
Abstract — In vocal load estimation, detection of voiced speech regions is required in order to quantify the total time of vocal fold activity. This is a
more difficult problem than voice activity detection, due to it involves the detection not only of the presence of speech but also of a periodic behavior
at glottal level. In this work, we propose to use linear discriminant analysis in order to detect voiced speech periods. Here, three different signals,
related to vocal fold activity, are considered: voice, electroglottogram and skin vibrations of the neck. For each signal, different sets of features are
tested in order to find the corresponding optimal one. In this introductory study, the cross-validation procedures suggest that the proposed method is
a suitable approach for voiced speech activity detection, independently of the considered signal, showing accuracies greater than 95 % and robustness
to intersubject variability.
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Introduction
In this work, we present an approach based on linear classification to
automatically detect periods of vocal fold activity in three different signals,
simultaneously acquired, related to vocal folds: the voice wave (VW),
electroglottogram (EGG), and skin vibrations of the neck (SVN). The
method here proposed performs voiced speech detection, which is the first
stage required to quantify the total phonation time in vocal dosimetry [5].

Materials and Methods
Database

Following an ad hoc protocol, we carried out a database acquisition. It
is composed by simultaneous records of VW, EGG and SVN, from 43
subjects (14 females and 29 males) with non-pathological voices [1]. All
the signals were obtained in an anechoic chamber and digitalized at a
50 kHz sampling frequency and 16 bits quantization resolution.

Manual labeling of EGG records

Here, we considered EGG as the most suitable signal to detect periods
of vocal fold activity. The software Audacity 2.0.3 was employed for ma-
nually labeling, by visual inspection, each EGG record and thus obtaining
the corresponding reference class sequence (RCS), here considered as the
“gold standard” method to assess classification performance. By defini-
tion, the RCS was constructed as follows: segments of vocal fold activity
were labeled as 1, while the segments of silence or unvoiced speech were
labeled as 0.

Feature extraction and linear discriminant analysis

Over each signal, it was performed a high-pass zero-phase digital filteri-
ng. For this, we considered an order 2 Butterworth approximation with a
75Hz cut-off frequency. Hereafter, xm[n] refers to 20ms long signal fra-
me (Hann window, 50% overlap). From each frame, the following features
were extracted and used by a Fisher’s linear discriminant:

Full-band energy: Ef = 10 · log10 (r[l]|l=0/L), where r[l] is the autocorrelation

series of xm[n] –at lag l– and L is the frame length [2].

Low-band energy: E
(i)
lf = 10 · log10

(
hTi Rhi /L

)
, where R is the Toeplitz

autocorrelation matrix of xm[n] and hi is the impulse response of a FIR filter with cut-off frequency at

FiHz, where Fi = 2i · 150, with i = 0, 1, . . . , 4 [2].

Normalized low-band energy ratio: NER
(i)
lf =

hTi Rhi
r[l]|l=0

, where hi, R and

r[l] have already been described.

Zero-crossing rate: ZCR =

∑L−1
n=1 |sf {xm[n]} − sf {xm[n− 1]} |

2L
,

where sf{·} is the signum function [2].

Spectral Flatness Measure: SFM = 10 · log10
(
GM{|Xm[k]|}
AM{|Xm[k]|}

)
, where

Xm[k] is the discrete Fourier transform of xm[n], and GM{·} and AM{·} denote the calculation of

geometric and the arithmetic means, respectively [4].

Results
At First, it was considered all the cases for E

(i)
lf and NER

(i)
lf . Based

on the best individual features criteria (implemented by Friedman and

multiple comparison tests), only E
(i)
lf (for i = 0, 1, 2) were preserved as

the most representative features of the low-band frequency phenomena
associated to vocal fold activity. Secondly, it was performed an exhaustive

search with the 6 remaining features: Ef , E
(i)
lf (for i = 0, 1, 2), ZCR and

SFM . The tested cases were obtained by combining these 6 features in

groups from 1 to 4 elements, subject to employ only one E
(i)
lf each time.

This resulted in 31 combinations to compare in order to decide on the
best one. Two experiments of cross-validation were carried out in order to
find the best feature set for each signal and characterize its performance.

In the first experiment, the subsets were obtained by random splitting of
the whole used dataset. The results are shown in Table 1.

Signal Feature Set Accuracy CI (α = 0,01)

VW {Ef ;E
(1)
lf ;ZCR;SFM} 0,9535 (0,9521; 0,9548)

EGG {Ef ;E
(0)
lf ;ZCR;SFM} 0,9604 (0,9592; 0,9616)

SVN {Ef ;E
(1)
lf ;ZCR} 0,9547 (0,9534; 0,9560)

Table 1 : Performance of the best linear classifier for each signal, in case of randomly
mixed and split data. CI: confidence interval, calculated according to [3].

In the second experiment, the subsets were obtained dividing the whole
used dataset by subjects. The results are shown in Table 2.

Signal Feature Set Accuracy CI (α = 0,01)

VW {Ef ;E
(1)
lf ;ZCR;SFM} 0,9532 (0,9519; 0,9545)

EGG {Ef ;E
(0)
lf ;ZCR;SFM} 0,9601 (0,9588; 0,9613)

SVN {Ef ;E
(1)
lf ;ZCR} 0,9543 (0,9530; 0,9556)

Table 2 : Performance of the best linear classifier for each signal, in case of data
divided by registered subjects. CI: confidence interval, calculated according to [3].

In the Fig. 1, it can be observed the performance of the selected classi-
fiers over each signal, when a male volunteer reads a short phonetically
balanced sentence.
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Figure 1 : Performance of our VSD method over each signal (blue dashed line) along
with the corresponding RCS (red solid line).

From the first experiment, we can appreciate that the generalization ca-
pabilities of the obtained classifiers are very clear, showing the appropria-
teness of this method for this application. From the second experiment,
we can conclude that our classification method does not depend on the
subject considered.

Conclusions
In this work, we presented a method for the detection of voiced speech
activity periods, based on a linear classification technique. From the cross-
validation procedures, we can conclude that the method here proposed has
a very good performance, with 0.9604 as the best accuracy value in EGG
signal. Moreover, we showed that, for voiced speech detection, the SVN
provides as much information as the VW. Nevertheless, it is known that
SVN has demonstrated to be more practical than VW for ambulatory
monitoring applications.


