PCS Theory
 (Allen Forte, 1974, The Structure of Atonal Music) (Robert Morris, 1985, Pitch-Class composition)

1-Taxonomy
(Set Classes)

2-Structure (Properties of Set Classes)

3-Relations
(Similarity)
4-PCS design
(Chains, Combinatorial Matrices)

1-Set Classes (fundamental concepts)

-Pitch Class(PC): a class formed by all the members (by octave equivalence) of each one of the twelve musical notes.
-Integer representation of PC: $0=C, 1=C \#$ or $D b, 2=D$ and so on. Usually 10 is replaced by " A " and 11 by " B " for printing neatness.
-Different combinations of the 12 PC: $2^{\mathbf{1 2}}=4096$. (1 of 0 PCs, 12 of 1 PC, 66 of 2 PC and so on).
-Pitch-Class Set (PCS): a set of PC (a particular PC combination). Ordering and repetition are not taken in account.
-Transposition (Tn) of a PC: $\operatorname{Tn}(\mathrm{a})=\mathrm{a}+\mathrm{n}(\% 12)$.
-Inversion (I) of a PC: $\mathrm{I}(\mathrm{a})=12-\mathrm{a}(\% 12)$.
-Class equivalence: If a PCS can be reduced to other PCS by T and/or IT, both PCS belongs to the same Set Class (SC).
-Set-Class names: Cardinal and ordinal numbers.

Ej. $\mathbf{P C S}=\{0,1,6\}$ Set Class=3-5
Thus, the 4096 different PCS, can be classified in 224 different SC.

Cardinal Number	Different SCs	Name
0	1 ("null set")	$0--1$
1	1	$1--1$
2	6	$2-1$ TO 2-6
3	12	$3-1$ TO 3-12
4	29	$4-1$ TO 4-29
5	38	$5-1$ TO 5-38
6	50	$6-1$ TO 6-50
7	38	$7-1$ TO 7-38
8	29	$8-1$ TO 8-29
9	12	$9-1$ TO 9-12
10	6	$10-1$ TO 10-6
11	1	$1-1$ TO 1-1
12	1 ("aggregate")	$12--1$
TOTAL	224	

4-PCS design

Combinatorial Matrices (CM, R. Morris, 1984, 1987)

CM are two-dimensional arrays of PCS.

1	4	6	8
4	6	8	1
6	8	1	4
8	1	4	6

	461		8
4		861	
6	8		41
81		4	6

Composers may use various sonic dimensions in order to achieve both variety and coherence. See one of the possible musical realizations of the following CM, scored for Flute, Oboe and Clarinet:

1		B	45
7		5 A	B
6	A94		

Combinatorial Matrices generation from Chains of PCS

A chain is a succession of PCS that, being considered in adjacent pairs, form a PCS of a particular SC referred to as norm.

$$
\text { Chain: } \begin{gathered}
<\{094\}\{562\}\{79 B\}\{A 52\}> \\
\text { norm }=6-46
\end{gathered}
$$

A chain with a unique norm may be taken as a basis for constructing a CM with the same norm.

$$
\text { PCS chain: }<\{01\}\{268\}\{07\}\{15 B\}\{67\}\{028\}\{16\}\{57 B\}>
$$

01	268		
	07	$15 B$	
$57 B$		67	028
			16

The distribution of the PCS in the resulting CM may be further improved through swapping operations

1	02	6	8
B	7	15	0
0	8	7	26
57	6	B	1

Constructing chains from binary partitions of a PCS

5-15 \{0,1,2,6,8\}			
Partitions 1/4			
A	$0 \mid 1268$	1-1	4-16
B	10268	1-1	4-25
C	2\|0168	1-1	4-16
D	$6 \mid 0128$	1-1	4-5
E	$8 \mid 0126$	1-1	4-5
Partitions 2/3			
F	01\|268	2-1	3-8
G	02\|168	2-2	3-9
H	06\|128	2-6	3-5
I	08\|126	2-4	3-4
J	12\|068	2-1	3-8
K	$16 \mid 028$	2-5	3-8
L	$18 \mid 026$	2-5	3-8
M	26\|018	2-4	3-4
N	28\|016	2-6	3-5
0	68\|012	2-2	3-1

```
F 01|268
RT6K 268|07
T1IK 07|15B
RT7IF 15B|67
T6F 67|028
RK 028|16
T7IK 16|57B
RT1IF 57B|01
```

PCS chain: $<\{01\}\{268\}\{07\}\{15 B\}\{67\}\{028\}\{16\}\{57 B\}>$

01	268		
	07	$15 B$	
57B		67	028

Scoring partition candidates

$$
\operatorname{score}\left(\operatorname{cand}_{i}\right)=\frac{\sum_{n=0}^{C_{i-1}} \operatorname{dist}\left(p c_{n}, \operatorname{cand}_{i}\right)}{(S) C_{i}}
$$

$S \quad=$ chain size (number of positions)
$C_{i} \quad=$ cardinality of the ith PCS to be added
$\operatorname{dist}\left(p c_{n}, c a n d_{i}\right)=S-\left(\operatorname{pos}\left(p c_{n}, c a n d_{i}\right)+2\right)$
$\operatorname{pos}\left(p c_{n}, c a n d_{i}\right)=$ the last position in which the $p c_{n}$ of $c^{\prime} c^{\prime} d_{i}$ was found ($i=0$ to $S-1$, and $n=0$ to C_{i}). If the $p c_{n}$ is not found, then $\operatorname{pos}\left(p c_{n}, c a n d_{i}\right)=0$.

