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We are concerned with the following question: when can a polynomial P:
Ž .E ª X E and X are Banach spaces be extended to a Banach space containing

E? We prove that the polynomials that are extendible to any larger space are
Ž X.precisely those which can be extended to C B , if X is complemented in itsE

Ž X.bidual, and l B in general. We also show that the extendibility is a property that` E
is preserved by Aron]Berner extensions and composition with linear operators. We
construct a predual of the space of extendible polynomials for the case that X is a
dual space. Q 1999 Academic Press

INTRODUCTION

Throughout, F and X will be Banach spaces over the real or complex
field and E an isometric subspace of F. This article is mainly concerned
with the following natural question: when can a continuous k-homoge-

˜neous polynomial P: E ª X be extended to a polynomial P: F ª X ? It is
not always possible to extend linear operators if E and X are infinite

Ždimensional the identity operator on c cannot be extended to l since c0 ` 0
. Žis not complemented in l . For the scalar-valued case or X finite`

.dimensional , the Hahn]Banach extension theorem gives a positive answer
for linear functions, but this result cannot be generalized for polynomials

w xof degree k G 2. For example, l is contained in C 0, 1 but the polynomial2
Ž . 2 w xP x s Ý x on l cannot be extended to C 0, 1 , since this last space hask k 2

w xthe Dunford]Pettis property and consequently any polynomial on C 0, 1 is
w x w xweakly sequentially continuous 14 . In 2 it is shown that integral scalar-

valued polynomials are extendible to any larger space. Many results are
known when there is a linear extension morphism for linear functionals

X X Ž w x.E ª F see 1, 3, 6, 7, 16 .
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In the first section, we recall some facts about the Aron]Berner exten-
sion of a polynomial from a Banach space to its bidual and generalize
some known results for the scalar-valued case to the vector-valued case.
We show that the Aron]Berner extension of a weakly compact polynomial
has its range in the same space as the polynomial. Unlike the linear case,
the converse is not true. In the second section, we study the space of
polynomials P: E ª X which can be extended to a fixed space F contain-
ing E, while in the third section, we look at those polynomials which can

Žbe extended to any larger space. These last polynomials extendible polyno-
.mials turn out to be the polynomials that can be extended to some

Ž Ž . Ž .X Xparticular spaces C B if X is complemented in its bidual and l B inE ` E
.general . Thus, we can apply the results of Section 2 and this enables us to

define a natural norm in the space of extendible polynomials and to find
some properties such as the stability of the class of extendible polynomials
under Aron]Berner extensions and compositions with linear operators.
We also find a predual of the space of extendible polynomials in the case
that X is a dual space.

Identifying homogeneous polynomials with linear functions is a useful
tool when studying extensions of polynomials, since it sometimes enables

w xus to use the Hahn]Banach extension theorem. It is known 15 that, given
Žk . ka polynomial P g PP E, X , there is a unique linear operator T : m E ªP s

Ž . Ž .X such that P x s T x m ??? m x . Moreover, if we endow the tensorP
product mk E with the projective norm p , the correspondence betweens
Žk . Ž k .PP E, X and LL m E, X is an isometric isomorphism. In particular,s, p
Žk . Ž k .XPP E , m E .s, p

In the case that X is a dual space, say X s Y X, we can also define the
U Ž k . U Ž . Ž .Ž .linear functional P on m E m Y given by P s m y s T s y , forPs

s g mk E and y g Y. This correspondence gives an isometric isomorphisms
ŽŽ k . . X Žk .between m E m Y and PP E, X . Changing the p-norm by others, p p

norms gives rise to different spaces of polynomials. We are interested in
those norms for which the extendibility of a polynomial is related to the
continuity of the associated operator.

w x w xWe refer to 5 and 12 for notation and results regarding polynomials.

