Constraint Databases
and

Quantifier Elimination

Bart Kuijpers
Hasselt University, Belgium
bart.kuijpers@uhasselt.be

Conclusion

e Constraint databases have a well-developed theory
— data model
— many query languages (expressive power)

— applications (spatial databases, geographic information sys-
tems)

e but have not been developed into real systems

— efficient query evaluation is bottleneck for developing real
systems

— efficient query evaluation requires efficient quantifier-elimination
algorithms

Outline

Part I. Basic ideas behind constraint databases
- data model
- query languages: FO, FO+TC, FO+While

- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation
- algorithms for query evaluation
- the importance of data structures

- open problems

In the beginning there was ... the relational database model

e a relational database is a finite set of tables

e a table has a finite number of tuples

TaxTable

Income Tax
TaxRecord 0 0
Name PhoneNr Income
Bart 2305950 5000 5000 0]
Joos 47715760 10000
Bill 666 2000000 10000 1000

2000000 697500

Logic as a relational query language

The relational calculus (first-order logic) is used to query relational
databases [Codd, 1970]:

orp(z) = Jx3dyTaxRecord(x, y, 2) defines a unary relation R

TaxRecord R
Name PhoneNr Income Income
Bart 2305950 5000 5000
Joos 47715760 10000 10000

Bill 666 2000000 2000000

More formally: relational database theory

e Relational database: finite collection of finite relations R, S, T, ...
over a universe U of atomic values.
Eg., U=NU{A,B,...,Z,a,b,..., 2} .

e First-order logic over (R, S,T,...) is used as a query language.

® But! in SQL we can write: select 4y
from R
where z < y

e Y(z)=dxdy(R(x,y) N\e <yANz=x+vy)

e [he universe U typically has a structure of its own.
E.qg.:
— Numbers with <, 4+, %, ...
— Strings with length, concat, ...

Relational database viewed as structure

e U can be viewed as a structure in mathematical logic:
a set with functions, predicates and constants on it.
E.g.. U= (U; Number,<,+, x,0, 1, String, length, concat)

e \We can look at a relational database as an extension of U with
finite relations: db= (U; R, S,T,...).

e \We can use classical logic-based languages over the extended
alphabet of the structure U to query (FO, Datalog).

E.g., v(z) =dxdy(R(z,y) Ne <yAz=xz+1vy)

® select z+ vy variables range over U!!
from R
where z < y

Some problems with this approach: safety

e Safety problem: The FO-queries
— ¢o(z) =FzFy(z =2+ y A (S(z) VT (y))) and
— Y(x) = Jy(Number(y) Ne =y + vy)

return infinite outputs (on finite inputs).

e Idea!: We can represent these infinite sets by their defining for-
mulas. The string
Jy(Number(y) N\e =y +vy)
finitely represents the unary relation
{x € U | Jy(Number(y) Nhe =y +y)}.

Some problems with this approach: closure, compositionality

e Closure: output relations can be used later as input to other
queries (compositionality, views).

e Idea! (continued): The output of a query

o(z) =dzdy(R(z,y) Ne <yAz=x+y)

applied to the finite input R = {(1,2),(3,4)} can be obtained
by plugging in the defining formula

(z=1ANy=2)v(z=3ANy=24)

of R in the query-formula ¢(z). This gives a formula defining a
set S

Yg(z) = dzdy(((x = 1Ay =2)V(z = 3Ny = 4))Ax < yNz = z+vy)

e Yg(z) can in turn be plugged in in query-formulas that talk
about S.

Constraint databases (1st definition)

e A constraint database over U = (U; Number, <, 4, ...) is a finite
collection of FO-formulas over U: (¢pg,vg,o1,...).

e Each formula defines a (possible infinite) relation over U:
(R,S,T,...).

e [he constraint database represents the infinite structure
(U; Number,<,+,...,R,S,T,...).

e Relational databases are a trivial case of constraint databases:
TaxRecord= {(n,p,7) | (n = Bart A p = 2305950 A i = 5000) Vv
(n =JO0OSAp=47715760 A7 = 10000) VvV ---}

10

From the relational to the constraint data model

e Key idea: we allow relations that contain infinitely many tuples,
but that are finitely representable

“Finite relations are generalized
to finitely representable relations”

e Query evaluation: To evaluate a FO-query

Vedy(r =y+ 1 — S(x))

on a database (U; Number,<,4+,...,S,...), where S, ... are given
by formulas g, ..., we simply plug in these formulas in the query
formula and get

Vedy(z =y + 1 — pg(2)).

