Elimination Techniques for the Computation of the Ideal of a Smooth Algebraic Variety

Gabriela Jeronimo

Departamento de Matemática, FCEyN, Universidad de Buenos Aires CONICET - Argentina

On the number of equations defining a variety

 \mathbb{K} := algebraically closed field with char(\mathbb{K}) = 0

(Kronecker, 1882) Every affine algebraic variety $V \subset \mathbb{A}^n$ can be defined as the set of common zeros of n + 1 polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Moreover:

If $V = V(f_1, \ldots, f_s)$ with $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, then $\exists g_1, \ldots, g_{n+1} \in \mathbb{K}[x_1, \ldots, x_n]$ such that $V = V(g_1, \ldots, g_{n+1})$ with $g_i = \sum_{j=1}^s \lambda_{ij} f_j \quad (\lambda_{ij} \in \mathbb{K})$ for every $1 \le i \le n+1$. Idea of a proof:

Construct recursively, for i = 1, ..., n + 1, linear combinations $g_1, ..., g_{n+1}$ of $f_1, ..., f_s$ such that each irreducible component of $W_i := V(g_1, ..., g_i)$ not contained in V has dimension n - i. In particular, $W_{n+1} = V$.

- Take one point $p_C \notin V$ in each irreducible component C of W_{i-1} not contained in V.
- Choose $g_i = \sum_{j=1}^s \lambda_{ij} f_j$ so that $g_i(p_C) \neq 0 \ \forall p_C$. When taking $W_i := W_{i-1} \cap V(g_i)$, the dimension of each irreducible component not contained in V drops.
- The condition $g_i(p_C) \neq 0$ is obtained by choosing λ_{ij} such that $\prod_C (\sum_{j=1}^s \lambda_{ij} f_j(p_C)) \neq 0$ (non-zero polynomial in the λ_{ij} 's).

The degree of an affine variety

Crucial in order to obtain upper bounds for the degrees of equations defining a variety $V \subset \mathbb{A}^n$.

(*Heintz, 1983*) If $V \subset \mathbb{A}^n$ is irreducible with dim V = k,

deg $V = \max\{D \in \mathbb{N} : \exists H_1, \dots, H_k \subset \mathbb{A}^n \text{ affine hyperplanes with}$ $\#(V \cap H_1 \cap \dots \cap H_k) = D\}$

For an arbitrary affine variety $V \subset \mathbb{A}^n$, deg V is the sum of the degrees of the irreducible components of V.

A degree upper bound for defining equations

(*Heintz*, 1983) Let $V \subset \mathbb{A}^n$ be an algebraic variety. Then:

 $\exists f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n] \text{ with } \deg(f_i) \leq \deg(V) \text{ for } i = 1, \ldots, s,$ such that $V = V(f_1, \ldots, f_s).$

Idea of the proof:

- For every $p \notin V$, $\exists f_p \in \mathbb{K}[x_1, \dots, x_n]$ such that $f_p(\xi) = 0$ $\forall \xi \in V$ and $f_p(p) \neq 0$.
- f_p is the defining equation of the image of V under a linear projection and so, $\deg(f_p) \leq \deg(V)$.

Theorem Every affine algebraic variety $V \subset \mathbb{A}^n$ can be defined by n+1 polynomials with degrees bounded by deg V.

A refinement of Kronecker's bound

(Storch, 1972; Eisenbud and Evans, 1975) Every affine algebraic variety $V \subset \mathbb{A}^n$ can be defined by *n* polynomials.

Remarks:

- This bound is optimal (consider the case when $\dim V = 0$).
- No upper bound on the degrees of the polynomials is given.

The ideal of an algebraic variety

 $V \subset \mathbb{A}^n$ an affine algebraic variety. Denote

$$I(V) = \{ f \in \mathbb{K}[x_1, \dots, x_n] : f(\xi) = 0 \ \forall \xi \in V \}.$$

Problem 1.

Determine whether there exists a system of generators of I(V) with 'few' polynomials of 'low' degree.

Problem 2.

Given $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that $V = V(g_1, \ldots, g_s)$, compute a set of generators for I(V).

Zero-dimensional varieties

Let $V \subset \mathbb{A}^n$, dim V = 0 (finite set).

(Shape Lemma) $\exists \ell \in \mathbb{K}[x_1, \dots, x_n]$ a linear form with

 $\ell(\xi) \neq \ell(\xi')$ for $\xi, \xi' \in V, \ \xi \neq \xi'$.

