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We are concerned with the following question: when can a polynomial P:
E - X (E and X are Banach spaces) be extended to a Banach space containing
E? We prove that the polynomials that are extendible to any larger space are
precisely those which can be extended to C(Bg), if X is complemented in its
bidual, and (B in general. We also show that the extendibility is a property that
is preserved by Aron—Berner extensions and composition with linear operators. We
construct a predual of the space of extendible polynomials for the case that X is a
dual space.  © 1999 Academic Press

INTRODUCTION

Throughout, F and X will be Banach spaces over the real or complex
field and E an isometric subspace of F. This article is mainly concerned
with the following natural question: when can a continuous k-homoge-
neous polynomial P: E — X be extended to a polynomial P: F — X? It is
not always possible to extend linear operators if £ and X are infinite
dimensional (the identity operator on ¢, cannot be extended to . since c,
is not complemented in [,). For the scalar-valued case (or X finite
dimensional), the Hahn—Banach extension theorem gives a positive answer
for linear functions, but this result cannot be generalized for polynomials
of degree k > 2. For example, /, is contained in C[0, 1] but the polynomial
P(x) = ¥, xZ on [, cannot be extended to CI0, 1], since this last space has
the Dunford—Pettis property and consequently any polynomial on C[0, 1] is
weakly sequentially continuous [14]. In [2] it is shown that integral scalar-
valued polynomials are extendible to any larger space. Many results are
known when there is a linear extension morphism for linear functionals
E' — F' (see 1, 3, 6, 7, 16)).
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In the first section, we recall some facts about the Aron—Berner exten-
sion of a polynomial from a Banach space to its bidual and generalize
some known results for the scalar-valued case to the vector-valued case.
We show that the Aron—Berner extension of a weakly compact polynomial
has its range in the same space as the polynomial. Unlike the linear case,
the converse is not true. In the second section, we study the space of
polynomials P: E — X which can be extended to a fixed space F contain-
ing E, while in the third section, we look at those polynomials which can
be extended to any larger space. These last polynomials (extendible polyno-
mials) turn out to be the polynomials that can be extended to some
particular spaces (C(By) if X is complemented in its bidual and . (B;.) in
general). Thus, we can apply the results of Section 2 and this enables us to
define a natural norm in the space of extendible polynomials and to find
some properties such as the stability of the class of extendible polynomials
under Aron—-Berner extensions and compositions with linear operators.
We also find a predual of the space of extendible polynomials in the case
that X is a dual space.

Identifying homogeneous polynomials with linear functions is a useful
tool when studying extensions of polynomials, since it sometimes enables
us to use the Hahn—Banach extension theorem. It is known [15] that, given
a polynomial P e 2(*E, X), there is a unique linear operator 7p: ®fE -
X such that P(x) = Tp(x ® -+ ® x). Moreover, if we endow the tensor
product ®kE with the projective norm 7, the correspondence between
P(E, X) and A ®" E, X) is an isometric isomorphism. In particular,
P(E) = (& EY. i

In the case that X is a dual space, say X = Y’, we can also define the
linear functional P* on (®‘E) ® Y given by P*(s ® y) = Tp(s)y), for
s € ® Eand y € Y. This correspondence gives an isometric isomorphism
between (« ®k E) ®_ )Y’ and 2(*E, X). Changing the 7-norm by other
norms gives rlse to dlfferent spaces of polynomials. We are interested in
those norms for which the extendibility of a polynomial is related to the
continuity of the associated operator.

We refer to [5] and [12] for notation and results regarding polynomials.