11

What do we have?

- not only finite relations over U

e \We allow . .
- also definable relations over U

e \We have the closure property.

e But what can we do with these defining formulas?

e \What would we like to use these defining formulas for?

e Testing membership: Does (1,2) belong to the set R given by
op(u,v) =TxFIylu =2+ yA((e=1Vae=2)Vy=3)) Vu =17

e Testing emptyness: Is the set S given by
vg(z)=dxdyz=oz+yAN((z=1Vve=2)Vy=23)) empty?

12

Testing membership/emptiness of definable relations

e Can we decide the truth of sentences?

e If the first-order theory of U is decidable, then these properties
can be decided!

e Some examples theories:

Decidable Undecidable
(Z7+7O7 17<) (N)+7><7O717<)
(R7+7><7O717<) (Q7+7><707 17<)
(R’? —|_7 07 17 <)
(Q? —|_7 O? 17 <)
Boolean Algebra | (X%, (a),e35, concat)

e Usually huge complexity!, ... in the number of quantifiers.

13

Quantifier elimination

e Originally developed by logicians to test membership.

e Idea: Try to express every formula over U equivalently as a
Boolean combination of certain base formulas.

e U has quantifier elimination: base formulas are atomic formu-
|as.

E.g.: (R,4+,0,1,<)
(R,+, x,0,1,<) both have q.e.

e Sometimes: base formulas are atomic formulas 4+ extra formulas

Eg (Z7+70717<)
- (I ly=xz4+x+x+2+2)
- add all mod n and you have q.e.

14

Constraint databases (2nd definition)

e Assume the structure U has quantifier elimination.

e SO, we can assume that formulas describing a constraint database
are quantifier-free (in DNF).

e Query evaluation:

query ¢ (R,S,T,...)
database o¢p, g, oT, ...

plug in (g, vs, T,)
apply g.e. ' represents output relation

15

Research in constraint databases in the 1990s

e New topics made possible by new possibilities of representing
infinite relations (spatial, spatio-temporal databases).

e Classical database theory problems
(about finite databases over U) can be reconsidered.
E.g.: are parity, connectivity,... FO-expressible?.

e And the links between the twol!

16

New topics: spatial databases

e For U = (R,+, %,0,1,<), the definable n-ary relations are the
semi-algebraic sets in R™.

e E.g.: 22/25 4+ y?/16 < 1 Ax? 4+ 4z 4+ y° — 2y > —4
Al —dx +y2 —2y > —4A (22 4+ y2—2y#8Vy>—1).

e [opological and geometrical properties of semi-algebraic sets
are well-known [Real Algebraic Geometry]

e Can be extended with classical information.

17

FO-queries on spatial databases

e 'Is the spatial relation S a straight line?”

JaTbIe(—(a = 0Ab = 0) A (V) (Vy) (S(z,y) < ax+by+c=0)))

e "Return the topological interior of S.”

Je(e # OAVZ'VY (& —)2 4+ (y —)% < 2 — S(2,v))

e "“Are the spatial relations S and 1" overlapping?”

Jz3y(S(z,y) NT(z,y))

18

Linear spatial databases: geographic information systems (GIS)

For U = (R,+4,0,1,<), we get definable n-ary relations are the
semi-linear sets in R™.

