
Elimination Techniques for the Computation of
the Ideal of a Smooth Algebraic Variety

Gabriela Jeronimo

Departamento de Matemática, FCEyN,
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On the number of equations defining a variety

K:= algebraically closed field with char(K) = 0

(Kronecker, 1882) Every affine algebraic variety V ⊂ An can be
defined as the set of common zeros of n + 1 polynomials in
K[x1, . . . , xn]. Moreover:

If V = V (f1, . . . , fs) with f1, . . . , fs ∈ K[x1, . . . , xn], then

∃g1, . . . , gn+1 ∈ K[x1, . . . , xn] such that V = V (g1, . . . , gn+1) with

gi =
s∑

j=1

λij fj (λij ∈ K) for every 1 ≤ i ≤ n + 1.



Idea of a proof:

Construct recursively, for i = 1, . . . , n + 1, linear combinations
g1, . . . , gn+1 of f1, . . . , fs such that each irreducible component of
Wi := V (g1, . . . , gi) not contained in V has dimension n− i.
In particular, Wn+1 = V .

• Take one point pC /∈ V in each irreducible component C of
Wi−1 not contained in V .

• Choose gi =
∑s

j=1 λijfj so that gi(pC) 6= 0 ∀ pC . When taking
Wi := Wi−1 ∩ V (gi), the dimension of each irreducible
component not contained in V drops.

• The condition gi(pC) 6= 0 is obtained by choosing λij such that∏
C(

∑s
j=1 λijfj(pC)) 6= 0 (non-zero polynomial in the λij ’s).



The degree of an affine variety

Crucial in order to obtain upper bounds for the degrees of
equations defining a variety V ⊂ An.

(Heintz, 1983) If V ⊂ An is irreducible with dim V = k,

deg V = max{D ∈ N : ∃H1, . . . , Hk ⊂ An affine hyperplanes with

#(V ∩H1 ∩ · · · ∩Hk) = D}

For an arbitrary affine variety V ⊂ An, deg V is the sum of the
degrees of the irreducible components of V .



A degree upper bound for defining equations

(Heintz, 1983) Let V ⊂ An be an algebraic variety. Then:

∃ f1, . . . , fs ∈ K[x1, . . . , xn] with deg(fi) ≤ deg(V ) for i = 1, . . . , s,
such that V = V (f1, . . . , fs).

Idea of the proof:

• For every p /∈ V , ∃ fp ∈ K[x1, . . . , xn] such that fp(ξ) = 0
∀ ξ ∈ V and fp(p) 6= 0.

• fp is the defining equation of the image of V under a linear
projection and so, deg(fp) ≤ deg(V ).

Theorem Every affine algebraic variety V ⊂ An can be defined by
n + 1 polynomials with degrees bounded by deg V .



A refinement of Kronecker’s bound

(Storch, 1972; Eisenbud and Evans, 1975) Every affine algebraic
variety V ⊂ An can be defined by n polynomials.

Remarks:

• This bound is optimal (consider the case when dim V = 0).

• No upper bound on the degrees of the polynomials is given.



The ideal of an algebraic variety

V ⊂ An an affine algebraic variety. Denote

I(V ) = {f ∈ K[x1, . . . , xn] : f(ξ) = 0 ∀ ξ ∈ V }.

Problem 1.

Determine whether there exists a system of generators of I(V ) with
‘few’ polynomials of ‘low’ degree.

Problem 2.

Given g1, . . . , gs ∈ K[x1, . . . , xn] such that V = V (g1, . . . , gs),
compute a set of generators for I(V ).



Zero-dimensional varieties

Let V ⊂ An, dim V = 0 (finite set).

(Shape Lemma) ∃ ` ∈ K[x1, . . . , xn] a linear form with

`(ξ) 6= `(ξ′) for ξ, ξ′ ∈ V, ξ 6= ξ′.

