Constraint Databases

 andQuantifier Elimination

Bart Kuijpers
Hasselt University, Belgium
bart.kuijpers@uhasselt.be

Conclusion

- Constraint databases have a well-developed theory
- data model
- many query languages (expressive power)
- applications (spatial databases, geographic information systems)
- but have not been developed into real systems
- efficient query evaluation is bottleneck for developing real systems
- efficient query evaluation requires efficient quantifier-elimination algorithms

Outline

Part I: Basic ideas behind constraint databases

- data model
- query languages: FO, FO+TC, FO+While
- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation

- algorithms for query evaluation
- the importance of data structures
- open problems

In the beginning there was ... the relational database model

- a relational database is a finite set of tables
- a table has a finite number of tuples
TaxTable

Income	Tax
0	0
\ldots	\ldots
5000	0
\ldots	\ldots
10000	1000
\ldots	\ldots
2000000	697500
\ldots	\ldots

Logic as a relational query language

The relational calculus (first-order logic) is used to query relational databases [Codd, 1970]:
$\varphi_{R}(z) \equiv \exists x \exists y \operatorname{Tax} \operatorname{Record}(x, y, z) \quad$ defines a unary relation R

TaxRecord

Name	PhoneNr	Income
Bart	2305950	5000
Joos	47715760	10000
Bill	666	2000000
\ldots	\ldots	\ldots

R
Income 5000 10000 2000000 \ldots

More formally: relational database theory

- Relational database: finite collection of finite relations R, S, T, \ldots over a universe \mathbf{U} of atomic values. E.g., $\mathrm{U}=\mathrm{N} \cup\{A, B, \ldots, Z, a, b, \ldots, z\}^{*}$.
- First-order logic over (R, S, T, \ldots) is used as a query language.
- But! in SQL we can write: select $x+y$
from R
where $x<y$
- $\psi(z) \equiv \exists x \exists y(R(x, y) \wedge x<y \wedge z=x+y)$
- The universe \mathbf{U} typically has a structure of its own.
E.g.:
- Numbers with $<,+, \times, \ldots$
- Strings with length, concat, ...

Relational database viewed as structure

- U can be viewed as a structure in mathematical logic: a set with functions, predicates and constants on it.

$$
\text { E.g.: } \mathrm{U}=(\mathrm{U} ; \text { Number },<,+, \times, 0,1, \text { String, length, concat })
$$

- We can look at a relational database as an extension of U with finite relations: $d b=(\mathbf{U} ; R, S, T, \ldots)$.
- We can use classical logic-based languages over the extended alphabet of the structure U to query (FO, Datalog).

$$
\text { E.g., } \psi(z) \equiv \exists x \exists y(R(x, y) \wedge x<y \wedge z=x+y)
$$

- select $x+y$
from R
where $x<y$
variables range over U!!

Some problems with this approach: safety

- Safety problem: The FO-queries
$-\varphi(z) \equiv \exists x \exists y(z=x+y \wedge(S(x) \vee T(y)))$ and
$-\psi(x) \equiv \exists y(N u m b e r(y) \wedge x=y+y)$
return infinite outputs (on finite inputs).
- Idea!: We can represent these infinite sets by their defining formulas. The string

$$
\exists y(N u m b e r(y) \wedge x=y+y)
$$

finitely represents the unary relation

$$
\{x \in \mathbf{U} \mid \exists y(N u m b e r(y) \wedge x=y+y)\}
$$

Some problems with this approach: closure, compositionality

- Closure: output relations can be used later as input to other queries (compositionality, views).
- Idea! (continued): The output of a query

$$
\varphi(z) \equiv \exists x \exists y(R(x, y) \wedge x<y \wedge z=x+y)
$$

applied to the finite input $R=\{(1,2),(3,4)\}$ can be obtained by plugging in the defining formula

$$
(x=1 \wedge y=2) \vee(x=3 \wedge y=4)
$$

of R in the query-formula $\varphi(z)$. This gives a formula defining a set S :

$$
\psi_{S}(z) \equiv \exists x \exists y(((x=1 \wedge y=2) \vee(x=3 \wedge y=4)) \wedge x<y \wedge z=x+y)
$$

- $\psi_{S}(z)$ can in turn be plugged in in query-formulas that talk about S.

