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Methods of Proposed Music Systems
Theory

Combination of DES and Machine Learning
* DES:

— Finite State Automata
— Markov Processes
— Petri Nets

* Machine Learning:
— Learning FSA
— Time Series Data mining
— Reinforcement Learning *
— Structure and Concurrence Modeling



Petri Nets and Music Structure

Show how to learn and control a
large scale musical form using audio
segmentation and Petri Nets



Places and transitions

* A PETRI NET is a bipartite graph
which consists of two types of
nodes: places and transitions

connected by directed arcs.

* Place = circle, transition = bar or

O—
box. |:< p2 p4 t4
e An arc connects a place to a o1 Q_>
transition or a transition to a place. / t5

* No arcs between nodes of the same H
type.

* Input and output places of a
transition

* Input and output transitions of a
place



Token and marking system state

Each place pi contains a
number of tokens.

The distribution of tokens in

the Petri net is called marking 2 t4
M =(m,, m,, .., m_) where
m, = # of tokens in place pi  »1 @

System State = marking of PN
The initial state of the system =

initial marking M,.



System dynamics by transition firing

A transition is said enabled (firable) if each of its input places
contains at least one token. An enabled transition can fire.

Firing a transition removes a token from each input place and
add one token to each ouput place.

Firing a transition leads to a new marking that enables other
transitions.

The dynamic behavior of the corresponding system =
evolution of the marking and transition firings

Convention: simultaneous transition firings are forbidden.



Firing Example

33 34 H
KA



Formal definitions



Petri Nets

A Petri net is a five-tuple PN = (P, T, A, W, M,)) where:
P={py P, ..., P} is a finite set of places
T={t,t, ..t }isafinite set of transitions
A C (PxT) U (TxP) is a set of arcs
W:A->1{1,2,..}isaweight function
My,:P—>1{0,1,2,...}is theinitial marking
PNT=®dandPNT=

PN without the initial marking is denoted by N:
N=(PT,A W)
PN = (N, MO)

A Petri net is said ordinary if w(a) =1, Va € A.



Graphic representation

Similar to that of ordinary PN but with default weight of
1 when not explicitly represented.




Transition firing

Rule 1: A transition t is enabled at a marking M if
M (p) = w(p, t) for any p € °t where °t is the set of

input places of t

Rule 2: An enabled transition may or may not fire.

Rule 3: Firing transition t results in:
removing w(p, t) tokens from each p € °t
*adding w(t, p) tokens to each p € t° where t° is

the set of output places of t



PN models of key characteristics

Precedence relation: Parallel processes:
parallel End
Start process

O—[—O—+}—0—]—0 =O—=~0—|
@—> _>C
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Alternative processes: ..
Synchronization:

Alternattive Waiting
Start process End Sync
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Music Modeling with PN

Frank Zappa “Peaches and Regalia” analysis by A. Barate



Automatic Modeling of Musical
Structure using PN

Overview of the system

e PyOracle: https://gitlab.com/himito/PyOracle |-score
e i-score: https://github.com/himito/i-score
e VMO-Score: https://himito.github.io/vmo_i-score_generator



Overview of the system
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Offline Improvisation
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Real Time Improviser
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Segmentation

‘i—”

t3

end O<— t1
init t0




Composition with PN

# file: configuration.yml

conditions:
- transition : 'tO'
time-min : 0.0
time-max : 3.0
condition : '/device/key == 10'
- transition : 't1'

[0.0, 3.0]

/device/key == 10




[=-] ~ o v o w N -

Improvisation with PN

# file: configuration.yml

actions:
- address : '/volume/sensor/pos_x'
value : 10
time : 250
- address :

[0.0, 3.0]

()@

/device/key == 10




Modeling Interaction

/device/key == 10



Adding Environment

get_time() > t env
(a,v,t)

te

(a
%2 [0.0, 3.0]

initl ® > t0 ——>

(a == /device/key) A (v == 10) A (t == get_time())



I-score representation

° @
° @



PN to I-score mapping
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Segmentation

Using self-similarity (recurrence) to
partition an audio file inter-connected
regions by spectral clustering
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Recurrence Matrix
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<X’i>Xj>

403 = T



SVD

XnXp — UanAnXPVT

pXp

where
U'U=I,xn, and VIV =1,



SVD — Geometric Interpretation

‘spectral decomposition’ of the matrix

X i ||

V;
V,



SVD — Geometric Interpretation

‘spectral decomposition’ of the matrix:

_ T T
X = M ou v+ A, u, Vo




SVD — Geometric Interpretation

‘spectral decomposition’ of the matrix:

r terms

X = Aoug Vi A Uy Vg
/]

nx1

1xm



SVD — Geometric Interpretation

Approximation / dim. Reduction - by keeping the first
few terms (how many?)

_ T T
X = M ou v+ A, u, Vo

assume: A, >= A, >= ...




anP — U’nX'n,Afn,xpVT

PXp

where
U'U=1I,xp, and VIV =1,

_X_ p— I_T S;z? U — orth. basis vectors

S.r — "‘\x\f'T
D = SIS,

Property I: Eigenvectors Sz of D are transpose of the
expansion coefficients of X, Sy = 57



Relation between SVD and Self-
Similarity based clusted

e Matrix D is a correlation matrix

* When self-similarity is computed using dot-
product, D becomes a similarity matrix

* Spectral Clustering uses eigenvectors of a
normalized similarity matrix to find objects in the
data (to be explained next)

— Side Note: the name “Spectral Clustering” comes from
spectral decomposition of a matrix (eigenvectors) and
has nothing to do with spectrum of the audio signal



Dimension Reduction /
Audio Basis

Eigenvector Clustering
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Spectral Clustering

* Transform the similarity matrix D to a stochastic
matrix:

P=7"'D

* Pijis the probability of moving from sound graini to
sound grain j in one step of a random walk

* Same eigenvectors: y =yP; eigenvalues: A = 1-AP



Synthetic Example |

Point Set
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Note: Usual distance based clustering does not work for this type of data.



Distance Matrix




The second generalized eigenvector
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The second generalized eigenvector




The second partition
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Example II: Audio Segmentation using

eigenvectors

second eigenvector
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second and third eigenvector clusters
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Example
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Example llI:

The Angel of Death by Roger Reynolds

for piano, chamber orchestra and computer-processed sound
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Familiarity vs. Recurrence
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Matrix Eigenvector Profile

Similarity Analysis: Angel.SD
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» Segmentation based on Recurrence (Similarity
Matrix) can be done directly from the first
eigenvectors
- after proper normalization
- automatic ways to find thresholds could be
devised (such as k-means method in ICMC 2004
paper)
* If your distance function can be expressed as dot-
product, then you can use SVD directly on the data
* segmentation is non-linear with respect to the
original data space

» Spectral Clustering can be applied to graph derived
from VMO analysis (not covered here — see
references)



Summary: New type of DAW

e Automatic Clips Cut
* Improvise

 Follow conditions
and actions

* Side-chaining query
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The End



