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Analytic Functions on c0

Richard M. Aron and Josip Globevnik

Abstract. Let F be a space of continuous complex valued functions on a

subset of c0 which contains the standard unit vector basis {en}. Let R : F → CN

be the restriction map, given by R(f) = (f(e1), . . . , f(en), . . .). We characterize

the ranges R(F) for various “nice” spaces F . For example, if F = P(nc0), then

R(F) = `1, and if F = A∞(Bc0), then R(F) = `∞.

Let co be the Banach space of complex null sequences ~x = (xn), with the

normal sup-norm and usual basis vectors ~en = (0, . . . , 0, 1, 0, . . .), and let F

be a space of continuous complex-valued functions on some subset of co which

contains the standard basis of co. Let R : F → CN be the mapping which

assigns to each function f ∈ F the sequence (f(e1), . . . , f(en), . . .). Our at-

tention in this article will be focussed on characterizing the range of R for

various spaces F of interest. For example, if F = C(co), the space of all con-

tinuous complex valued functions on co, then a trivial application of the Tietze

extension theorem shows that R(F) = CN . On the other hand, c0 is weakly

normal (Corson [6], see also Ferrera [9]). Since {0} ∪ {en : n ∈ N} is weakly

compact, we see that R(F) = c, the space of convergent sequences, if we take

F to be the subspace of C(c0) consisting of weakly continuous functions. Re-

cently Jaramillo [11] has examined the relationship between reflexivity of the

space F and the range of R, for certain spaces of real valued infinitely differ-

entiable functions and polynomials on a Banach space E with unconditional

basis {en; n ∈ N}.
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We concentrate here on analogous spaces of complex valued functions on

c0. After a review of relevant notation and definitions, we show in Section

1 that R(F) = `1 when F = P(nc0), n ∈ N. As a consequence, we prove

that if F = {f ∈ Hb(BR(c0)) : f(0) = 0}, then R(F) = `1. Taking n =

2 in the above result, we see that every 2−homogeneous polynomial P on

c0 satisfies
∑∞

j=1|P (ej)| < ∞. This result is reminiscent of classical work of

Littlewood [13] , who proved that every continuous bilinear form A on c0 × c0

satisfies (A(ej, ek))
∞
j,k=1 ∈ ` 4

3
. Littlewood’s work was extended by Davie [7],

who showed that every continuous n-linear form A : c0×· · ·× c0 → C satisfies

(A(eα1 , ·, ·, ·, eαn)) ∈ ` 2n
n+1

. In Section 2, we prove that R(A∞(B(c0))) = `∞,

and as a corollary of the proof of this result we show that R(AU(B(c0))) = `1.

Our notation for analytic functions is standard and follows, for example,

Dineen [8] and Mujica [14]. For a Banach space E, BR(E) denotes the open

R−ball centered at 0 in E with B1(E) abbreviated to B(E). L(nE) denotes

the Banach space of continuous n-linear forms A : E×· · ·×E → C, equipped

with the norm n‖A‖ = sup {|A(x1, ..., xn)| : xj ∈ E, ‖xj‖ ≤ 1, j = 1, ..., n}.

P(nE) denotes the Banach space of continuous n−homogeneous polynomi-

als on E. Each such polynomial P is associated with a unique symmetric

continuous n−linear form A, by P (x) = A(x, ..., x), and ‖P‖ is defined to

be sup‖x‖≤1|P (x)|. A function f from an open subset U of E to C is said

to be holomorphic if f has a complex Fréchet derivative at each point of

U . Equivalently, f is holomorphic if for all points a ∈ U, the Taylor series

f(x) =
∑∞

n=o Pn(x− a), converges uniformly for all x in some neighborhood of

a, where each Pn ∈ P(nE).

Hb(BR(E)) is the space of all holomorphic functions on BR(E) which are

bounded on Br(E) for every r < R. A useful characterization of Hb(BR(E))

is that it consists of all holomorphic functions f on BR(E) such that

limsupn→∞‖Pn‖
1
n ≤ 1/R, where {Pn : n ∈ N} represents the Taylor polynomi-
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als of f at the origin. The spaces A∞(B(E)) and AU(B(E)) have been studied

by Cole and Gamelin [4, 5], Globevnik [10] and others [1]. A∞(B(E)) = {f :

B(E) → C : f is holomorphic on B(E) and continuous and bounded on

B(E)}. Unless E is finite dimensional, this space is always strictly larger

than AU(B(E)) = {f : B(E) → C : f is holomorphic and uniformly

continuous on B(E)}. Both of these spaces are natural infinite dimensional

analogues of the disc algebra.

Section 1

We show here that for all P ∈ P(nc0) and all n ∈ N ,
∑∞

j=1 |P (ej)| ≤ ‖P‖.