1. EXTENSIONS TO THE BIDUAL

In [1], Aron and Berner found a way of extending any continuous
homogeneous polynomial from E to its bidual (see also [16]). There are
several ways of defining this extension. One of them is the following, which
we will show for 2-homogeneous polynomials but which is easily general-
ized. Let P: E — X be a 2-homogeneous polynomial and consider its
associated symmetric bilinear function

P EXE—-X.
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Fix x € E, 2 € X'; then z/(®(x,-)) is an element of E’. This gives a
mapping E X X' — E'. If we do this again, we will get X’ X E” — E’, and
if we insist we finally obtain the (not necessarily symmetric) bilinear
function

O E'XE" - X"

The polynomial AB(P)(x") = ®(x", x") (from E" to X") is called the
Aron—-Berner extension of P. Observe that if P is a linear operator, the
process described above gives the bitranspose of P. Moreover, if T is a
linear operator, P a polynomial, and we apply this process to the polyno-
mial T P, we obtain that AB(T < P) = T" - AB(P). In particular, if
vyE€ X', AB(y o+ P)z) = AB(P)z)(y), for any z € E”. Now the following
characterization of the Aron—Berner extension is an immediate conse-
guence of the result proved in [16] for scalar-valued polynomials. Recall
that the differential of a polynomial P € 2(‘E, X) is the (k — 1)-
homogeneous polynomial DP: E — #(E; F) given by

DP(x) = kP(x, X, -),
k-1
where P is the symmetric k-linear function associated to P.

ProOPOSITION 1.1. If Q € #*(E", X") is such that Q|p = P, then Q =
AB(P) if and only if

(@) foreveryx € E, DQ(x): E" — X" is w*-w*-continuous.

. (b)  for every z € E" and (x,) C E such that x, Y2, DO(z)(x,)
25 DO(z)(2) in X"

As a consequence of Proposition 1.1, we have that the Aron-Berner
extension is a linear morphism from 2*E, X) to 2(*E", X"), since
conditions (a) and (b) are preserved by sums and scalar multiplications. In
[3], Davie and Gamelin proved that in the scalar-valued case, the
Aron—Berner extension is actually an isometry. This allows us to identify
thek symmetric tensor product ®S’fﬁE” with a subspace of PCEY =
(& EY,

® E' >2(‘E),
(1)

zZ® - ®zw—e,

where ¢,(Q) = AB(Q)Xz) for Q e #(“E). Davie and Gamelin’s result
implies that |le,|| = [|z|| for all z € E".

The following lemma gives an expression for the Aron—Berner extension
of a vector-valued polynomial which is sometimes easier to handle than the
one given above.
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LEMMA 1.2. (a) If A: E — ®kE is the polynomlal Ax)=x® - ®,
then AB(A): E" — P(*EY is given by AB(A)(z) = e,

(b) Let P: E — X be a k-homogeneous polynomial and Tp its associ-
ated linear operator. Then AB(PXz) = T}(e,).

Proof. (a) Let Ay: E" —2("E) be given by Ay(z) = e,. Clearly, A,lg
= A, so we only need to show that A, satisfies the condltlons of Prop05|—
tion 1.1. First note that if z;,...,z, € E" and Q e 2(E), then A,(z,,

, Z Q) = AB(Q)z,, ..., z,) (P denotes the symmetric k-linear map-
ping associated to P). Therefore, if z,w e E",

(DA(2)(W))(Q) = kRy(z,...,z,w)(Q)
= kAE(Q)(z,...,z,w)
= D(AB(Q))(2)(w).

If we put z =x € E, the last expression is w*-continuous in w (since
AB(Q) satisfies the conditions of the proposition) and consequently,
DA (z) is w*-w*-continuous. Similarly, we see that A, satisfies condition
(b) of Proposition 1.1. Hence, A, = AB(A).

(b) Since P =TyoA, AB(PXz) = TH(AB(AX2)) = Ti(e.). 1

With the help of the lemma, we generalize the Davie—Gamelin result [3]
to the vector-valued case.

PROPOSITION 1.3.  AB: 2(“E, X) —» 2(E", X") is an isometry.

Proof. For z € E", we have
1AB(P)(2) | =T (e.) | < T3l e,
=T, Iz = IPIzl.