PCSLB-SC

-Developed by Lucas Samaruga with the advice of Pablo Di Liscia.
-Based on PCSLIB (by Pablo Di Liscia and Pablo Cetta, 2006) for Pure Data.
-Four main classes:

1. PCS Class. Defines a particular PCS (together with its properties and operations)
2. PCSChain Class. Defines a chain of PCS and its elaboration methods.
3. PCSMatrix Class. Defines a combinatorial matrix of PCS (together with its particular properties, generation methods and operations).

4-SCTable Class. Holds the Set-class (SC) table used for information retrieval from the PCS class.

PCS Class

-Is the core class of the quark, it holds all the operations and properties related to the PCS theory.
-A PCS can be built from its symbolic table name or can be created from an array of numbers, like PCS[$0,1,3,5,6]$.

PCS instance methods to get the following data.
prime form,
normal order
name
Z pair
interval-class vector,
invariance vector
Basic operations aside of the inherited set operations.
twelve-tone operators (TTO)
relations
similarity

PCSChain Class

Is used to build chains with the procedures already explained.

PCSMatrix Class

Different methods for building CM
-from arrays (a "free" matrix),
-from chains
-from Set Classes, to build different Morris's CM types
-from TTOs
CM transformation
-swapping
-transposition
-multiplications
-inversion
-rotation
CM Analysis
-sparseness
-fragmentation
-PC histogram
Constructing chains with more than one norm

Vertical norm=X
Horizontal norms= a, b, c, d, e

Chain

\boldsymbol{a}		\boldsymbol{b}		\mathbf{c}		\boldsymbol{d}		\boldsymbol{e}	
$* *$	$* * *$	$* *$	$* * *$	$* *$	$* * *$	$* *$	$* * *$	$* *$	$* * *$
	\boldsymbol{X}		X		X		X		

Resulting CM

$\mathbf{(S C)}$	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}
\boldsymbol{a}	$* *$	$* * *$			
\boldsymbol{b}		$* *$	$* * *$		
\boldsymbol{c}			$* *$	$* * *$	
\boldsymbol{d}				$* *$	$* * *$

Create PCS out of their Set Class Names:

a = PCS('5-1');
b = PCS('5-21');
c = PCS('5-35');
d = PCS('5-7');
e = PCS('5-33');
x = PCS('5-12'); // 5-Z12

Create a PCSChain, set its initial norm and add a starting partition.

~chain = PCSChain.new.norm_(a);
~chain.candidates(false);
~chain.addCand(7);
Construct the chain by adding the best partitions candidates with the following ad hoc algorithm

```
[x, b, x, c, x, d, x, e].do({ arg pcs;
    ~chain.norm = pcs;
    ~chain.candidates(false);
    ~chain.candList.notEmpty.if({
            ~chain.addCand(
            ~chain.scores.indexOf(
            ~chain.scores.maxItem
        );
    );
    }, {
    "candidates for %"
```

.format(pcs.name).throw; \});
\});

Create a PCSMatrix from the generated chain.

\sim matrix $=$ PCSMatrix.fromChain(\sim chain);

set-class	$\begin{aligned} & 4- \\ & 11 \end{aligned}$	$\begin{aligned} & \text { X (5- } \\ & \text { Z12) } \end{aligned}$	$\begin{aligned} & \text { X (5- } \\ & \text { Z12) } \end{aligned}$	$\begin{aligned} & \text { X (5- } \\ & \text { Z12) } \end{aligned}$	$\begin{aligned} & X(5- \\ & Z 12) \end{aligned}$
A (5-1)	03	124			
B (5-21)		67	3AB		
C (5-35)			14	68B	
D (5-7)				5A	349
E (5-33)	02A				68

Improve the CM by swapping and duplicate one PC to keep the first column in norm.
~matrix.swapping;
~matrix.addAt(3, 0, PCS[9]);

set-class	X (5-Z12)	X (5-Z12)	X (5-Z12)	X (5-Z12)	$\begin{aligned} & \text { X (5- } \\ & \text { Z12) } \end{aligned}$
A (5-1)	02	1	4		3
B (5-21)	A	7	3	B	6
C (5-35)		6	1B	8	4
D (5-7)	39	4		5A	9
E (5-33)	0	2	A	6	8