This has already been done by K. John [12], in the case n = 2. In [13], Lit-

tlewood showed that for every A ∈ L(nc0), (A(ej, ek))
∞
j,k=1 ∈ ` 4

3
, and that 4

3

is best possible; thus, Littlewood’s 4
3

result notwithstanding, John’s result is

that every A ∈ L(nc0) has a trace. Our proof will make use of a generaliza-

tion of the classical Rademacher functions, which seems to be well-known to

probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix n ∈ N, n ≥ 2, and let α1 = 1, α2, ..., αn denote the nth

roots of unity. Let s1 : [0, 1] → C be the step function taking the value αj on

( j−1
n

, j
n
), for j = 1, ..., n. Assuming that sk−1 has been defined, define sk in the

following natural way. Fix any of the nk−1 sub-intervals I of [0, 1] used in the

definition of sk−1. Divide I into n equal intervals I1, ..., In, and set sk(t) = αj

if t ∈ Ij. (The endpoints of the intervals are irrelevant for this construction

and we may, for example, define sk to be 1 on each endpoint.) Of course,

when n = 2, Definition 1.1 gives us the classical Rademacher functions. The

following lemma lists the basic properties of the functions sk. Its proof is simi-

lar to the usual, induction proof for the Rademacher functions, and is omitted.
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Lemma 1.2. For each n = 2, 3, ..., the associated functions sk satisfy the

following properties:

(a). |sk(t)| = 1, for all k ∈ N and all t ∈ [0, 1].

(b). For any choice of k1, ..., kn,

∫ 1

0
sk1(t) · · · skn(t)dt =

 1 if k1 = · · · = kn

0 otherwise

We are grateful to Andrew Tonge for suggesting an improvement in the

proof of the following result.

Theorem 1.3. Let P ∈ P(nc0). Then ‖(P (ej))‖`1
≤ ‖P‖.

Proof. Let A ∈ L(nc0) be the symmetric n-linear form associated to P . Fix any

m ∈ N. For each i = 1, ...,m, let λi = |A(ei, ..., ei)|/A(ei, ..., ei), if A(ei, ..., ei) 6=

0, and 1 otherwise. Furthermore, let βi denote any nth root of λi. Thus,

λiA(ei, ..., ei) = |P (ei)| for each i = 1, ...,m. Adding and applying Lemma 1.2

for the integer n, we get
∑m

i=1 |P (ei)| =
∑m

i=1 λiA(ei, ..., ei)

=
∑m

i,j2,...,jn=1

∫ 1
0 λisi(t)sj2(t) · · · sjn(t)A(ei, ej2 , ..., ejn) dt

=
∫ 1
0 A(

∑m
i=1 λisi(t)ei, ...,

∑m
jn=1 sjn(t)ejn) dt

=
∫ 1
0 A(

∑m
j1=1 βj1sj1(t)ej1 , ...,

∑m
jn=1 βjnsjn(t)ejn) dt.

Since ‖∑m
j=1 βjsj(t)ej‖ ≤ 1 for all t, the last expression is clearly less than or

equal to ‖P‖. Since m was arbitrary, the proof is complete. Q.E.D.

Rephrasing the above result in terms of the mapping R mentioned in the

introduction, Theorem 1.3 implies that for any n, R(P(nc0)) ⊂ `1. In fact, R

is onto `1, since any ~λ = (λ1, ..., λj, ...) ∈ `1 equals R(P ), where P ∈ P(nc0) is

given by P (x) =
∑∞

j=1 λjx
n
j .

We conclude this section by proving that, up to a normalizing factor,

R(Hb(BR(c0))) = `1, for every R > 1. SinceHb(BR(c0)) “approaches”A∞(B(c0))

as R ↓ 1, it is tempting to guess that Corollary 1.4 below is also true for the
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latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let R > 1 and let f ∈ Hb(BR(c0)), with f(0) = 0. Then

(f(en))∞n=1 ∈ `1.

Proof. By the characterization given earlier of Hb(BR(c0)), we see that if S is

such that 1 < S < R, then ‖Pm‖
1
m < 1/S, for all large m. Therefore,

∑∞
n=1 |f(en)| =

∑∞
n=1 |

∑∞
m=1 Pm(en)|

≤ ∑∞
m=1

∑∞
n=1 |Pm(en)| ≤ ∑∞

m=1 ‖Pm‖ < ∞.

Q.E.D.

Section 2

The following fundamental lemma shows in effect that any sequence of 0’s

and 1’s can be interpolated by a norm one function in A∞(B(c0)).

Lemma 2.1. (i). Let S ⊂ N be an arbitrary set. There exists a function

F ∈ A∞(B(c0)) with the following properties:

‖F‖ = sup
x∈B(c0)

|F (x)| = 1,

F (en) =

 1 if n ∈ S

0 if n /∈ S

(ii). If S is finite, then a function F ∈ AU(B(c0)) can be found which satisfies

the above conditions.

