
Holomorphic Mappings on l1

Raymond A. Ryan

Transactions of the American Mathematical Society, Vol. 302, No. 2. (Aug., 1987), pp. 797-811.

Stable URL:

http://links.jstor.org/sici?sici=0002-9947%28198708%29302%3A2%3C797%3AHMO%3E2.0.CO%3B2-Y

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Jun 29 18:03:37 2007

http://links.jstor.org/sici?sici=0002-9947%28198708%29302%3A2%3C797%3AHMO%3E2.0.CO%3B2-Y
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ams.html


TRANSACTIONS O F  T H E  
AMERICAN MATHEMATICAL SOCIETY 
Volume 302, Number 2 ,  August 1987 

HOLOMORPHIC MAPPINGS ON l1  

RAYMOND A. RYAN 

ABSTRACT. We describe the holomorphic mappings of bounded type, and 
the arbitrary holomorphic mappings from the complex Banach space 11 into 
a complex Banach space X. It is shown that these mappings have monomial 
expansions and the growth of the norms of the coefficients is characterized 
in each case. This characterization is used to  give new descriptions of the 
compact open topology and the Nachbin ported topology on the space X ( l 1 ;  X) 
of holomorphic mappings, and to  prove a lifting property for holomorphic 
mappings on 11. We also show that the monomials form an equicontinuous 
unconditional Schauder basis for the space ( U ( 1 1 ) ,T O )  of holomorphic functions 
on 11 with the topology of uniform convergence on compact sets. 

1. Introduction. The purpose of this article is to give a complete description 
of the holomorphic mappings from the Banach space l l  over the field of complex 
numbers into an arbitrary complex Banach space X. This is achieved by showing 

mthat every such mapping has a monomial expansion of the form CmEN(N) ,amz 
where N ( ~ )is the set of all multi-indices, a, E X, and zm is the monomial nr=lz F k .  We show that the coefficients a, which appear can be characterized 
by a set of conditions on the growth of their norms llaYnll, and we examine some 
of the consequences of this characterization. For example, we show that the well- 
known lifting property for bounded linear mappings on l l  extends to holomorphic 
mappings; thus if .rr is a bounded linear mapping of X onto Y then for every 
holomorphic mapping f :  ll  -+ Y there exists a holomorphic mapping f :  l1  -+ 

X such that .rr o f = f .  We also exploit the monomial expansion to give some 
new generating families of continuous seminorms for the natural locally convex 
topologies on the spaces of holomorphic mappings on 11. 

The paper is organized as follows: in $2 we outline our notation and definitions 
and recall some of the properties of holomorphic mappings on Banach spaces. $3 is 
concerned with holomorphic mappings from l1  into a complex Banach space which 
are bounded on the bounded subsets of l l .  It  is shown that every such function has 
a monomial expansion which is uniformly absolutely convergent on the bounded 
subsets of 11, and the growth rate of the norms of the coefficients is characterized. 
We show that these mappings on l l  have a lifting property of the type already 
described, and we give a description of the natural topology of uniform convergence 
on bounded set on the space of all such mappings. We also give some estimates for 
the norm of a continuous homogeneous polynomial on l1 in terms of the coefficients 
of the monomial expansion. 
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In $4 we study the vector space U(ll;X) of all holomorphic mappings from ll 
into X .  Our basic method is as follows: if K is an absolutely convex compact 
subset of 11, we may form the Banach space (ll)K generated by K ,  which has K 
as its unit ball. Now if f E U(ll;X) then the restriction of f to ( 1 1 ) ~  is not 
only holomorphic, but is bounded on every bounded set. We show that there is 
a fundamental system of absolutely convex compact subsets K of ll for which the 
Banach space ( 1 1 ) ~  is isometrically isomorphic to ll in a natural way. Thus the 
results of $3 can be applied to the corresponding family of restrictions of f .  In this 
way we can again construct a monomial expansion, and characterize the growth 
of the norms of the coefficients. This characterization enables us to prove the 
lifting property described above, and yields new descriptions of the compact-open 
topology TO, and the Nachbin topology T,, on U(ll ; X).  It is shown that the set 
of monomials forms an equicontinuous unconditional Schauder basis for the space 
U(ll) of scalar-valued holomorphic mappings on ll with the topology TO. 

The use of monomial expansions in modern infinite-dimensional holomorphy was 
initiated by Boland and Dineen in their study of holomorphic functions on fully 
nuclear spaces with a basis [2, 3, 5, 61. Their work has inspired many of the ideas 
which are developed here. 

This paper was written while the author was visiting the Department of Math- 
ematical Sciences at  Kent State University, to which thanks are acknowledged. 
Thanks are also due to Richard Aron, Joseph Diestel, Patrick Dowling, and An- 
drew Tonge for helpful discussions. 

