Center for Research in Entertainment and Learning

Discrete Musical Systems

Shlomo Dubnov

CELFI Seminar, Lecture 4

Methods of Proposed Music Systems Theory

Combination of DES and Machine Learning

- DES:
 - Finite State Automata
 - Markov Processes
 - Petri Nets
- Machine Learning:
 - Learning FSA
 - Time Series Data mining
 - Reinforcement Learning *
 - Structure and Concurrence Modeling

Petri Nets and Music Structure

Show how to learn and control a large scale musical form using audio segmentation and Petri Nets

Places and transitions

- A PETRI NET is a bipartite graph which consists of two types of nodes: places and transitions connected by directed arcs.
- Place = circle, transition = bar or box.
- An arc connects a place to a transition or a transition to a place.
- No arcs between nodes of the same type.
- Input and output places of a transition
- Input and output transitions of a place

Token and marking system state

Each place **pi** contains a number of **tokens**.

The distribution of tokens in the Petri net is called **marking** $M = (m_1, m_2, ..., m_n)$ where $m_i = \#$ of tokens in place **pi**

System State = marking of PN The initial state of the system = initial marking M_0 .

System dynamics by transition firing

- A **transition** is said **enabled** (firable) if each of its input places contains at least one token. An enabled transition can fire.
- Firing a transition removes a token from each input place and add one token to each ouput place.
- Firing a transition leads to a new marking that enables other transitions.
- The dynamic behavior of the corresponding system = evolution of the marking and transition firings
- Convention: simultaneous transition firings are forbidden.

Firing Example

Formal definitions

Petri Nets

A Petri net is a five-tuple PN = (P, T, A, W, M_0) where:

 $P = \{ p_1, p_2, ..., p_n \}$ is a finite set of places

 $T = \{t_1, t_2, ..., t_m\}$ is a finite set of transitions

 $A \subseteq (P \times T) \cup (T \times P)$ is a set of arcs

W: A \rightarrow { 1, 2, ... } is a weight function

 $M_0: P \rightarrow \{0, 1, 2, ...\}$ is the initial marking

 $P \cap T = \Phi$ and $P \cap T = \Phi$

PN without the initial marking is denoted by N:

$$N = (P, T, A, W)$$

 $PN = (N, MO)$

A Petri net is said **ordinary** if w(a) = 1, $\forall a \in A$.

Graphic representation

Similar to that of ordinary PN but with default weight of 1 when not explicitly represented.

Transition firing

Rule 1: A **transition** t is **enabled** at a marking M if M (p) \geq w(p, t) for any p \in °t where °t is the set of input places of t

Rule 2: An enabled transition may or may not fire.

Rule 3: Firing transition t results in:

- •removing w(p, t) tokens from each p \in °t
- •adding w(t, p) tokens to each p \in t° where t° is the set of output places of t

PN models of key characteristics

Precedence relation:

Alternative processes:

Parallel processes:

Synchronization:

Music Modeling with PN

Frank Zappa "Peaches and Regalia" analysis by A. Baratè

Automatic Modeling of Musical Structure using PN

Overview of the system

- PyOracle: https://gitlab.com/himito/PyOracle_I-score
- i-score: https://github.com/himito/i-score
- VMO-Score: https://himito.github.io/vmo_i-score_generator

Overview of the system

Offline Improvisation

Real Time Improviser

Segmentation

Composition with PN

```
# file: configuration.yml

conditions:
    - transition : 't0'
    time-min : 0.0
    time-max : 3.0
    condition : '/device/key == 10'

- transition : 't1'
...
```


Improvisation with PN

```
# file: configuration.yml

actions:
   - address : '/volume/sensor/pos_x'
   value : 10
   time : 250

- address : ...
```


Modeling Interaction

Adding Environment

i-score representation

PN to i-score mapping

Segmentation

Using self-similarity (recurrence) to partition an audio file inter-connected regions by spectral clustering

Time (s)

Recurrence Matrix

$$d(i,j) = \frac{\langle X_i, X_j \rangle}{\|X_i\| \|X_j\|}.$$

SVD

$$\mathbf{X}_{n \times p} = \mathbf{U}_{n \times n} \mathbf{\Lambda}_{n \times p} \mathbf{V}_{p \times p}^{T}$$

where

$$\mathbf{U}^T\mathbf{U} = I_{n\times n}$$
, and $\mathbf{V}^T\mathbf{V} = \mathbf{I}_{p\times p}$.

