Elimination Techniques for the Computation of the Ideal of a Smooth Algebraic Variety

Gabriela Jeronimo

Departamento de Matemática, FCEyN, Universidad de Buenos Aires

CONICET - Argentina

On the number of equations defining a variety

$\mathbb{K}:=$ algebraically closed field with $\operatorname{char}(\mathbb{K})=0$
(Kronecker, 1882) Every affine algebraic variety $V \subset \mathbb{A}^{n}$ can be defined as the set of common zeros of $n+1$ polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Moreover:

If $V=V\left(f_{1}, \ldots, f_{s}\right)$ with $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then
$\exists g_{1}, \ldots, g_{n+1} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=V\left(g_{1}, \ldots, g_{n+1}\right)$ with

$$
g_{i}=\sum_{j=1}^{s} \lambda_{i j} f_{j} \quad\left(\lambda_{i j} \in \mathbb{K}\right) \quad \text { for every } 1 \leq i \leq n+1
$$

Idea of a proof:
Construct recursively, for $i=1, \ldots, n+1$, linear combinations g_{1}, \ldots, g_{n+1} of f_{1}, \ldots, f_{s} such that each irreducible component of $W_{i}:=V\left(g_{1}, \ldots, g_{i}\right)$ not contained in V has dimension $n-i$.
In particular, $W_{n+1}=V$.

- Take one point $p_{C} \notin V$ in each irreducible component C of W_{i-1} not contained in V.
- Choose $g_{i}=\sum_{j=1}^{s} \lambda_{i j} f_{j}$ so that $g_{i}\left(p_{C}\right) \neq 0 \forall p_{C}$. When taking $W_{i}:=W_{i-1} \cap V\left(g_{i}\right)$, the dimension of each irreducible component not contained in V drops.
- The condition $g_{i}\left(p_{C}\right) \neq 0$ is obtained by choosing $\lambda_{i j}$ such that $\prod_{C}\left(\sum_{j=1}^{s} \lambda_{i j} f_{j}\left(p_{C}\right)\right) \neq 0$ (non-zero polynomial in the $\lambda_{i j}$'s).

The degree of an affine variety

Crucial in order to obtain upper bounds for the degrees of equations defining a variety $V \subset \mathbb{A}^{n}$.
(Heintz, 1983) If $V \subset \mathbb{A}^{n}$ is irreducible with $\operatorname{dim} V=k$,

$$
\begin{gathered}
\operatorname{deg} V=\max \left\{D \in \mathbb{N}: \exists H_{1}, \ldots, H_{k} \subset \mathbb{A}^{n}\right. \text { affine hyperplanes with } \\
\left.\#\left(V \cap H_{1} \cap \cdots \cap H_{k}\right)=D\right\}
\end{gathered}
$$

For an arbitrary affine variety $V \subset \mathbb{A}^{n}$, $\operatorname{deg} V$ is the sum of the degrees of the irreducible components of V.

A degree upper bound for defining equations

(Heintz, 1983) Let $V \subset \mathbb{A}^{n}$ be an algebraic variety. Then:
$\exists f_{1}, \ldots, f_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg}\left(f_{i}\right) \leq \operatorname{deg}(V)$ for $i=1, \ldots, s$, such that $V=V\left(f_{1}, \ldots, f_{s}\right)$.

Idea of the proof:

- For every $p \notin V, \exists f_{p} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $f_{p}(\xi)=0$ $\forall \xi \in V$ and $f_{p}(p) \neq 0$.
- f_{p} is the defining equation of the image of V under a linear projection and so, $\operatorname{deg}\left(f_{p}\right) \leq \operatorname{deg}(V)$.

Theorem Every affine algebraic variety $V \subset \mathbb{A}^{n}$ can be defined by $n+1$ polynomials with degrees bounded by $\operatorname{deg} V$.

A refinement of Kronecker's bound

(Storch, 1972; Eisenbud and Evans, 1975) Every affine algebraic variety $V \subset \mathbb{A}^{n}$ can be defined by n polynomials.

Remarks:

- This bound is optimal (consider the case when $\operatorname{dim} V=0$).
- No upper bound on the degrees of the polynomials is given.

The ideal of an algebraic variety

$V \subset \mathbb{A}^{n}$ an affine algebraic variety. Denote

$$
I(V)=\left\{f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]: f(\xi)=0 \forall \xi \in V\right\} .
$$

Problem 1.