Assume ℓ depends on x_1 . Then, there are univariate polynomials p_1, \ldots, p_n with deg $p_1 = \deg V$ and deg $p_i < \deg V$ for $i = 2, \ldots, n$ such that

$$I(V) = (p_1(\ell), x_2 - p_2(\ell), \dots, x_n - p_n(\ell)).$$

If $f_1 := p_1(\ell), f_i := x_i - p_i(\ell)$ for i = 2, ..., n,

 $I(V) = (f_1, \ldots, f_n)$ and deg $f_i \leq \deg V$.

An example due to Macaulay

(Macaulay, 1916) $\forall m \in \mathbb{N}, \exists V_m \subset \mathbb{A}^3$ curve such that $I(V_m)$ cannot be generated by less than m polynomials.

Corollary. For $V \subset \mathbb{A}^n$, there is no general upper bound depending only on n for the number of polynomials in a generator set of I(V).

Estimates under additional assumptions

(Kumar, 1978; Sathaye, 1978)

Let $V \subset \mathbb{A}^n$ be an affine variety such that I(V) is locally complete intersection. Then, I(V) can be generated by n polynomials.

Not clear how to obtain degree estimates.

(Mumford, 1970; Seidenberg, 1975)

Let $V \subset \mathbb{A}^n$ be a smooth irreducible variety. Then I(V) can be generated by polynomials with degrees bounded by $\deg V$.

No non-trivial upper bound for the number of generators.

The main problem

Can the number and the degrees of the polynomials in a generating set of I(V) be controlled *simultaneously* under certain assumptions on V?

In this talk:

Positive answer for smooth equidimensional affine varieties.

Number and degree of ideal generators

Theorem 1. (Blanco-J. -Solernó) Let $V \subset \mathbb{A}^n$ be a smooth equidimensional algebraic variety. Set $m := (n - \dim V)(1 + \dim V)$

Then, there exist $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$ with deg $f_i \leq \deg V$ for $i = 1, \ldots, m$ such that

 $I(V) = (f_1, \ldots, f_m).$

Basic ingredients of the proof

- Local-global principle, which enables us to look for generators of the ideal locally at any of the points of the variety.
- Linear projections to obtain polynomials in the ideal I(V).
- A Jacobian criterion for a system of polynomials to be local generators of the ideal at a given point.

Regular points and smooth varieties

Assume that:

• $V \subset \mathbb{A}^n$ is an equidimensional algebraic variety.

•
$$I(V) = (f_1, \ldots, f_m) \subset \mathbb{K}[x_1, \ldots, x_n].$$

• $J := \left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ is the associated Jacobian matrix.

V is smooth at a point $p \in V$ (and p is a regular point of V) if rank $J(p) = n - \dim V$.

V is smooth if it is smooth at every $p \in V$.

From now on, we assume $V \subset \mathbb{A}^n$ smooth equidimensional.

Linear projections

Let $V \subset \mathbb{A}^n$ be an equidimensional variety and let $k := \dim(V)$. For $h = (h_1, \dots, h_{k+1}) \in (\mathbb{A}^{n+1})^{k+1}$, let $\ell_{h_j} \in \mathbb{K}[x_1, \dots, x_n] \quad j = 1, \dots, k+1$ $\ell_{h_j} := h_{j0} + h_{j1}x_1 + \dots + h_{jn}x_n$

and let

$$\pi_h : \mathbb{A}^n \longrightarrow \mathbb{A}^{k+1}$$
$$x \longmapsto (\ell_{h_1}(x), \dots, \ell_{h_{k+1}}(x)).$$

Consider the image

$$\pi_h(V) \subset \mathbb{A}^{k+1}.$$

Polynomials of low degrees in I(V)

 $\exists U_0 \subset (\mathbb{A}^{n+1})^{k+1}$ Zariski dense open set such that $\forall h \in U_0$, $\pi_h(V)$ is a hypersurface.

Then, for $h \in U_0$ we have

$$\pi_h(V) = \{ y \in \mathbb{A}^{k+1} : f_h(y) = 0 \} \subset \mathbb{A}^{k+1},$$

where f_h is square-free and $\deg f_h = \deg \pi_h(V) \le \deg V$.

$$\Rightarrow f_h^* := f_h(\ell_{h_1}, \dots, \ell_{h_{k+1}}) \in I(V)$$
$$\deg f_h^* \le \deg V$$

A condition for local generators

For every $p \in \mathbb{A}^n$, we denote

$$\mathcal{O}_{p,\mathbb{A}^n} := \{ f/g : f, g \in \mathbb{K}[x_1, \dots, x_n], g(p) \neq 0 \}.$$

(Mumford, 1970) If $p \in V$ is a regular point and $f_1, \ldots, f_t \in I(V)$, the following conditions are equivalent:

•
$$T_{p,V} = \bigcap_{i=1}^{t} T_{p,V(f_i)}$$

•
$$I(V)\mathcal{O}_{p,\mathbb{A}^n} = (f_1,\ldots,f_t)\mathcal{O}_{p,\mathbb{A}^n}$$

Local generators of low degrees

• For every regular point $p \in V$, $\exists \mathcal{U}_p \neq \emptyset$, Zariski open, such that $\forall h \in \mathcal{U}_p, \{f_h^*(x) = 0\}$ is a hypersurface smooth at p.

