Analytic Functions on c_0

Richard M. Aron and Josip Globevnik

Abstract. Let \mathcal{F} be a space of continuous complex valued functions on a subset of c_0 which contains the standard unit vector basis $\{e_n\}$. Let $R: \mathcal{F} \to C^{\mathcal{N}}$ be the restriction map, given by $R(f) = (f(e_1), \ldots, f(e_n), \ldots)$. We characterize the ranges $R(\mathcal{F})$ for various "nice" spaces \mathcal{F} . For example, if $\mathcal{F} = \mathcal{P}({}^n c_0)$, then $R(\mathcal{F}) = \ell_1$, and if $\mathcal{F} = A^{\infty}(B_{c_0})$, then $R(\mathcal{F}) = \ell_{\infty}$.

Let c_o be the Banach space of complex null sequences $\vec{x} = (x_n)$, with the normal sup-norm and usual basis vectors $\vec{e}_n = (0, \ldots, 0, 1, 0, \ldots)$, and let \mathcal{F} be a space of continuous complex-valued functions on some subset of c_o which contains the standard basis of c_o . Let $R : \mathcal{F} \to C^{\mathcal{N}}$ be the mapping which assigns to each function $f \in \mathcal{F}$ the sequence $(f(e_1), \ldots, f(e_n), \ldots)$. Our attention in this article will be focussed on characterizing the range of R for various spaces \mathcal{F} of interest. For example, if $\mathcal{F} = \mathcal{C}(c_o)$, the space of all continuous complex valued functions on c_o , then a trivial application of the Tietze extension theorem shows that $R(\mathcal{F}) = C^{\mathcal{N}}$. On the other hand, c_0 is weakly normal (Corson [6], see also Ferrera [9]). Since $\{0\} \cup \{e_n : n \in N\}$ is weakly compact, we see that $R(\mathcal{F}) = c$, the space of convergent sequences, if we take \mathcal{F} to be the subspace of $\mathcal{C}(c_0)$ consisting of weakly continuous functions. Recently Jaramillo [11] has examined the relationship between reflexivity of the space \mathcal{F} and the range of R, for certain spaces of *real* valued infinitely differentiable functions and polynomials on a Banach space E with unconditional basis $\{e_n; n \in N\}$.

We concentrate here on analogous spaces of *complex* valued functions on c_0 . After a review of relevant notation and definitions, we show in Section 1 that $R(\mathcal{F}) = \ell_1$ when $\mathcal{F} = \mathcal{P}({}^nc_0), n \in N$. As a consequence, we prove that if $\mathcal{F} = \{f \in \mathcal{H}_b(B_R(c_0)) : f(0) = 0\}$, then $R(\mathcal{F}) = \ell_1$. Taking n = 2 in the above result, we see that every 2-homogeneous polynomial P on c_0 satisfies $\sum_{j=1}^{\infty} |P(e_j)| < \infty$. This result is reminiscent of classical work of Littlewood [13], who proved that every continuous bilinear form A on $c_0 \times c_0$ satisfies $(A(e_j, e_k))_{j,k=1}^{\infty} \in \ell_{\frac{4}{3}}$. Littlewood's work was extended by Davie [7], who showed that every continuous n-linear form $A: c_0 \times \cdots \times c_0 \to C$ satisfies $(A(e_{\alpha_1}, \cdot, \cdot, \cdot, e_{\alpha_n})) \in \ell_{\frac{2n}{n+1}}$. In Section 2, we prove that $R(\mathcal{A}_U(B(c_0))) = \ell_{\infty}$, and as a corollary of the proof of this result we show that $R(\mathcal{A}_U(B(c_0))) = \ell_1$.

