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Good Models for Signal Processing

Shift Invariant Spaces (SIS)

Def.: A SIS is a closed subspace V ⊂ L2(Rd) such that for
all k ∈ Zd

f ∈ V if and only if f(· − k) ∈ V
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Good Models for Signal Processing

Shift Invariant Spaces (SIS)

Def.: A SIS is a closed subspace V ⊂ L2(Rd) such that for
all k ∈ Zd

f ∈ V if and only if f(· − k) ∈ V

*******************************************
V (φ1, ..., φn) will denote the L2-clousure of

Span{φi(x− k) : k ∈ Z, i = 1, ..., n}

These SISs are called finitely generated.
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Advantages of using SIS

• Suitable for sampling

• Easy to handle through its generators

• Provide good algorithms for processing

• Include wavelet subspaces
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Examples

• Spline Spaces

• Finite Elements

• Spaces of Band Limited Functions

• Wavelet subspaces
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Usually in signal processing applications the signals are
assumed to be band-limited. That means that the signals
belong to one of the Paley-Wiener spaces

PWΩ = {f ∈ L2 : supp(f̂) ⊂ [−Ω,Ω]}.

Frequencies outside of the Ω interval are assumed to
correspond to noise. This assumption has many theoretical
and practical advantages. For example a function f ∈ PWΩ

can be recovered from its samples f( k
2Ω

) as

f(x) =
∑
k

f(
k

2Ω
)s(x−

k

2Ω
) with s(x) =

sin(2πΩx)

πx
.

However, in many applications, this assumption is not very
realistic.
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We will then consider finitely generated SIS

V = V (φ1, ..., φn),

where the integer translates of φ1, ..., φn form a frame of V.
These will be the models for our signals.
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We will then consider finitely generated SIS

V = V (φ1, ..., φn),

where the integer translates of φ1, ..., φn form a frame of V.
These will be the models for our signals.

Let H be a separable Hilbert Space.

{vj : j ∈ J} ⊂ H is a frame of H if there exist constants
0 < A ≤ B < +∞ such that for every f ∈ H

A||f ||2 ≤
∑
j∈J

| < f, vj > |2 ≤ B||f ||2
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If {vj}j∈J is a frame of H, then every f ∈ H has a
representation

f =
∑
j

< f, vj > ṽj

where {ṽj} is a dual frame. If A = B = 1 the frame is called
tight and

f =
∑
j

< f, vj > vj

.
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If {vj}j∈J is a frame of H, then every f ∈ H has a
representation

f =
∑
j

< f, vj > ṽj

where {ṽj} is a dual frame. If A = B = 1 the frame is called
tight and

f =
∑
j

< f, vj > vj

.

Frames produce redundant decompositions that have
shown to be good for many signal processing applications,
in particular for denoising.
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Theorem: Every finitely generated SIS V has a tight frame
of translates of a finite number of functions.

That is there exist φ1, ..., φr ∈ V such that

{φi(x − k) : k ∈ Zd, i = 1, ..., r} is a tight frame of V . In
particular each f ∈ V can be decomposed as

f(x) =

r∑
i=1

∑
k

cikφi(x− k),

with {cik}k ∈ l2(Z
d), i = 1, ..., r
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Problem I

Let F be a finite set of signals from some space V .
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Problem I

Let F be a finite set of signals from some space V .

Questions:

What information do these signals possess about this
space?

Can we determine the space completely from this set of
signals?

If yes, in which way?
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Determining Sets

The unknown space model:

V = V (Φ) a shift invariant space of length n.

{φi(x− k) : i = 1, . . . , n, k ∈ Zd} Riesz Basis of V .

***********************************
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Determining Sets

The unknown space model:

V = V (Φ) a shift invariant space of length n.

{φi(x− k) : i = 1, . . . , n, k ∈ Zd} Riesz Basis of V .

***********************************

F = {f1, f2, . . . , fm} ⊂ V (Φ).

Main goal:

Find necessary and sufficient conditions on finite subsets
F ⊂ V (Φ) such that any g ∈ V can be recovered from F.
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F is a determining set for V (Φ) if and only if

V (Φ) = V (f1, f2, . . . , fm).

Here V (f1, f2, . . . , fm) = closureL2

{
span{fi(x− k) : fi ∈ F , k ∈ Z}

}
.
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F is a determining set for V (Φ) if and only if

V (Φ) = V (f1, f2, . . . , fm).

Here V (f1, f2, . . . , fm) = closureL2

{
span{fi(x− k) : fi ∈ F , k ∈ Z}

}
.