=
o
T

=
EN|
T

Antwerp

=
[SIEECN
T T

Flanders
[]
Brussels Hasselt

B Brussels

e e
(= - 1\ w S
T T T T

Walloon Region

[}
Charleroi

H M W oA ol 1 ® ©
11T 1T 1T "“"T1T "T1T 7

1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Regions

Name r oy Geometry

Brussels x y W<13)A(x<11)A(y>12)A (x> 10)

Flanders x y W<1MHAGBr—y<T78)A(x—14y < —-150) A (xz+y > 45)A
(3

x— 4y > —53) A (= ((y<13)/\(a:<11)/\(y>12)/\(:1:>10)))

Walloon Region | « y ((x—14y > —150) A (y < 12)A (192 + 7y < 375) A (x — 2y < 15)A
(52 4+ 4y > 89) A (xz > 3))\/((x+3y>5A(x+y>45)A

(x — 14y > —150) A (z > 13))

19

FO-queries on linear spatial databases

7e ‘“Is the spatial relation S a straight line?”
This is not expressible in FO(R,+,0,1,<,5). [E-F-game]

e “Return the topological interior of S.”
Je(e > 0AVZ'VY' ((Jz—2' |<en|y—7v |<e) — S, y))

20

More classical approaches to geographic information systems

N
& b |

e Polyhedral subdivisions of R"™.

e Finite number of abstract spatial data types:
— point, line segment, polyline, polyhedron

— circle, arc segment, ...

e Elegant, flexible, closed, logical query languages are harder to
get here.

e But more efficient implementations of specific operators.

21

Classical database theory problems:
expressive power of FO on finite databases

e Generic collapse: any formula in FO(x,+,0,1,<,S5,T,...) that
IS invariant under monotone bijections from R to R is equiva-
lently expressible on finite db in FO(<, S, T, ...).

e Connectivity of a finite graph (embedded in R) is not FO-
expressible.

22

Links between finite and spatial: EXxpressiveness results

and ‘ are indistinguishable

by a topological FO-query

T heorem:
Topological connectivity of spatial databases is not FO-expressible.

= More powerful query languages are needed to express topological
connectivity (e.g., FO+While, Datalog, FO+TC).

23

Spatial Datalog

Spatial Datalog = Datalog 4+ polynomial inequalities in the body
of rules (with the underlying domain is R; the only EDB predicate
is S; relations can be infinite).

r = a1t + b17
y=axt+bx,0<¢,t<1,
by = x,b2 =y,
a1+ b1 = 2/,
ax 4+ bx =1y
Path(z,y,z',y') «— =0bstr(z,y,z',y')
Path(z,y,z',y') «— Path(z,y,z",y"),
Path(x”7 y”7 wl? y/)
Disconnected «— S(xz,vy), S(x',vy),
Connected <+— —Disconnected.

24

Extensions of FO with transitive closure: FO4+TC

e FO extended with

[TCaz9(Z,PNI(E,)
with x, y k-tuples of real variables.

e Evaluation on input database A:
— Xg :=¢(A),
— Xiy1 1= X; U{(& 7)) € R?F | (32) (Xi(F, 2) A Xo(Z,))},

— and stop as soon as X, = X;.

e Example: "Is the linear relation S connected?”
(vVZ) (V) (S(Z) A S(Y) — [TCr(Seg(7, $)](Z,y)) with
Seg(7,3) = (ANO <A< IAGH(E=X-F4+(1-X)-5) — S(D)))

25

Extension of FO with While-loop: FO+While

Ry = {(z,y) | S(z,y)}
Ry == {(z,y) | (F2)(R1(=z,2) A S(2,9))}
while R1 #= R»
do
Ry = {(z,y) | S(z,y)}
Ry = {(z,y) | (32)(R1(z,2) A S(z,y))}
od

e Programming language with assignment and while-loop

o FO+While is computationally complete

26

A short history of constraint databases theory

e 1990-2004: mainstream database research (JACM, SICOMP,

JCSS, JSL, ...; PODS, LICS, ICDT, ...);
practical and mathematical motivations.

e State of the art book (400+ pages): “Constraint databases”
(eds. Kuper, Libkin, Paredaens), Springer-Verlag, 2000.

Constraint
Databases

o Textbook: Revesz, ‘“Introduction to Constraint Databases”,
Springer, 2002.