1. EXTENSIONS TO THE BIDUAL

w xIn 1 , Aron and Berner found a way of extending any continuous
Ž w x.homogeneous polynomial from E to its bidual see also 16 . There are

several ways of defining this extension. One of them is the following, which
we will show for 2-homogeneous polynomials but which is easily general-
ized. Let P: E ª X be a 2-homogeneous polynomial and consider its
associated symmetric bilinear function

F : E = E ª X .
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X X XŽ Ž .. XFix x g E, z g X ; then z F x, ? is an element of E . This gives a
mapping E = X X ª EX. If we do this again, we will get X X = EY ª EX, and

Ž .if we insist we finally obtain the not necessarily symmetric bilinear
function

Y Y Y
F : E = E ª X .
Y Y Y Y YŽ .Ž . Ž . Ž .The polynomial AB P x s F x , x from E to X is called the

Aron]Berner extension of P. Observe that if P is a linear operator, the
process described above gives the bitranspose of P. Moreover, if T is a
linear operator, P a polynomial, and we apply this process to the polyno-

Ž . Y Ž .mial T ( P, we obtain that AB T ( P s T ( AB P . In particular, if
X Ž .Ž . Ž .Ž .Ž . Yg g X , AB g ( P z s AB P z g , for any z g E . Now the following

characterization of the Aron]Berner extension is an immediate conse-
w xquence of the result proved in 16 for scalar-valued polynomials. Recall

Žk . Ž .that the differential of a polynomial P g PP E, X is the k y 1 -
Ž .homogeneous polynomial DP: E ª LL E; F given by

ˇDP x s kP x , . . . , x , ? ,Ž . Ž .^ ` _
k y 1

ˇwhere P is the symmetric k-linear function associated to P.
kŽ Y Y . <PROPOSITION 1.1. If Q g PP E , X is such that Q s P, then Q sE

Ž .AB P if and only if

Ž . Ž . Y Y U Ua for e¨ery x g E, DQ x : E ª X is w -w -continuous.
wU

Y 6Ž . Ž . Ž .Ž .b for e¨ery z g E and x ; E such that x z, DQ z xa a awU
Y6 Ž .Ž .DQ z z in X .

As a consequence of Proposition 1.1, we have that the Aron]Berner
Žk . Žk Y Y .extension is a linear morphism from PP E, X to PP E , X , since

Ž . Ž .conditions a and b are preserved by sums and scalar multiplications. In
w x3 , Davie and Gamelin proved that in the scalar-valued case, the
Aron]Berner extension is actually an isometry. This allows us to identify

k Y Žk .Xthe symmetric tensor product m E with a subspace of PP E ss, p
Ž k .Ym E ,s, p

XkYkm E ª PP E ,Ž .s , p 1Ž .
z m ??? m z ¬ e ,z

Ž . Ž .Ž . Žk .where e Q s AB Q z for Q g PP E . Davie and Gamelin’s resultz
5 5 5 5 Yimplies that e s z for all z g E .z

The following lemma gives an expression for the Aron]Berner extension
of a vector-valued polynomial which is sometimes easier to handle than the
one given above.
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Ž . k Ž .LEMMA 1.2. a If D: E ª m E is the polynomial D x s x m ??? m ,s
Ž . Y Žk .X Ž .Ž .then AB D : E ª PP E is gï en by AB D z s e .z

Ž .b Let P: E ª X be a k-homogeneous polynomial and T its associ-P
Ž .Ž . YŽ .ated linear operator. Then AB P z s T e .P z

Ž . Y Žk .X Ž . <Proof. a Let D : E ª PP E be given by D z s e . Clearly, D E0 0 z 0
s D, so we only need to show that D satisfies the conditions of Proposi-0

Y k ˇŽ . Žtion 1.1. First note that if z , . . . , z g E and Q g PP E , then D z ,1 k 0 1
ˇ ˇ.Ž . Ž .Ž . Ž. . . , z Q s AB Q z , . . . , z P denotes the symmetric k-linear map-k 1 k

. Yping associated to P . Therefore, if z, w g E ,

ˇDD z w Q s kD z , . . . , z , w QŽ . Ž . Ž . Ž . Ž .Ž .0 0

ˇs kAB Q z , . . . , z , wŽ . Ž .
s D AB Q z w .Ž . Ž . Ž .Ž .