Constraint databases (1st definition)

- A constraint database over $\mathbf{U}=(\mathbf{U} ;$ Number,,$<,+, \ldots)$ is a finite collection of FO-formulas over U: $\left(\varphi_{R}, \varphi_{S}, \varphi_{T}, \ldots\right)$.
- Each formula defines a (possible infinite) relation over U : (R, S, T, \ldots).
- The constraint database represents the infinite structure (U; Number, $<,+, \ldots, R, S, T, \ldots$).
- Relational databases are a trivial case of constraint databases: TaxRecord $=\{(n, p, i) \mid(n=$ Bart $\wedge p=2305950 \wedge i=5000) \vee$ $(n=\operatorname{Joos} \wedge p=47715760 \wedge i=10000) \vee \cdots\}$

From the relational to the constraint data model

- Key idea: we allow relations that contain infinitely many tuples, but that are finitely representable
"Finite relations are generalized to finitely representable relations"
- Query evaluation: To evaluate a FO-query

$$
\forall x \exists y(x=y+1 \rightarrow S(x))
$$

on a database ($\mathrm{U} ;$ Number, $<,+, \ldots, S, \ldots$), where S, \ldots are given by formulas φ_{S}, \ldots, we simply plug in these formulas in the query formula and get

$$
\forall x \exists y\left(x=y+1 \rightarrow \varphi_{S}(x)\right) .
$$

- We allow - not only finite relations over U

> - also definable relations over U

- We have the closure property.
- But what can we do with these defining formulas?
- What would we like to use these defining formulas for?
- Testing membership: Does $(1,2)$ belong to the set R given by $\varphi_{R}(u, v) \equiv \exists x \exists y(u=x+y \wedge((x=1 \vee x=2) \vee y=3)) \vee u=v ?$
- Testing emptyness: Is the set S given by

$$
\varphi_{S}(z) \equiv \exists x \exists y(z=x+y \wedge((x=1 \vee x=2) \vee y=3)) \text { empty? }
$$

Testing membership/emptiness of definable relations

- Can we decide the truth of sentences?
- If the first-order theory of U is decidable, then these properties can be decided!
- Some examples theories:

Decidable	Undecidable
$(\mathbf{Z},+, 0,1,<)$	$(\mathbf{N},+, \times, 0,1,<)$
$(\mathbf{R},+, \times, 0,1,<)$	$(\mathbf{Q},+, \times, 0,1,<)$
$(\mathbf{R},+, 0,1,<)$	
$(\mathbf{Q},+, 0,1,<)$	
Boolean Algebra	$\left(\Sigma^{*},(a)_{a \in \Sigma}\right.$, concat $)$

- Usually huge complexity!, ... in the number of quantifiers.

Quantifier elimination

- Originally developed by logicians to test membership.
- Idea: Try to express every formula over \mathbf{U} equivalently as a Boolean combination of certain base formulas.
- U has quantifier elimination: base formulas are atomic formulas.
$\begin{array}{ll}\text { E.g.: } \quad & (\mathrm{R},+, 0,1,<) \\ & (\mathrm{R},+, \times, 0,1,<) \text { both have q.e. }\end{array}$
- Sometimes: base formulas are atomic formulas + extra formulas
E.g.: (Z, $+, 0,1,<)$
- $(\exists x)(y=x+x+x+x+2)$
- add all $\bmod n$ and you have q.e.

Constraint databases (2nd definition)

- Assume the structure U has quantifier elimination.
- So, we can assume that formulas describing a constraint database are quantifier-free (in DNF).
- Query evaluation:

```
            query }\psi(R,S,T,\ldots
database }\mp@subsup{\varphi}{R}{},\mp@subsup{\varphi}{S}{},\mp@subsup{\varphi}{T}{},
    plug in \psi(\mp@subsup{\varphi}{R}{},\mp@subsup{\varphi}{S}{},\mp@subsup{\varphi}{T}{},\ldots)
apply q.e. }\mp@subsup{\psi}{}{\prime}\mathrm{ represents output relation
```

Research in constraint databases in the 1990s

- New topics made possible by new possibilities of representing infinite relations (spatial, spatio-temporal databases).
- Classical database theory problems (about finite databases over U) can be reconsidered. E.g.: are parity, connectivity,... FO-expressible?.
- And the links between the two!

