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The Finite Element Method is based on the variational formula-

tion:

B(u, v) = F (v) ∀v ∈ H

H Hilbert space

B continuous bilinear form, F continuous linear form.
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Classic examples:

Scalar second order elliptic equations:




−∑n

i,j=1
∂

∂xi
(aij

∂u
∂xj

) = f in Ω ⊂ Rn

u = 0 on ∂Ω

γ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ M |ξ|2 ∀x ∈ Ω ∀ξ ∈ Rn
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H = H1
0(Ω) = {v ∈ L2(Ω) :

∂v

∂xj
∈ L2(Ω) for j = 1, . . . , n , v = 0 on ∂Ω}

which is a Hilbert space with the norm

‖v‖2
H1 = ‖v‖2

L2 + ‖∇v‖2
L2 ,

B(u, v) =
n∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx

and

F (v) =
∫

Ω
fv dx
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The linear elasticity equations:

{
−µ∆u− (λ + µ)∇divu = f in Ω ⊂ R3

u = 0 on ∂Ω

H = H1
0(Ω)3

B(u,v) =
∫

Ω
{2µεi,j(u)εi,j(v) + λdivudivv} dx

where

εi,j(v) =
1

2
(
∂vi

∂xj
+

∂vj

∂xi
)
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The Stokes equations:





−ν∆u +∇p = f in Ω ⊂ R3

div u = 0 in Ω ⊂ R3

u = 0 on ∂Ω

B((u, p)), (v, q) = F (v)

H = H1
0(Ω)3 × L2

0(Ω)
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FINITE ELEMENT METHOD

GENERAL SETTING: H Hilbert space

B(u, v) = F (v) ∀v ∈ H

B continuous bilinear form, F continuous linear form.

APPROXIMATE SOLUTION: U ∈ HFE, HFE ⊂ H

B(U, V ) = F (V ) ∀V ∈ HFE
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BASIC THEORY OF FINITE ELEMENT METHODS

ERROR ESTIMATES

They can be divided in two classes

-A PRIORI ESTIMATES

-A POSTERIORI ESTIMATES
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Goals of a priori estimates:

- To prove convergence and to know the order of the error

- To know the dependence of the error on different things (ge-

ometry of the mesh, regularity of the solution, degree of the

approximation).

A typical error estimate is of the form

‖error‖ ≤ Chα‖|u‖|

where h is a mesh size parameter.
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Goals of a posteriori estimates (using the computed solution!)

- To obtain quantitative information

- To develop adaptive methos

Typical error estimator

η =




∑

T∈Th

η2
T




1/2

.

ηT local contributions

ηT =


h2

T‖U‖20,T +
1

2

∑

F∈FT

hF‖JF‖20,F




1/2

,
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F edge in 2D or face in 3D

JF jump of normal derivative:

JF = ∇
(
U |Tout

)
· nF −∇

(
U |Tin

)
· nF .

Typical result:

‖e‖ ∼ η
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A PRIORI ESTIMATES

If

B(v, v) ≥ α‖v‖2 ∀v ∈ H

then

‖u− U‖ ≤ C inf
V ∈HFE

‖u− V ‖

The computed approximate solution is, up to a constant, like

the best approximation.
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More generally:

If the inf-sup condition holds

inf
U∈HFE

sup
V ∈HFE

B(U, V )

‖U‖‖V ‖ ≥ α > 0

then,

‖u− U‖ ≤ C inf
V ∈HFE

‖u− V ‖

Example: Stokes equations, B is not coercive but satisfies inf-sup

Therefore the problem reduces to obtain some approximation

V ∈ HFE of u.
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A natural approximation is

LAGRANGE INTERPOLATION

K triangle (3 nodes) or quadrilateral (4 nodes)
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If Pi are the vertices, the Lagrange interpolation uI of a function

u is defined by:
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uI(Pi) = u(Pi)

ERROR ESTIMATES FOR LAGRANGE INTERPOLATION

They started to be developed around 1970

The classic theory is based on the ”Regularity hypothesis”
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h
K
 

ρ
K

 

hK

ρK
≤ σ

hK exterior diameter, ρK interior diameter.
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In the estimate

|u− uI |1,K ≤ ChK|u|2,K

i. e.,

∫

K
|∇(u− uI)|2 ≤ Ch2

K

∫

K
|D2u|2

C = C(σ) →∞ when σ →∞.
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BUT, IT IS KNOWN THAT THE REGULARITY HYPOTHESIS

IS NOT NECESSARY

IN THE CASE OF TRIANGLES IT CAN BE REPLACED BY

THE “MAXIMUM ANGLE CONDITION”

»»»»»»»»»

XXXXXXXXX
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First results: Babuska-Aziz, Jamet (1976).

