Analytic Functions on \mathbf{c}_{0}

Richard M. Aron and Josip Globevnik

Abstract

Let \mathcal{F} be a space of continuous complex valued functions on a subset of c_{0} which contains the standard unit vector basis $\left\{e_{n}\right\}$. Let $R: \mathcal{F} \rightarrow C^{\mathcal{N}}$ be the restriction map, given by $R(f)=\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right)$. We characterize the ranges $R(\mathcal{F})$ for various "nice" spaces \mathcal{F}. For example, if $\mathcal{F}=\mathcal{P}\left({ }^{n} c_{0}\right)$, then $R(\mathcal{F})=\ell_{1}$, and if $\mathcal{F}=A^{\infty}\left(B_{c_{0}}\right)$, then $R(\mathcal{F})=\ell_{\infty}$.

Let c_{o} be the Banach space of complex null sequences $\vec{x}=\left(x_{n}\right)$, with the normal sup-norm and usual basis vectors $\vec{e}_{n}=(0, \ldots, 0,1,0, \ldots)$, and let \mathcal{F} be a space of continuous complex-valued functions on some subset of c_{o} which contains the standard basis of c_{o}. Let $R: \mathcal{F} \rightarrow C^{\mathcal{N}}$ be the mapping which assigns to each function $f \in \mathcal{F}$ the sequence $\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right), \ldots\right)$. Our attention in this article will be focussed on characterizing the range of R for various spaces \mathcal{F} of interest. For example, if $\mathcal{F}=\mathcal{C}\left(c_{o}\right)$, the space of all continuous complex valued functions on c_{o}, then a trivial application of the Tietze extension theorem shows that $R(\mathcal{F})=C^{\mathcal{N}}$. On the other hand, c_{0} is weakly normal (Corson [6], see also Ferrera [9]). Since $\{0\} \cup\left\{e_{n}: n \in N\right\}$ is weakly compact, we see that $R(\mathcal{F})=c$, the space of convergent sequences, if we take \mathcal{F} to be the subspace of $\mathcal{C}\left(c_{0}\right)$ consisting of weakly continuous functions. Recently Jaramillo [11] has examined the relationship between reflexivity of the space \mathcal{F} and the range of R, for certain spaces of real valued infinitely differentiable functions and polynomials on a Banach space E with unconditional basis $\left\{e_{n} ; n \in N\right\}$.

We concentrate here on analogous spaces of complex valued functions on c_{0}. After a review of relevant notation and definitions, we show in Section 1 that $R(\mathcal{F})=\ell_{1}$ when $\mathcal{F}=\mathcal{P}\left({ }^{n} c_{0}\right), n \in N$. As a consequence, we prove that if $\mathcal{F}=\left\{f \in \mathcal{H}_{b}\left(B_{R}\left(c_{0}\right)\right): f(0)=0\right\}$, then $R(\mathcal{F})=\ell_{1}$. Taking $n=$ 2 in the above result, we see that every $2-$ homogeneous polynomial P on c_{0} satisfies $\sum_{j=1}^{\infty}\left|P\left(e_{j}\right)\right|<\infty$. This result is reminiscent of classical work of Littlewood [13], who proved that every continuous bilinear form A on $c_{0} \times c_{0}$ satisfies $\left(A\left(e_{j}, e_{k}\right)\right)_{j, k=1}^{\infty} \in \ell_{\frac{4}{3}}$. Littlewood's work was extended by Davie [7], who showed that every continuous n-linear form $A: c_{0} \times \cdots \times c_{0} \rightarrow C$ satisfies $\left(A\left(e_{\alpha_{1}}, \cdot, \cdot, \cdot, e_{\alpha_{n}}\right)\right) \in \ell_{\frac{2 n}{n+1}}$. In Section 2, we prove that $R\left(\mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)\right)=\ell_{\infty}$, and as a corollary of the proof of this result we show that $R\left(\mathcal{A}_{U}\left(B\left(c_{0}\right)\right)\right)=\ell_{1}$.