U ŽIf we put z s x g E, the last expression is w -continuous in w since
Ž . .AB Q satisfies the conditions of the proposition and consequently,
Ž . U UDD z is w -w -continuous. Similarly, we see that D satisfies condition0 0

Ž . Ž .b of Proposition 1.1. Hence, D s AB D .0

Y YŽ . Ž .Ž . Ž Ž .Ž .. Ž .b Since P s T (D, AB P z s T AB D z s T e .P P P z

w xWith the help of the lemma, we generalize the Davie]Gamelin result 3
to the vector-valued case.

Žk . Žk Y Y .PROPOSITION 1.3. AB: PP E, X ª PP E , X is an isometry.

Proof. For z g EY, we have

Y Y5 5 5 5AB P z s T e F T eŽ . Ž . Ž .P z P z

5 5 5 5 k 5 5 5 5 ks T z s P z .p

5 Ž .5 5 5 Ž .Ž . Ž .This implies that AB P F P , and since AB P x s P x for every
x g E, the equality holds.

Unfortunately, if X is not reflexive, the Aron]Berner extension of a
polynomial is not an extension in the meaning we give to this word: an

Y ˜ Yextension of P: E ª X to E should be a polynomial P: E ª X
extending P. This sometimes fails to exist; we have already mentioned that
the identity operator on c cannot be extended to cY s l . Note that in this0 0 `

case, the Aron]Berner extension is the identity operator on l . If X is`

complemented in its bidual, there always exists an extension of P to EY.
We recall that a Banach space X is called a CC -space if X is comple-l

Y 5 5 Žmented in its bidual with a linear projection p: X ª X with p F l see
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w x. Ž . Ž .1 . In this case, AB P s p( AB P is an extension of P to its bidualp

5 Ž .5 5 5and AB P F l P .p
Ž w x.The Gantmacher theorem see 9 states that an operator T : E ª X is

YŽ . Yweakly compact if and only if T z belongs to X for every z g E . This
means that T is weakly compact if and only if TY is an extension to T. We

Ž .say that a polynomial P: E ª X is weakly compact if P B is relativelyE
weak compact. For these polynomials we have the following.

PROPOSITION 1.4. If P: E ª X is a weakly compact k-homogeneous
Ž .Ž . Ypolynomial, then AB P z belongs to X for e¨ery z g E .

Proof. Since the unit ball of mk E is the closed absolutely convex hulls
of mk B , the closure of its image by T is the closed absolutely convexE Ps

Ž .hull of P B , which is weakly compact. Therefore, T is a weakly compactE P
linear operator, and by the Gantmacher theorem, the range of TY isP

Ž .contained in X. Using the identification 1 and Lemma 1.2, the associated
Ž . Y k Ylinear operator of AB P is the restriction of T to the subspace m E ofP s

k XŽ . Ž .PP E . Consequently, the range of AB P is contained in X.

The converse is not true. Indeed, let P: l ª l be the polynomial given2 1
Ž . Ž 2 . Ž . Ž .by P x s x . P B is the unit ball of l in the complex case andn n l 12

Ž .Ž . Ž .therefore is not weakly compact. However, AB P z s P z g l for1
every z g lY s l . Note that any operator from a reflexive space is weakly2 2
compact, while this is not true for polynomials, as the example shows.