Our notation for analytic functions is standard and follows, for example, Dineen [8] and Mujica [14]. For a Banach space $E, B_R(E)$ denotes the open R-ball centered at 0 in E with $B_1(E)$ abbreviated to B(E). $\mathcal{L}(^nE)$ denotes the Banach space of continuous n-linear forms $A : E \times \cdots \times E \to C$, equipped with the norm $\mathbf{n} ||A|| = \sup \{|A(x_1, ..., x_n)| : x_j \in E, ||x_j|| \leq 1, j = 1, ..., n\}$. $\mathcal{P}(^nE)$ denotes the Banach space of continuous n-homogeneous polynomials on E. Each such polynomial P is associated with a unique symmetric continuous n-linear form A, by P(x) = A(x, ..., x), and ||P|| is defined to be $\sup_{\|x\|\leq 1}|P(x)|$. A function f from an open subset U of E to C is said to be holomorphic if f has a complex Fréchet derivative at each point of U. Equivalently, f is holomorphic if for all points $a \in U$, the Taylor series $f(x) = \sum_{n=o}^{\infty} P_n(x-a)$, converges uniformly for all x in some neighborhood of a, where each $P_n \in \mathcal{P}(^nE)$.

 $\mathcal{H}_b(B_R(E))$ is the space of all holomorphic functions on $B_R(E)$ which are bounded on $B_r(E)$ for every r < R. A useful characterization of $\mathcal{H}_b(B_R(E))$ is that it consists of all holomorphic functions f on $B_R(E)$ such that

 $\lim_{n\to\infty} \|P_n\|^{\frac{1}{n}} \leq 1/R$, where $\{P_n : n \in N\}$ represents the Taylor polynomi-

als of f at the origin. The spaces $\mathcal{A}^{\infty}(B(E))$ and $\mathcal{A}_U(B(E))$ have been studied by Cole and Gamelin [4, 5], Globevnik [10] and others [1]. $\mathcal{A}^{\infty}(B(E)) = \{f : \overline{B(E)} \to C : f$ is holomorphic on B(E) and continuous and bounded on $\overline{B(E)}\}$. Unless E is finite dimensional, this space is always strictly larger than $\mathcal{A}_U(B(E)) = \{f : B(E) \to C : f$ is holomorphic and uniformly continuous on $B(E)\}$. Both of these spaces are natural infinite dimensional analogues of the disc algebra.

Section 1

We show here that for all $P \in \mathcal{P}({}^{n}c_{0})$ and all $n \in N$, $\sum_{j=1}^{\infty} |P(e_{j})| \leq ||P||$. This has already been done by K. John [12], in the case n = 2. In [13], Littlewood showed that for every $A \in \mathcal{L}({}^{n}c_{0})$, $(A(e_{j}, e_{k}))_{j,k=1}^{\infty} \in \ell_{\frac{4}{3}}$, and that $\frac{4}{3}$ is best possible; thus, Littlewood's $\frac{4}{3}$ result notwithstanding, John's result is that every $A \in \mathcal{L}({}^{n}c_{0})$ has a trace. Our proof will make use of a generalization of the classical Rademacher functions, which seems to be well-known to probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix $n \in N$, $n \geq 2$, and let $\alpha_1 = 1, \alpha_2, ..., \alpha_n$ denote the n^{th} roots of unity. Let $s_1 : [0, 1] \to C$ be the step function taking the value α_j on $(\frac{j-1}{n}, \frac{j}{n})$, for j = 1, ..., n. Assuming that s_{k-1} has been defined, define s_k in the following natural way. Fix any of the n^{k-1} sub-intervals I of [0, 1] used in the definition of s_{k-1} . Divide I into n equal intervals $I_1, ..., I_n$, and set $s_k(t) = \alpha_j$ if $t \in I_j$. (The endpoints of the intervals are irrelevant for this construction and we may, for example, define s_k to be 1 on each endpoint.) Of course, when n = 2, Definition 1.1 gives us the classical Rademacher functions. The following lemma lists the basic properties of the functions s_k . Its proof is similar to the usual, induction proof for the Rademacher functions, and is omitted.

Lemma 1.2. For each n = 2, 3, ..., the associated functions s_k satisfy the following properties:

- (a). $|s_k(t)| = 1$, for all $k \in N$ and all $t \in [0, 1]$.
- (b). For any choice of $k_1, ..., k_n$,

$$\int_0^1 s_{k_1}(t) \cdots s_{k_n}(t) dt = \begin{cases} 1 & \text{if } k_1 = \cdots = k_n \\ 0 & \text{otherwise} \end{cases}$$

We are grateful to Andrew Tonge for suggesting an improvement in the proof of the following result.