This implies that || AB(P)|l < ||P|l, and since AB(P)(x) = P(x) for every
x € E, the equality holds. |

Unfortunately, if X is not reflexive, the Aron—Berner extension of a
polynomial is not an extension in the meaning we give to this word: an
extension of P: E — X to E"” should be a polynomial P: E" - X
extending P. This sometimes fails to exist; we have already mentioned that
the identity operator on ¢, cannot be extended to cj = /.. Note that in this
case, the Aron—Berner extension is the identity operator on /.. If X is
complemented in its bidual, there always exists an extension of P to E".
We recall that a Banach space X is called a #-space if X is comple-
mented in its bidual with a linear projection p: X” — X with || p|l < I (see
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[1D. In this case, AB,(P) = p > AB(P) is an extension of P to its bidual
and [ 4B, (P)Il < lI| P

The Gantmacher theorem (see [9]) states that an operator 7: E — X is
weakly compact if and only if 7"(z) belongs to X for every z € E”. This
means that T is weakly compact if and only if 7" is an extension to 7. We
say that a polynomial P: E — X is weakly compact if P(By) is relatively
weak compact. For these polynomials we have the following.

ProposiTION 1.4. If P: E — X is a weakly compact k-homogeneous
polynomial, then AB(PXz) belongs to X for every z € E".

Proof. Since the unit ball of ®kE is the closed absolutely convex hull
of ®k B, the closure of its image by 7, is the closed absolutely convex
hull of P(Bp), which is weakly compact. Therefore, T, is a weakly compact
linear operator, and by the Gantmacher theorem, the range of 7p is
contained in X. Using the identification (1) and Lemma 1.2, the associated
linear operator of AB(P) is the restriction of Tj to the subspace ®"E" of
2(*EY. Consequently, the range of AB(P) is contalned in X. 1

The converse is not true. Indeed, let P: I, — I, be the polynomial given
by P(x) = (x2),. P(B,) is the unit ball of /; (in the complex case) and
therefore is not weakly compact. However, AB(P)(z) = P(z) €1, for
every z € [ = [,. Note that any operator from a reflexive space is weakly
compact, while this is not true for polynomials, as the example shows.

2. EXTENDING POLYNOMIALS TO A FIXED SPACE

Let E be a closed subspace of a Banach space F. The inclusion i:
E = F induces a one-to-one mapping between the k-field symmetric
tensor products:

Qi: ®E—> Q'F

The projective norm 7 on ®kF induces via thls mapping a norm on
®"E which will be denoted 7. Then for s € ® E, we have

k.
sl =] ®Fi(s) |, /-

A scalar-valued polynomial P € #(“E) can be extended to a continuous
polynomial on F if and only if its associated linear functional 7, on ®fE
is mp-continuous. This is not true for vector-valued polynomials: for k = 1,
the mg-norm is just the norm on E, every continuous operator is mE-con-
tinuous, but they are not always extendible. We will call 2, (E X) the
space of all P €%(“E, X) that can be extended to a polynomlal Pe
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2(°F, X) (for scalar-valued polynomials we will write %, (‘E)). In this
space we can define the norm

Pl = inf{llﬁll: P F - X extends P}. (2)
Clearly, ||P|l < ||IP]l.,. Moreover, if
- k
p: P(F,X)>2, ("E, X)

is the restriction map, [P, = inf{|| P|I: p(ﬁ) P}. 1t follows that
(&, (kE X), I, can be seen as the quotient space 2("F, X) /ker p. We
also have the following.

PropPosITION 2.1.  Let E C F and X be Banach spaces.

(@) (ﬁeF(kE, X),Ill,) is a Banach space.

(b) In the scalar-valued case, (®f - E) = (ﬂeF(kE), e, isometri-
cally.

Proof. () (%F(kE, X),1ll.,) is a quotient space of a Banach space by
a closed subspace.