27

Outline

Part I. Basic ideas behind constraint databases
- data model
- query languages: FO, FO+TC, FO+While

- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation
- algorithms for query evaluation
- the importance of data structures

- open problems

28

Constraint databases in practice

e Fourier-Motzkin quantifier elimination for (R,+,0,1, <):

o(x1,..c,tp—1) = Fxpm)Y(x1,...,2m) With Y(zq,...,2m) a q.f.f. is
equivalent to

\/ ¢($1,...,$m)

xm=t; Or me%(ti—l—tj) or ;=200

e Used in DEDALE [Grumbach et al. at INRIA, Paris]

e Used in PRESTO/MLPQ (didactical) [Revesz in Nebraska],

MLPQ/PReSTO - University of Nebraska-Lincoln - cloudmap
File Edit View Window Help

DN EE NS N E e N NEE N
@ s|m| Alv|«w|«l4]] 2]
3

a)

29

A QEPCAD-based constraint database system

Three test queries:
e Topological interior: Je(e = 0 AVuvVv((z —u)? + (y —v)? < €2 — S(u,v)))
e Translation: Juiv(S(u,v) Ae =u+1Ay=v+1)

o Buffer: Juv(S(u,v) A (x —u)? + (y —v)? < 1)

Three inputs:
e Linesegment: t=0AN-1<yAy<l1
e Square: -l <zAhz<1lAN-1<yAy<l

o Disk: 22+ 92 <4

Int (IVW) Trans (d3) | Buffer (39)
Segm 330 milliSec | 110 milliSec | 240 milliSec

Square 9,5 Sec 110 milliSec | 800 milliSec
Disk | 9 Min 26 Sec | 190 milliSec 8 Sec

30

Thoughts about the data structures for constraint databases

e Q: Why are we representing constraint database relations by
quantifier-free formulas?
A: Membership testing!

e QQ: Why quantifier-free formulas in DNF7? Remark that for a
formula ¢(xq,...,2n) in DNF, —p can become of size O(2").
A: OK, let's not insist on DNF.

e Q: How do you represent a quantifier-free formula?
A: Using dense or sparse representation of polynomials.

31

Dense and sparse representations are unsuitable

e Consider the queries given by the formulas
E'.’,U]_ o E'ZUn(R(CL]_]_, e nny L1y ... 757371) A \/?:1 Ly 7(_é O)

e When applied to
Q11+ Oldn v1 0
An:{(all,...,ann,vl,...,vn) ERn2+n | : : . : = : },
dpl - QOnpp Un 0

e we obtain a formula expressing that
det(ay;) = pes, (—1)%™ a1y op(ny = 0

e The result is dense (even for moderate degrees)!

= dense or sparse representation of polynomials is unsuitable for
query evaluation.

32

Alternative data structures: arithmetic boolean circuits

e [he problem of exploding representations, suggests
changing data structure.

e Expressing that det(«;;)1<; j<, = 0 can be done more efficient.

e Using arithmetic boolean circuits (with divisions) of size O(n3)
we can implement Gauss elimination algorithm.

e Idea: complexity theory for geometric elimination requires Ssi-
multaneous optimization of data structures and algorithms.

33

Arithmetic boolean circuits

e Jz1---Jzn(z; =t+ 1AR(z1,20) A AR(zp_1,20) ANy = x2),
applied to A = {(v1,v2) € R? | v{ = vy}, gives formulas
o(t,y) = Jx1---Jep(xy = t—I—l/\x% = oA~ '/\37727,—1 = T Ay = 2)

e which is is logically equivalent to the q.f.f.
Y(ty) =y =52 (5)t = (t+ 12"

Dense/Sparse | ABC
e Length: | p(x,1t) O(n) O(n)
Y(x,t) o(2") O(n)

e But general-purpose elimination algorithms cannot always guar-
antee polynomial output descriptions (even using ABCs).