Other references: Krizek, Al Shenk, Dobrowolski, Apel, Nicaise,

Formaggia, Perotto, Acosta, Lombardi, Durán, etc..
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THE CASE OF QUADRILATERALS IS MORE COMPLICATED

SEVERAL CONDITIONS HAVE BEEN INTRODUCED

- Ciarlet-Raviart (1972): Regularity and non degeneracy of the

angles.

- Jamet (1977): Regularity.

- Zenizek-Vanmaele (1995), Apel (1998): Allows anisotropic

(flat) elements but far from triangles.

20



The most general condition seems to be

“THE REGULAR DECOMPOSITION PROPERTY” (G. Acosta,

R.Durán, SIAM J. Numer. Anal. 2000)

RDP: K convex quadrilateral. Divide it in two triangles by the

diagonal d1. Then, the constant in the error estimate depends

on the ratio |d2|/|d1| and on the maximum angle of the two

triangles.

In particular the maximum angle condition is a sufficient condi-

tion

21



CONSIDER THE CASE OF RECTANGULAR ELEMENTS

GOALS:

1- TO GIVE AN IDEA OF THE PROOF OF THE ERROR

ESTIMATE

2- TO SHOW THE DIFFERENCES BETWEEN 2D AND 3D

CASES

3- TO SHOW AN APPLICATION TO PROBLEMS WITH BOUND-

ARY LAYERS
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K REFERENCE ELEMENT

IDEA: PROVE FIRST AN ESTIMATE IN K AND CHANGE

VARIABLES

USUAL NOTATION:

‖v‖2
L2(K) =

∫

K
|v(x, y)|2dxdy

Given u(x, y) let p(x, y) = a + bx + cy be such that

∥∥∥∥
∂

∂x
(u− p)

∥∥∥∥
L2(K)

≤ C

∥∥∥∥∇
∂u

∂x

∥∥∥∥
L2(K)
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For example: p an average of Taylor polynomials of degree 1

p(x, y) =
1

|K|
∫

K

{
u(x, y) +

∂u

∂x
(x, y)(x− x) +

∂u

∂y
(x, y)(y − y)

}
dxdy

We want an analogous estimate for the interpolation error

But,

∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(K)

≤
∥∥∥∥

∂

∂x
(u− p)

∥∥∥∥
L2(K)

+
∥∥∥∥

∂

∂x
(p− uI)

∥∥∥∥
L2(K)
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Therefore, it is enough to bound

∥∥∥∥
∂

∂x
(p− uI)

∥∥∥∥
L2(K)

We use: for v = p− uI = a + bx + cy + dxy

A
 

B 

C D
 

K 

s 

∥∥∥∥
∂v

∂x

∥∥∥∥
2

L2(K)
∼ |v(B)− v(A)|2 + |v(D)− v(C)|2
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|v(B)− v(A)| = |(p(B)− u(B))− (p(A)− u(A))|

=
∣∣∣∣
∫

s

∂

∂x
(p− u)

∣∣∣∣ ≤ C

{∥∥∥∥
∂

∂x
(p− u)

∥∥∥∥
L2(K)

+
∥∥∥∥∇

∂u

∂x

∥∥∥∥
L2(K)

}

where we have used a trace theorem

Analogously we estimate |v(D)− v(C)| and so we obtain:

∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(K)

≤ C

∥∥∥∥∇
∂u

∂x

∥∥∥∥
L2(K)
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The important fact in this estimate is that

∂2u

∂y2
does not appear!!

and therefore, rescaling in each variable we obtain for a rectangle

R

R 

h
1
 

h
2
 

∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(R)

≤ C



h1

∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
L2(R)

+ h2

∥∥∥∥∥
∂2u

∂x∂y

∥∥∥∥∥
L2(R)





THE CONSTANT C IS INDEPENDENT OF h1 Y h2 !
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AN ANALOGOUS ESTIMATE IN 3D IS NOT TRUE!!

WHAT FAILS IN THE ARGUMENT?

‖u‖L2(s) ≤ C‖u‖H1(R),

WHERE s IS AN EDGE OF R IS NOT TRUE

COUNTEREXAMPLES FOR THE INTERPOLATION ERROR

ESTIMATE WERE GIVEN BY

Apel-Dobrowolski (Computing 1992), Al Shenk (Math. Comp.

1994).
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∫

Rε

|∇(u− uI)|2 ∼ Cεh
2
Rε

∫

Rε

|D2u|2

Cε goes to ∞ when ε → 0

ε 

Rε
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NATURAL QUESTION: IS THERE A BETTER APPROXIMA-

TION?

YES !!