(b) LetT bea nF-contmuous functional on ®'E and P, |ts associ-
ated polynomial Since ® A is an isometric subspace of ® F, T
extends by the Hahn— Banach theorem to a linear functional T on ®"
with [|7]], =|Tl,,. The associated polynomlal Pz extends P to F Wlth
| Pll = [ITIl, and therefore IPrlle, < IIT I,

On the other hand, if P is an extension of P to F, Ty is an extension of
T, to ®fF and [|Tpll,, < IT5ll = || P|l. Taking the infimum over all possible
extensions of P, we get the other inequality. |

From the proof of (b), it follows that for scalar-valued polynomials, the
infimum in (2) is actually a minimum. The same is true for polynomials
taking values in a dual space, as we will see below.

Since ||P|l <|Pll,, if every polynomial P e #(*E, X) extends to F,
then |||l and || |l., are equivalent norms on #(‘E, X) = 2, (‘E, X), since
this space is complete with both norms. Therefore, if every k-homoge-
neous polynomial from E to X is extendible to F, there exists a constant ¢
such that, for every P € 2(‘E, X), there is an extension P € 2(‘F, X)
with || P]| < ¢||P]l. It is not always possible to set ¢ = 1, even in scalar-val-
ued polynomials on finite-dimensional spaces; in [12], Mazet showed the
existence of a finite-dimensional space F and a hyperplane H c F for
which ¢ > 2 in the real case and ¢ > % in the complex case.

We have already seen that for vector-valued polynomials, ne-continuity
does not assure extendibility to F. In fact, ng-continuity is related to a
weaker notion of extendibility.
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DEerINITION 2.2. A polynomial P; E — X is said to be weakly ex-
tendible to F if for every linear functional y on X, the scalar-valued
polynomial y o P extends to F.

If P extends to a polynomial P on F, then for every y € X', yo Plisan
extension of v o P to F. Thus, a polynomial that extends to F is weakly
extendible to F. The converse is not true, since by the Hahn—Banach
theorem, every linear operator is weakly extendible to any space. The next
proposition shows the connection between weak extendibility and n-con-
tinuity.

PROPOSITION 2.3. A polynomial P € #(“E, X) is weakly extendible to F
if and only if its associated operator Tp: ®kE — X is ng-continuous.

Proof. If Tp: ®"E — X is mp-continuous, then for every y € X', y o T,
is an ny- contlnuous linear functional on ®k . It follows from Proposition
2.1(b) that vy o P, beings its associated polynomlal, extends to F.

Now suppose that P is weakly extendible to F. This means that for
every y € X', the polynomial v o P extends to F. By the proposition, the
linear functional Ty p 0N ® E is mp-continuous. Since T, p = y o Tp, it
follows that the image by TP of the unit ball of ®k" E is a weakly
bounded (and therefore bounded) subset of X. This means that T, is
ne-continuous. I

We end this section with the construction of a predual of PL,F(kE, X)in
the case that X is a dual space: X = Y".

Let P € 2(“E,Y') and P* be its associated linear functional (as defined
in the Introduction). For any pair of tensor norms « and 8, we will denote
by IP*|l. g the norm of P* as a linear functional on (®k E) ®, Y. We
want to find « and B such that the «, B-norm of a functlonal com(:ldes
with the e,-norm of the associated polynomial.

We have that ®, E is an isometric subspace of ®_F. However, the
(nonsymmetric) tensor product (®"n E) ® Y is not necessarlly a sub-
space of (®k F) ®_Y (not even |somorph|cally) In fact, it is a subspace
if and only i every continuous operator from ® .q, £ 10 Y' extends to a
continuous operator from ® . I t0Y'. Using the correspondence given in
the previous proposition, thls is equivalent to the following fact: every
polynomial from E to Y’ which is weakly extendible to F, extends to F. In
this case, we have

(&, E) ® v| —2(&, EY)=2(EY)

Sy MF

isomorphically.
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For the general case, the one-to-one mapping

T

(&) @ 1y: (&

' MF

Eley— (& F)®Y,

where I, is the identity operator on Y, induces a norm on (®;an E)®Y
which will be denoted A,. Now we have the following.