Determine whether there exists a system of generators of $I(V)$ with 'few' polynomials of 'low' degree.

Problem 2.

Given $g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=V\left(g_{1}, \ldots, g_{s}\right)$, compute a set of generators for $I(V)$.

Zero-dimensional varieties

Let $V \subset \mathbb{A}^{n}, \operatorname{dim} V=0$ (finite set).
(Shape Lemma) $\exists \ell \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ a linear form with

$$
\ell(\xi) \neq \ell\left(\xi^{\prime}\right) \text { for } \xi, \xi^{\prime} \in V, \xi \neq \xi^{\prime}
$$

Assume ℓ depends on x_{1}. Then, there are univariate polynomials p_{1}, \ldots, p_{n} with $\operatorname{deg} p_{1}=\operatorname{deg} V$ and $\operatorname{deg} p_{i}<\operatorname{deg} V$ for $i=2, \ldots, n$ such that

$$
I(V)=\left(p_{1}(\ell), x_{2}-p_{2}(\ell), \ldots, x_{n}-p_{n}(\ell)\right)
$$

If $f_{1}:=p_{1}(\ell), f_{i}:=x_{i}-p_{i}(\ell)$ for $i=2, \ldots, n$,

$$
I(V)=\left(f_{1}, \ldots, f_{n}\right) \text { and } \operatorname{deg} f_{i} \leq \operatorname{deg} V
$$

An example due to Macaulay

(Macaulay, 1916) $\forall m \in \mathbb{N}, \exists V_{m} \subset \mathbb{A}^{3}$ curve such that $I\left(V_{m}\right)$ cannot be generated by less than m polynomials.

Corollary. For $V \subset \mathbb{A}^{n}$, there is no general upper bound depending only on n for the number of polynomials in a generator set of $I(V)$.

Estimates under additional assumptions

(Kumar, 1978; Sathaye, 1978)
Let $V \subset \mathbb{A}^{n}$ be an affine variety such that $I(V)$ is locally complete intersection. Then, $I(V)$ can be generated by n polynomials.

Not clear how to obtain degree estimates.
(Mumford, 1970; Seidenberg, 1975)
Let $V \subset \mathbb{A}^{n}$ be a smooth irreducible variety. Then $I(V)$ can be generated by polynomials with degrees bounded by $\operatorname{deg} V$.

No non-trivial upper bound for the number of generators.

The main problem

Can the number and the degrees of the polynomials in a generating set of $I(V)$ be controlled simultaneously under certain assumptions on V ?

In this talk:
Positive answer for smooth equidimensional affine varieties.

Number and degree of ideal generators

Theorem 1. (Blanco-J. -Solernó)
Let $V \subset \mathbb{A}^{n}$ be a smooth equidimensional algebraic variety. Set

$$
m:=(n-\operatorname{dim} V)(1+\operatorname{dim} V)
$$

Then, there exist $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} f_{i} \leq \operatorname{deg} V$ for $i=1, \ldots, m$ such that

$$
I(V)=\left(f_{1}, \ldots, f_{m}\right)
$$

Basic ingredients of the proof

- Local-global principle, which enables us to look for generators of the ideal locally at any of the points of the variety.
- Linear projections to obtain polynomials in the ideal $I(V)$.
- A Jacobian criterion for a system of polynomials to be local generators of the ideal at a given point.

Regular points and smooth varieties

Assume that:

- $V \subset \mathbb{A}^{n}$ is an equidimensional algebraic variety.
- $I(V)=\left(f_{1}, \ldots, f_{m}\right) \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
- $J:=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ is the associated Jacobian matrix.
V is smooth at a point $p \in V$ (and p is a regular point of V) if $\operatorname{rank} J(p)=n-\operatorname{dim} V$.
V is smooth if it is smooth at every $p \in V$.
From now on, we assume $V \subset \mathbb{A}^{n}$ smooth equidimensional.