Assume ` depends on x1. Then, there are univariate polynomials
p1, . . . , pn with deg p1 = deg V and deg pi < deg V for i = 2, . . . , n

such that

I(V ) = (p1(`), x2 − p2(`), . . . , xn − pn(`)).

If f1 := p1(`), fi := xi − pi(`) for i = 2, . . . , n,

I(V ) = (f1, . . . , fn) and deg fi ≤ deg V.



An example due to Macaulay

(Macaulay, 1916) ∀m ∈ N, ∃ Vm ⊂ A3 curve such that I(Vm)
cannot be generated by less than m polynomials.

Corollary. For V ⊂ An, there is no general upper bound
depending only on n for the number of polynomials in a generator
set of I(V ).



Estimates under additional assumptions

(Kumar, 1978; Sathaye, 1978)

Let V ⊂ An be an affine variety such that I(V ) is locally complete
intersection. Then, I(V ) can be generated by n polynomials.

Not clear how to obtain degree estimates.

(Mumford, 1970; Seidenberg, 1975)

Let V ⊂ An be a smooth irreducible variety. Then I(V ) can be
generated by polynomials with degrees bounded by deg V .

No non-trivial upper bound for the number of generators.



The main problem

Can the number and the degrees of the polynomials in a
generating set of I(V ) be controlled simultaneously under certain

assumptions on V ?

In this talk:

Positive answer for smooth equidimensional affine varieties.



Number and degree of ideal generators

Theorem 1. (Blanco-J. -Solernó)

Let V ⊂ An be a smooth equidimensional algebraic variety. Set

m := (n− dim V )(1 + dim V )

Then, there exist f1, . . . , fm ∈ K[x1, . . . , xn] with deg fi ≤ deg V for
i = 1, . . . , m such that

I(V ) = (f1, . . . , fm).



Basic ingredients of the proof

• Local-global principle, which enables us to look for generators
of the ideal locally at any of the points of the variety.

• Linear projections to obtain polynomials in the ideal I(V ).

• A Jacobian criterion for a system of polynomials to be local
generators of the ideal at a given point.



Regular points and smooth varieties

Assume that:

• V ⊂ An is an equidimensional algebraic variety.

• I(V ) = (f1, . . . , fm) ⊂ K[x1, . . . , xn].

• J :=
(

∂fi

∂xj

)
1≤i≤m
1≤j≤n

is the associated Jacobian matrix.

V is smooth at a point p ∈ V (and p is a regular point of V ) if
rank J(p) = n− dim V.

V is smooth if it is smooth at every p ∈ V .

From now on, we assume V ⊂ An smooth equidimensional.



Linear projections

Let V ⊂ An be an equidimensional variety and let k := dim(V ).

For h = (h1, . . . , hk+1) ∈ (An+1)k+1, let

`hj ∈ K[x1, . . . , xn] j = 1, . . . , k + 1

`hj := hj0 + hj1x1 + · · ·+ hjnxn

and let

πh : An → Ak+1

x 7→ (`h1(x), . . . , `hk+1(x)).

Consider the image
πh(V ) ⊂ Ak+1.



Polynomials of low degrees in I(V )

∃ U0 ⊂ (An+1)k+1 Zariski dense open set such that ∀h ∈ U0,

πh(V ) is a hypersurface.

Then, for h ∈ U0 we have

πh(V ) = {y ∈ Ak+1 : fh(y) = 0} ⊂ Ak+1,

where fh is square-free and deg fh = deg πh(V ) ≤ deg V .

⇒ f∗h := fh(`h1 , . . . , `hk+1) ∈ I(V )

deg f∗h ≤ deg V



A condition for local generators

For every p ∈ An, we denote

Op,An := {f/g : f, g ∈ K[x1, . . . , xn], g(p) 6= 0}.