2. EXTENDING POLYNOMIALS TO A FIXED SPACE

Let E be a closed subspace of a Banach space F. The inclusion i:
E ¨ F induces a one-to-one mapping between the k-field symmetric
tensor products:

mk i : mk E ª mk F .s s s

The projective norm p on mk F induces via this mapping a norm ons
mk E, which will be denoted h . Then, for s g mk E, we haveFs s

k5 5s s m i s .Ž .h sF p , F

Žk .A scalar-valued polynomial P g PP E can be extended to a continuous
polynomial on F if and only if its associated linear functional T on mk EP s
is h -continuous. This is not true for vector-valued polynomials: for k s 1,F
the h -norm is just the norm on E, every continuous operator is h -con-F F

Žk .tinuous, but they are not always extendible. We will call PP E, X theeFk ˜Ž .space of all P g PP E, X that can be extended to a polynomial P g
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Žk . Ž Žk ..PP F, X for scalar-valued polynomials we will write PP E . In thiseF

space we can define the norm

˜ ˜5 5 5 5P s inf P : P : F ª X extends P . 2Ž .� 4eF

5 5 5 5Clearly, P F P . Moreover, ifeF

r : PP
kF , X ª PP

kE, XŽ . Ž .eF

˜ ˜5 5 �5 5 Ž . 4is the restriction map, P s inf P : r P s P . It follows thateF

Ž Žk . 5 5 . Žk .PP E, X , can be seen as the quotient space PP F, X rker r. Weee FF

also have the following.

PROPOSITION 2.1. Let E : F and X be Banach spaces.

Ž . Ž Žk . 5 5 .a PP E, X , is a Banach space.ee FF

Ž . Ž k .X Ž Žk . 5 5 .b In the scalar-̈ alued case, m E s PP E , isometri-ees, h FFF

cally.

Ž . Ž Žk . 5 5 .Proof. a PP E, X , is a quotient space of a Banach space byee FF

a closed subspace.

Ž . kb Let T be a h -continuous functional on m E and P its associ-F Ts
ated polynomial Since mk E is an isometric subspace of mk F, Ts, h s, pF ˜ kextends by the Hahn]Banach theorem to a linear functional T on m Fs, p

˜5 5 5 5with T s T . The associated polynomial P extends P to F with˜p h TF

5 5 5 5 5 5 5 5P s T and therefore, P F T .˜ h e hT TF F F

˜On the other hand, if P is an extension of P to F, T is an extension ofP̃
k ˜5 5 5 5 5 5T to m F and T F T s P . Taking the infimum over all possible˜hP P Ps F

extensions of P, we get the other inequality.

Ž .From the proof of b , it follows that for scalar-valued polynomials, the
Ž .infimum in 2 is actually a minimum. The same is true for polynomials

taking values in a dual space, as we will see below.
5 5 5 5 Žk .Since P F P , if every polynomial P g PP E, X extends to F,eF

5 5 5 5 Žk . Žk .then and are equivalent norms on PP E, X s PP E, X , sincee eF F

this space is complete with both norms. Therefore, if every k-homoge-
neous polynomial from E to X is extendible to F, there exists a constant c

k ˜ kŽ . Ž .such that, for every P g PP E, X , there is an extension P g PP F, X
˜5 5 5 5with P F c P . It is not always possible to set c s 1, even in scalar-val-

w xued polynomials on finite-dimensional spaces; in 12 , Mazet showed the
existence of a finite-dimensional space F and a hyperplane H ; F for

7which c G 2 in the real case and c G in the complex case.3

We have already seen that for vector-valued polynomials, h -continuityF
does not assure extendibility to F. In fact, h -continuity is related to aF
weaker notion of extendibility.
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DEFINITION 2.2. A polynomial P: E ª X is said to be weakly ex-
tendible to F if for every linear functional g on X, the scalar-valued
polynomial g ( P extends to F.

˜ X ˜If P extends to a polynomial P on F, then for every g g X , g ( P is an
extension of g ( P to F. Thus, a polynomial that extends to F is weakly
extendible to F. The converse is not true, since by the Hahn]Banach
theorem, every linear operator is weakly extendible to any space. The next
proposition shows the connection between weak extendibility and h -con-F
tinuity.