New topics: spatial databases

- For $\mathbf{U}=(\mathbf{R},+, \times, 0,1,<)$, the definable n-ary relations are the semi-algebraic sets in \mathbf{R}^{n}.
- E.g.: $x^{2} / 25+y^{2} / 16 \leq 1 \wedge x^{2}+4 x+y^{2}-2 y \geq-4$

$$
\wedge x^{2}-4 x+y^{2}-2 y \geq-4 \wedge\left(x^{2}+y^{2}-2 y \neq 8 \vee y>-1\right) .
$$

- Topological and geometrical properties of semi-algebraic sets are well-known [Real Algebraic Geometry]
- Can be extended with classical information.

FO-queries on spatial databases

- "Is the spatial relation S a straight line?"

$$
\exists a \exists b \exists c(\neg(a=0 \wedge b=0) \wedge((\forall x)(\forall y)(S(x, y) \leftrightarrow a x+b y+c=0)))
$$

- "Return the topological interior of S. ."

$$
\exists \varepsilon\left(\varepsilon \neq 0 \wedge \forall x^{\prime} \forall y^{\prime}\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}<\varepsilon^{2} \rightarrow S\left(x^{\prime}, y^{\prime}\right)\right)\right.
$$

- "Are the spatial relations S and T overlapping?"

$$
\exists x \exists y(S(x, y) \wedge T(x, y))
$$

Linear spatial databases: geographic information systems (GIS)

For $\mathbf{U}=(\mathbf{R},+, 0,1,<)$, we get definable n-ary relations are the semi-linear sets in \mathbf{R}^{n}.

Regions

Name	x	y	Geometry
Brussels	x	y	$(y \leq 13) \wedge(x \leq 11) \wedge(y \geq 12) \wedge(x \geq 10)$
Flanders	x	y	$\begin{aligned} & (y \leq 17) \wedge(5 x-y \leq 78) \wedge(x-14 y \leq-150) \wedge(x+y \geq 45) \wedge \\ & (3 x-4 y \geq-53) \wedge(\neg((y \leq 13) \wedge(x \leq 11) \wedge(y \geq 12) \wedge(x \geq 10))) \end{aligned}$
Walloon Region	x		$\begin{aligned} & ((x-14 y \geq-150) \wedge(y \leq 12) \wedge(19 x+7 y \leq 375) \wedge(x-2 y \leq 15) \wedge \\ & (5 x+4 y \geq 89) \wedge(x \geq 13)) \vee((-x+3 y \geq 5) \wedge(x+y \geq 45) \wedge \\ & (x-14 y \geq-150) \wedge(x \geq 13)) \end{aligned}$

FO-queries on linear spatial databases
?• "Is the spatial relation S a straight line?" This is not expressible in $\mathrm{FO}(\mathbf{R},+, 0,1,<, S)$. [E-F-game]

- "Return the topological interior of S."

$$
\exists \varepsilon\left(\varepsilon>0 \wedge \forall x^{\prime} \forall y^{\prime}\left(\left(\left|x-x^{\prime}\right|<\varepsilon \wedge\left|y-y^{\prime}\right|<\varepsilon\right) \rightarrow S\left(x^{\prime}, y^{\prime}\right)\right)\right.
$$

More classical approaches to geographic information systems

- Polyhedral subdivisions of \mathbf{R}^{n}.
- Finite number of abstract spatial data types:
- point, line segment, polyline, polyhedron
- circle, arc segment, ...
- Elegant, flexible, closed, logical query languages are harder to get here.
- But more efficient implementations of specific operators.