Linear projections

Let $V \subset \mathbb{A}^{n}$ be an equidimensional variety and let $k:=\operatorname{dim}(V)$.
For $h=\left(h_{1}, \ldots, h_{k+1}\right) \in\left(\mathbb{A}^{n+1}\right)^{k+1}$, let

$$
\begin{aligned}
\ell_{h_{j}} & \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \quad j=1, \ldots, k+1 \\
\ell_{h_{j}} & :=h_{j 0}+h_{j 1} x_{1}+\cdots+h_{j n} x_{n}
\end{aligned}
$$

and let

$$
\begin{aligned}
\pi_{h}: \mathbb{A}^{n} & \rightarrow \mathbb{A}^{k+1} \\
x & \mapsto\left(\ell_{h_{1}}(x), \ldots, \ell_{h_{k+1}}(x)\right) .
\end{aligned}
$$

Consider the image

$$
\pi_{h}(V) \subset \mathbb{A}^{k+1}
$$

Polynomials of low degrees in $I(V)$

$\exists U_{0} \subset\left(\mathbb{A}^{n+1}\right)^{k+1}$ Zariski dense open set such that $\forall h \in U_{0}$, $\pi_{h}(V)$ is a hypersurface.

Then, for $h \in U_{0}$ we have

$$
\pi_{h}(V)=\left\{y \in \mathbb{A}^{k+1}: f_{h}(y)=0\right\} \subset \mathbb{A}^{k+1},
$$

where f_{h} is square-free and $\operatorname{deg} f_{h}=\operatorname{deg} \pi_{h}(V) \leq \operatorname{deg} V$.

$$
\begin{aligned}
\Rightarrow f_{h}^{*}:= & f_{h}\left(\ell_{h_{1}}, \ldots, \ell_{h_{k+1}}\right) \in I(V) \\
& \operatorname{deg} f_{h}^{*} \leq \operatorname{deg} V
\end{aligned}
$$

A condition for local generators

For every $p \in \mathbb{A}^{n}$, we denote

$$
\mathcal{O}_{p, \mathbb{A}^{n}}:=\left\{f / g: f, g \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], g(p) \neq 0\right\} .
$$

(Mumford, 1970) If $p \in V$ is a regular point and $f_{1}, \ldots, f_{t} \in I(V)$, the following conditions are equivalent:

- $T_{p, V}=\bigcap_{i=1}^{t} T_{p, V\left(f_{i}\right)}$
- $I(V) \mathcal{O}_{p, \mathbb{A}^{n}}=\left(f_{1}, \ldots, f_{t}\right) \mathcal{O}_{p, \mathbb{A}^{n}}$

Local generators of low degrees

- For every regular point $p \in V, \exists \mathcal{U}_{p} \neq \emptyset$, Zariski open, such that $\forall h \in \mathcal{U}_{p},\left\{f_{h}^{*}(x)=0\right\}$ is a hypersurface smooth at p.

Lemma. Let $p \in V$ be a regular point. Then, if \mathcal{U}_{p} is as above,

$$
I(V) \mathcal{O}_{p, \mathbb{A}^{n}}=\left(f_{h}^{*}: h \in \mathcal{U}_{p}\right) \mathcal{O}_{p, \mathbb{A}^{n}}
$$

$\Rightarrow I(V) \mathcal{O}_{p, \mathbb{A}^{n}}$ is generated by polynomials of degrees bounded by $\operatorname{deg} V$.

Moreover, for a generic choice of $h^{(1)}, \ldots, h^{(n-k)} \in \mathcal{U}_{p}$, we have

$$
I(V) \mathcal{O}_{p, \mathbb{A}^{n}}=\left(f_{h^{(1)}}^{*}, \ldots, f_{h^{(n-k)}}^{*}\right) \mathcal{O}_{p, \mathbb{A}^{n}}
$$

Existence of generators of $I(V)$ of low degrees

Thus, we recover the result in (Mumford, 1970; Seidenberg, 1975; Catanese, 1992):

Proposition. Let $V \subset \mathbb{A}^{n}$ be a smooth equidimensional variety. Then

$$
I(V)=\left(f_{h}^{*}: h \in U_{0}\right),
$$

$U_{0} \subset\left(\mathbb{A}^{n+1}\right)^{k+1}$ is a Zariski dense open set. In particular, $I(V)$ can be generated by polynomials of degrees bounded by $\operatorname{deg} V$.

Choosing 'few' generators

Lemma. Let $V \subset \mathbb{A}^{n}$ be a k-equidimensional smooth variety and let $f_{1}, \ldots, f_{s} \in I(V)$ such that

- $V\left(f_{1}, \ldots, f_{s}\right)=V \cup Z$, with $Z=\emptyset$ or equidimensional,
- $\left(f_{1}, \ldots, f_{s}\right) \mathcal{O}_{p, \mathbb{A}^{n}}=I(V) \mathcal{O}_{p, \mathbb{A}^{n}} \forall p \in V-Y$, for an equidim. subvariety $Y \subset V$.