Žk .PROPOSITION 2.3. A polynomial P g PP E, X is weakly extendible to F
if and only if its associated operator T : mk E ª X is h -continuous.P Fs

Proof. If T : mk E ª X is h -continuous, then for every g g X X, g (TP F Ps
is an h -continuous linear functional on mk E. It follows from PropositionF s

Ž .2.1 b that g ( P, beings its associated polynomial, extends to F.
Now suppose that P is weakly extendible to F. This means that for

every g g X X, the polynomial g ( P extends to F. By the proposition, the
linear functional T on mk E is h -continuous. Since T s g (T , itg ( P F g ( P Ps
follows that the image by T of the unit ball of mk E is a weaklyP s, hFŽ .bounded and therefore bounded subset of X. This means that T isP
h -continuous.F

Žk .We end this section with the construction of a predual of P E, X ineF

the case that X is a dual space: X s Y X.
Žk X. U ŽLet P g PP E, Y and P be its associated linear functional as defined

.in the Introduction . For any pair of tensor norms a and b , we will denote
5 U 5 U Ž k .by P the norm of P as a linear functional on m E m Y. Wea , b s, a b

want to find a and b such that the a , b-norm of a functional coincides
with the e -norm of the associated polynomial.F

We have that mk E is an isometric subspace of mk F. However, thes, h s, pFŽ . Ž k .nonsymmetric tensor product m E m Y is not necessarily a sub-s, h pFŽ k . Ž .space of m F m Y not even isomorphically . In fact, it is a subspaces, p p

if and only if every continuous operator from mk E to Y X extends to as, hF

continuous operator from mk F to Y X. Using the correspondence given ins, p

the previous proposition, this is equivalent to the following fact: every
polynomial from E to Y X which is weakly extendible to F, extends to F. In
this case, we have

X
kX Xk km E m Y s LL m E, Y s PP E, YŽ .ž / ž / ež /s , h p s , h FF F

isomorphically.
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For the general case, the one-to-one mapping

mk i m I : mk E m Y ª mk F m Y ,Ž . Ž .ž /Ys s , h s , p pF

Ž k .where I is the identity operator on Y, induces a norm on m E m YY s, hF

which will be denoted l . Now we have the following.F

Ž . XPROPOSITION 2.4. a If e¨ery polynomial from E to Y which is weakly
ŽŽ k . .X Žk X.extendible to F, extends to F, then m E m Y s PP E, Y isomor-es, h p FF

phically.

Ž . ŽŽ k . .X Žk X.b m E m Y s PP E, Y isometrically.es, h l FF F

Ž .Proof. a It was proved above.

Ž .b Let P: E ª X be a polynomial whose associated linear func-
U ŽŽ k . .Xtional P belongs to m E m Y . By Hahn]Banach, it extends to as, h lF F

Ž k .functional on m F m Y with the same norm. This gives an extensions, p p
5 U 5 5 5 5 U 5of P to F with norm P and so we have that P F P .h , l e h , lF F F F F

On the other hand, any extension of P to F gives an extension of PU to
Ž k . 5 U 5 5 5m F m Y. Then, P F Q for any extension Q of P. Takingh , ls, p p F F

5 5the infimum over all possible extensions, we conclude that P seF
U5 5P .h , lF F

Remark 2.5. The proof of Proposition 2.4 shows that if X is a dual
Ž .space,the infimum in 2 is actually a minimum.

COROLLARY 2.6. If X is a dual space, e¨ery polynomial P: E ª X extends
to F if and only if the e -norm is equï alent to the uniform norm onF

Žk .PP E, X .eF

Žk .Proof. If the e -norm is equivalent to the uniform norm on PP E, X ,F eF

Ž k .it follows that the h , l -norm on m E m Y is equivalent to the p , p-F F s
norm. Taking the dual with both norms, it follows that every polynomial
extends to F. The converse was commented above.