Lemma. Let $p \in V$ be a regular point. Then, if \mathcal{U}_p is as above,

$$I(V)\mathcal{O}_{p,\mathbb{A}^n} = (f_h^* : h \in \mathcal{U}_p)\mathcal{O}_{p,\mathbb{A}^n}.$$

 $\Rightarrow I(V)\mathcal{O}_{p,\mathbb{A}^n} \text{ is generated by polynomials of degrees}$ bounded by deg V.

Moreover, for a generic choice of $h^{(1)}, \ldots, h^{(n-k)} \in \mathcal{U}_p$, we have

$$I(V)\mathcal{O}_{p,\mathbb{A}^n} = (f_{h^{(1)}}^*, \dots, f_{h^{(n-k)}}^*)\mathcal{O}_{p,\mathbb{A}^n}.$$

Existence of generators of I(V) of low degrees

Thus, we recover the result in *(Mumford, 1970; Seidenberg, 1975; Catanese, 1992)*:

Proposition. Let $V \subset \mathbb{A}^n$ be a smooth equidimensional variety. Then

$$I(V) = (f_h^* : h \in U_0),$$

 $U_0 \subset (\mathbb{A}^{n+1})^{k+1}$ is a Zariski dense open set. In particular, I(V) can be generated by polynomials of degrees bounded by deg V.

Choosing 'few' generators

Lemma. Let $V \subset \mathbb{A}^n$ be a k-equidimensional smooth variety and let $f_1, \ldots, f_s \in I(V)$ such that

- $V(f_1, \ldots, f_s) = V \cup Z$, with $Z = \emptyset$ or equidimensional,
- $(f_1, \ldots, f_s)\mathcal{O}_{p,\mathbb{A}^n} = I(V)\mathcal{O}_{p,\mathbb{A}^n} \ \forall p \in V Y$, for an equidim. subvariety $Y \subset V$.

Then $\exists h^{(1)}, \dots, h^{(n-k)} \in (\mathbb{A}^{n+1})^{k+1}$ such that

- $V(f_1, \ldots, f_s, f_{h^{(1)}}^*, \ldots, f_{h^{(n-k)}}^*) = V \cup Z'$, where $Z' = \emptyset$ or equidim. with $\dim Z' = \dim Z (n-k)$,
- $(f_1, \ldots, f_s, f_{h^{(1)}}^*, \ldots, f_{h^{(n-k)}}^*) \mathcal{O}_{p,\mathbb{A}^n} = I(V) \mathcal{O}_{p,\mathbb{A}^n} \quad \forall p \in V Y',$ where $Y' = \emptyset$ or $Y' \subset V$ equidim. with dim $Y' = \dim Y - 1$.

Idea of the proof:

- Take $\{p_1, \ldots, p_r\} \subset V$ containing one point in each irreducible component of the set Y of 'bad points' (= points at which the given polynomials do not generate I(V) locally).
- Choose recursively $h^{(1)}, \ldots, h^{(n-k)}$ so that
 - (i) $f_{h^{(1)}}^*, \ldots, f_{h^{(n-k)}}^*$ generate $I(V)\mathcal{O}_{p_i,\mathbb{A}^n} \ \forall 1 \le i \le r$,
 - (ii) $Z \cap V(f_{h^{(1)}}^*, \dots, f_{h^{(l)}}^*) = \emptyset$ or equidimensional with dimension dim Z l for $l = 1, \dots, n k$.
- Condition (i) above implies that the dimension of the set of 'bad points' drops.

A recursive construction based on the previous lemma:

- Choose a family of n k linear projections such that their associated defining polynomials generate I(V) locally at the points of a Zariski dense open set of V.
- By choosing k + 1 different families of n k projections, reduce the set of 'bad points' successively from k - 1 to -1.

 $\exists h^{(1)}, \dots, h^{(m)} \in (\mathbb{A}^{n+1})^{k+1}, \text{ with } m := (n-k)(k+1), \text{ such that}$ $I(V) = \left(f_{h^{(1)}}^*, \dots, f_{h^{(m)}}^*\right).$

Computing generators of I(V)

Problem. Given $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$ with $V = V(g_1, \ldots, g_s)$, compute $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$ such that $I(V) = (f_1, \ldots, f_m)$.