Classical database theory problems: expressive power of FO on finite databases

- Generic collapse: any formula in $\mathrm{FO}(\times,+, 0,1,<, S, T, \ldots)$ that is invariant under monotone bijections from R to R is equivalently expressible on finite db in $\mathrm{FO}(<, S, T, \ldots)$.
- Connectivity of a finite graph (embedded in R) is not FOexpressible.

Links between finite and spatial: Expressiveness results

are indistinguishable by a topological FO-query

Theorem:

Topological connectivity of spatial databases is not FO-expressible.
\Rightarrow More powerful query languages are needed to express topological connectivity (e.g., FO+While, Datalog, FO+TC).

Spatial Datalog

Spatial Datalog $=$ Datalog + polynomial inequalities in the body of rules (with the underlying domain is R; the only EDB predicate is S; relations can be infinite).

$$
\begin{aligned}
& \operatorname{Obstr}\left(x, y, x^{\prime}, y^{\prime}\right) \longleftarrow \quad \neg S(\bar{x}, \bar{y}), S(x, y), S\left(x^{\prime}, y^{\prime}\right), \\
& \bar{x}=a_{1} t+b_{1}, \\
& \bar{y}=a_{2} t+b_{2}, 0 \leq t, t \leq 1 \text {, } \\
& b_{1}=x, b_{2}=y \text {, } \\
& a_{1}+b_{1}=x^{\prime} \text {, } \\
& a_{2}+b_{2}=y^{\prime} \\
& \operatorname{Path}\left(x, y, x^{\prime}, y^{\prime}\right) \longleftarrow \neg \operatorname{Obstr}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \operatorname{Path}\left(x, y, x^{\prime}, y^{\prime}\right) \longleftarrow \operatorname{Path}\left(x, y, x^{\prime \prime}, y^{\prime \prime}\right) \text {, } \\
& \operatorname{Path}\left(x^{\prime \prime}, y^{\prime \prime}, x^{\prime}, y^{\prime}\right) \\
& \text { Disconnected } \longleftarrow \quad S(x, y), S\left(x^{\prime}, y^{\prime}\right) \text {, } \\
& \neg \operatorname{Path}\left(x, y, x^{\prime}, y^{\prime}\right) \\
& \text { Connected } \longleftarrow \neg \text { Disconnected }
\end{aligned}
$$

Extensions of FO with transitive closure: FO+TC

- FO extended with

$$
\left[\mathrm{TC}_{\vec{x} ; \vec{y}} \psi(\vec{x}, \vec{y})\right](\vec{s}, \vec{t})
$$

with $\vec{x}, \vec{y} k$-tuples of real variables.

- Evaluation on input database A :
$-X_{0}:=\psi(A)$,
$-X_{i+1}:=X_{i} \cup\left\{(\vec{x}, \vec{y}) \in \mathbf{R}^{2 k} \mid(\exists \vec{z})\left(X_{i}(\vec{x}, \vec{z}) \wedge X_{0}(\vec{z}, \vec{y})\right)\right\}$,
- and stop as soon as $X_{i+1}=X_{i}$.
- Example: "Is the linear relation S connected?"
$(\forall \vec{x})(\forall \vec{y})\left(S(\vec{x}) \wedge S(\vec{y}) \rightarrow\left[T C_{\vec{r}, \vec{s}}(S e g(\vec{r}, \vec{s})](\vec{x}, \vec{y})\right)\right.$ with $\operatorname{Seg}(\vec{r}, \vec{s}) \equiv(\exists \lambda)(0 \leq \lambda \leq 1 \wedge(\forall \vec{t})((\vec{t}=\lambda \cdot \vec{r}+(1-\lambda) \cdot \vec{s}) \rightarrow S(\vec{t})))$

Extension of FO with While-Ioop: FO+While

```
\(R_{1}:=\{(x, y) \mid S(x, y)\}\)
\(R_{2}:=\left\{(x, y) \mid(\exists z)\left(R_{1}(x, z) \wedge S(z, y)\right)\right\}\)
while \(R_{1} \neq R_{2}\)
    do
    \(R_{1}:=\{(x, y) \mid S(x, y)\}\)
    \(R_{2}:=\left\{(x, y) \mid(\exists z)\left(R_{1}(x, z) \wedge S(z, y)\right)\right\}\)
    od
```

- Programming language with assignment and while-Ioop
- $\mathrm{FO}+$ While is computationally complete

A short history of constraint databases theory

- 1990-2004: mainstream database research (JACM, SICOMP, JCSS, JSL, ...; PODS, LICS, ICDT, ...); practical and mathematical motivations.
- State of the art book (400+ pages): "Constraint databases" (eds. Kuper, Libkin, Paredaens), Springer-Verlag, 2000.