(Mumford, 1970) If p ∈ V is a regular point and f1, . . . , ft ∈ I(V ),
the following conditions are equivalent:

• Tp,V =
t⋂

i=1

Tp,V (fi)

• I(V )Op,An = (f1, . . . , ft)Op,An



Local generators of low degrees

• For every regular point p ∈ V , ∃Up 6= ∅, Zariski open, such that
∀h ∈ Up, {f∗h(x) = 0} is a hypersurface smooth at p.

Lemma. Let p ∈ V be a regular point. Then, if Up is as above,

I(V )Op,An = (f∗h : h ∈ Up)Op,An .

⇒ I(V )Op,An is generated by polynomials of degrees
bounded by deg V .

Moreover, for a generic choice of h(1), . . . , h(n−k) ∈ Up, we have

I(V )Op,An = (f∗h(1) , . . . , f
∗
h(n−k))Op,An .



Existence of generators of I(V ) of low degrees

Thus, we recover the result in (Mumford, 1970; Seidenberg, 1975;
Catanese, 1992):

Proposition. Let V ⊂ An be a smooth equidimensional variety.
Then

I(V ) = (f∗h : h ∈ U0),

U0 ⊂ (An+1)k+1 is a Zariski dense open set. In particular, I(V ) can
be generated by polynomials of degrees bounded by deg V .



Choosing ‘few’ generators

Lemma. Let V ⊂ An be a k-equidimensional smooth variety and
let f1, . . . , fs ∈ I(V ) such that

• V (f1, . . . , fs) = V ∪ Z, with Z = ∅ or equidimensional,

• (f1, . . . , fs)Op,An = I(V )Op,An ∀ p ∈ V − Y , for an equidim.
subvariety Y ⊂ V .

Then ∃ h(1), . . . , h(n−k) ∈ (An+1)k+1 such that

• V
(
f1, . . . , fs, f

∗
h(1) , . . . , f

∗
h(n−k)

)
= V ∪ Z ′, where Z ′ = ∅ or

equidim. with dim Z ′ = dim Z − (n− k),

• (f1, . . . , fs, f
∗
h(1) , . . . , f

∗
h(n−k))Op,An = I(V )Op,An ∀ p ∈ V − Y ′,

where Y ′ = ∅ or Y ′ ⊂ V equidim. with dim Y ′ = dim Y − 1.



Idea of the proof:

• Take {p1, . . . , pr} ⊂ V containing one point in each irreducible
component of the set Y of ‘bad points’ (= points at which the
given polynomials do not generate I(V ) locally).

• Choose recursively h(1), . . . , h(n−k) so that

(i) f∗
h(1) , . . . , f

∗
h(n−k) generate I(V )Opi,An ∀ 1 ≤ i ≤ r,

(ii) Z ∩ V (f∗
h(1) , . . . , f

∗
h(l)) = ∅ or equidimensional with

dimension dim Z − l for l = 1, . . . , n− k.

• Condition (i) above implies that the dimension of the set of
‘bad points’ drops.



A recursive construction based on the previous lemma:

• Choose a family of n− k linear projections such that their
associated defining polynomials generate I(V ) locally at the
points of a Zariski dense open set of V .

• By choosing k + 1 different families of n− k projections, reduce
the set of ‘bad points’ successively from k − 1 to −1.

∃ h(1), . . . , h(m) ∈ (An+1)k+1, with m := (n− k)(k + 1), such that

I(V ) =
(
f∗h(1) , . . . , f

∗
h(m)

)
.



Computing generators of I(V )

Problem. Given g1, . . . , gs ∈ K[x1, . . . , xn] with V = V (g1, . . . gs),
compute f1, . . . , fm ∈ K[x1, . . . , xn] such that I(V ) = (f1, . . . , fm).

Nullstellensatz ⇒ this is equivalent to

I = (g1, . . . , gs) Ã
√

I = (f1, . . . , fm)

There are effective procedures solving this task in the general case
(Gianni-Trager-Zacharias, 1988; Eisenbud-Huneke-Vasconcelos,
1992; Krick-Logar, 1992;...)