Nullstellensatz \Rightarrow this is equivalent to

$$I = (g_1, \dots, g_s) \rightsquigarrow \sqrt{I} = (f_1, \dots, f_m)$$

There are effective procedures solving this task in the general case (Gianni-Trager-Zacharias, 1988; Eisenbud-Huneke-Vasconcelos, 1992; Krick-Logar, 1992;...)

Complexities: At least doubly exponential.

Our result on the computation of I(V)

Theorem 2. (Blanco-J. -Solernó)

Let $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that $V = V(g_1, \ldots, g_s) \subset \mathbb{A}^n$ is smooth equidimensional with $0 < \dim V < n - 1$.

Assume that deg $g_i \leq d$ and that g_1, \ldots, g_s are encoded by slp's of length L. Set $m := (n - \dim V)(\dim V + 1)$.

Then, there is a probabilistic algorithm which computes polynomials $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$ such that $I(V) = (f_1, \ldots, f_m)$ within complexity $s(nd^n)^{O(1)}L$.

Basic ingredients

- Our upper bound for the number of generators.
- Fast computation of eliminating polynomials using Chow forms.

The Chow form of an equidimensional variety

 $V \subset \mathbb{A}^n$ a k-equidimensional variety; $\overline{V} \subset \mathbb{P}^n$ its projective closure. (H_1, \ldots, H_{k+1}) sets of new indeterminates and, for $j = 1, \ldots, k+1$, $L_j := H_{j0} x_0 + H_{j1} x_1 + \cdots + H_{jn} x_n$.

The *Chow form* of V is the unique (up to scalar factors) square-free polynomial $\mathcal{F} \in \mathbb{K}[H_1, \ldots, H_{k+1}]$ satisfying

Eliminating polynomials and Chow forms

Lemma. Let $e := (1, 0, \dots, 0) \in \mathbb{K}^{n+1}$ and $(h_1, \dots, h_k) \in (\mathbb{K}^{n+1})^k$ such that $\mathcal{F}(h_1, \dots, h_k, e) \neq 0$. Then, for every $h_{k+1} \in \mathbb{K}^{n+1}$,

$$\widehat{f}_h := \mathcal{F}(h_1 - y_1 e, \dots, h_{k+1} - y_{k+1} e) \in \mathbb{K}[y_1, \dots, y_{k+1}]$$

satisfies

$$\pi_h(V) = \{ y \in \mathbb{A}^{k+1} : \widehat{f}_h(y) = 0 \},\$$

where $\pi_h : \mathbb{A}^n \to \mathbb{A}^{k+1}, \ \pi_h(x) = (\ell_{h_1}(x), \dots, \ell_{h_{k+1}}(x)).$

Moreover, there is an open set $\mathcal{U}_0 \subset (\mathbb{A}^{n+1})^{k+1}$ such that \widehat{f}_h is square-free and so, $f_h^* = f_h(\ell_{h_1}, \ldots, \ell_{h_{k+1}})$ can be obtained as

$$f_h^* = \mathcal{F}\left(h_1 - \ell_{h_1}e, \dots, h_{k+1} - \ell_{h_{k+1}}e\right)$$
$$\forall h := (h_1, \dots, h_{k+1}) \in \mathcal{U}_0$$

The algorithm

INPUT:
$$g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$$
 such that
 $V = V(g_1, \ldots, g_s) \subset \mathbb{A}^n$ is k-equidim. and smooth.

- 1. Compute the Chow form \mathcal{F} of V.
- 2. Choose m := (n k)(k + 1) elements $h^{(1)}, \ldots, h^{(m)} \in (\mathbb{A}^{n+1})^{k+1}$ at random with coordinates in $\{1, \ldots, C(N)\}$ for an appropriate $C(N) \in \mathbb{N}$.

3. For $i = 1, \ldots, m$, compute

$$f_i := \mathcal{F}(h_1^{(i)} - \ell_{h_1^{(i)}}e, \dots, h_{k+1}^{(i)} - \ell_{h_{k+1}^{(i)}}e).$$

OUTPUT: $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$ such that $I(V) = (f_1, \ldots, f_m)$ with error probability $\leq 1/N$.

Complexity estimates

Assume that the input is given by:

- s polynomials $g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$
- deg $g_i \leq d$, $L(g_i) \leq L$ for every $1 \leq i \leq s$.

Complexity of computing an slp for the Chow form of V(J. -Krick-Sabia-Sombra, 2003): $s(nd^n)^{O(1)}L$.

The algorithm computes slp's of length $s(nd^n)^{O(1)}L$ encoding f_1, \ldots, f_m .

Remark. If δ is the geometric degree of the input system, \exists a system of generators for I(V) that can be encoded by slp's of length $s(nd\delta)^{O(1)}L$.

Happy 60th birthday Joos!