgn(σ)α1σ(1) · · ·αnσ(n) = 0

• The result is dense (even for moderate degrees)!

⇒ dense or sparse representation of polynomials is unsuitable for
query evaluation.

32

Alternative data structures: arithmetic boolean circuits

• The problem of exploding representations, suggests

changing data structure.

• Expressing that det(αij)1≤i,j≤n = 0 can be done more efficient.

• Using arithmetic boolean circuits (with divisions) of size O(n3)

we can implement Gauss elimination algorithm.

• Idea: complexity theory for geometric elimination requires si-

multaneous optimization of data structures and algorithms.

33

Arithmetic boolean circuits

• ∃x1 · · · ∃xn(x1 = t+ 1 ∧R(x1, x2) ∧ · · · ∧R(xn−1, xn) ∧ y = x2n),

applied to A = {(v1, v2) ∈ R2 | v21 = v2}, gives formulas

ϕ(t, y) ≡ ∃x1 · · · ∃xn(x1 = t+1∧x21 = x2∧· · ·∧x2n−1 = xn∧y = x2n)

• which is is logically equivalent to the q.f.f.

ψ(t, y) ≡ y =
∑2n
i=0

(
2n

i

)
ti = (t+ 1)2

n
.

• Length:
Dense/Sparse ABC

ϕ(x, t) O(n) O(n)
ψ(x, t) O(2n) O(n)

• But general-purpose elimination algorithms cannot always guar-

antee polynomial output descriptions (even using ABCs).

34

Upper bounds

• ∃x1 · · · ∃xn(R(x1) ∧ · · · ∧R(xn) ∧ y = u1x1 + · · ·+ unxn),
for n = 1,2, . . . applied to A = {v ∈ R | v2 − v = 0},

• gives the formulas φn(y, u1, . . . , un) ≡
∃x1 · · · ∃xn(x21−x1 = 0∧· · ·∧x2n−xn = 0∧y = u1x1+ · · ·+unxn).
Remark: φn(β, α1, . . . , αn), β, α1, . . . , αn ∈ N, knapsack problem.

• This elimination problem has the following canonical quantifier-
free output formula

∏
(ε1,...,εn)∈{0,1}n(y−(ε1u1+ · · ·+εnun)) = 0.

• In dense or sparse representation this takes O(2n
2
) space;

checking membership requires O(2n) arithmetic operations.

• Traditional elimination algorithms requite O(2n
2
) time, whereas

ABC based algorithms O(2n) time.

35

Why is elimination exponential?

• Elimination of a block of existential quantifiers is polynomial in
the system degree (which may be exponential in the size of the
input formula).

(1) ∃x1 · · · ∃xn(x1 = t+ 1 ∧R(x1, x2) ∧ · · · ∧R(xn−1, xn) ∧ y = x2n),
applied to A = {(v1, v2) ∈ R2 | v21 = v2}, gives formulas
∃x1 · · · ∃xn(x1 = t+ 1 ∧ x21 = x2 ∧ · · · ∧ x2n−1 = xn ∧y = x2n)
Red part defines one point of Rn: its system degree is 1.

(2) ∃x1 · · · ∃xn(R(x1) ∧ · · · ∧R(xn) ∧ y = u1x1 + · · ·+ unxn),
applied to A = {v ∈ R | v2 − v = 0}, gives
∃x1 · · · ∃xn(x21−x1 = 0∧· · ·∧x2n−xn = 0 ∧y = u1x1+ · · ·+unxn).
Red part has 2n roots: : its system degree is 2n.

• Problem: the system degree may come from the query formula
and the database formula.
⇒ Find a complexity invariant in the spirit of the system degree.

36

A new data model for constraint databases

• quantifier-free formula (in DNF) in dense/sparse or ABC

– supports membership test

– doesn’t support visualisation

• Geometric figures

– implicit representation y = x2 supports membership testing

– parametric reprentation x = t, y = t2 supports visualisation

• Intermediate solution: extend the data model with sample points.

37

Sample point

A sample point of a set A is a q.f. formula that defines one

point (a1, .., an) ∈ A such that for any p ∈ Z[x1, ..., xn] the sign

of p(a1, .., an) can be determined by a finite number of arithmetic

operations (+,×) and comparisons (=, <, ...) in Q.

• expressible in FO

• Encoding based on Thom’s lemma: a real algebraic number can

be given by sign conditions on p, p′, p′′, p′′′,

38

Example of the use of sample points: optimization

• Given a system of linear inequalities
∑n
j=1 aijxj ≥ bi (1 ≤ i ≤ n),

determine whether it has a solution, i.e., decide whether the

formula

∃x1 · · · ∃xn
m∧
i=1

n∑
j=1

aijxj ≥ bi

is true.

• If a system of linear inequalities
∑n
j=1 aijxj ≥ bi (1 ≤ i ≤ n)

has a non-empty solution set V , decide whether a given affine

target function f defined by (x1, . . . , xn) 7→
∑n
i=1 cixi+d reaches

a finite maximum on V .

• If f reaches such a maximum on V , give an example of a point

in V that realizes this maximum.

39

Constraint databases over (+,×,0,1, <) (3rd definition)

• A set A ⊆ Rn is given by a cell decomposition F1, ...,Fn,

• where each Fk is given by polynomial conditions
f1 = 0, ..., fsk = 0, g1 > 0, ..., gtk > 0, ρk 6= 0 (given by ABC) plus
sample points.

• close to stratification, with as few branchings (i.e., divisions) as
possible

• Gauss O(n3) algorithm vs. Berkowitz polynomial-time algorithm

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

40

Lower bound theorems

• It turns out that the constraint database formalism can be used

as a meta-language for elimination theory

• exponential lower bounds

41

Open problems

• Find a complexity invariant in the spirit of the system degree

(fragments of FO).

• How can we deal with approximation in the constraint database

model?

• Do languages like FO(Between), FO(Between,Eqdist, Unitdist),

... have quantifier elimination?

• ...

• Is a constraint database system feasible in practice?

42

Conclusion

• Constraint databases have a well-developed theory

– data model

– many query languages (expressive power)

– applications (spatial databases, geographic information sys-

tems)

• but have not been developed into real systems

– efficient query evaluation is bottleneck for developing real

systems

– efficient query evaluation requires efficient quantifier-elimination

algorithms

43