'spectral decomposition' of the matrix

$$\begin{bmatrix} \mathbf{X} & \mathbf{J} & \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{J} & \mathbf{J} \\ \mathbf{J} & \mathbf{J} & \mathbf{J} & \mathbf{J} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & \emptyset \\ \emptyset & \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

'spectral decomposition' of the matrix:

'spectral decomposition' of the matrix:

Approximation / dim. Reduction - by keeping the first few terms (how many?)

$$\mathbf{X}_{n imes p} = \mathbf{U}_{n imes n} \mathbf{\Lambda}_{n imes p} \mathbf{V}_{p imes p}^T$$

where

$$\mathbf{U}^T\mathbf{U} = I_{n\times n}$$
, and $\mathbf{V}^T\mathbf{V} = \mathbf{I}_{p\times p}$.

$$X = US_x$$
 U – orth. basis vectors

$$S_x = \Lambda_x V^T$$

$$\mathbf{D} = \mathbf{S}_x^T \mathbf{S}_x$$
.

Property I: Eigenvectors S_d of D are transpose of the expansion coefficients of X, $S_d = S_x^T$.

Relation between SVD and Self-Similarity based clusted

- Matrix D is a correlation matrix
- When self-similarity is computed using dotproduct, D becomes a similarity matrix
- Spectral Clustering uses eigenvectors of a normalized similarity matrix to find objects in the data (to be explained next)
 - Side Note: the name "Spectral Clustering" comes from spectral decomposition of a matrix (eigenvectors) and has nothing to do with spectrum of the audio signal

Dimension Reduction / Audio Basis

Spectral Clustering

 Transform the similarity matrix D to a stochastic matrix:

$$P = Z^{-1}D$$

- Pij is the probability of moving from sound grain i to sound grain j in one step of a random walk
- Same eigenvectors: y =yP; eigenvalues: $\lambda = 1-\lambda P$

Synthetic Example I

Note: Usual distance based clustering does not work for this type of data.

Distance Matrix

Euclidean Distance Matrix

The second generalized eigenvector

The first partition

The second generalized eigenvector

The second partition

Example II: Audio Segmentation using eigenvectors

Example

Original 🀠

Segmented

Example III:

The Angel of Death by Roger Reynolds

for piano, chamber orchestra and computer-processed sound

S-D VERSION

D-S VERSION

Familiarity vs. Recurrence

Matrix Eigenvector Profile

JASIST, 2006, Special Issue on Style

- **Segmentation** based on **Recurrence** (Similarity Matrix) can be done directly from the **first eigenvectors**
 - after proper normalization
 - automatic ways to find thresholds could be devised (such as k-means method in ICMC 2004 paper)
- If your distance function can be expressed as dotproduct, then you can use SVD directly on the data
- segmentation is non-linear with respect to the original data space
- Spectral Clustering can be applied to graph derived from VMO analysis (not covered here – see references)

Summary: New type of DAW

- Automatic Clips Cut
- Improvise
- Follow conditions and actions
- Side-chaining query

References

- Foote, J. and M. Cooper (2001). Visualizing musical structure and rhythm via self-similarity. In Proceedings of the ICMC, pp. 419–422. ICMA.
- Lu, L., S. Li, L. Wenyin, and H. Zhang (2002). Audio textures. International Conference on Acoustics, Speech, and Signal Processing, 1761–1764.
- Shi, J. and J. Malik (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905.
- Dubnov, S. and Apel, T. (2004). Audio Segmentation by Singular Value Clustering, ICMC
- Wang, C. and Mysore, G.J (2016), Structural segmentation with Variable Markov Oracle and boundary adjustment, ICASSP
- Arias, J., Desainte-Catherine M. and Dubnov, S. (2016) Automatic Construction of Interactive Machine Improvisation Scenarios from Audio Recordings, International Workshop on Musical Metacreation, AAAI Conference on Computational Creativity

The End