Theorem 1.3. Let $P \in \mathcal{P}({}^{n}c_{0})$. Then $||(P(e_{j}))||_{\ell_{1}} \leq ||P||$.

Proof. Let $A \in \mathcal{L}({}^{n}c_{0})$ be the symmetric *n*-linear form associated to *P*. Fix any $m \in N$. For each i = 1, ..., m, let $\lambda_{i} = |A(e_{i}, ..., e_{i})|/A(e_{i}, ..., e_{i})$, if $A(e_{i}, ..., e_{i}) \neq 0$, and 1 otherwise. Furthermore, let β_{i} denote any n^{th} root of λ_{i} . Thus, $\lambda_{i}A(e_{i}, ..., e_{i}) = |P(e_{i})|$ for each i = 1, ..., m. Adding and applying Lemma 1.2 for the integer *n*, we get $\sum_{i=1}^{m} |P(e_{i})| = \sum_{i=1}^{m} \lambda_{i}A(e_{i}, ..., e_{i})$

$$= \sum_{i,j_2,...,j_n=1}^m \int_0^1 \lambda_i s_i(t) s_{j_2}(t) \cdots s_{j_n}(t) A(e_i, e_{j_2}, ..., e_{j_n}) dt$$

= $\int_0^1 A(\sum_{i=1}^m \lambda_i s_i(t) e_i, ..., \sum_{j_n=1}^m s_{j_n}(t) e_{j_n}) dt$
= $\int_0^1 A(\sum_{j_1=1}^m \beta_{j_1} s_{j_1}(t) e_{j_1}, ..., \sum_{j_n=1}^m \beta_{j_n} s_{j_n}(t) e_{j_n}) dt.$

Since $\|\sum_{j=1}^{m} \beta_j s_j(t) e_j\| \leq 1$ for all t, the last expression is clearly less than or equal to $\|P\|$. Since m was arbitrary, the proof is complete. Q.E.D.

Rephrasing the above result in terms of the mapping R mentioned in the introduction, Theorem 1.3 implies that for any n, $R(\mathcal{P}(^nc_0)) \subset \ell_1$. In fact, R is onto ℓ_1 , since any $\vec{\lambda} = (\lambda_1, ..., \lambda_j, ...) \in \ell_1$ equals R(P), where $P \in \mathcal{P}(^nc_0)$ is given by $P(x) = \sum_{j=1}^{\infty} \lambda_j x_j^n$.

We conclude this section by proving that, up to a normalizing factor, $R(\mathcal{H}_b(B_R(c_0))) = \ell_1$, for every R > 1. Since $\mathcal{H}_b(B_R(c_0))$ "approaches" $\mathcal{A}^{\infty}(B(c_0))$ as $R \downarrow 1$, it is tempting to guess that Corollary 1.4 below is also true for the latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let R > 1 and let $f \in \mathcal{H}_b(B_R(c_0))$, with f(0) = 0. Then $(f(e_n))_{n=1}^{\infty} \in \ell_1$.

Proof. By the characterization given earlier of $\mathcal{H}_b(B_R(c_0))$, we see that if S is such that 1 < S < R, then $\|P_m\|^{\frac{1}{m}} < 1/S$, for all large m. Therefore,

$$\sum_{n=1}^{\infty} |f(e_n)| = \sum_{n=1}^{\infty} |\sum_{m=1}^{\infty} P_m(e_n)|$$

$$\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |P_m(e_n)| \leq \sum_{m=1}^{\infty} ||P_m|| < \infty.$$

Q.E.D.

Section 2

The following fundamental lemma shows in effect that any sequence of 0's and 1's can be interpolated by a norm one function in $\mathcal{A}^{\infty}(B(c_0))$.