Then $\exists h^{(1)}, \ldots, h^{(n-k)} \in\left(\mathbb{A}^{n+1}\right)^{k+1}$ such that

- $V\left(f_{1}, \ldots, f_{s}, f_{h^{(1)}}^{*}, \ldots, f_{h^{(n-k)}}^{*}\right)=V \cup Z^{\prime}$, where $Z^{\prime}=\emptyset$ or equidim. with $\operatorname{dim} Z^{\prime}=\operatorname{dim} Z-(n-k)$,
- $\left(f_{1}, \ldots, f_{s}, f_{h^{(1)}}^{*}, \ldots, f_{h^{(n-k)}}^{*}\right) \mathcal{O}_{p, \mathbb{A}^{n}}=I(V) \mathcal{O}_{p, \mathbb{A}^{n}} \quad \forall p \in V-Y^{\prime}$, where $Y^{\prime}=\emptyset$ or $Y^{\prime} \subset V$ equidim. with $\operatorname{dim} Y^{\prime}=\operatorname{dim} Y-1$.

Idea of the proof:

- Take $\left\{p_{1}, \ldots, p_{r}\right\} \subset V$ containing one point in each irreducible component of the set Y of 'bad points' ($=$ points at which the given polynomials do not generate $I(V)$ locally).
- Choose recursively $h^{(1)}, \ldots, h^{(n-k)}$ so that

$$
\text { (i) } f_{h^{(1)}}^{*}, \ldots, f_{h^{(n-k)}}^{*} \text { generate } I(V) \mathcal{O}_{p_{i}, \mathbb{A}^{n}} \forall 1 \leq i \leq r
$$

(ii) $Z \cap V\left(f_{h^{(1)}}^{*}, \ldots, f_{h^{(l)}}^{*}\right)=\emptyset$ or equidimensional with dimension $\operatorname{dim} Z-l$ for $l=1, \ldots, n-k$.

- Condition (i) above implies that the dimension of the set of 'bad points' drops.

A recursive construction based on the previous lemma:

- Choose a family of $n-k$ linear projections such that their associated defining polynomials generate $I(V)$ locally at the points of a Zariski dense open set of V.
- By choosing $k+1$ different families of $n-k$ projections, reduce the set of 'bad points' successively from $k-1$ to -1 .
$\exists h^{(1)}, \ldots, h^{(m)} \in\left(\mathbb{A}^{n+1}\right)^{k+1}$, with $m:=(n-k)(k+1)$, such that

$$
I(V)=\left(f_{h(1)}^{*}, \ldots, f_{h(m)}^{*}\right)
$$

Computing generators of $I(V)$

Problem. Given $g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ with $V=V\left(g_{1}, \ldots g_{s}\right)$, compute $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $I(V)=\left(f_{1}, \ldots, f_{m}\right)$.

Nullstellensatz \Rightarrow this is equivalent to

$$
I=\left(g_{1}, \ldots, g_{s}\right) \rightsquigarrow \sqrt{I}=\left(f_{1}, \ldots, f_{m}\right)
$$

There are effective procedures solving this task in the general case (Gianni-Trager-Zacharias, 1988; Eisenbud-Huneke-Vasconcelos, 1992; Krick-Logar, 1992;...)

Complexities: At least doubly exponential.

Our result on the computation of $I(V)$

Theorem 2. (Blanco-J. -Solernó)
Let $g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=V\left(g_{1}, \ldots, g_{s}\right) \subset \mathbb{A}^{n}$ is smooth equidimensional with $0<\operatorname{dim} V<n-1$.

Assume that $\operatorname{deg} g_{i} \leq d$ and that g_{1}, \ldots, g_{s} are encoded by slp's of length L. Set $m:=(n-\operatorname{dim} V)(\operatorname{dim} V+1)$.

Then, there is a probabilistic algorithm which computes polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $I(V)=\left(f_{1}, \ldots, f_{m}\right)$ within complexity $s\left(n d^{n}\right)^{O(1)} L$.

Basic ingredients

- Our upper bound for the number of generators.
- Fast computation of eliminating polynomials using Chow forms.