2. Nota t ion  a n d  definitions. All spaces considered will be Banach spaces 
over the field of complex numbers. For each n E N ,  P ( n X ;  Y) denotes the Banach 
space of continuous n-homogeneous polynomials from X into Y, where the norm 
is given by IlPll = sup{IIP(x)II: x E X, IIxII 5 1). A mapping f :  X -+ Y is holo- 
morphic if there exists a sequence P, E P(nX;  Y) such that the series C,"=o Pn(x) 
converges to f (x) for every x E X .  This is equivalent to f having a complex FrQchet 
derivative at  every point of X .  U(X; Y) denotes the vector space of holomorphic 
mappings from X into Y. Ub(X; Y) denotes the subspaces of U (X;Y) consisting of 
holomorphic mappings of bounded type, that is, holomorphic mappings which are 
bounded on every bounded subset of X .  If X is infinite dimensional and Y # {O), 
then Ub(X; Y) is always a proper subspace of X(X; Y). When Y = C ,  the spaces 
which have been introduced here are denoted by P("X), U(X), and Ub(X). We 
refer to [4 and 71 for further details. All of the properties of the space 11 which we 
use can be found in 181. 

We shall make extensive use of multi-indices. The set of multi-indices is N ( ~ )= 
{m = (mk);EO,,: mk E N ,  mk = 0 for k sufficiently large). For m E N ( ~ ) ,the 
degree on m is Iml = C r = l  mk, and for each natural number n ,  we denote by 
NLN) the set of multi-indices of degree n. We let m! = n r = l  mk!, where the usual 
convention O! = 1 is observed. If a = (a,) is a sequence of complex numbers, then 
am k=l a r k ,  where o0 is defined to be 1. For each m E N ( ~ )= noo the monomial 
zm is the mapping z E ll -+ zm E C.  zm is a continuous homogeneous polynomial 
on l1 of degree Iml. We follow the usual abuse of notation by using the symbol zm 
both for this monomial and for its value at a point z in 11. We shall also make 
use of the multinomial theorem, which states that if n is a natural number and 
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z = ( zk )E 11, then 
n! 
-zm.
m! 

k=l ~ E N L ~ )  

3. Holomorphic mappings of bounded type on 11.  We begin with a com- 
putation of the norm of the monomial zm. Recall that zm E P(nll)where n = Iml, 
and that the norm of P("ll) is given by IlPll = sup{IP(z)I:z E 11,  llzll I 1). 

LEMMA3 . 1 .  llzmll = mm/lmllmlfor every m E N ( ~ ) .  

PROOF. Let m E N ( ~ ) .  0 when j > k. Now using Choose k E N so that mj = 
the inequality between the geometric and arithmetic means, we obtain 

I -' l z l l m l  for every z E 11.
lmllml 

Therefore Ilzmll Imm/lmllml.On the other hand, for zo = (ml/lml,...,mk/lm(, 
0,.. . )  we have llzoll = 1 and z r  = mm/lmllml. Therefore Ilzm(l= mm/lmllml. 
Q.E.D. 

We shall see that the space X(ll;X)can be viewed as a vector space of se-
quences in X. The description of these sequences will entail the use of the numbers 
mm/lmllmjand m!/lm(!as weights. The following lemma will enable us to pass 
from on to the other. 

LEMMA3 . 2 .  mm/lmllml m!/(ml!Ielmlmm/lmllmlfor every m E N ( ~ )  

PROOF.Let m E ~ ( ~ Choose1 . k E N so that mj = 0 for j > k. Let 
P(A)= ( A 1  + . . . + Ak)lml for X = ( A 1 , .  . . ,A k )  E Ck.  The coefficient of the term 
A T 1  . . . A r k  in the Taylor series of P(X) at  the origin is Iml!/m!. Applying the 
Cauchy integral formula to P(A) on the polydisc of polyradius (ml ,. . . ,mk),we 
have 

Therefore mm/lm(lmlIm!/lml!. 
To establish the second inequality, we note first that Imllml/lml!I elml. Since 

(mj ) !5 myj for every j, it follows that m! I mm, and hence m!/(ml!I 
elmlmm/lm(lml.Q.E.D. 