- Textbook: Revesz, "Introduction to Constraint Databases", Springer, 2002.

Outline

Part I: Basic ideas behind constraint databases

- data model
- query languages: FO, FO+TC, FO+While
- flavour of results in the constraint database model

Part II: The problem of efficient query evaluation

- algorithms for query evaluation
- the importance of data structures
- open problems

Constraint databases in practice

- Fourier-Motzkin quantifier elimination for ($\mathrm{R},+, 0,1,<$):
$\varphi\left(x_{1}, \ldots, x_{m-1}\right) \equiv\left(\exists x_{m}\right) \psi\left(x_{1}, \ldots, x_{m}\right)$ with $\psi\left(x_{1}, \ldots, x_{m}\right)$ a q.f.f. is equivalent to

$$
\bigvee_{x_{m}=t_{i} \text { or } x_{m}=\frac{1}{2}\left(t_{i}+t_{j}\right) \text { or } x_{m}= \pm \infty} \psi\left(x_{1}, \ldots, x_{m}\right)
$$

- Used in DEDALE [Grumbach et al. at INRIA, Paris]
- Used in PRESTO/MLPQ (didactical) [Revesz in Nebraska],

A QEPCAD-based constraint database system

Three test queries:

- Topological interior: $\exists \varepsilon\left(\varepsilon \neq 0 \wedge \forall u \forall v\left((x-u)^{2}+(y-v)^{2}<\varepsilon^{2} \rightarrow S(u, v)\right)\right)$
- Translation: $\exists u \exists v(S(u, v) \wedge x=u+1 \wedge y=v+1)$
- Buffer: $\exists u \exists v\left(S(u, v) \wedge(x-u)^{2}+(y-v)^{2} \leq 1\right)$

Three inputs:

- Line segment: $x=0 \wedge-1<y \wedge y<1$
- Square: $-1<x \wedge x<1 \wedge-1<y \wedge y<1$
- Disk: $x^{2}+y^{2} \leq 4$

	Int ($\exists \forall \forall)$	Trans ($\exists \exists)$	Buffer ($\exists \exists$)
Segm	330 milliSec	110 milliSec	240 milliSec
Square	$9,5 \mathrm{Sec}$	110 milliSec	800 milliSec
Disk	9 Min 26 Sec	190 milliSec	8 Sec

Thoughts about the data structures for constraint databases

- Q: Why are we representing constraint database relations by quantifier-free formulas?
A: Membership testing!
- Q: Why quantifier-free formulas in DNF? Remark that for a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in DNF, $\neg \varphi$ can become of size $O\left(2^{n}\right)$. A: OK, let's not insist on DNF.
- Q: How do you represent a quantifier-free formula?

A: Using dense or sparse representation of polynomials.

Dense and sparse representations are unsuitable

- Consider the queries given by the formulas $\exists x_{1} \cdots \exists x_{n}\left(R\left(a_{11}, \ldots, a_{n n}, x_{1}, \ldots, x_{n}\right) \wedge \bigvee_{i=1}^{n} x_{i} \neq 0\right)$.
- When applied to

$$
A_{n}=\left\{\left(\alpha_{11}, \ldots, \alpha_{n n}, v_{1}, \ldots, v_{n}\right) \in \mathbf{R}^{n^{2}+n} \left\lvert\,\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)\right.\right\},
$$

- we obtain a formula expressing that $\operatorname{det}\left(\alpha_{i j}\right)=\sum_{\sigma \in \mathcal{S}_{n}}(-1)^{\operatorname{sgn}(\sigma)} \alpha_{1 \sigma(1)} \cdots \alpha_{n \sigma(n)}=0$
- The result is dense (even for moderate degrees)!
\Rightarrow dense or sparse representation of polynomials is unsuitable for query evaluation.

