Fitting Data with Shift Invariant Spaces

Carlos Cabrelli University of Buenos Aires

Buenos Aires, October 24-28, 2005

Joint work with:

- Akram Aldroubi (Vanderbilt University)
- Doug Hardin (Vanderbilt University)
- Ursula Molter (University of Buenos Aires)

Good Models for Signal Processing

Shift Invariant Spaces (SIS)

Def.: A SIS is a closed subspace $V \subset L^2(\mathbb{R}^d)$ such that for all $k \in \mathbb{Z}^d$ $f \in V$ if and only if $f(\cdot - k) \in V$

Good Models for Signal Processing

Shift Invariant Spaces (SIS)

Def.: A SIS is a closed subspace $V \subset L^2(\mathbb{R}^d)$ such that for all $k \in \mathbb{Z}^d$ $f \in V$ if and only if $f(\cdot - k) \in V$

 $\text{Span}\{\phi_i(x-k): k \in \mathbb{Z}, i = 1, ..., n\}$

These SISs are called **finitely generated**.

Advantages of using SIS

- Suitable for sampling
- Easy to handle through its generators
- Provide good algorithms for processing
- Include wavelet subspaces

Examples

- Spline Spaces
- Finite Elements
- Spaces of Band Limited Functions
- Wavelet subspaces

Usually in signal processing applications the signals are assumed to be band-limited. That means that the signals belong to one of the Paley-Wiener spaces

$$PW_{\Omega} = \{ f \in L^2 : supp(\hat{f}) \subset [-\Omega, \Omega] \}.$$

Frequencies outside of the Ω interval are assumed to correspond to noise. This assumption has many theoretical and practical advantages. For example a function $f \in PW_{\Omega}$ can be recovered from its samples $f(\frac{k}{2\Omega})$ as

$$f(x) = \sum_{k} f(\frac{k}{2\Omega}) s(x - \frac{k}{2\Omega}) \quad \text{ with } s(x) = \frac{sin(2\pi\Omega x)}{\pi x}$$

However, in many applications, this assumption is not very realistic.

We will then consider finitely generated SIS

$$V = V(\phi_1, ..., \phi_n),$$

where the integer translates of $\phi_1, ..., \phi_n$ form a frame of V. These will be the models for our signals. We will then consider finitely generated SIS

$$V = V(\phi_1, ..., \phi_n),$$

where the integer translates of $\phi_1, ..., \phi_n$ form a frame of V. These will be the models for our signals.

Let H be a separable Hilbert Space.

 $\{v_j : j \in J\} \subset H$ is a **frame** of H if there exist constants $0 < A \leq B < +\infty$ such that for every $f \in H$

$$A||f||^{2} \leq \sum_{j \in J} |\langle f, v_{j} \rangle|^{2} \leq B||f||^{2}$$

If $\{v_j\}_{j\in J}$ is a frame of H, then every $f \in H$ has a representation

$$f = \sum_j < f, v_j > ilde v_j$$

where $\{\tilde{v}_j\}$ is a dual frame. If A = B = 1 the frame is called **tight** and

$$f = \sum_{j} < f, v_j > v_j$$

If $\{v_j\}_{j\in J}$ is a frame of H, then every $f \in H$ has a representation

$$f = \sum_j < f, v_j > ilde v_j$$

where $\{\tilde{v}_j\}$ is a dual frame. If A = B = 1 the frame is called **tight** and

$$f = \sum_{j} < f, v_j > v_j$$

Frames produce redundant decompositions that have shown to be good for many signal processing applications, in particular for denoising. **Theorem**: Every finitely generated SIS V has a tight frame of translates of a finite number of functions.

That is there exist $\phi_1, ..., \phi_r \in V$ such that

 $\{\phi_i(x-k): k \in \mathbb{Z}^d, i = 1, ..., r\}$ is a tight frame of V. In particular each $f \in V$ can be decomposed as

$$f(x) = \sum_{i=1}^{r} \sum_{k} c_k^i \phi_i(x-k),$$

with $\{c_k^i\}_k \in l^2(\mathbb{Z}^d), i=1,...,r$

Let \mathcal{F} be a finite set of signals from some space V.

Let \mathcal{F} be a finite set of signals from some space V.

Questions:

Let \mathcal{F} be a finite set of signals from some space V.

Questions:

What information do these signals possess about this space?

Let \mathcal{F} be a finite set of signals from some space V.

Questions:

What information do these signals possess about this space?

Can we determine the space completely from this set of signals?

Let \mathcal{F} be a finite set of signals from some space V.