Complexities: At least doubly exponential.



Our result on the computation of I(V )

Theorem 2. (Blanco-J. -Solernó)

Let g1, . . . , gs ∈ K[x1, . . . , xn] such that V = V (g1, . . . , gs) ⊂ An is
smooth equidimensional with 0 < dim V < n− 1.

Assume that deg gi ≤ d and that g1, . . . , gs are encoded by slp’s of
length L. Set m := (n− dim V )(dim V + 1).

Then, there is a probabilistic algorithm which computes polynomials
f1, . . . , fm ∈ K[x1, . . . , xn] such that I(V ) = (f1, . . . , fm) within
complexity s(ndn)O(1)L.



Basic ingredients

• Our upper bound for the number of generators.

• Fast computation of eliminating polynomials using Chow forms.



The Chow form of an equidimensional variety

V ⊂ An a k-equidimensional variety; V ⊂ Pn its projective closure.

(H1, . . . ,Hk+1) sets of new indeterminates and, for j = 1, . . . , k + 1,

Lj := Hj0 x0 + Hj1 x1 + · · ·+ Hjn xn.

The Chow form of V is the unique (up to scalar factors) square-free
polynomial F ∈ K[H1, . . . , Hk+1] satisfying

F(h1, . . . , hk+1) = 0

m
V ∩ {L1(h1, x) = 0, . . . , Lk+1(hk+1, x) = 0} 6= ∅



Eliminating polynomials and Chow forms

Lemma. Let e := (1, 0, . . . , 0) ∈ Kn+1 and (h1, . . . , hk) ∈ (Kn+1)k

such that F(h1, . . . , hk, e) 6= 0. Then, for every hk+1 ∈ Kn+1,

f̂h := F(h1 − y1e, . . . , hk+1 − yk+1e) ∈ K[y1, . . . , yk+1]

satisfies
πh(V ) = {y ∈ Ak+1 : f̂h(y) = 0},

where πh : An → Ak+1, πh(x) = (`h1(x), . . . , `hk+1(x)).

Moreover, there is an open set U0 ⊂ (An+1)k+1 such that f̂h is
square-free and so, f∗h = fh(`h1 , . . . , `hk+1) can be obtained as

f∗h = F (
h1 − `h1e, . . . , hk+1 − `hk+1e

)

∀h := (h1, . . . , hk+1) ∈ U0



The algorithm

INPUT: g1, . . . , gs ∈ K[x1, . . . , xn] such that
V = V (g1, . . . , gs) ⊂ An is k-equidim. and smooth.

1. Compute the Chow form F of V .

2. Choose m := (n− k)(k + 1) elements
h(1), . . . , h(m) ∈ (An+1)k+1 at random with coordinates in
{1, . . . , C(N)} for an appropriate C(N) ∈ N.

3. For i = 1, . . . , m, compute

fi := F(
h

(i)
1 − `

h
(i)
1

e, . . . , h
(i)
k+1 − `

h
(i)
k+1

e
)
.

OUTPUT: f1, . . . , fm ∈ K[x1, . . . , xn] such that
I(V ) = (f1, . . . , fm) with error probability ≤ 1/N .



Complexity estimates

Assume that the input is given by:

• s polynomials g1, . . . , gs ∈ K[x1, . . . , xn]

• deg gi ≤ d, L(gi) ≤ L for every 1 ≤ i ≤ s.

Complexity of computing an slp for the Chow form of V

(J. -Krick-Sabia-Sombra, 2003): s(ndn)O(1)L.

The algorithm computes slp’s of length s(ndn)O(1)L encoding
f1, . . . , fm.

Remark. If δ is the geometric degree of the input system, ∃ a
system of generators for I(V ) that can be encoded by slp’s of
length s(ndδ)O(1)L.



Happy 60th birthday Joos!


