Fitting data with shift invariant spaces.

Carlos Cabrelli

Universidad de Buenos Aires and CONICET, Argentina.

Given data f_1, \ldots, f_m in $L^2(\mathbb{R})$ with m usually large, and a fixed integer $n \leq m$, we study the problem of whether there exists a shift invariant space with exactly n generators, which is an optimal model for these data. That is, we look for a subspace that best fits the data in the least square sense.

More precisely, denote by $V_n = V_n(\Phi)$ a shift invariant space of $L^2(\mathbb{R})$ with a set of *n* generators $\Phi = (\phi_1, \ldots, \phi_n)$ whose integer translates form a Riesz sequence. Let $E_n = E_n(f_1, \ldots, f_m, V_n) = \sum_{i=1}^m ||f_i - P_{V_n}(f_i)||^2$. The problem under study is: if there exists V_n that minimizes E_n for the data f_1, \ldots, f_m where the minimum is taken over all possible shift invariant spaces V'_n of $L^2(\mathbb{R})$. We prove that such subspace always exist, and we provide a method to construct a set of generators from the data. In this talk we will present this result and we will also describe some extensions and related problems.