THEOREM3 . 3 .  Let X be a complex Banach space. 
(a) Let am E X for each m E ~ ( ~ The following 1 . are equivalent: 
(i) for every R > 0 there exists C > 0 such that ((aml((mm/lmllml)~lml I C for 

every m E ~ ( ~ 1 . 
(ii) l imlml+w((lamllmm/Iml~ml)l~lml= 0.  
(iii) For every R > 0 there exists D > 0 such that ~ (a , ( l (m! / (ml ! )~ l~ l  ID for 

every m E N ( ~ ) .  
(iv) limlml~~(~~am~~m!/~m~!)l~~m~= 0. 
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(b) Let  f :  ll -, X be a holomorphic mapping  of bounded type. There exists 
a unique fami ly  {a,: m E N ( ~ ) )c X satisfying the  equivalent conditions given 
in (a) such  that  the  series C m E N ( N )  amzm converges absolutely t o  f ( z )  for every  
z E 11, and the  convergence i s  u n i f o r m  o n  bounded subsets of 11. 

(c) I f  {a,: m E N ( ~ ) )c X satisfies the  equivalent conditions given in (a) t h e n  
the  series C m E N ( N )  amzrn converges absolutely and un i formly  o n  every bounded 
subset o f  ll and i t s  s u m  defines a holomorphic  mapping  of bounded type from l1 
i n t o  X .  

PROOF.(a) It is obvious that (i) is equivalent to (ii) and that (iii) is equivalent 
to (iv). Lemma 3.2 shows that (i) is equivalent to (iii). 

(b) Fix R > 0. Let m E N ( ~ )and choose k E N so that m j  = 0 for j > k. Let 
p = (pk) be a sequence of positive real numbers such that C p = l  pk 5 R. We define 

The Cauchy integral formula in several variables implies that a, does not depend 
on the choice of R ,  pl,  . . . , pk. Since f is of bounded type we may define 

By (I) ,  Ilarnllprn 5 C for every m E N ( ~ ) .  
We can write pm = ( ~ - l ~ ) ~ R l ~ l ,  There-where R-lp is the sequence (R-'pk). 

fore 
~ l a , l l a ~ R l ~ l5 C for every m E N ( ~ ) ,  

where (ak)  is an arbitrary sequence of positive real numbers satisfying C r = l  a k  < 1, 
and hence by Lemma 3.1 

mm 
a m l l w  ~ 1 5 c~ 1for every m E N ( ~ ) .  

Since R > 0 is arbitrary, the family {a,: m E M ( ~ ) )satisfies the condition 
described in (a). 

To see that the series CmEN(N)arnzm converges absolutely and uniformly on 
bounded sets, let R > 0, E > 0, and let z E 11, llzll 5 R. Then using condition (iii) 
of (a) and the multinomial theorem, we obtain 
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It follows that C m E N ( N )  Ilamzmll converges uniformly on {z E l1 : llzll 5 R} for 
every R > 0. Therefore g(z) amzm defines a holomorphic mapping = CmEN(N) 
of bounded type from 11 into X.  But, by the definition of a,, g(z) = f (z )  for 
z E UElxk(ll), where xk: l1 -$ l1 is the projection onto the first k coordinates: 
x(z) = (21,. . . ,zk,O,. . .). Since UF=l xk(l l )  is dense in 11, g(z) = f (z) for every 
z E ll. Finally, it is obvious that the coefficients a,, are uniquely m E N ( ~ ) ,  
determined by f ,  since these coefficients must satisfy (1). 

(c) Suppose that {a,: m E N ( ~ ) )c X satisfies the conditions given in (a). 
Then, using condition (iii) of (a) and proceeding as in the latter part of the proof of 
(b), it is clear that the series CmEN(N)amzm converges absolutely and uniformly 
on bounded subsets of l1 and that its sum is a holomorphic mapping of bounded 
type. Q.E.D. 

We shall refer to the series CmEN(N)amzm as the monomial expansion of f .  
The relation between the monomial expansion of f and the Taylor series of f at the 
origin, CEOPn,is clear: Pn(z) = CrnENL~)a m i m  for every z E 11, n E N.  We 
shall be discussing only entire functions, and it will not therefore be necessary to 
consider monomial expansions about points other than the origin. It is easy to see 
that the coefficients a, can be expressed in the usual manner in terms of partial 
derivatives of f at  the origin: we have 

am=-- (0) for every m E ~ ( ~ 1 .
m! azm 

Our first application of the monomial expansion is to show that the linear lifting 
property of ll extends to holomorphic mappings of bounded type: 

COROLLARY3 . 4 .  Let x be a bounded linear mapping from X onto Y, where 
X and Y are complex Banach spaces. Then for every f E Xb(ll; Y) there exists 
j E yb(ll;X) S U C ~that o j = f .  