Questions:

What information do these signals possess about this space?

Can we determine the space completely from this set of signals?

If yes, in which way?

Determining Sets

The unknown space model:

 $V = V(\Phi)$ a shift invariant space of length n.

 $\{\phi_i(x-k): i=1,\ldots,n, k \in \mathbb{Z}^d\}$ Riesz Basis of V.

Determining Sets

The unknown space model:

 $V = V(\Phi)$ a shift invariant space of length n.

 $\{\phi_i(x-k): i=1,\ldots,n, k \in \mathbb{Z}^d\}$ Riesz Basis of V.

 $\mathcal{F} = \{f_1, f_2, \ldots, f_m\} \subset V(\Phi).$

Determining Sets

The unknown space model:

 $V = V(\Phi)$ a shift invariant space of length n.

 $\{\phi_i(x-k): i=1,\ldots,n, k \in \mathbb{Z}^d\}$ Riesz Basis of V.

 $\mathcal{F} = \{f_1, f_2, \ldots, f_m\} \subset V(\Phi).$

Main goal:

Find necessary and sufficient conditions on finite subsets $\mathcal{F} \subset V(\Phi)$ such that any $g \in V$ can be recovered from \mathcal{F} .

 ${\mathcal F}$ is a determining set for $V(\Phi)$ if and only if

$$V(\Phi) = V(f_1, f_2, \dots, f_m).$$

Here $V(f_1, f_2, \ldots, f_m) = \operatorname{closure}_{L_2} \left\{ \operatorname{span} \left\{ f_i(x - k) : f_i \in \mathcal{F}, k \in \mathbb{Z} \right\} \right\}.$

 ${\mathcal F}$ is a determining set for $V(\Phi)$ if and only if

$$V(\Phi) = V(f_1, f_2, \ldots, f_m).$$

Here $V(f_1, f_2, \ldots, f_m) = \operatorname{closure}_{L_2} \left\{ \operatorname{span} \left\{ f_i(x - k) : f_i \in \mathcal{F}, k \in \mathbb{Z} \right\} \right\}.$

Proposition: If \mathcal{F} is a determining set for V then card $(\mathcal{F}) \geq n$.

Solution to Problem I

For each subset $F_{\ell} \subset \mathcal{F}$ of size n, we define the set

$$A_{\ell} = \{ \omega : \det G_{F_{\ell}}(\omega) \neq 0 \}, \qquad 1 \leq \ell \leq L = \begin{pmatrix} m \\ n \end{pmatrix},$$

where $G_{F_{\ell}}$ is the $n \times n$ Gramian matrix for the vector F_{ℓ} . (i.e., $G_{F_{\ell}}(\omega) = \sum_{k \in \mathbb{Z}^d} \widehat{F}_{\ell}(\omega+k) \widehat{F}_{\ell}^*(\omega+k)$)

Solution to Problem I

For each subset $F_{\ell} \subset \mathcal{F}$ of size n, we define the set

$$A_{\ell} = \{ \omega : \det G_{F_{\ell}}(\omega) \neq 0 \}, \qquad 1 \le \ell \le L = \begin{pmatrix} m \\ n \end{pmatrix},$$

where $G_{F_{\ell}}$ is the $n \times n$ Gramian matrix for the vector F_{ℓ} . (i.e., $G_{F_{\ell}}(\omega) = \sum_{k \in \mathbb{Z}^d} \widehat{F}_{\ell}(\omega+k) \widehat{F}_{\ell}^*(\omega+k)$)

Theorem 1 A set $\mathcal{F} = \{f_1, \dots, f_m\} \subset V(\Phi)$ is a determining set for $V(\Phi)$ if and only if the set

$$Z = \bigcap_{\ell=1}^{L} A_{\ell}^{c},$$
 has Lebesgue measure zero

Moreover, if \mathcal{F} is a determining set for $V(\Phi)$, then the vector function

$$\widehat{\Psi}(\omega) := G_{F_1}^{-\frac{1}{2}}(\omega)\widehat{F_1}(\omega)\chi_{B_1}(\omega) + \dots + G_{F_L}^{-\frac{1}{2}}(\omega)\widehat{F_L}(\omega)\chi_{B_L}(\omega)$$
(1)

where $B_1 := A_1, B_\ell := A_\ell - \bigcup_{j=1}^{\ell-1} A_j, \ \ell = 2, \dots, L$,

generates an orthonormal basis $\{\psi_i(x-k): i = 1, ..., n, k \in \mathbb{Z}^d\}$ of $V(\Phi)$.