PropPoSITION 2.4. () If every polynomial from E to Y' which is weakly
extendible to F, extends to F, then (( ®f - E)® Y)Y ==956F(kE ,Y") isomor-
phically.

(b (& wE) 8 Y)Y =2, “E,Y") isometrically.
Proof. (a) It was proved above.

(b) Let P: E - X be a polynomial whose associated linear func-
tional P* belongs to (( ®" _E) ® Y). By Hahn—Banach, it extends to a
functional on (®k F) ® Y with the same norm. This gives an extension
of P to F with norm ||P*||,7F, A, and so we have that ||Pll., < [[P*|,,, \,-
On the other hand, any extension of P to F gives an extension of P* to
(®°_F) ®, Y. Then, [[P*|,,., < lIQll for any extension Q of P. Taking
the infimum over all possible extensions, we conclude that ||P|., =

1Pl a1

Remark 2.5. The proof of Proposition 2.4 shows that if X is a dual
space,the infimum in (2) is actually a minimum.

COROLLARY 2.6. If X is a dual space, every polynomial P: E — X extends
to F if and only if the ep-norm is equivalent to the uniform norm on
2, (‘E, X).

Proof. If the eg-norm is equivalent to the uniform norm on gaeﬁv(kE, X),
it follows that the =, A-norm on (®“E) ® Y is equivalent to the , 7-
norm. Taking the dual with both norms, it follows that every polynomial
extends to F. The converse was commented above. ||

3. EXTENDIBLE POLYNOMIALS

Following [10], we will say that a polynomial P: E — X is extendible if,
for all Banach spaces F containing E, there exists Pex*F, X) an
extension of P, and we will denote the space of all such polynomials by
2,(E, X).
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For any Banach space E, we have the natural (isometric) inclusions
I;: E = C(Bg,w*),
Jg  E > L(By),
given by
Ip(x)(x') =x'(x) forx € By,
Je(x) = (¥'(x))xen,-

The following theorems show the role played by these particular inclu-
sions. Recall that a Banach space Y is said to have the metric extension
property if, for every Banach space E, every linear operator 7. E - Y,
and every F containing E, there exists a linear operator T: F - Y
extending 7 with the same norm. [(I) and C(K)' have the metric
extension property for every set I and every compact Hausdorff space K

[4].

THeEOReM 3.1. If X is a @-space, then a polynomial P. E — X is
extendible if and only if P extends to C(By,,w*). In this case, if P_is such an

extension, then for every F containing E, there exists an extension P on F with
IPI| < LI Pyl

Proof. Let P, be an extension of P to C(B;) and AB,(P,) be its
Aron-Berner extension to C(B;)" composed with the projection p (|| pll
< D. If F is any Banach space containing E, since C(Bg)’ has the metric
expansion property, the inclusion map E < C(By) = C(Bg )" extends to
a norm-1 operator j: F - C(Bg)", making the following diagram commu-
tative:

AB(Py)
E— C(Bp) —— X

v

F

Consequently, if we define P =AB (P,)° j, we obtain an extension of P
to F satisfying || P|l < [[AB,(P)IlIjll < 1IpllIPoll. 1

If X is not a &-space, a polynomial P: E — X could extend to C(Bp.)
without being necessarily extendible. Indeed, since (B, , w*) is a metrizable
compact set, the space C(B,l,w*) is separable. Then, by the Sobczyck
theorem (see, for example, [11]), ¢, is complemented in C(B,) and
consequently, any polynomial on ¢, can be extended to C(B,l). However,
there are nonextendible polynomials on ¢, (for example, the identity
operator). Therefore, for a general Banach space X, to assure the ex-
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tendibility of a polynomial P, it will be necessary to extend it to a larger
space than C(Bp).