PROOF.Let C m E N ( N )  amzm be the monomial expansion of f E Xb(ll; Y), so 
that {a, : m E N ( ~ ) )c Y satisfies the conditions given in Theorem 3.3(a). Since 
n is onto, it follows from the open mapping theorem that there exists A > 0 such 
that we may choose b, E X for each m E N ( ~ )  = am and Ilb,ll 5for which n(bm) 
Alla,ll. The second condition shows that {b,: satisfies the conditions m E N ( ~ ) )  
of Theorem 3.3(a) and so we may define fl E Nb(l1; X )  by f(z)  = CmEN(N)bmzrn. 
Since n(b,) = for every m E N ( ~ ) ,  f .  Q.E.D.a, we have n o f" = 

The natural topology on the vector space Ub(X; Y), which we denote by r b ,  is 
the locally convex topology of uniform convergence on bounded subsets of X .  This 
topology is generated by the family of seminorms MR,  R > 0, where 

(Ub(X; Y), rb) is a FrQchet space; {Mk)& is a fundamental sequence of continuous 
seminorms. 

Theorem 3.3 enables us to introduce two further families of seminorms on 
Ub(11;X).  For each R > 0, we define 
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and 

q R ( f )= : m E N(N)} ,sup { l l a m l l ~ ~ l m l  

where f ( z )  = CmEN(N) E U b ( l 1 ;X ) .  Itamzm is the monomial expansion of f 
follows easily from Theorem 3.3 that p~ and q~ are seminorms on Ub(l1; X ) .  

PROPOSITION 3.5 .  Let X be a complex Banach space. For every f E U b ( l l ;X ) ,  
R > 0, and E > 0, 

Therefore the families of seminorms { p R :  R > 0 ) ,  {qR: R > O), and { M R  : R > 0 )  
each generate the topology rb on Ub( l l ;X) .  

PROOF. The proof of Theorem 3.3(b)shows that 

By Lemma 3.2, 

whichproves the last inequality. Q.E.D. 
We now restrict our attention to the Banach spaces P("ll; X ) ,  where the norm 

is given by (IP(I= sup{(lP(z)ll: ( ( z ( (  < 1) .  Theorem 3.3 shows that every P E 
P("ll;X )  has a monomial expansion of the form P ( z )= C m E N i N )  amzm, and we 
can use this expansion to define two other norms on P("11; X ) :  

mm m! 
= and1 1 ~ 1 1 'sup { l l a m l l - :  m E NLN) llP1' = SUP (amlln?: m E NP)

nn 

Proposition 3.5 shows that the three norms ( 1  - (I, 1)  . I)', and ( 1  . ( I "  on P ( n l ~ ;X )  are 
equivalent. However, we can improve on the estimates given there: 

PROPOSITION 3.6 .  IIPII' 5 IlPll 5 IIPII'' 5 enllPII' for every P E P ( n l l ; X ) .  

PROOF. The first and last inequalities are given in Proposition 3.5. To establish 
the second inequality, let P ( z )= amzm. ThenC m E N i ~ ~  

= IIPII"IIzlln for every z E 11. 

Therefore IlPll < IIPII". Q.E.D. 
We give an example to illustrate the inequalities given in Proposition 3.6. For 

each a > 0 let Pa be the continuous Zhomogeneous polynomial 

Pa ( z )  = z: + 222 + az1z.2 . 
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Elementary computations yield the following table of values for the norms IIPall', 
IIPall,and llPall'' for a in each of the ranges [0,2), [2,4), and [4,oo): 

The norms 11 .II' and ( 1  . I ( ' '  are convenient to work with since they can be computed 
directly from the norms of the coefficients on the monomial expansion. However 
these norms do not in general coincide with the natural norm and thus we have 
no representation of the natural norm in terms on the coefficients in the monomial 
expansion. Such a representation would enable us to derive a Cauchy-Hadamard 
formula for the radius of uniform convergence of an arbitrary monomial expansion. 

4. Arbitrary holomorphic mappings on l l .  We begin by describing a gen- 
eral procedure for reducing the study of arbitrary holomorphic mappings to the 
study of holomorphic mappings of bounded type. If K is an absolutely convex 
compact subset of the complex Banach space X ,  then XK will denote the Banach 
space generated by K ,  where the norm is given by the Minkowski functional of K .  
Thus XK = U:==l nK,  and the norm of XK is 

llxllK = inf{A > 0:  x E AK}. 

The closed unit ball of XK is K. We denote the canonical inclusion mapping from 
XK into X by JK.The following proposition summarizes the properties of the 
spaces XK which are of interest to us. Although these properties are well known, 
we give a proof for the sake of completeness. 

PROPOSITION Let  X be a complex B a n a c h  space, and  let K be a funda-  4.1 .  
m e n t a l  s y s t e m  of absolutely convex compact subsets o f  X .  

(a) T h e  n o r m  topology o f  X coincides wi th  the  topological induct ive  l imi t  o f  the  
spaces XK, K E K. 

(b) Let  Y be a complex B a n a c h  space. A mapping  f :  X -, Y i s  holomorphic  i f  
and  on ly  i f f  o JKE U~(XK;Y) for  every  K E K. 