Alternative data structures: arithmetic boolean circuits

- The problem of exploding representations, suggests changing data structure.
- Expressing that $\operatorname{det}\left(\alpha_{i j}\right)_{1 \leq i, j \leq n}=0$ can be done more efficient.
- Using arithmetic boolean circuits (with divisions) of size $O\left(n^{3}\right)$ we can implement Gauss elimination algorithm.
- Idea: complexity theory for geometric elimination requires simultaneous optimization of data structures and algorithms.

Arithmetic boolean circuits

- $\exists x_{1} \cdots \exists x_{n}\left(x_{1}=t+1 \wedge R\left(x_{1}, x_{2}\right) \wedge \cdots \wedge R\left(x_{n-1}, x_{n}\right) \wedge y=x_{n}^{2}\right)$, applied to $A=\left\{\left(v_{1}, v_{2}\right) \in \mathbf{R}^{2} \mid v_{1}^{2}=v_{2}\right\}$, gives formulas $\varphi(t, y) \equiv \exists x_{1} \cdots \exists x_{n}\left(x_{1}=t+1 \wedge x_{1}^{2}=x_{2} \wedge \cdots \wedge x_{n-1}^{2}=x_{n} \wedge y=x_{n}^{2}\right)$
- which is is logically equivalent to the q.f.f.

$$
\psi(t, y) \equiv y=\sum_{i=0}^{2^{n}}\binom{2^{n}}{i} t^{i}=(t+1)^{2^{n}}
$$

- Length: | | | Dense/Sparse |
| :---: | :---: | :---: |
| - | ABC | |
| | $\varphi(x, t)$ | $O(n)$ |
| $O(n)$ | | |
| $\psi(x, t)$ | $O\left(2^{n}\right)$ | $O(n)$ |
| | | |
- But general-purpose elimination algorithms cannot always guarantee polynomial output descriptions (even using ABCs).
- $\exists x_{1} \cdots \exists x_{n}\left(R\left(x_{1}\right) \wedge \cdots \wedge R\left(x_{n}\right) \wedge y=u_{1} x_{1}+\cdots+u_{n} x_{n}\right)$, for $n=1,2, \ldots$ applied to $A=\left\{v \in \mathbf{R} \mid v^{2}-v=0\right\}$,
- gives the formulas $\phi_{n}\left(y, u_{1}, \ldots, u_{n}\right) \equiv$ $\exists x_{1} \cdots \exists x_{n}\left(x_{1}^{2}-x_{1}=0 \wedge \cdots \wedge x_{n}^{2}-x_{n}=0 \wedge y=u_{1} x_{1}+\cdots+u_{n} x_{n}\right)$. Remark: $\phi_{n}\left(\beta, \alpha_{1}, \ldots, \alpha_{n}\right), \beta, \alpha_{1}, \ldots, \alpha_{n} \in \mathbf{N}$, knapsack problem.
- This elimination problem has the following canonical quantifierfree output formula $\prod_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}}\left(y-\left(\varepsilon_{1} u_{1}+\cdots+\varepsilon_{n} u_{n}\right)\right)=0$.
- In dense or sparse representation this takes $O\left(2^{n^{2}}\right)$ space; checking membership requires $O\left(2^{n}\right)$ arithmetic operations.
- Traditional elimination algorithms requite $O\left(2^{n^{2}}\right)$ time, whereas ABC based algorithms $O\left(2^{n}\right)$ time.

Why is elimination exponential?