3. EXTENDIBLE POLYNOMIALS

w xFollowing 10 , we will say that a polynomial P: E ª X is extendible if,
˜ kŽ .for all Banach spaces F containing E, there exists P g PP F, X an

extension of P, and we will denote the space of all such polynomials by
Žk .PP E, X .e
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Ž .For any Banach space E, we have the natural isometric inclusions

I : E ¨ C B X , wU ,Ž .E E

J : E ¨ l B X ,Ž .E ` E

given by

I x xX s xX x for xX g B X ,Ž . Ž . Ž .E E

J x s xX x X .Ž . Ž .Ž . Xx gBE E

The following theorems show the role played by these particular inclu-
sions. Recall that a Banach space Y is said to have the metric extension
property if, for every Banach space E, every linear operator T : E ª Y,

˜and every F containing E, there exists a linear operator T : F ª Y
Ž . Ž .Yextending T with the same norm. l I and C K have the metric`

extension property for every set I and every compact Hausdorff space K
w x4 .

THEOREM 3.1. If X is a CC -space, then a polynomial P: E ª X isl
Ž U .Xextendible if and only if P extends to C B , w . In this case, if P is such anE 0

˜extension, then for e¨ery F containing E, there exists an extension P on F with
˜5 5 5 5P F l P .0

Ž . Ž .XProof. Let P be an extension of P to C B and AB P be its0 E p 0

Ž .Y Ž5 5XAron]Berner extension to C B composed with the projection p pE
. Ž .YXF l . If F is any Banach space containing E, since C B has the metricE

Ž . Ž .YX Xexpansion property, the inclusion map E ¨ C B ¨ C B extends toE E
Ž .YXa norm-1 operator j: F ª C B , making the following diagram commu-E

tative:

Ž .AB Pp 0Y6 6

Ž .XE C B X .E

6

j
6

F

˜ Ž .Consequently, if we define P s AB P ( j, we obtain an extension of Pp 0
˜5 5 5 Ž .5 5 5 5 5 5 5to F satisfying P F AB P j F p P .p 0 0

Ž .XIf X is not a CC -space, a polynomial P: E ª X could extend to C Bl E
Ž U .without being necessarily extendible. Indeed, since B , w is a metrizablel1

Ž U .compact set, the space C B , w is separable. Then, by the Sobczyckl1

Ž w x. Ž .theorem see, for example, 11 , c is complemented in C B and0 l1
Ž .consequently, any polynomial on c can be extended to C B . However,0 l1

Žthere are nonextendible polynomials on c for example, the identity0
.operator . Therefore, for a general Banach space X, to assure the ex-
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tendibility of a polynomial P, it will be necessary to extend it to a larger
Ž .Xspace than C B .E

THEOREM 3.2. A polynomial P: E ª X is extendible if and only if P
Ž .Xextends to l B . In this case, if P is such an extension, then for e¨ery F` E 0

˜ ˜5 5 5 5containing E, there exists an extension P on F with P F P .0

Ž .XProof. Let P be an extension of P to l B . For any Banach space F0 ` E
Ž .Xcontaining E, since l B has the metric extension property, the inclusion` E

˜Ž . Ž .X XJ : E ¨ l B extends to a norm-1 operator J : F ¨ l B . Therefore,E ` E E ` E

˜ ˜ ˜ ˜5 5 5 5 5 5 5 5P s P ( J is an extension of P and satisfies P F P J s P .0 E 0 E 0

Therefore, we have

PP
kE, X s PP

kE, XŽ . Ž .e eC ŽB .E 9

for a CC -space X andl

PP
kE, X s PP

kE, XŽ . Ž .e el ŽB .` E 9

for the general case. It also follows from Theorems 3.1 and 3.2 that the
w xextendible norm defined in 10 ,

5 5 �P s inf c ) 0: for all F there is an extension ofe

4P to F with norm F c , 3Ž .