PROOF.(a) Let T be the inductive limit topology. since J K :  XK -, X is 
continuous for every K E K ,  the identity mapping I :  (X, T) -, X is continuous. 
To see that I :  X -, (X,T) is continuous, let (x,) be a sequence in X such that 
Ilx,ll -) 0. Choose a sequence (A,) of positive real numbers such that A, -, 0 and 
A i l  IIxn 11 -) 0.Let L be the absolutely convex hull of the sequence (A;'x,). Then 
L is compact, x, E XL for every n, and ( I x , ( ( ~  = A,. There exists K E K such 
that L c K. The sequence (x,) lies in XK and llxnllK -' 0. Therefore x, -, 0 in 
(X,T) ,  and it follows that I:X -, (X, r ) is continuous. 

(b) Suppose that f : X -+ Y is holomorphic. Let K E K.  f o JKis a holornorphic 
mapping from XK into Y and since f is bounded on each of the compact sets nK,  
it follows that f o JKis bounded on every bounded subset of XK. 

Conversely, suppose f :  X -, Y is such that f o JK E Ub(XK; Y) for every 
K E K. In particular, f o JKis continuous for every K E K ,  and hence by (a) f 
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is continuous. We complete the proof by showing that f is Gbteaux holomorphic. 
Let a, b E X.  The affine line Z = {a + Xb: X E C ) lies in the space XK,  where K 
is the absolutely convex hull of {a,b). It follows that the restriction of f to Z is a 
holomorphic function of A. Therefore f is Gbteaux holomorphic. Q.E.D. 

In general, the usefulness of Proposition 4.1 is limited by a lack of knowledge of 
the Banach spaces XK.We shall see that in the case X = l1 this problem can be 
overcome. 

The compact subsets of l1 have a simple characterization; K c l1 is relatively 
compact if and only if limn,, C;=n lzkl = 0 uniformly in z E K [8,p. 2971. Let 
c$ denote the set of all sequences E = ( tn )  of positive real numbers for which 
limn,, tn= 0. For each E E c:, we define the subset Kc of l1 as follows: 

It is easy to see that Kc  is closed and absolutely convex. Kc is also compact, since 
for every z E Kc, 

and hence limn,, CF=n lzkl = 0 uniformly in z E Kc. Thus Kc  is an absolutely 
convex compact subset of l1 for every E E c:. Kc can also be described as the 
closed absolutely convex hull of the sequence (Enen). 

PROPOSITION4.2 .  {Kc : E E c:) is a fundamental system of absolutely convex 
compact subsets of 11. 

PROOF.Let K be a compact subset of 11. We construct a sequence E E c: such 
that K c Kc. Since limn,, CF=n lzkl = 0 uniformly in z E K ,  there exists a 
strictly increasing sequence of indices (Nk);EO=, such that JzjJ-< (k2k+1)-1 

for every k E N and every z E K .  In particular, we have z2gIc1 y 1 < (k2*+')-' 
for every k E N and every z E K .  Let c = sup{^^^, 1.~~1:z E K )  and define the 
sequence 5 = (5,) by setting En = 2( l  + c) for 1 < n 5 Nl,  and 5, = k-l for 
Nk < n < Nk+l. Now 5 E c$, and if z E K ,  then 

Therefore z E Kc. Q.E.D. 
Let c(l,,ll) be the locally convex topology on 1, of uniform convergence on 

the compact subsets of 11. Since the weakly compact subsets of 11 are compact in 
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the norm topology, c(l,, 11)  coincides with the Mackey topology r(l,, 11) .  Now if 
w = ( w n )E 1,  and z = (2,) E K c  for some E E c i ,  then 

00 00 

Also, we have I ( w , tnen)l  = I ~ n l t nfor every n, and so sup{l(w, z ) l :  z E K c )  = 
sup, I w ,  1 En. Hence we have proved the following corollary. 

COROLLARY4.3 .  The topology c(l,, 11)  = r(1,, 11)  on 1,  is generated by the 
seminorms pc (w)  = sup, Iw, Itn,where 5 E c$ . 

We now examine the Banach spaces ( 1 1 ) ~ ,generated by the compact sets K c ,  
E E c i .  If E = ( E n )  and z = (2,) are two sequences of complex numbers, we shall 
denote by Ez the sequence (Cnzn). 

PROPOSITION For each 5 E c i  the mapping z + t z  is an isometric 4 . 4 .  
isomorphism from l1 onto ( 1 1 ) ~ ~ .  