Lemma 2.1. (i). Let $S \subset N$ be an arbitrary set. There exists a function $F \in \mathcal{A}^{\infty}(B(c_0))$ with the following properties:

$$||F|| = \sup_{x \in B(c_0)} |F(x)| = 1,$$
$$F(e_n) = \begin{cases} 1 & \text{if } n \in S \\ 0 & \text{if } n \notin S \end{cases}$$

(ii). If S is finite, then a function $F \in \mathcal{A}_U(B(c_0))$ can be found which satisfies the above conditions.

Proof. Let $\alpha_j \uparrow \infty$ so quickly that the following three conditions are satisfied:

(*i*). The function $\Phi(x) \equiv \prod_{j \in S} (1 - x_j)^{\frac{1}{\alpha_j}}$ converges for all $x \in \overline{B(c_0)}$, (*ii*). Re $\Phi(x) \geq 0$, for all $x \in B(c_0)$, (*iii*). $\Phi(x) = 0$ for some $x \in \overline{B(c_0)}$ if and only if Re $\Phi(x) = 0$. Note that $\Phi \in \mathcal{A}^{\infty}(B(c_0))$ and, if S is finite then in fact $\Phi \in \mathcal{A}_U(B(c_0))$. Also,

$$\Phi(e_n) = \begin{cases} 0 & \text{for } n \in S \\ 1 & \text{for } n \notin S \end{cases}$$

Now, let $G(x) \equiv e^{-\Phi(x)}$. From the above, it is clear that $G \in \mathcal{A}^{\infty}(B(c_0))$ for arbitrary S and that $G \in \mathcal{A}_U(B(c_0))$ for finite S. In addition, $|G(x)| \leq 1$ for all x and

$$G(e_n) = \begin{cases} 1 & \text{for } n \in S \\ \frac{1}{e} & \text{for } n \notin S \end{cases}$$

Finally, let $T: \overline{\Delta} \to \overline{\Delta}$ be the Mobius transformation $T(z) = \frac{z - \frac{1}{e}}{1 - \frac{z}{e}}$ (where Δ is the complex unit disc). It is clear that $F \equiv T \circ G$ satisfies all the conditions of the lemma. Q.E.D.

We come now to the analogue of Corollary 1.4, for the polydisc algebras $\mathcal{A}^{\infty}(B(c_0))$ and $\mathcal{A}_U(B(c_0))$. Note that here the situation is completely different from the situation in Section 1.

Theorem 2.2. (i). $R(\mathcal{A}^{\infty}(B(c_0))) = \ell_{\infty}$. In fact, given $(\alpha_n) \in \ell_{\infty}$, there is $F \in \mathcal{A}^{\infty}(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \leq 4||(\alpha_n)||_{\ell_{\infty}}$.

(ii). $R(\mathcal{A}_U(B(c_0))) = c$. In fact, given $(\alpha_n) \in c$, there is $F \in \mathcal{A}_U(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \leq 8||(\alpha_n)||_{\ell_{\infty}}$.

Proof. (i). Without loss of generality, $\|(\alpha_n)\| \leq 1$. Let us first suppose that $\alpha_n \geq 0$ for all n. Write $\alpha_n = \sum_{j=1}^{\infty} 2^{-j} \alpha_{n_j}$, where each $\alpha_{n_j} = 0$ or 1. Let $S_j = \{n \in N : \alpha_{n_j} = 1\}$, and let F_j be the associated function obtained using Lemma 2.1. It is easy to see that $F \equiv \sum_{n=1}^{\infty} 2^{-j} F_j$ is the required function in this case, and that $\|F\| \leq \|(\alpha_n)\|$. The case of general α_n 's is treated by

writing $\alpha_n = p_n - q_n + iu_n - iv_n$.

(ii). Suppose first that $(\alpha_n) \in c$ with $||(\alpha_n)|| \leq 1$, and write each $\alpha_n = \ell + \beta_n$ where $\ell = \lim_{n \to \infty} \alpha_n$. As above, if each β_n is expressed in binary series form, then each of the associated sets S_j is finite. As a result, each F_j is finite, by Lemma 2.1 (ii), so that $F \in \mathcal{A}_U(B(c_0))$. The required function is $G \equiv F + \ell$.