- Elimination of a block of existential quantifiers is polynomial in the system degree (which may be exponential in the size of the input formula).
(1) $\exists x_{1} \cdots \exists x_{n}\left(x_{1}=t+1 \wedge R\left(x_{1}, x_{2}\right) \wedge \cdots \wedge R\left(x_{n-1}, x_{n}\right) \wedge y=x_{n}^{2}\right)$, applied to $A=\left\{\left(v_{1}, v_{2}\right) \in \mathbf{R}^{2} \mid v_{1}^{2}=v_{2}\right\}$, gives formulas $\exists x_{1} \cdots \exists x_{n}\left(x_{1}=t+1 \wedge x_{1}^{2}=x_{2} \wedge \cdots \wedge x_{n-1}^{2}=x_{n} \wedge y=x_{n}^{2}\right)$ Red part defines one point of \mathbf{R}^{n} : its system degree is 1 .
(2) $\exists x_{1} \cdots \exists x_{n}\left(R\left(x_{1}\right) \wedge \cdots \wedge R\left(x_{n}\right) \wedge y=u_{1} x_{1}+\cdots+u_{n} x_{n}\right)$, applied to $A=\left\{v \in \mathbf{R} \mid v^{2}-v=0\right\}$, gives
$\exists x_{1} \cdots \exists x_{n}\left(x_{1}^{2}-x_{1}=0 \wedge \cdots \wedge x_{n}^{2}-x_{n}=0 \wedge y=u_{1} x_{1}+\cdots+u_{n} x_{n}\right)$. Red part has 2^{n} roots: : its system degree is 2^{n}.
- Problem: the system degree may come from the query formula and the database formula.
\Rightarrow Find a complexity invariant in the spirit of the system degree.

A new data model for constraint databases

- quantifier-free formula (in DNF) in dense/sparse or ABC
- supports membership test
- doesn't support visualisation
- Geometric figures
- implicit representation $y=x^{2}$ supports membership testing
- parametric reprentation $x=t, y=t^{2}$ supports visualisation
- Intermediate solution: extend the data model with sample points.

Sample point

A sample point of a set A is a q.f. formula that defines one point $\left(a_{1}, . ., a_{n}\right) \in A$ such that for any $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ the sign of $p\left(a_{1}, . ., a_{n}\right)$ can be determined by a finite number of arithmetic operations $(+, \times)$ and comparisons ($=,<, \ldots$) in Q .

- expressible in FO
- Encoding based on Thom's lemma: a real algebraic number can be given by sign conditions on $p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, \ldots$.

Example of the use of sample points: optimization

- Given a system of linear inequalities $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}(1 \leq i \leq n)$, determine whether it has a solution, i.e., decide whether the formula

$$
\exists x_{1} \cdots \exists x_{n} \bigwedge_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}
$$

is true.

- If a system of linear inequalities $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}(1 \leq i \leq n)$ has a non-empty solution set V, decide whether a given affine target function f defined by $\left(x_{1}, \ldots, x_{n}\right) \mapsto \sum_{i=1}^{n} c_{i} x_{i}+d$ reaches a finite maximum on V.
- If f reaches such a maximum on V, give an example of a point in V that realizes this maximum.

Constraint databases over ($+, \times, 0,1,<$) (3rd definition)

- A set $A \subseteq \mathbf{R}^{n}$ is given by a cell decomposition $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$,
- where each \mathcal{F}_{k} is given by polynomial conditions $f_{1}=0, \ldots, f_{s_{k}}=0, g_{1}>0, \ldots, g_{t_{k}}>0, \rho_{k} \neq 0$ (given by ABC) plus sample points.
- close to stratification, with as few branchings (i.e., divisions) as possible
- Gauss $O\left(n^{3}\right)$ algorithm vs. Berkowitz polynomial-time algorithm

Lower bound theorems

- It turns out that the constraint database formalism can be used as a meta-language for elimination theory
- exponential lower bounds

Open problems

- Find a complexity invariant in the spirit of the system degree (fragments of FO).
- How can we deal with approximation in the constraint database model?
- Do languages like FO(Between), FO(Between, Eqdist, Unitdist), ... have quantifier elimination?
- ...
- Is a constraint database system feasible in practice?

Conclusion

- Constraint databases have a well-developed theory
- data model
- many query languages (expressive power)
- applications (spatial databases, geographic information systems)
- but have not been developed into real systems
- efficient query evaluation is bottleneck for developing real systems
- efficient query evaluation requires efficient quantifier-elimination algorithms