PROOF. It follows from the definition of Kc that a sequence (w,) lies in ( l l ) ~ ,  
if and only if C F = l  C;llwnl < co, and so t z  is an element of ( l l ) ~ ,for every z E 11. 
It is easy to see that the mapping z E l1 -t t z  E ( 1 1 ) ~ ,is linear and onto. Finally, 

F ~ l l ~ ,inf{A > 0 :  t z  E AKi}  inf= = 

lznl = llzll. Q.E.D. 

Now applying Proposition 4.1 to the fundamental system { K c  : E E c $ )  of abso- 
lutely convex compact subsets of 1 1 ,  we have 

PROPOSITION4.5 .  Let X be a complex Banach space. A mapping f : 11 -t X 
is holomorphic if and only if the mapping f E :  l1 -t X ,  defined by f E ( z )  = f ( c z ) ,  is 
a holomorphic mapping of bounded type for every 5 E c;. 

This proposition is also valid for mappings on l,, where 1 < p < co; methods 
similar to those we have used show that a fundamental system of absolutely convex 

= { z  E 1, : C F = ,  c;' 1"
 5 I), E E c&compact subsets is given by K! However,z n  
the space Xb(lp: X )  does not have as simple a structure as X b ( l l ; X ) ,and there is 
no analogue for the case p > 1of our next result. 

THEOREM4.6 .  Let X be a complex Banach space. 
(a) Let a ,  E X for each m E ~ ( ~ The following 1 . are equivalent: 
(i) For every 5 E c i  there exists C > 0 such that ~ ~ a m ~ ~ ( m m / ~ m ~ ~ m ~ ) ~ m  5 C for 

every m E ~ ( ~ 1 . 
(ii) For every E E c$ there exists D > 0 such that Ilamll(m!/lml!)Em 5 D for 

every m E ~ ( ~ 1 . 
(b) Let f :  l1 X be a holomorphic mapping. There exists a unique family -t 

{a,: rn E N ( ~ ) )c X satisfying the equivalent conditions given in  (a) such that 
the series CrnEN(N)amzm converges absolutely to f ( z )  for every z E 11, and the 
convergence is uniform on compact subsets of 11. 
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-
(c) If {a,: m E ~ ( ~ 1 )c X satisfies the equivalent conditions given in (a), then 

the series C r n E N ( N )  amzm converges absolutely and uniformly on every compact 
subset of ll and its sum defined a holornorphic mapping from 11 into X.  

PROOF. (a) That (i) and (ii) are equivalent follows immediately from Lemma 
3.2. 

(b)If f : 1 -.X is holomorphic, then fE E Ub(l1; X) for every E E c: and so there 
exists a family {a,([) : m E ~ ( ~ 1 )  satisfying the conditions C X for each J E c: 
of Theorem 3.3(a) such that fE(w) = am(J)wm for every w E 11. Let CmEN(N) 
{a,: m E ~ ( ~ be defined in exactly the same way as in the proof of Theorem 1 ) 
3.3(b). A change of variables in the integrals which are used to define a,(<) shows 
that a,(J) = amJm, for every m E N ( ~ )and every J E c$. Applying Theorem 3.3, 
with R = m E ~ ( ~ 1 )1, it follows that {a,: satisfies the conditions given in (a) 
above. Now for each z E 11 we may choose E E c: and w E 11 such that z = tw. 
Since amzm = am<mwm= amzmam(E)wm, it follows that the series CmEN(N) 
converges absolutely to fc(w) = f (2). Furthermore, as z ranges over the compact 
set Kc, w ranges over the unit ball of 11, and it follows that the convergence is 
uniform on compact subset of 11. The uniqueness of the coefficients a, follows as 
in the proof of Theorem 3.3. 

(c) Let {a, : m E ~ ( ~ 1 )  andc X satisfy the conditions given in (a). Let J E c: 
let R > 0. Then RJ = (RJn) E c:, = R I ~ I J ~ .and (RJ)m Therefore {amJm: m E 
N ( ~ ) )  Hence we satisfies the conditions given in Theorem 3.3(a) for every E E c:. 
may define fc E Ub(l1;X) for each E E c$ by fc (w) = C m E N ( N )  u ~ E ~ w ~ .NOW 
let f :  l1 + X be defined as follows: for each z E 11 choose E E c: and w E 11 
such that z = Jw, and let f (z) = fc(w). It is easy to see that this definition is 
independent of the choice of J and w, and that f is a holomorphic mapping with 
the required properties. Q.E.D. 

We shall refer to the series C m E N ( N )  amzm as the monomial expansion of f .  
The monomial expansion and the Taylor series at the origin are related in the same 
way as for mappings of bounded type. 

Our first application of this theorem is to a holomorphic lifting property of the 
space 11. The proof is the same as that of Corollary 3.4. 

COROLLARY Let T be a bounded linear mapping from X to Y, where X and 4.7.  
Y are complex Banach spaces. Then for every f E U(ll; Y) there exists f" E U(ll; X)  
such that IT o f" = f .  