Finally, note that for any $F \in \mathcal{A}_U(B(c_0))$, F(x) can be approximated uniformly for $x \in B(c_0)$ by $F_r(x) = F(rx)$ for r sufficiently close to 1. Next, F(rx) can be uniformly approximated on the unit ball of c_0 by a finite Taylor series, say $\sum_{k=0}^{M} P_k(x)$ (where P_0 is a constant). Next, it is well known (see, for example, [15]) that any k-homogeneous polynomial P_k on c_0 can be uniformly approximated on $B(c_0)$ by an k-homogeneous polynomial Q_k which is a finite sum of products of k continuous linear functionals on c_0 . Summarizing, we see that the original function F can be uniformly approximated on $B(c_0)$ by $\sum_{k=0}^{\infty} Q_k$. Now, since $(e_n) \to 0$ weakly it follows that for each $k = 1, ..., M, Q_k(e_n) \to 0$ as $n \to \infty$. Hence $R(F) \in c$, and the proof is complete. Q.E.D.

It would be interesting to determine the best possible estimates in Theorem 2.2. In [2], we note that in this situation, the best estimate must be strictly larger than 1. To see this, suppose that there is $F \in \mathcal{A}^{\infty}(B(c_0))$ such that ||F|| = 1 and such that $F(e_1) = 1$, $F(e_2) = -1$, and $F(e_j) = 0$ for all $j \ge 3$. Then the function $f_1(z) \equiv F(1, z, 0, ...)$ would be in the disc algebra $\mathcal{A}(\Delta)$, and f_1 would attain its maximum at 0. Hence, f_1 would be a constant and, in particular, $1 = f_1(1) = F(1, 1, 0, ...)$. Similarly, the function $f_2(z) \equiv F(z, 1, 0, ...)$ would be constant, and so $-1 = f_2(1) = F(1, 1, 0, ...)$, a contradiction. In [2], the authors find necessary and sufficient conditions on the sequence $(x_n) \subset c_0$ in order that the mapping $F \in \mathcal{A}^{\infty}(B(c_0)) \to (F(x_n)) \in \ell_{\infty}$ be surjective and

satisfy the following condition: For each $(\alpha_n) \in \ell_{\infty}$, there is $F \in \mathcal{A}^{\infty}(B(c_0))$ such that $F(x_n) = \alpha_n$ for each $n \in N$ and $||F|| = sup_n |\alpha_n|$.

References

- 1. R.M. Aron, B. Cole, and T. Gamelin, The spectra of algebras of analytic functions associated with a Banach space, to appear.
- R.M. Aron and J. Globevnik, Interpolation by analytic functions on c₀, Math. Proc. Camb. Phil. Soc. **104** (1988) 295-302.
- S.D. Chatterji, Continuous functions representable as sums of independent random variables, Z. Wahrsch., 13 (1969) 338-341.
- B. Cole and T. Gamelin, Representing measures and Hardy spaces for the infinite polydisc algebra, Proc. London Math. Soc (3) 53 (1986) 1, 112-142.
- B. Cole and T. Gamelin, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier 35 (1985) 149-189.
- H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
- A.M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
- S. Dineen, Complex analysis in locally convex spaces, Mathematics Studies 83, North Holland, Amsterdam, 1981.
- 9. J. Ferrera, Spaces of weakly continuous functions, Pacific J. Math. 102 (1982) 285-291.
- J. Globevnik, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Camb. Phil. Soc. 85 (1979) 291-303.
- J.A. Jaramillo, Algebras de funciones continuas y diferenciables, PhD dissertation, Univ. Complutense de Madrid, 1988.
- K. John, On tensor product characterization of nuclear spaces, Math. Ann. 257 (1981) 341-353.
- J. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. Journ. of Math. (2) 2 (1930), 164-174.

- J. Mujica, Complex analysis in Banach spaces, Math. Studies 120, North Holland, Amsterdam, 1986.
- A. Pelczynski, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sc. XI, 6 (1963) 379-386.

Richard M. Aron Department of Mathematics Kent State University Kent, Ohio 44240 U.S.A. Josip Globevnik Institute of Mathematics University of Ljubljana 19 Jadranska 61000 Ljubljana Yugoslavia