5 5 Ž 5 5is well defined and coincides with P and with P if X is ae el ŽB . C ŽB .` E 9 E 9

.CC -space, which occurs, for example, when X is a dual space . Conse-1
Ž Žk . 5 5 .quently, PP E, X , is a Banach space and if every polynomial P:ee

5 5 5 5 Žk .E ª X is extendible, and are equivalent on PP E, X .e

Ž . w xRemark 3.3. Since all C K have the Dunford]Pettis property 8 , it
w xfollows 14 that extendible scalar-valued polynomials are weakly sequen-

tially continuous. The converse is not true: in l , extendible polynomials2
w x Žare nuclear 10 , while there are approximable and therefore weakly

.sequentially continuous polynomials that are not nuclear.

There are many properties of polynomials that are preserved by
Aron]Berner extensions and composition with linear operators, such as
being of finite type, nuclear, compact, etc. As an application of the
previous theorems, we show that extendibility is one of these properties.

THEOREM 3.4. If P: E ª X is extendible and T : G ª E is a continuous
5 5 5 5 5 5 klinear operator, then P (T : G ª X is extendible and P (T F P T .e e
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Ž .XProof. Thanks to Theorem 3.2, we need only to extend P (T to l B .` G
X X X X X 5 5 XŽ .XLet T : E ª G be the transpose of T and T s T r T . Since T B :1 1 E

Ž . Ž .X X XB , we can define T : l B ª l B byG 0 ` G ` E

5 5 X XT a s T a XŽ . Ž .0 T Ž x . x gB1 E 9

Ž . Ž .X X Xfor a s a g l B , giving the following commutative digram:y y g B ` GG 9

T 6

G E

6J JG E6T0 6
Ž . Ž .Xl B l B` G9 ` E

Ž .XIf P : l B ª X is an extension of P, then P (T is an extension of0 ` E 0 0
Ž . 5 5XP (T to l B . By the theorem, P (T is extendible and we have P (T e` G

5 5 5 5 k 5 5 5 5 k 5 5F P T s P T for any extension P of P. Hence, P (T Fe0 0 0 0
k5 5 5 5P T .e

Observe that the operator T need not be extendible for the composition
to be extendible. The statement in Theorem 3.4 is not true if we replace T

Ž .by a nonextendible polynomial: the polynomial P z s z on R or C is
obviously extendible, but for any nonextendible polynomial Q, the compo-
sition P (Q s Q is not extendible.

COROLLARY 3.5. Any restriction of an extendible polynomial is also
extendible, with not larger extendible norm.

Proof. The result follows from the theorem, taking T as the inclusion.

Žk . Ž . Žk Y Y .THEOREM 3.6. If P g PP E, X , then AB P g PP E , X ande e
5 Ž .5 5 5AB P F P .e e

Proof. Assume that P is an extendible polynomial and take P an0
Ž .Xextension of P to l B . Since P s P ( J , the Aron]Berner extension` E 0 E

Ž . Y Ž . Ž .YXof P is AB P ( J see Section 1 . On the other hand, since l B has0 E ` E
the metric extension property, the operator

YY Y
XJ : E ª l BŽ .E ` E

Ž . Y
Zextends to l B > E , with the same norm. If well this extension j, we` E

have the commutative diagram
J PE 06 6

Ž .E l B X ,` E9

66 6Y Ž .J AB PE 0Y Y Y6 6

Ž .E l B X` E9

6J jE9

6

Ž .Zl B` E
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where the unlabeled vertical arrows are the canonical inclusions in the
Ž . Ž . Ybiduals. This shows that AB P ( j is an extension of AB P ( J s0 0 E

Ž . Ž . 5 Ž .5 5 Ž . 5 5 5AB P . Hence, AB P is extendible and AB P AB P ( j F P .e 0 0
Ž .XSince P is an arbitrary extension of P to L B , the result follows.0 ` E

Žk .COROLLARY 3.7. A polynomial P g PP E is extendible if and only if its
Ž . 5 5 5 Ž .5Aron]Berner extension AB P is extendible. In this case, P s AB P .e e

Ž .Proof. If AB P is extendible, with P being its restriction to E, P is
5 5 5 Ž .5extendible by Corollary 3.5 and P F AB P . The converse and thee e

reverse inequality follow from Theorem 3.6

In general, the converse of Theorem 3.6 is not true: the identity
Ž .operator on Id : c ª c is not extendible it cannot be extended to l .c 0 0 `0

Ž . YHowever, its Aron]Berner extension AB Id s Id s Id , with l beingc c l `0 0 `

an injective space, is extendible. In the case that X is a CC -space, wel
combine Theorems 3.4 and 3.6 and obtain the following.