We now consider the natural locally convex topologies which may be placed on 
U(ll; X). We begin with the locally convex topology TO of uniform convergence on 
compact subsets. This topology is generated by the seminorms 

f --' llf I ~ K = sup{llf (z)ll: z E K)i 

where K ranges over the compact subsets of 11. By Proposition 4.2, it is sufficient 
to take compact sets of the form K = K t ,  where E E c;. 

Theorem 4.6 enables us to introduce two further families of seminorms on U(ll; X). 
For each J E c:, we define 
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and 

where f ( z )  = amzm. These seminorms are related to the seminorms p~CmEN(N) 
and q~ which we have defined on Ub(l1; X )  in the following way: p c ( f )  = p l ( f E )  
and q c ( f )= q1( f e )  for every 5 E c$ and every f E U ( 1 1 ;  X ) .  Applying Proposition 
3.5 with R = 1we obtain 

PROPOSITION4.8.  Let X be a complex Banach space. For every f E U(11;X ) ,  
JEc;, and&>0, 

Therefore the families of seminorms {pe : J E c;), {qt : E c:), and (11 . \ I K ,  : J E 
c t )  each generate the topology TO on U ( l l ; X ) .  

In particular, the families of seminorms {pe: E E c i ) ,  {qe: 5 E c t ) ,  and 
{(I . ( 1 ~ ~ :J E c i )  each generate the topology TO on P(, l l ;X)  for every n E N. 
From Proposition 3.6 we can improve on the estimates given in Proposition 4.8 
when we restrict our attention to P(,ll; X ) :  

PROPOSITION4.9.  Let X be a complex Banach space, n E N,  and 5 .Ec; . 
Then pe(P) I llPllKe I qc(P)I enpE(P)for every P E p(,li; X ) .  

The topology TO is in many ways an unsatisfactory topology. For example, if X is 
an infinite-dimensional complex Banach space, then ( U ( X ) ,T O )  is neither barrelled 
nor bornological [4, p. 2531. Our next result will demonstrate that TO does have 
some good properties. First we establish some terminology. A sequence (u,) is 
a locally convex space E is a Schauder basis for E if every element x of E can 
be expressed as the sum of a convergent series of the form CrTlx,u, for some 
uniquely determined sequence of complex numbers (x,). The Schauder basis (u,) 
is unconditional if the series Cr=l  x,u, converges unconditionally for every x E E, 
and an unconditional Schauder basis (u,) is equicontinuous if the linear mappings 
x +CnEFxnun are equicontinuous, where F ranges over the family of finite subset 
on N.  

THEOREM4.10.  {zm: m E ~ ( ~ is an equicontinuous unconditional Schauder 1 ) 
basis for ( U ( 1 1 ) ,70 ) .  

PROOF. Let f E ) ( ( / I ) ,  # 0, and let CmEN(N)f amzm be the monomial 
expansion of f .  We claim that this series converges unconditionally to f in the 
topology TO. To establish this, let E E c t  and E > 0. Choose v,p E c;, such that 
En = VnPn for every n, and llp(loo = sup, ( p n (  < 1. We may assume without loss of 
generality that E < p , ( f ) .  Since p E c t ,  there exists ko E N such that 

Since ( ( p ( ( ,  < 1,there exists no E N such that 
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Let A = : 1m1 5 TO and m j  = 0 for j > ko). A is a finite subset of {m E N ( ~ )  
~ ( ~ 1 -If m . E N(") A, then two possibilities arise. The first is that there exists 
jo> ko such that mjo 2 1. In this case we have 

The second possibility is that Iml > no, and in this case, 
00 DC) 

Now let B be any finite subset of N(") for which B n A = 0.Then 

mm
5 ( EN(^) ~ ~ a m ~ ~ ~ v m )pm) = P W ( ~ ) ~ % P ~  sup (SUP 

mE B  

We have seen that pm < &/pv(f)  for every m E N ( ~ )-A, and hence 

This shows that CmEN(N)amzm converges unconditionally to f for the topology TO. 
We have already seen that the coefficients am are uniquely determined by f ,  and so 
{zm: m E N(")) is an unconditional Schauder basis for (X(ll), TO). Furthermore, 
for every finite subset F of ~ ( ~ 1 ,and every 5 E c t  we have 

for f = amzm E Therefore the basis is also equicontinuous. CmEN(N) X(ll). 
Q.E.D. 