34

Upper bounds

o drq---Jxp(R(x1) AN - ANR(xn) Ny =uiz1+ -+ unzn),
for n=1,2,... applied to A= {v e R |12 —v =0},

e gives the formulas ¢, (y,u1,...,up) =
Jaq - --Hxn(a:%—ml = O0A---Az2—xp =0Ay =uix1+- -+ unxn).
Remark: ¢n (6, a1,...,an), B,a1,...,an € N, knapsack problem.

e T his elimination problem has the following canonical quantifier-
free output formula H(El,._.,gn)e{ovl}n(y— (equ1+---+enupn)) = 0.

e In dense or sparse representation this takes 0(2”2) space;:
checking membership requires O(2™) arithmetic operations.

e Traditional elimination algorithms requite 0(2”2) time, whereas
ABC based algorithms O(2") time.

35

Why is elimination exponential?

e Elimination of a block of existential quantifiers is polynomial in

(1)

(2)

the system degree (which may be exponential in the size of the
input formula).

31 - Jzn(zy =t + 1 AR(z1,20) A+ AR(zp_1,2n) ANy = x2),
applied to A = {(v1,v2) € R? | v{ = vy}, gives formulas

Jxq -+ - Jzp(xq =t—|—1/\x% =a:2/\---/\x%_1 = xn Ay = z2)
Red part defines one point of R": its system degree is 1.

Jrq1 - Jepn(R(x1y) A - ANR(xp) Ny =uix1 + - + unxn),

applied to A = {v e R |v? —v =0}, gives

dxq - --Ela:n(a:%—xl = 0A-- -/\x%—xn =0Ay=ujz1+- - -Funen).
Red part has 2" roots: : its system degree is 2".

Problem: the system degree may come from the query formula
and the database formula.
= Find a complexity invariant in the spirit of the system degree.

36

A new data model for constraint databases

e quantifier-free formula (in DNF) in dense/sparse or ABC
— supports membership test

— doesn’'t support visualisation

e Geometric figures
— implicit representation y = x? supports membership testing

— parametric reprentation x = t, y = t° supports visualisation

e Intermediate solution: extend the data model with sample points.

37

Sample point
A sample point of a set A is a q.f. formula that defines one
point (aq1,..,an) € A such that for any p € Z[xq,...,zn] the sign

of p(aq,..,an) can be determined by a finite number of arithmetic
operations (4, x) and comparisons (=, <,...) in Q.

e expressible in FO

e Encoding based on Thom's lemma: a real algebraic number can
be given by sign conditions on p,p’,p". p", ...

38

Example of the use of sample points: optimization

e Given a system of linear inequalities Z?:l a;;x; > by (1 <i<n),
determine whether it has a solution, i.e., decide whether the

formula
m n
1=19=1
is true.

e If a system of linear inequalities >V, a;jz; > b; (1 < i < n)
has a non-empty solution set V, decide whether a given affine
target function f defined by (z1,...,2n) — > I ¢;x; +d reaches
a finite maximum on V.

e If f reaches such a maximum on V, give an example of a point
in V that realizes this maximum.

39

Constraint databases over (+, x,0,1, <) (3rd definition)
e A set AC R" is given by a cell decomposition Fi,..., Fn,

e where each F;. is given by polynomial conditions

f1=0,..,fs, =0,91>0,....,9t, >0, p 7 0 (given by ABC) plus
sample points.

e close to stratification, with as few branchings (i.e., divisions) as
possible

e Gauss O(n3) algorithm vs. Berkowitz polynomial-time algorithm

_0C
C

40

Lower bound theorems

e It turns out that the constraint database formalism can be used
as a meta-language for elimination theory

e exponential lower bounds

41

Open problems

e Find a complexity invariant in the spirit of the system degree
(fragments of FO).

e How can we deal with approximation in the constraint database
model?

e Do languages like FO(Between), FO(Between, FEqdist, Unitdist),
. have quantifier elimination?

e IS a constraint database system feasible in practice?

42

Conclusion

e Constraint databases have a well-developed theory
— data model
— many query languages (expressive power)

— applications (spatial databases, geographic information sys-
tems)

e but have not been developed into real systems

— efficient query evaluation is bottleneck for developing real
systems

— efficient query evaluation requires efficient quantifier-elimination
algorithms

43