COROLLARY 3.8. If X is a CC -space, a polynomial P: E ª X is extendiblel
5 5if and only if its Aron]Berner extension is extendible. In this case, P Fe

5 Ž .5 5 5AB P F l P .e e

For scalar-valued polynomials, something more can be said. We define
on mk E the following norm:s

k5 5 5 5s [ s s m I s .Ž .h h pEsC ŽB . C ŽB .E 9 E 9

w xThe h-norm coincides with the one defined in 10 . The following corollary
w xwas also proved in 10 .

Ž k 5 5 .X Ž Žk . 5 5 .COROLLARY 3.9. m E, s PP E , isometrically.h ees

Ž k 5 5 .X Ž k 5 5 .X Ž Žk . 5 5 . Ž Žk .Proof. m E, s m E, s PP E , s PP E ,h h ee es s C ŽB . C ŽB .E 9 E 9
5 5 ..e

Hence, a scalar-valued polynomial is extendible if and only if it is
h-continuous. As was the case for fixed F, this is not true for vector-valued

5 5polynomials, since for degree 1, is just the norm on E. In fact,h

h-continuity is related to weak extendibility.

DEFINITION 3.10. A polynomial P: E ª X is said to be weakly ex-
tendible if for every linear functional g on X, the scalar-valued polyno-
mial g ( P is extendible.

Using the correspondence between extendibility and extendibility to
Ž .XC B , we can reformulate the results of the previous section.E

Žk .PROPOSITION 3.11. A polynomial P g PP E, X is weakly extendible if
and only if its associated operator T : mk E ª X is h-continuous.P s
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COROLLARY 3.12. For a Banach space X, the following are equï alent:

Ž .i X is injectï e.
Ž . Ž .ii For all Banach spaces E, a polynomial of any degree from E to X

is extendible if and only if it is weakly extendible.

Ž . Ž .Proof. i « ii . If P: E ª X is weakly extendible, the previous propo-
sition says that its associated operator T : mk E ª X is h-continuous.P s
Observe that, since both Theorems 3.1 and 3.2 apply for scalar-valued
polynomials, the h-norm coincides with the h -norm. Therefore, mk El ŽB . s, h` E 9k Ž .Xis an isometric subspace of m l B and since X is injective, T extends` E Ps, l

k Ž .Xto a continuous operator from m B to X. Hence, P extends toEs, p
Ž .Xl B and, by Theorem 3.2, is extendible.` E

Ž . Ž .ii « i Since every linear operator to X is weakly extendible, they
are all extendible. This means that X is injective.

It is also simple now to find a predual of the space of extendible
polynomials when X s Y X is a dual space. In this case, X is a CC -space, so1
if we put l s l , we have the following.CŽB .E 9

Ž . XPROPOSITION 3.13. a If e¨ery weakly extendible polynomial from E to Y
ŽŽ k . .X Žk X.is extendible, then m E m Y s PP E, Y isomorphically.es, h p

Ž . ŽŽ k . .X Žk X.b m E m Y s PP E, Y isometrically.l es, h

Ž .COROLLARY 3.14. If X is a dual space, the infimum in 3 is actually a
minimum.

COROLLARY 3.15. If X is a dual space, e¨ery polynomial P: E ª X is
extendible if and only if the e-norm is equï alent to the uniform norm on
Žk .PP E, X .e

w xThis last corollary extends a result given in 10 for scalar-valued
polynomials.
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