We now consider the Nachbin topology, T,, on X(11;X). We begin with the 
following description: T, is the locally convex topology generated by the seminorms 

C p = O  I I P n l l ~ + a , ~ ,  00 Pn is the Taylor series of f at the origin, K f -' where CnTo 
is an absolutely convex compact subset of 11, (a,) is a sequence of positive real 
numbers converging to zero, and B is the closed unit ball of 11 [7,p. 1961. It is easy 
to see that this family of seminorms is equivalent to the family of seminorms of 
the form f -' IIPnllKSanBsup, with K and (a,) as above. Furthermore, we may 
restrict the compact sets K to be members of the fundamental system {KC, E E c:). 
Thus T, is generated by the family of seminorms f -' sup, IIPn1 1  KE+anB,where E 
and a = (a,) range over c t .  

It is not easy to estimate the norm of a polynomial over a set of the form 
Kc  + a n B ,  and so we propose to replace these sets by other neighborhoods of KC 
which have a simpler geometric structure. For 5 E c; and P a positive real number, 
let 

I 00 
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Since C:==,(P + En)-llznl defines a norm on l1 which is equivalent to the orig- 
inal norm, DE,@ is a closed absolutely convex set whose interior is the set {z E 

0011: Cn=, (P  + En)-' lznl < I),  and since Kc = {z E 11: C:==, E;llznl I 1) it 
follows that DE,@ is a neighborhood of the compact set Kc  for every P > 0. 

LEMMA 4 .1  1. (a) Let 5 E c i .  Then 
(i) DE,@c Kc + P B  for every P > 0; 
(ii) for every a E c i  there exists ,D E c i  such that Kc + a n B  C DE,p, for every 

n. 
(b) Let X be a complex Banach space. The topology r, on X(ll; X) is generated by 

the seminorms f -+ sup, IIPnl l D c , p n ,  where E and P = (Pn) are arbitrary elements 
of c:, and C:=o Pn is the Taylor series of f E X (11;X )  at the origin. 

PROOF.(a) If z E DE,@,then we may write z = ((P+En)Xn), where C:==, IXnI J 
1. Let w = (EnXn). Then w E Kc and llz -wll J P. Therefore z E Kc + PB, and 
(i) is established. 

To prove (ii), let a E c;. Let (E,) be a sequence of real numbers such that 
0 < E~ < 1for every n, and limn,, an/&,= 0. Let 

Then Pn > 0 for every n and limn,, Pn = 0. We claim that Kc  + a n B  c DC,@, 
for every n. 

To prove this claim, fix n and let z E Kc + anP. Then there exist elements X 
and p of the closed unit ball of ll such that zk = + anpk for every k. Now 

En En 
Pn t -18m t i - ~ ,for every k, ek1- En 

and it follows that Ek/(Pn +&) I 1-E,, for every k. Also, an/(@, +Ek) < h / P n  J 
E,. Therefore 

and hence z E DC,@,,. 
(b) is an immediate consequence of (a). Q.E.D. 
We are now in a position to use the monomial expansion to obtain two generating 

families of seminorms for (U(11;X),  r,). If E = (En) is a sequence of complex 
numbers, and p is a complex number, then E + ,L? will denote the sequence (En +P). 

THEOREM 4.12 .  Let X be a complex Banach space. For each 5,P E c t  let 

and 

+ m E N(N)},  
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where f = amzm E U(11;X). Then p c , p  and q c , p  are continuous semi- CmEN(N) 
norms on ( U ( E 1 ;X ) ,7,) and the families of seminorms { p ( , p :  E ,  @ E c t )  and 
{ q E , p: E ,  P E c t )  each generate the topology T,. 

PROOF. Let f = C:=,Pn = amzm E U ( l l ; X ) ,where Pn =CmEN(N)
Z m e N L ~ )amzm for every n. Let E ,  @ E c t ,  and fix n E N. Now z E D c , p n  if 
and only if there exists X E 11, 1 1  All < 1, such that z k  = ( &  + P n ) A k  for every k .  
Therefore 

IIPn(lDC,p,  = ~up{llPn((E+@n)X)II: E 11, IIXII I 1) 

Applying Proposition 3.6 to the n-homogeneous polynomial 

we have 

Since these inequalities hold for every n E N ,  it follows that 

for every f E W(ll; X ) .  The assertions of the theorem follow immediately from 
these inequalities. Q.E.D. 

5. Further developments. For the sake of simplicity we have worked with the 
space 11 rather than the more general space 11(1),where I is an arbitrary indexing 
set. The results we have presented for l1 are also valid for 11(1)provided some 
obvious minor modifications are made. 

Every Banach space X is a quotient of 11(1)for a suitable choice of I .  Com-
position with the quotient mapping yields an injective linear mapping from U ( X )  
into U(ll ( I ) ) .  For the topologies TO and T,, this inclusion is even topological. Thus 
U ( l l ( I ) )can be viewed as a universal space for spaces of holomorphic functions. 
We refer to [I]for further details. 
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