In practice, the a priori hypothesis that the class of signals belongs to a shift-invariant space with a known number of generators may not be satisfied. For example:

In practice, the a priori hypothesis that the class of signals belongs to a shift-invariant space with a known number of generators may not be satisfied. For example:

 the class of functions from which the data is drawn may not be a shift-invariant space.

In practice, the a priori hypothesis that the class of signals belongs to a shift-invariant space with a known number of generators may not be satisfied. For example:

- the class of functions from which the data is drawn may not be a shift-invariant space.
- the shift-invariant space hypothesis is correct but the assumptions about the number of generators is wrong.

In practice, the a priori hypothesis that the class of signals belongs to a shift-invariant space with a known number of generators may not be satisfied. For example:

- the class of functions from which the data is drawn may not be a shift-invariant space.
- the shift-invariant space hypothesis is correct but the assumptions about the number of generators is wrong.
- the a priori hypothesis is correct but the data is corrupted by noise.

Given a large set of experimental data $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$, where f_i are observed functions (signals),

Given a large set of experimental data $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$, where f_i are observed functions (signals),

let $\mathcal{V} = \{V \subset L^2(\mathbb{R}^d) : V = V(\Phi), \Phi \text{ a frame of length } n\}$

Given a large set of experimental data $\mathcal{F} = \{f_1, f_2, \dots, f_m\}$, where f_i are observed functions (signals),

let $\mathcal{V} = \{V \subset L^2(\mathbb{R}^d) : V = V(\Phi), \Phi \text{ a frame of length } n\}$

we want to find a space $V \in \mathcal{V}$ such that

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 \le \sum_{i=1}^{m} \|f_i - P_W f_i\|^2$$

for all $W \in \mathcal{V}$.

$$E(\mathcal{F}, n) = \sum_{i=1}^{m} \|f_i - P_V f_i\|^2,$$

$$E(\mathcal{F}, n) = \sum_{i=1}^{m} \|f_i - P_V f_i\|^2,$$

• Does such space exist?

$$E(\mathcal{F}, n) = \sum_{i=1}^{m} ||f_i - P_V f_i||^2,$$

- Does such space exist?
- In that case, can we estimate the error $E(\mathcal{F}, n)$?

$$E(\mathcal{F}, n) = \sum_{i=1}^{m} ||f_i - P_V f_i||^2,$$

- Does such space exist?
- In that case, can we estimate the error $E(\mathcal{F}, n)$?
- Can we construct the generators of the space?

Results

Theorem 2 Let $F = (f_i, \ldots, f_m)^T$ be a vector of functions with components in $L^2(\mathbb{R}^d)$, and $n \leq m$ be given.

1. There exists $V \in \mathcal{V}_n$ such that

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 \le \sum_{i=1}^{m} \|f_i - P_W f_i\|^2, \quad \forall \ W \in \mathcal{V}_n$$
 (2)

2. The optimal shift-invariant space V in (2) can be chosen such that $V \subset \mathcal{V}(F)$.

Theorem 3 Under the same assumptions as in the previous theorem, let $\lambda_1(\omega) \ge \lambda_2(\omega) \ge \cdots \ge \lambda_m(\omega)$ be the eigenvalues of $G_F(\omega)$, then

1. The eigenvalues $\lambda_i(\omega)$, $1 \le i \le m$ are measurable functions in $L^2([0,1]^d)$ and

$$\sum_{i=1}^{m} \|f_i - P_V f_i\|^2 = \sum_{i=n+1}^{m} \int_{[0,1]^d} \lambda_i(\omega) d\omega$$
(3)

2. Let $E_i := \{ \omega : \lambda_i(\omega) \neq 0 \}$.

Define $\tilde{\sigma}_i(\omega) = \lambda_i^{-1/2}(\omega)$ on E_i and $\tilde{\sigma}_i(\omega) = 0$ on E_i^c .

Then, there exists a choice of eigenvectors $v_1(\omega), \ldots, v_n(\omega)$ associated with the first *n* largest eigenvalues such that the functions defined by

$$\hat{\phi}_i(\omega) = \tilde{\sigma}_i(\omega) \sum_{j=1}^m v_{ij}(\omega) \hat{f}_j(\omega), \quad i = 1, \dots, n, \ \omega \in \mathbb{R}^d$$

are measurable functions in $L^2(\mathbb{R}^d)$.

Furhermore, the corresponding vector function $\Phi = (\phi_1, \dots, \phi_n)$ is a generator for V and the set $\{\phi_i(x-k), k \in \mathbb{Z}^d, i = 1, \dots, n\}$ is a tight frame for V.