Our notation for analytic functions is standard and follows, for example, Dineen [8] and Mujica [14]. For a Banach space $E, B_{R}(E)$ denotes the open R-ball centered at 0 in E with $B_{1}(E)$ abbreviated to $B(E) . \mathcal{L}\left({ }^{n} E\right)$ denotes the Banach space of continuous n-linear forms $A: E \times \cdots \times E \rightarrow C$, equipped with the norm $\mathrm{n}\|A\|=\sup \left\{\left|A\left(x_{1}, \ldots, x_{n}\right)\right|: x_{j} \in E,\left\|x_{j}\right\| \leq 1, j=1, \ldots, n\right\}$. $\mathcal{P}\left({ }^{n} E\right)$ denotes the Banach space of continuous n-homogeneous polynomials on E. Each such polynomial P is associated with a unique symmetric continuous n-linear form A, by $P(x)=A(x, \ldots, x)$, and $\|P\|$ is defined to be $\sup _{\|x\| \leq 1}|P(x)|$. A function f from an open subset U of E to C is said to be holomorphic if f has a complex Fréchet derivative at each point of U. Equivalently, f is holomorphic if for all points $a \in U$, the Taylor series $f(x)=\sum_{n=o}^{\infty} P_{n}(x-a)$, converges uniformly for all x in some neighborhood of a, where each $P_{n} \in \mathcal{P}\left({ }^{n} E\right)$.
$\mathcal{H}_{b}\left(B_{R}(E)\right)$ is the space of all holomorphic functions on $B_{R}(E)$ which are bounded on $B_{r}(E)$ for every $r<R$. A useful characterization of $\mathcal{H}_{b}\left(B_{R}(E)\right)$ is that it consists of all holomorphic functions f on $B_{R}(E)$ such that limsup $_{n \rightarrow \infty}\left\|P_{n}\right\|^{\frac{1}{n}} \leq 1 / R$, where $\left\{P_{n}: n \in N\right\}$ represents the Taylor polynomi-
als of f at the origin. The spaces $\mathcal{A}^{\infty}(B(E))$ and $\mathcal{A}_{U}(B(E))$ have been studied by Cole and Gamelin [4, 5], Globevnik [10] and others [1]. $\mathcal{A}^{\infty}(B(E))=\{f$: $\overline{B(E)} \rightarrow C: f$ is holomorphic on $\mathrm{B}(\mathrm{E})$ and continuous and bounded on $\bar{B}(E)$ \}. Unless E is finite dimensional, this space is always strictly larger than $\mathcal{A}_{U}(B(E))=\{f: B(E) \rightarrow C: f$ is holomorphic and uniformly continuous on $B(E)\}$. Both of these spaces are natural infinite dimensional analogues of the disc algebra.

Section 1

We show here that for all $P \in \mathcal{P}\left({ }^{n} c_{0}\right)$ and all $n \in N, \sum_{j=1}^{\infty}\left|P\left(e_{j}\right)\right| \leq\|P\|$. This has already been done by K. John [12], in the case $n=2$. In [13], Littlewood showed that for every $A \in \mathcal{L}\left({ }^{n} c_{0}\right),\left(A\left(e_{j}, e_{k}\right)\right)_{j, k=1}^{\infty} \in \ell_{\frac{4}{3}}$, and that $\frac{4}{3}$ is best possible; thus, Littlewood's $\frac{4}{3}$ result notwithstanding, John's result is that every $A \in \mathcal{L}\left({ }^{n} c_{0}\right)$ has a trace. Our proof will make use of a generalization of the classical Rademacher functions, which seems to be well-known to probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix $n \in N, n \geq 2$, and let $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{n}$ denote the $n^{\text {th }}$ roots of unity. Let $s_{1}:[0,1] \rightarrow C$ be the step function taking the value α_{j} on $\left(\frac{j-1}{n}, \frac{j}{n}\right)$, for $j=1, \ldots, n$. Assuming that s_{k-1} has been defined, define s_{k} in the following natural way. Fix any of the n^{k-1} sub-intervals I of $[0,1]$ used in the definition of s_{k-1}. Divide I into n equal intervals I_{1}, \ldots, I_{n}, and set $s_{k}(t)=\alpha_{j}$ if $t \in I_{j}$. (The endpoints of the intervals are irrelevant for this construction and we may, for example, define s_{k} to be 1 on each endpoint.) Of course, when $\mathrm{n}=2$, Definition 1.1 gives us the classical Rademacher functions. The following lemma lists the basic properties of the functions s_{k}. Its proof is similar to the usual, induction proof for the Rademacher functions, and is omitted.

Lemma 1.2. For each $n=2,3, \ldots$, the associated functions s_{k} satisfy the following properties:
(a). $\left|s_{k}(t)\right|=1$, for all $k \in N$ and all $t \in[0,1]$.
(b). For any choice of k_{1}, \ldots, k_{n},

$$
\int_{0}^{1} s_{k_{1}}(t) \cdots s_{k_{n}}(t) d t= \begin{cases}1 & \text { if } k_{1}=\cdots=k_{n} \\ 0 & \text { otherwise }\end{cases}
$$

We are grateful to Andrew Tonge for suggesting an improvement in the proof of the following result.