AVERAGE INTERPOLANTS

Originally they were introduced to approximate non smooth func-

tions for which Lagrange interpolation is not even defined.

(P. Clement, 1976).
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AN AVERAGE INTERPOLANT

(A. Lombardi- R.Durán, Math. Comp. 2005)

HYPOTHESIS

R, S neighbor elements.

hR,i

hS,i
≤ σ 1 ≤ i ≤ n.

THE CONSTANT IN THE ERROR ESTIMATE DEPENDS

ONLY ON σ.
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R 
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R 

v 

R
v
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Consider the Taylor polynomial of degree 1 around (x, y)

px,y(x, y) = u(x, y) +
∂u

∂x
(x, y)(x− x) +

∂u

∂y
(x, y)(y − y)

For each node V we take an average of px,y(x, y) around V ob-

taining the polynomial q(x, y):

q(x, y) =
1

|RV |
∫

RV

px,y(x, y)dx dy
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And define the approximation uI of u by

uI(V ) = q(V )

34



ERROR ESTIMATES

Analogous to those for the Lagrange interpolation but:

1- The error on one element depends also on the values of u in

neighbor elements

2- Valid also in 3D.

∥∥∥∥∥
∂

∂xj
(u− uI)

∥∥∥∥∥
L2(R)

≤ C
n∑

i=1

hR,i

∥∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥∥
L2(R̃)
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APPLICATIONS

A. Lombardi, R. Durán, Appl. Num. Math., to appear.

Consider the convection-diffusion problem

−ε∆u + b · ∇u + cu = f in Ω

u = 0 on ∂Ω
(1)

bi < −γ with γ > 0 for i = 1,2. (2)

It is known that the solution obtained by standard FE with uni-

form meshes present oscillations unless the mesh is too fine.
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SOLUTIONS?

Several special techniques have been introduced: up-wind, stream-

line diffusion, Petrov-Galerkin, etc.

But, is it possible to obtain good results with the standard

method by using appropriate meshes?

We prove error estimates valid uniformly in ε if graded meshes

are used.

What is the difficulty in this problem?

Recall the FE theory:
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Given the problem:

B(u, v) = L(v) ∀v ∈ V

If

B(u, v) ≤ M‖u‖‖v‖
and

α‖u‖2 ≤ B(u, u)

then,

‖u− UFE‖ ≤
M

α
‖u− V ‖ ∀V ∈ HFE
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The bilinear form is:

B(v, w) =
∫

Ω
(ε∇v · ∇w + b · ∇v w + c vw) dx.

Consider the norm:

‖v‖2ε = ‖v‖2
L2(Ω) + ε‖∇v‖2

L2(Ω).

Assuming

c− div b

2
≥ µ > 0

the bilinear form is coercive with a constant α independent of ε.
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But:

1- The constant M in the continuity of the form depends on ε.

2- The second derivatives arising in the standard error estimates
depends on ε.

Using a graded mesh we have proved that

‖u− UFE‖ε ≤ C
(log(1/ε)2√

N
,

where N is the number of nodes in the mesh. The order with
respect to the number of nodes is optimal in the sense that it is
the same than the order obtained for a problem with a smooth
solution with uniform meshes.
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NUMERICAL EXAMPLES

−ε∆u + b · ∇u + cu = f in Ω

u = uD in ΓD

∂u

∂n
= g in ΓN ,

With different coefficients and data.
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1. b = (0,−1), c = 0, ΓD = [0,1] × {0,1}, ΓN = {0,1} × [0,1],
uD = 0, g = 0 and f = 1,

2. b = (0,−1), c = 0, ΓD = [0,1] × {0,1}, ΓN = {0,1} × [0,1],
uD = 0 on {0} × [0,1] and uD = 1 on {1} × [0,1], g = 0 and
f = 0,

3. b = (−1
2,−1), c = 2, ΓD = ∂Ω, uD = 0, and f = 1,

4. b = (1− 2ε)(−1,−1), c = 2(1− ε), ΓD = ∂Ω, uD = 0 and

f(x, y) = −

x−


1− e−

x
ε

1− e−
1
ε


 + y −


1− e−

y
ε

1− e−
1
ε





 ex+y.
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No oscillations are observed.

For the example 4 we know the exact solution

u(x, y) =





x− 1− e−

x
ε

1− e−
1
ε





y − 1− e−

y
ε

1− e−
1
ε





 ex+y,

and so we can compute the order of convergence.
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N Error
324 0.16855
961 0.097606
3249 0.052696
12100 0.025912
45796 0.013419

N Error
676 0.16494
2025 0.094645
6889 0.050256
25281 0.026023
96100 0.013427

ε = 10−4 ε = 10−6
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Different structure of our meshes and the well known Shishkin
meshes.
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