Proof. Let αj ↑ ∞ so quickly that the following three conditions are satisfied:

(i). The function Φ(x) ≡ Πj∈S(1− xj)
1

αj converges for all x ∈ B(c0),

(ii). Re Φ(x) ≥ 0, for all x ∈ B(c0),

(iii). Φ(x) = 0 for some x ∈ B(c0) if and only if Re Φ(x) = 0.
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Note that Φ ∈ A∞(B(c0)) and, if S is finite then in fact Φ ∈ AU(B(c0)). Also,

Φ(en) =

 0 for n ∈ S

1 for n /∈ S

Now, let G(x) ≡ e−Φ(x). From the above, it is clear that G ∈ A∞(B(c0))

for arbitrary S and that G ∈ AU(B(c0)) for finite S. In addition, |G(x)| ≤ 1

for all x and

G(en) =

 1 for n ∈ S

1
e

for n /∈ S

Finally, let T : ∆ → ∆ be the Mobius transformation T (z) =
z− 1

e

1− z
e

(where ∆

is the complex unit disc). It is clear that F ≡ T ◦G satisfies all the conditions

of the lemma. Q.E.D.

We come now to the analogue of Corollary 1.4, for the polydisc algebras

A∞(B(c0)) and AU(B(c0)). Note that here the situation is completely differ-

ent from the situation in Section 1.

Theorem 2.2. (i). R(A∞(B(c0))) = `∞. In fact, given (αn) ∈ `∞, there

is F ∈ A∞(B(c0)) such that F (en) = αn for all n ∈ N and such that

‖F‖ ≤ 4‖(αn)‖`∞ .

(ii). R(AU(B(c0))) = c. In fact, given (αn) ∈ c, there is F ∈ AU(B(c0))

such that F (en) = αn for all n ∈ N and such that ‖F‖ ≤ 8‖(αn)‖`∞ .

Proof. (i). Without loss of generality, ‖(αn)‖ ≤ 1. Let us first suppose that

αn ≥ 0 for all n. Write αn =
∑∞

j=12
−jαnj

, where each αnj
= 0 or 1. Let

Sj = {n ∈ N : αnj
= 1}, and let Fj be the associated function obtained using

Lemma 2.1. It is easy to see that F ≡ ∑∞
n=1 2−jFj is the required function

in this case, and that ‖F‖ ≤ ‖(αn)‖. The case of general αn’s is treated by
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writing αn = pn − qn + iun − ivn.

(ii). Suppose first that (αn) ∈ c with ‖(αn)‖ ≤ 1, and write each αn = `+βn

where ` = limn→∞αn. As above, if each βn is expressed in binary series form,

then each of the associated sets Sj is finite. As a result, each Fj is finite, by

Lemma 2.1 (ii), so that F ∈ AU(B(c0)). The required function is G ≡ F + `.

Finally, note that for any F ∈ AU(B(c0)), F (x) can be approximated uni-

formly for x ∈ B(c0) by Fr(x) = F (rx) for r sufficiently close to 1. Next,

F (rx) can be uniformly approximated on the unit ball of c0 by a finite Tay-

lor series, say
∑M

k=0 Pk(x) (where P0 is a constant). Next, it is well known

(see, for example, [15]) that any k-homogeneous polynomial Pk on c0 can be

uniformly approximated on B(c0) by an k-homogeneous polynomial Qk which

is a finite sum of products of k continuous linear functionals on c0. Summa-

rizing, we see that the original function F can be uniformly approximated

on B(c0) by
∑∞

k=0 Qk. Now, since (en) → 0 weakly it follows that for each

k = 1, ...,M , Qk(en) → 0 as n → ∞. Hence R(F ) ∈ c, and the proof is

complete. Q.E.D.

It would be interesting to determine the best possible estimates in Theorem

2.2. In [2], we note that in this situation, the best estimate must be strictly

larger than 1. To see this, suppose that there is F ∈ A∞(B(c0)) such that

‖F‖ = 1 and such that F (e1) = 1, F (e2) = −1, and F (ej) = 0 for all j ≥ 3.

Then the function f1(z) ≡ F (1, z, 0, ...) would be in the disc algebra A(∆), and

f1 would attain its maximum at 0. Hence, f1 would be a constant and, in par-

ticular, 1 = f1(1) = F (1, 1, 0, ...). Similarly, the function f2(z) ≡ F (z, 1, 0, ...)

would be constant, and so −1 = f2(1) = F (1, 1, 0, ...), a contradiction. In [2],

the authors find necessary and sufficient conditions on the sequence (xn) ⊂ c0

in order that the mapping F ∈ A∞(B(c0)) → (F (xn)) ∈ `∞ be surjective and
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satisfy the following condition: For each (αn) ∈ `∞, there is F ∈ A∞(B(c0))

such that F (xn) = αn for each n ∈ N and ‖F‖ = supn|αn|.
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