THEOREM 3.2. A polynomial P: E — X is extendible if and only if P
extends to L(By). In this case, if Py is such an extension, then for every F
containing E, there exists an extension P on F with ||P|| < [Pyl

Proof. Let P, be an extension of P to L(Bj/). For any Banach space F
containing E, since L(By/) has the metric extension property, the inclusion
Jg: E < L(B) extends to a norm-1 operator T F el ABg). Therefore,

P = P, J, is an extension of P and satisfies [|2]| < ||l 171l = 1 P,ll. W

Therefore, we have

2(E X) =2 (‘E,X)

€c(Bgn

for a &-space X and

2(E, X) =2, ("E, X)

ClL(B")

for the general case. It also follows from Theorems 3.1 and 3.2 that the
extendible norm defined in [10],

IPll, = inf{c > O: for all F there is an extension of
P to F with norm < ¢}, (3)

is well defined and coincides with [|P]l,, , = (and with [|P].,.,  if X isa
#,-space, which occurs, for example, when X is a dual space). Conse-
quently, (%,(*E, X),|l|l.) is a Banach space and if every polynomial P:
E — X is extendible, ||| and || ||, are equivalent on 2(E, X).

Remark 3.3. Since all C(K) have the Dunford—Pettis property [8], it
follows [14] that extendible scalar-valued polynomials are weakly sequen-
tially continuous. The converse is not true: in /,, extendible polynomials
are nuclear [10], while there are approximable (and therefore weakly
sequentially continuous) polynomials that are not nuclear.

There are many properties of polynomials that are preserved by
Aron—Berner extensions and composition with linear operators, such as
being of finite type, nuclear, compact, etc. As an application of the
previous theorems, we show that extendibility is one of these properties.

THEOREM 3.4. If P: E — X is extendible and T: G — E is a continuous
linear operator, then P - T: G — X is extendible and ||P - T||, < I PILITIIE.
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Proof. Thanks to Theorem 3.2, we need only to extend P - T to L(Bg).
Let 7": E' —» G’ be the transpose of T and T; = T'/I|T||. Since T;(B;) <
B, we can define T,: IL(B;) — L(Bg) by

Ty(a) = ”TH(aTl’(x’))x’EBEr

for a = (a,), . p . € L(Bg), giving the following commutative digram:
T

]Gl Je
T,
I(Bg;) —1(By)
If Py: L(By) — X is an extension of P, then P, T, is an extension of
P T to I(Bg). By the theorem, P - T is extendible and we have ||P - T||,

< [IPIIIT,I* = IIPIIITII* for any extension P, of P. Hence, [P Tl <
IPIITIS 1

Observe that the operator T need not be extendible for the composition
to be extendible. The statement in Theorem 3.4 is not true if we replace T
by a nonextendible polynomial: the polynomial P(z) =z on R or C is
obviously extendible, but for any nonextendible polynomial Q, the compo-
sition P - Q = Q is not extendible.

COROLLARY 3.5. Any restriction of an extendible polynomial is also
extendible, with not larger extendible norm.

Proof.  The result follows from the theorem, taking 7 as the inclusion.

|
THeorReM 3.6. If P € #(E, X), then AB(P) € Z2,(‘E", X") and
IAB(P)l. < IIPll..

Proof. Assume that P is an extendible polynomial and take P, an
extension of P to I(Bg). Since P = P, J;, the Aron—Berner extension
of P is AB(P,)- J; (see Section 1). On the other hand, since /(B )" has
the metric extension property, the operator

Jp E" = L(Bp)'

extends to L(Bg~) D E”, with the same norm. If well this extension j, we
have the commutative diagram

T P,
E—I(B;)—X,

l Ty l AB(Py) lﬁ

EI/ _E) lgo(BE/)H - X
JE,l /’

L(By.)
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where the unlabeled vertical arrows are the canonical inclusions in the
biduals. This shows that AB(Py)-j is an extension of AB(Py)e J} =
AB(P). Hence, AB(P) is extendible and ||AB(P)Il.IlAB(Py)° jll < || Pyll.
Since P, is an arbitrary extension of P to L.(Bj), the result follows. |

COROLLARY 3.7. A polynomial P € #(E) is extendible if and only if its
Aron—Berner extension AB(P) is extendible. In this case, || P|l, = || AB(P)|,.