Theorem 1.3. Let $P \in \mathcal{P}\left({ }^{n} c_{0}\right)$. Then $\left\|\left(P\left(e_{j}\right)\right)\right\|_{\ell_{1}} \leq\|P\|$.
Proof. Let $A \in \mathcal{L}\left({ }^{n} c_{0}\right)$ be the symmetric n-linear form associated to P. Fix any $m \in N$. For each $i=1, \ldots, m$, let $\lambda_{i}=\left|A\left(e_{i}, \ldots, e_{i}\right)\right| / A\left(e_{i}, \ldots, e_{i}\right)$, if $A\left(e_{i}, \ldots, e_{i}\right) \neq$ 0 , and 1 otherwise. Furthermore, let β_{i} denote any $n^{\text {th }}$ root of λ_{i}. Thus, $\lambda_{i} A\left(e_{i}, \ldots, e_{i}\right)=\left|P\left(e_{i}\right)\right|$ for each $i=1, \ldots, m$. Adding and applying Lemma 1.2 for the integer n, we get $\sum_{i=1}^{m}\left|P\left(e_{i}\right)\right|=\sum_{i=1}^{m} \lambda_{i} A\left(e_{i}, \ldots, e_{i}\right)$

$$
\begin{aligned}
& =\sum_{i, j_{2}, \ldots, j_{n}=1}^{m} \int_{0}^{1} \lambda_{i} s_{i}(t) s_{j_{2}}(t) \cdots s_{j_{n}}(t) A\left(e_{i}, e_{j_{2}}, \ldots, e_{j_{n}}\right) d t \\
& =\int_{0}^{1} A\left(\sum_{i=1}^{m} \lambda_{i} s_{i}(t) e_{i}, \ldots, \sum_{j_{n}=1}^{m} s_{j_{n}}(t) e_{j_{n}}\right) d t \\
& =\int_{0}^{1} A\left(\sum_{j_{1}=1}^{m} \beta_{j_{1}} s_{j_{1}}(t) e_{j_{1}}, \ldots, \sum_{j_{n}=1}^{m} \beta_{j_{n}} s_{j_{n}}(t) e_{j_{n}}\right) d t .
\end{aligned}
$$

Since $\left\|\sum_{j=1}^{m} \beta_{j} s_{j}(t) e_{j}\right\| \leq 1$ for all t, the last expression is clearly less than or equal to $\|P\|$. Since m was arbitrary, the proof is complete. Q.E.D.

Rephrasing the above result in terms of the mapping R mentioned in the introduction, Theorem 1.3 implies that for any $n, R\left(\mathcal{P}\left({ }^{n} c_{0}\right)\right) \subset \ell_{1}$. In fact, R is onto ℓ_{1}, since any $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{j}, \ldots\right) \in \ell_{1}$ equals $R(P)$, where $P \in \mathcal{P}\left({ }^{n} c_{0}\right)$ is given by $P(x)=\sum_{j=1}^{\infty} \lambda_{j} x_{j}^{n}$.

We conclude this section by proving that, up to a normalizing factor, $R\left(\mathcal{H}_{b}\left(B_{R}\left(c_{0}\right)\right)\right)=\ell_{1}$, for every $R>1$. Since $\mathcal{H}_{b}\left(B_{R}\left(c_{0}\right)\right)$ "approaches" $\mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ as $R \downarrow 1$, it is tempting to guess that Corollary 1.4 below is also true for the
latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let $R>1$ and let $f \in \mathcal{H}_{b}\left(B_{R}\left(c_{0}\right)\right)$, with $f(0)=0$. Then $\left(f\left(e_{n}\right)\right)_{n=1}^{\infty} \in \ell_{1}$.
Proof. By the characterization given earlier of $\mathcal{H}_{b}\left(B_{R}\left(c_{0}\right)\right)$, we see that if S is such that $1<S<R$, then $\left\|P_{m}\right\|^{\frac{1}{m}}<1 / S$, for all large m. Therefore,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|f\left(e_{n}\right)\right|=\sum_{n=1}^{\infty}\left|\sum_{m=1}^{\infty} P_{m}\left(e_{n}\right)\right| \\
\leq & \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|P_{m}\left(e_{n}\right)\right| \leq \sum_{m=1}^{\infty}\left\|P_{m}\right\|<\infty
\end{aligned}
$$

Q.E.D.

