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Abstract. Let F be a space of continuous complex valued functions on a
subset of ¢y which contains the standard unit vector basis {e,, }. Let R : F — cN
be the restriction map, given by R(f) = (f(e1),-.., f(en),...). We characterize
the ranges R(F) for various “nice” spaces F. For example, if F = P("¢p), then

R(F) = 1, and if F = A®(B,,), then R(F) = ls.

Let ¢, be the Banach space of complex null sequences ¥ = (z,,), with the
normal sup-norm and usual basis vectors €, = (0,...,0,1,0,...), and let F
be a space of continuous complex-valued functions on some subset of ¢, which
contains the standard basis of ¢,. Let R : F — C" be the mapping which
assigns to each function f € F the sequence (f(ey1),..., f(en),...). Our at-
tention in this article will be focussed on characterizing the range of R for
various spaces F of interest. For example, if F = C(c,), the space of all con-
tinuous complex valued functions on ¢,, then a trivial application of the Tietze
extension theorem shows that R(F) = CV. On the other hand, ¢, is weakly
normal (Corson [6], see also Ferrera [9]). Since {0} U {e, : n € N} is weakly
compact, we see that R(F) = ¢, the space of convergent sequences, if we take
F to be the subspace of C(cg) consisting of weakly continuous functions. Re-
cently Jaramillo [11] has examined the relationship between reflexivity of the
space F and the range of R, for certain spaces of real valued infinitely differ-
entiable functions and polynomials on a Banach space E with unconditional

basis {e,; n € N}.



We concentrate here on analogous spaces of compler valued functions on
co. After a review of relevant notation and definitions, we show in Section
1 that R(F) = ¢; when F = P("c¢p),n € N. As a consequence, we prove
that if 7 = {f € Hy(Br(co)) : f(0) = 0}, then R(F) = ¢;. Taking n =
2 in the above result, we see that every 2—homogeneous polynomial P on

°1|P(ej)] < oo. This result is reminiscent of classical work of

cp satisfies > 7

Littlewood [13] , who proved that every continuous bilinear form A on ¢y X ¢
satisfies (A(ej,ex))35%=1 € {a. Littlewood’s work was extended by Davie 7],
who showed that every continuous n-linear form A : ¢y X - -+ X ¢g — C' satisfies
(A(eays s €ay)) € EHLH In Section 2, we prove that R(A>*(B(cy))) = loo,
and as a corollary of the proof of this result we show that R(Ay(B(cy))) = ;.

Our notation for analytic functions is standard and follows, for example,
Dineen [8] and Mujica [14]. For a Banach space F, Bgr(E) denotes the open
R—ball centered at 0 in £ with Bi(FE) abbreviated to B(FE). L("FE) denotes
the Banach space of continuous n-linear forms A : £ x --- x E — (', equipped
with the norm n||A|| = sup {|A(z1,....,2,)| : z; € E,|z|| <1, 7 =1,....,n}.
P("E) denotes the Banach space of continuous n—homogeneous polynomi-
als on E. Each such polynomial P is associated with a unique symmetric
continuous n—linear form A, by P(x) = A(x,...,x), and ||P|| is defined to
be sup|z<1|P(x)|. A function f from an open subset U of E to C is said
to be holomorphic if f has a complex Fréchet derivative at each point of
U. Equivalently, f is holomorphic if for all points a € U, the Taylor series
f(z) =322, P,(x—a), converges uniformly for all z in some neighborhood of
a, where each P, € P("E).

Hy(Bgr(E)) is the space of all holomorphic functions on Br(FE) which are
bounded on B,(F) for every r < R. A useful characterization of Hy(Bgr(F))
is that it consists of all holomorphic functions f on Br(F) such that

limsupn oo | Pa||® < 1/R, where {P, : n € N} represents the Taylor polynomi-



als of f at the origin. The spaces A*(B(FE)) and Ay (B(F)) have been studied
by Cole and Gamelin [4, 5], Globevnik [10] and others [1]. A*(B(E)) = {f:
B(E) — C : f is holomorphic on B(E) and continuous and bounded on
B(E)}. Unless E is finite dimensional, this space is always strictly larger
than Ay(B(E)) = {f: B(E) — C : [ is holomorphic and uniformly
continuous on B(F)}. Both of these spaces are natural infinite dimensional

analogues of the disc algebra.