Proof. 1f AB(P) is extendible, with P being its restriction to E, P is
extendible by Corollary 3.5 and ||P||. < ||[AB(P)||.. The converse and the
reverse inequality follow from Theorem 3.6 ||

In general, the converse of Theorem 3.6 is not true: the identity
operator on Id, : ¢, — ¢, is not extendible (it cannot be extended to L,).
However, its Aron—-Berner extension AB(Id, ) = Id; = Id, , with [, being
an injective space, is extendible. In the case that X is a #-space, we
combine Theorems 3.4 and 3.6 and obtain the following.

CoROLLARY 3.8. If X is a &space, a polynomial P: E — X is extendible
if and only if its Aron—Berner extension is extendible. In this case, ||P||, <
IAB(P)ll. < LlIPIl..

For scalar-valued polynomials, something more can be said. We define
on ®!E the following norm:

o _ k
Islly = sl = | @ Le(5) | me, -

The n-norm coincides with the one defined in [10]. The following corollary
was also proved in [10].

COROLLARY 3.9. (®E,|lIl,) = (#,CE),|ll.) isometrically.

Proof. (®LE, |1,Y = (8E, Illly,, ) = (2., CE), Il = (#LE)
).

Hence, a scalar-valued polynomial is extendible if and only if it is
n-continuous. As was the case for fixed F, this is not true for vector-valued
polynomials, since for degree 1, |/[l,, is just the norm on E. In fact,
n-continuity is related to weak extendibility.

ﬂC(BEr))

DeriNniTION 3.10. A polynomial P: E — X is said to be weakly ex-
tendible if for every linear functional y on X, the scalar-valued polyno-
mial y o P is extendible.

Using the correspondence between extendibility and extendibility to
C(Bg), we can reformulate the results of the previous section.

PROPOSITION 3.11. A polynomial P € #(*E, X) is weakly extendible if
and only if its associated operator Tp: ®f E — X is m-continuous.
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COROLLARY 3.12.  For a Banach space X, the following are equivalent:
() X is injective.
(ii)  For all Banach spaces E, a polynomial (of any degree) from E to X
is extendible if and only if it is weakly extendible.

Proof. (i) = (ii). If P: E — X is weakly extendible, the previous propo-
sition says that its associated operator Tp: ®5"E — X is m-continuous.
Observe that, since both Theorems 3.1 and 3.2 apply for scalar-valued
polynomials, the n-norm coincides with the », ; ,-norm. Therefore, ®kn E
is an isometric subspace of ®k I(Bg) and smce X is injective, T,, extends

to a continuous operator from ®" . (Bp) to X. Hence, P extends to
L(Bg) and, by Theorem 3.2, is extendible.

(ii) = (i) Since every linear operator to X is weakly extendible, they
are all extendible. This means that X is injective. |

It is also simple now to find a predual of the space of extendible
polynomials when X = Y’ is a dual space. In this case, X is a &,-space, so
if we put A = A¢p,), We have the following.

ProposITION 3.13. () If every weakly extendible polynomial from E to Y’
is extendible, then (( ®s]fn E)® Y) = @e(kE ,Y") isomorphically.

b « ®S]f E) & Y)Y =2, E,Y") isometrically.

COROLLARY 3.14. If X is a dual space, the infimum in (3) is actually a
minimum.

CoRroLLARY 3.15. If X is a dual space, every polynomial P: E — X is
extendible if and only if the e-norm is equivalent to the uniform norm on
2(E, X).

This last corollary extends a result given in [10] for scalar-valued
polynomials.
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