Section 2

The following fundamental lemma shows in effect that any sequence of 0 's and 1's can be interpolated by a norm one function in $\mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$.

Lemma 2.1. (i). Let $S \subset N$ be an arbitrary set. There exists a function $F \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ with the following properties:

$$
\begin{gathered}
\|F\|=\sup _{x \in B\left(c_{0}\right)}|F(x)|=1, \\
F\left(e_{n}\right)= \begin{cases}1 & \text { if } n \in S \\
0 & \text { if } n \notin S\end{cases}
\end{gathered}
$$

(ii). If S is finite, then a function $F \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$ can be found which satisfies the above conditions.

Proof. Let $\alpha_{j} \uparrow \infty$ so quickly that the following three conditions are satisfied:
(i). The function $\Phi(x) \equiv \Pi_{j \in S}\left(1-x_{j}\right)^{\frac{1}{\alpha_{j}}}$ converges for all $x \in \overline{B\left(c_{0}\right)}$,
(ii). Re $\Phi(x) \geq 0$, for all $x \in B\left(c_{0}\right)$,
(iii). $\Phi(x)=0$ for some $x \in \overline{B\left(c_{0}\right)}$ if and only if $\operatorname{Re} \Phi(x)=0$.

Note that $\Phi \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ and, if S is finite then in fact $\Phi \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$. Also,

$$
\Phi\left(e_{n}\right)= \begin{cases}0 & \text { for } n \in S \\ 1 & \text { for } n \notin S\end{cases}
$$

Now, let $G(x) \equiv e^{-\Phi(x)}$. From the above, it is clear that $G \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ for arbitrary S and that $G \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$ for finite S. In addition, $|G(x)| \leq 1$ for all x and

$$
G\left(e_{n}\right)= \begin{cases}1 & \text { for } n \in S \\ \frac{1}{e} & \text { for } n \notin S\end{cases}
$$

Finally, let $T: \bar{\Delta} \rightarrow \bar{\Delta}$ be the Mobius transformation $T(z)=\frac{z-\frac{1}{e}}{1-\frac{z}{e}}$ (where Δ is the complex unit disc). It is clear that $F \equiv T \circ G$ satisfies all the conditions of the lemma. Q.E.D.

We come now to the analogue of Corollary 1.4, for the polydisc algebras $\mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ and $\mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$. Note that here the situation is completely different from the situation in Section 1.

Theorem 2.2. (i). $R\left(\mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)\right)=\ell_{\infty}$. In fact, given $\left(\alpha_{n}\right) \in \ell_{\infty}$, there is $F \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ such that $F\left(e_{n}\right)=\alpha_{n}$ for all $n \in N$ and such that $\|F\| \leq 4\left\|\left(\alpha_{n}\right)\right\|_{\ell_{\infty}}$.
(ii). $R\left(\mathcal{A}_{U}\left(B\left(c_{0}\right)\right)\right)=c$. In fact, given $\left(\alpha_{n}\right) \in c$, there is $F \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$ such that $F\left(e_{n}\right)=\alpha_{n}$ for all $n \in N$ and such that $\|F\| \leq 8\left\|\left(\alpha_{n}\right)\right\|_{\ell_{\infty}}$.
Proof. (i). Without loss of generality, $\left\|\left(\alpha_{n}\right)\right\| \leq 1$. Let us first suppose that $\alpha_{n} \geq 0$ for all n. Write $\alpha_{n}=\sum_{j=1}^{\infty} 2^{-j} \alpha_{n_{j}}$, where each $\alpha_{n_{j}}=0$ or 1 . Let $S_{j}=\left\{n \in N: \alpha_{n_{j}}=1\right\}$, and let F_{j} be the associated function obtained using Lemma 2.1. It is easy to see that $F \equiv \sum_{n=1}^{\infty} 2^{-j} F_{j}$ is the required function in this case, and that $\|F\| \leq\left\|\left(\alpha_{n}\right)\right\|$. The case of general α_{n} 's is treated by
writing $\alpha_{n}=p_{n}-q_{n}+i u_{n}-i v_{n}$.
(ii). Suppose first that $\left(\alpha_{n}\right) \in c$ with $\left\|\left(\alpha_{n}\right)\right\| \leq 1$, and write each $\alpha_{n}=\ell+\beta_{n}$ where $\ell=\lim _{n \rightarrow \infty} \alpha_{n}$. As above, if each β_{n} is expressed in binary series form, then each of the associated sets S_{j} is finite. As a result, each F_{j} is finite, by Lemma 2.1 (ii), so that $F \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right)$. The required function is $G \equiv F+\ell$.