Section 1

We show here that for all P € P("cy) and all n. € N, 3272, [P(e;)| < ||P][.
This has already been done by K. John [12], in the case n = 2. In [13], Lit-
tlewood showed that for every A € L("co), (A(ej,er))5%=1 € (a, and that 3
is best possible; thus, Littlewood’s % result notwithstanding, John’s result is
that every A € L("¢g) has a trace. Our proof will make use of a generaliza-
tion of the classical Rademacher functions, which seems to be well-known to

probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fixn € N, n > 2, andlet oy = 1, s, ..., @, denote the n*”
roots of unity. Let sq : [0,1] — C be the step function taking the value «; on
(%, %), for j = 1,...,n. Assuming that s,_; has been defined, define s in the
following natural way. Fix any of the n*~! sub-intervals I of [0, 1] used in the
definition of s;_;. Divide I into n equal intervals Iy, ..., I,,, and set s;(f) = «;
if t € I;. (The endpoints of the intervals are irrelevant for this construction
and we may, for example, define s; to be 1 on each endpoint.) Of course,
when n = 2, Definition 1.1 gives us the classical Rademacher functions. The

following lemma lists the basic properties of the functions sg. Its proof is simi-

lar to the usual, induction proof for the Rademacher functions, and is omitted.



Lemma 1.2. For each n = 2,3, ..., the associated functions s; satisfy the
following properties:
(a). |sp(t)] =1, for all k € N and all ¢ € [0, 1].
(b). For any choice of kq, ..., kp,

1 1 ifky ==k,
/0 Skl(t> e Skn(t)dt =

0 otherwise

We are grateful to Andrew Tonge for suggesting an improvement in the
proof of the following result.

Theorem 1.3. Let P € P("¢p). Then ||[(P(e)))]l,. < || P].

le,

Proof. Let A € L("¢p) be the symmetric n-linear form associated to P. Fix any
m € N.Foreachi=1,....m, let \; = |A(e;, ..., ;)| /A€, ..., €:), if Aley, ..., e;) #
0, and 1 otherwise. Furthermore, let 5; denote any n'* root of \;,. Thus,
NiA(e;,...,e;) = |P(e;)| for each i = 1,...,m. Adding and applying Lemma 1.2
for the integer n, we get Y17 |P(e;)| = >m, MA(es, ..., €;)

= fOl A( zil )\isi(t)ei7 Y Z?:;:l Sjn (t)ejn) dt
= Iy AT 21 Bisiy (t)ejys - 2250 =1 B84 (t)eg,) dt.
Since || 7L, B;s;(t)e;|| < 1 for all ¢, the last expression is clearly less than or

equal to ||P||. Since m was arbitrary, the proof is complete. Q.E.D.

Rephrasing the above result in terms of the mapping R mentioned in the
introduction, Theorem 1.3 implies that for any n, R(P("cy)) C ¢;. In fact, R
is onto ¢y, since any A = (A, ..., Aj,...) € {1 equals R(P), where P € P("cy) is
given by P(x) = 352, A\ja}.

We conclude this section by proving that, up to a normalizing factor,
R(Hy(Br(co))) = ¢4, for every R > 1. Since Hy(Bg(co)) “approaches” A>(B(cy))
as R | 1, it is tempting to guess that Corollary 1.4 below is also true for the



latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let R > 1 and let f € Hy(Bg(c)), with f(0) = 0. Then
(f(en))otr € 41,

Proof. By the characterization given earlier of Hy(Br(co)), we see that if S is

such that 1 < S < R, then ||P,,||= < 1/8, for all large m. Therefore,

Sl flen)] = X021 =1 Pm(en)]
<Y 0l |Prlen)] < i | Pl < o0.

Q.E.D.

Section 2

The following fundamental lemma shows in effect that any sequence of 0’s

and 1’s can be interpolated by a norm one function in A*(B(cy)).

Lemma 2.1. (i). Let S C N be an arbitrary set. There exists a function
F € A*(B(cp)) with the following properties:

|Fll = sup [F(z)| = 1,
x€B(co)
1 ifnesS
Fle,) =
0 ifngs

(ii). If S is finite, then a function F' € Ay(B(co)) can be found which satisfies
the above conditions.