The Chow form of an equidimensional variety

$V \subset \mathbb{A}^{n}$ a k-equidimensional variety; $\bar{V} \subset \mathbb{P}^{n}$ its projective closure. $\left(H_{1}, \ldots, H_{k+1}\right)$ sets of new indeterminates and, for $j=1, \ldots, k+1$,

$$
L_{j}:=H_{j 0} x_{0}+H_{j 1} x_{1}+\cdots+H_{j n} x_{n} .
$$

The Chow form of V is the unique (up to scalar factors) square-free polynomial $\mathcal{F} \in \mathbb{K}\left[H_{1}, \ldots, H_{k+1}\right]$ satisfying

$$
\begin{gathered}
\mathcal{F}\left(h_{1}, \ldots, h_{k+1}\right)=0 \\
\hat{\Downarrow} \\
\bar{V} \cap\left\{L_{1}\left(h_{1}, x\right)=0, \ldots, L_{k+1}\left(h_{k+1}, x\right)=0\right\} \neq \emptyset
\end{gathered}
$$

Eliminating polynomials and Chow forms

Lemma. Let $e:=(1,0, \ldots, 0) \in \mathbb{K}^{n+1}$ and $\left(h_{1}, \ldots, h_{k}\right) \in\left(\mathbb{K}^{n+1}\right)^{k}$ such that $\mathcal{F}\left(h_{1}, \ldots, h_{k}, e\right) \neq 0$. Then, for every $h_{k+1} \in \mathbb{K}^{n+1}$,

$$
\widehat{f_{h}}:=\mathcal{F}\left(h_{1}-y_{1} e, \ldots, h_{k+1}-y_{k+1} e\right) \in \mathbb{K}\left[y_{1}, \ldots, y_{k+1}\right]
$$

satisfies

$$
\pi_{h}(V)=\left\{y \in \mathbb{A}^{k+1}: \widehat{f}_{h}(y)=0\right\}
$$

where $\pi_{h}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{k+1}, \pi_{h}(x)=\left(\ell_{h_{1}}(x), \ldots, \ell_{h_{k+1}}(x)\right)$.
Moreover, there is an open set $\mathcal{U}_{0} \subset\left(\mathbb{A}^{n+1}\right)^{k+1}$ such that $\widehat{f_{h}}$ is square-free and so, $f_{h}^{*}=f_{h}\left(\ell_{h_{1}}, \ldots, \ell_{h_{k+1}}\right)$ can be obtained as

$$
\begin{gathered}
f_{h}^{*}=\mathcal{F}\left(h_{1}-\ell_{h_{1}} e, \ldots, h_{k+1}-\ell_{h_{k+1}} e\right) \\
\forall h:=\left(h_{1}, \ldots, h_{k+1}\right) \in \mathcal{U}_{0}
\end{gathered}
$$

The algorithm

INPUT: $\quad g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
V=V\left(g_{1}, \ldots, g_{s}\right) \subset \mathbb{A}^{n} \text { is } k \text {-equidim. and smooth. }
$$

1. Compute the Chow form \mathcal{F} of V.
2. Choose $m:=(n-k)(k+1)$ elements $h^{(1)}, \ldots, h^{(m)} \in\left(\mathbb{A}^{n+1}\right)^{k+1}$ at random with coordinates in $\{1, \ldots, C(N)\}$ for an appropriate $C(N) \in \mathbb{N}$.
3. For $i=1, \ldots, m$, compute

$$
f_{i}:=\mathcal{F}\left(h_{1}^{(i)}-\ell_{h_{1}^{(i)}} e, \ldots, h_{k+1}^{(i)}-\ell_{h_{k+1}^{(i)}} e\right)
$$

OUTPUT: $f_{1}, \ldots, f_{m} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that $I(V)=\left(f_{1}, \ldots, f_{m}\right)$ with error probability $\leq 1 / N$.

Complexity estimates

Assume that the input is given by:

- s polynomials $g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- $\operatorname{deg} g_{i} \leq d, L\left(g_{i}\right) \leq L$ for every $1 \leq i \leq s$.

Complexity of computing an slp for the Chow form of V (J. -Krick-Sabia-Sombra, 2003): $s\left(n d^{n}\right)^{O(1)} L$.

The algorithm computes slp's of length $s\left(n d^{n}\right)^{O(1)} L$ encoding f_{1}, \ldots, f_{m}.

Remark. If δ is the geometric degree of the input system, \exists a system of generators for $I(V)$ that can be encoded by slp's of length $s(n d \delta)^{O(1)} L$.

Happy 60th birthday Joos!