Finally, note that for any $F \in \mathcal{A}_{U}\left(B\left(c_{0}\right)\right), F(x)$ can be approximated uniformly for $x \in B\left(c_{0}\right)$ by $F_{r}(x)=F(r x)$ for r sufficiently close to 1 . Next, $F(r x)$ can be uniformly approximated on the unit ball of c_{0} by a finite Taylor series, say $\sum_{k=0}^{M} P_{k}(x)$ (where P_{0} is a constant). Next, it is well known (see, for example, [15]) that any k-homogeneous polynomial P_{k} on c_{0} can be uniformly approximated on $B\left(c_{0}\right)$ by an k-homogeneous polynomial Q_{k} which is a finite sum of products of k continuous linear functionals on c_{0}. Summarizing, we see that the original function F can be uniformly approximated on $B\left(c_{0}\right)$ by $\sum_{k=0}^{\infty} Q_{k}$. Now, since $\left(e_{n}\right) \rightarrow 0$ weakly it follows that for each $k=1, \ldots, M, Q_{k}\left(e_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $R(F) \in c$, and the proof is complete. Q.E.D.

It would be interesting to determine the best possible estimates in Theorem 2.2. In [2], we note that in this situation, the best estimate must be strictly larger than 1 . To see this, suppose that there is $F \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ such that $\|F\|=1$ and such that $F\left(e_{1}\right)=1, F\left(e_{2}\right)=-1$, and $F\left(e_{j}\right)=0$ for all $j \geq 3$. Then the function $f_{1}(z) \equiv F(1, z, 0, \ldots)$ would be in the disc algebra $\mathcal{A}(\Delta)$, and f_{1} would attain its maximum at 0 . Hence, f_{1} would be a constant and, in particular, $1=f_{1}(1)=F(1,1,0, \ldots)$. Similarly, the function $f_{2}(z) \equiv F(z, 1,0, \ldots)$ would be constant, and so $-1=f_{2}(1)=F(1,1,0, \ldots)$, a contradiction. In [2], the authors find necessary and sufficient conditions on the sequence $\left(x_{n}\right) \subset c_{0}$ in order that the mapping $F \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right) \rightarrow\left(F\left(x_{n}\right)\right) \in \ell_{\infty}$ be surjective and
satisfy the following condition: For each $\left(\alpha_{n}\right) \in \ell_{\infty}$, there is $F \in \mathcal{A}^{\infty}\left(B\left(c_{0}\right)\right)$ such that $F\left(x_{n}\right)=\alpha_{n}$ for each $n \in N$ and $\|F\|=\sup _{n}\left|\alpha_{n}\right|$.

References

1. R.M. Aron, B. Cole, and T. Gamelin, The spectra of algebras of analytic functions associated with a Banach space, to appear.
2. R.M. Aron and J. Globevnik, Interpolation by analytic functions on c_{0}, Math. Proc. Camb. Phil. Soc. 104 (1988) 295-302.
3. S.D. Chatterji, Continuous functions representable as sums of independent random variables, Z. Wahrsch., 13 (1969) 338-341.
4. B. Cole and T. Gamelin, Representing measures and Hardy spaces for the infinite polydisc algebra, Proc. London Math. Soc (3) 53 (1986) 1, 112-142.
5. B. Cole and T. Gamelin, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier 35 (1985) 149-189.
6. H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
7. A.M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
8. S. Dineen, Complex analysis in locally convex spaces, Mathematics Studies 83, North Holland, Amsterdam, 1981.
9. J. Ferrera, Spaces of weakly continuous functions, Pacific J. Math. 102 (1982) 285-291.
10. J. Globevnik, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Camb. Phil. Soc. 85 (1979) 291-303.
11. J.A. Jaramillo, Algebras de funciones continuas y diferenciables, PhD dissertation, Univ. Complutense de Madrid, 1988.
12. K. John, On tensor product characterization of nuclear spaces, Math. Ann. 257 (1981) 341-353.
13. J. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. Journ. of Math. (2) 2 (1930), 164-174.
14. J. Mujica, Complex analysis in Banach spaces, Math. Studies 120, North Holland, Amsterdam, 1986.
15. A. Pelczynski, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sc. XI, 6 (1963) 379-386.

Richard M. Aron	Josip Globevnik
Department of Mathematics	Institute of Mathematics
Kent State University	University of Ljubljana
Kent, Ohio 44240	19 Jadranska
U.S.A.	61000 Ljubljana
	Yugoslavia