Proof. Let o T oo so quickly that the following three conditions are satisfied:
1 -
(7). The function ®(x) = ;es(1 — x;)* converges for all x € B(cy),
(i7). Re ®(z) > 0,for all z € B(cp),

(i73). ®(x) = 0 for some x € B(cyp) if and only if Re ®(z) = 0.



Note that ® € A>(B(cp)) and, if S is finite then in fact ® € Ay (B(cp)). Also,

0 forne S

D(e,) =
1 forné¢S

Now, let G(x) = e~®®@. From the above, it is clear that G € A®(B(cy))
for arbitrary S and that G € Ay (B(cp)) for finite S. In addition, |G(z)| < 1

Glen) 1 fornels
en) =
1 forn¢sS

for all z and

Finally, let T : A — A be the Mobius transformation T'(z) = i:é (where A
is the complex unit disc). It is clear that F' = T o G satisfies all the conditions

of the lemma. Q.E.D.

We come now to the analogue of Corollary 1.4, for the polydisc algebras
A>(B(cp)) and Ay (B(cg)). Note that here the situation is completely differ-

ent from the situation in Section 1.

Theorem 2.2. (i). R(A>®(B(cp))) = lw. In fact, given (o) € lo, there
is F € A*(B(cg)) such that F(e,) = «, for all n € N and such that
[E] < 4]l (o) e -

(ii). R(Ay(B(co))) = c. In fact, given (a,,) € ¢, there is F' € Ay (B(c))
such that F(e,) = a,, for all n € N and such that || F|| < 8||(au)||e. -

Proof. (i). Without loss of generality, ||(cv,)|| < 1. Let us first suppose that
o, > 0 for all n. Write oy, = 352,27 vy, where each a,,, = 0 or 1. Let
S;={n € N: a,, =1}, and let Fj be the associated function obtained using
Lemma 2.1. It is easy to see that F' = >0°  277F; is the required function

in this case, and that || F|| < ||(ax)||. The case of general «,,’s is treated by



writing o, = pn — @n + U, — 20,.

(ii). Suppose first that (a,,) € ¢ with ||(c,)|| < 1, and write each o, = (+0,
where ¢ = lim,,_.,. As above, if each 3, is expressed in binary series form,
then each of the associated sets S; is finite. As a result, each Fj is finite, by
Lemma 2.1 (ii), so that F' € Ay(B(cp)). The required function is G = F + (.

Finally, note that for any F' € Ay (B(c)), F(z) can be approximated uni-
formly for x € B(cp) by F.(x) = F(rz) for r sufficiently close to 1. Next,
F(rz) can be uniformly approximated on the unit ball of ¢y by a finite Tay-
lor series, say Sal, Py(7) (where Py is a constant). Next, it is well known
(see, for example, [15]) that any k-homogeneous polynomial P, on ¢y can be
uniformly approximated on B(cy) by an k-homogeneous polynomial @) which
is a finite sum of products of k continuous linear functionals on ¢y. Summa-
rizing, we see that the original function F' can be uniformly approximated
on B(cy) by Y52, Qk. Now, since (e,) — 0 weakly it follows that for each
k=1,.,M, Qrle,) — 0 as n — oo. Hence R(F) € ¢, and the proof is
complete. Q.E.D.

It would be interesting to determine the best possible estimates in Theorem
2.2. In [2], we note that in this situation, the best estimate must be strictly
larger than 1. To see this, suppose that there is F' € A>(B(cy)) such that
|F|| = 1 and such that F(e;) =1, F(e2) = —1, and F(e;) =0 for all j > 3.
Then the function f;(z) = F(1, 2,0, ...) would be in the disc algebra A(A), and
f1 would attain its maximum at 0. Hence, f; would be a constant and, in par-
ticular, 1 = f1(1) = F(1,1,0,...). Similarly, the function fo(z) = F(z,1,0,...)
would be constant, and so —1 = fo(1) = F(1,1,0,...), a contradiction. In [2],
the authors find necessary and sufficient conditions on the sequence (x,) C ¢

in order that the mapping F' € A>®(B(cy)) — (F(z,)) € s be surjective and



satisfy the following condition: For each (a,) € {w, there is F' € A®(B(cy))
such that F(x,) = a, for each n € N and || F|| = sup,|a,|.
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