***********************************
Proposition: If F is a determining set for V then card (F) ≥ n.
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Solution to Problem I

For each subset F` ⊂ F of size n, we define the set

A` = {ω : detGF`(ω) 6= 0}, 1 ≤ ` ≤ L =

(
m
n

)
,

where GF` is the n× n Gramian matrix for the vector F`.

(i.e.. GF`(ω) =
∑

k∈Zd F̂`(ω + k)F̂`
∗
(ω + k))
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Solution to Problem I

For each subset F` ⊂ F of size n, we define the set

A` = {ω : detGF`(ω) 6= 0}, 1 ≤ ` ≤ L =

(
m
n

)
,

where GF` is the n× n Gramian matrix for the vector F`.

(i.e.. GF`(ω) =
∑

k∈Zd F̂`(ω + k)F̂`
∗
(ω + k))

Theorem 1 A set F = {f1, · · · , fm} ⊂ V (Φ) is a determining
set for V (Φ) if and only if the set

Z =
L⋂
`=1

Ac
`, has Lebesgue measure zero
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Moreover, if F is a determining set for V (Φ), then the vector
function

Ψ̂(ω) := G
−1

2
F1

(ω)F̂1(ω)χB1(ω) + · · ·+G
−1

2
FL

(ω)F̂L(ω)χBL(ω) (1)

where B1 := A1, B` := A` −
⋃`−1
j=1Aj, ` = 2, . . . , L,

generates an orthonormal basis {ψi(x− k) : i = 1, . . . , n, k ∈
Zd} of V (Φ).
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Problem II

In practice, the a priori hypothesis that the class of signals
belongs to a shift-invariant space with a known number of
generators may not be satisfied. For example:
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be a shift-invariant space.

• the shift-invariant space hypothesis is correct but the
assumptions about the number of generators is wrong.
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Problem II

In practice, the a priori hypothesis that the class of signals
belongs to a shift-invariant space with a known number of
generators may not be satisfied. For example:

• the class of functions from which the data is drawn may not
be a shift-invariant space.

• the shift-invariant space hypothesis is correct but the
assumptions about the number of generators is wrong.

• the a priori hypothesis is correct but the data is corrupted
by noise.
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For these three more realistic cases, we must consider the
following problem:
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For these three more realistic cases, we must consider the
following problem:

Given a large set of experimental data F = {f1, f2, . . . , fm},
where fi are observed functions (signals) ,

let V = {V ⊂ L2(Rd) : V = V (Φ),Φ a frame of length n}

we want to find a space V ∈ V such that

m∑
i=1

‖fi − PV fi‖2 ≤
m∑
i=1

‖fi − PWfi‖2

for all W ∈ V.
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That is, given F, find a space V ∈ V such that V minimizes
the least square error

E(F , n) =
m∑
i=1

‖fi − PV fi‖2,
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That is, given F, find a space V ∈ V such that V minimizes
the least square error

E(F , n) =
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• Does such space exist?
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That is, given F, find a space V ∈ V such that V minimizes
the least square error

E(F , n) =
m∑
i=1

‖fi − PV fi‖2,

• Does such space exist?

• In that case, can we estimate the error E(F , n)?

• Can we construct the generators of the space?
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Results

Theorem 2 Let F = (fi, . . . , fm)T be a vector of functions with
components in L2(Rd), and n ≤ m be given.

1. There exists V ∈ Vn such that

m∑
i=1

‖fi − PV fi‖2 ≤
m∑
i=1

‖fi − PWfi‖2, ∀ W ∈ Vn (2)

2. The optimal shift-invariant space V in (2) can be chosen
such that V ⊂ V(F ).
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Theorem 3 Under the same assumptions as in the previous
theorem, let λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λm(ω) be the eigenvalues of
GF (ω), then

1. The eigenvalues λi(ω), 1 ≤ i ≤ m are measurable functions
in L2([0, 1]d) and

m∑
i=1

‖fi − PV fi‖2 =
m∑

i=n+1

∫
[0,1]d

λi(ω)dω (3)
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2. Let Ei := {ω : λi(ω) 6= 0}.

Define σ̃i(ω) = λ
−1/2
i (ω) on Ei and σ̃i(ω) = 0 on Ec

i .

Then, there exists a choice of eigenvectors v1(ω), . . . , vn(ω)
associated with the first n largest eigenvalues such that the
functions defined by

φ̂i(ω) = σ̃i(ω)
m∑
j=1

vij(ω)f̂j(ω), i = 1, . . . , n, ω ∈ Rd

are measurable functions in L2(Rd).

Furhermore, the corresponding vector function
Φ = (φ1, . . . , φn) is a generator for V and the set
{φi(x− k), k ∈ Zd, i = 1, . . . , n} is a tight frame for V .
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