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1. Introduction: Bounded Analytic Functions
on the Unit Ball

Over the past years, a significant interest has developed in the study of holomor-
phic functions defined on a domain in an infinite-dimensional Banach space and of
their constituents (via Taylor expansions), the homogeneous polynomials. Many
of the questions that have been studied have arisen from considerations of infinite-
dimensional topology and from standard function algebra questions [CCG]. Re-
cently, there has been an interest in connecting the well-developed theory of the
geometry of Banach spaces with the function theory questions that have been
studied classically, and some progress has been made in this direction [ACG; D;
F; CCG; CGJ]. In addition, connections between properties of polynomials and
geometry of the unit ball has been of interest (see [GJL] for a survey of this topic).

The present work is an attempt to study some of the properties of bounded ana-
lytic functions on the unit ball of an infinite-dimensional Banach space. In par-
ticular, we are interested in understanding something of boundary behavior; we
combine techniques from the several fields to investigate it, especially with regard
to the interplay with convexity and smoothness.

Many of the results here apply to the classical “nice” reflexive spaces, such as
lp andLp (1< p <∞). It is almost certain that there is much more to be learned
even about the Hilbert space case.

We consider the boundary behavior ofH∞ functions onB, the open unit ball
of an infinite-dimensional complex Banach space that has the geometric proper-
ties of uniform convexity, uniform smoothness, or both. By uniform smoothness,
we mean uniform (real) Frechet differentiability of the norm, with the space con-
sidered as a real Banach space. Uniform convexity will mean that the dual is uni-
formly smooth; since spaces with either property are reflexive, this definition is
complete. To be specific however, we state the following (after [LT]).

Definition 1.1. Acomplex Banach space is said to beuniformly convex(u.c.) if

δ(ε)= inf

{
1− ‖x+ y‖

2

∣∣∣∣ x, y∈X, ‖x‖ = ‖y‖ =1, ‖x− y‖ = ε
}
> 0 ∀ε > 0.
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In geometric terms, uniform convexity means that, for each point on the sphere
and for each direction one can move from that point, the norm increases strictly in
a way that is uniform with respect to the point and the direction. This notion can
be quantified, in a manner that we will use repeatedly.

Corollary 1.2. If X is u.c., ifx∗(x) = ‖x‖ = ‖x∗‖ = 1, and if Re[x∗(y)] >
1− 2δ(ε), then‖x − y‖ ≤ ε.
Proof. The proof is immediate from applying the functionalx∗ to the vector
x + y.
An important consequence of uniform smoothness is that every norm-1 vector has
a unique norming functional in the dual; uniform convexity implies that any norm-
ing functional will (by itself ) generate the norm topology on the sphere at that
point. Thus weak and norm topologies, each restricted to the ball, will coincide at
points of the sphere.

The algebraH∞(B) is a nice Banach function algebra having a spectrum that
fibers over points of the closed ball (actually, the closed ball of the second dual
[CCG; ACG]; here our spaces are reflexive). If we denote byι the inclusion ofX∗

intoH∞(B), then the fibering is given by

Mx = (ι∗)−1
(x).

There is a standard metric on the spectrum:

d(φ,ψ) = sup
f∈H∞(B),‖f ‖=1

|φ(f )− ψ(f )|.

(This is just the norm in the space(H∞(B)∗.) It can be used to define Gleason
parts, one of which is the (evaluations at points of the) open ball. A natural ques-
tion to consider (see [ACG] or [CGJ]) is what kinds of analytic structure exist in
the spectrum; we obtain some new results here.

The paper is organized as follows. In Section 2 we consider certain subalge-
bras ofH∞(B), some of which have been previously studied, that may be useful
to us. We also connect with previous work; in particular we recall the radius func-
tion of [ACG], which we will use later. In Section 3 we look at slices and single-
functional subalgebras, and we begin to consider how the theory of boundary be-
havior in one dimension applies to our situation; we also explore a consequence
of uniform convexity.

In Section 4 we identify a class of interpolating sequences for some subalge-
bras on the sphere as well as an associated class in the ball. Then we generalize
the classical result that if a sequence of homomorphisms in fibers over the bound-
ary converges (Gelfand) to another homomorphism, then all but a finite number
already lie in the limit fiber.

In Section 5 we move to a consideration of analytic structure in fibers. We prove
the most technical theorem of the paper (and one that is unique to the infinite-
dimensional situation); namely, that one can find uniformly homeomorphic copies
of balls of ultrapowers oflp-spaces in fibers over boundary points of the sphere in
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lp. We note that our technique of proof gives us a way to find these in fibers over
interior points as well; copies of nonseparablel2 were first found in interior fibers
by Cole, Gamelin, and Johnson [CGJ].

2. Subalgebras and Fiberings; the Radius Function

The Banach algebraH∞(B) is extremely large. It therefore makes sense to begin
by considering some smaller subalgebras contained within it that have accessible
properties and are related to it. An example appears in [ACG], whereH∞(B)
is studied by first considering the Frechet algebraHb of entire functions that are
bounded on bounded subsets ofX with the topology of uniform convergence on
bounded subsets. Aron, Cole, and Gamelin consider a radius function defined on
the spectrumMb ofHb in the following way: Forφ ∈Mb, R(φ) is the infimum
of positive real numbersr with φ continuous with respect to uniform convergence
on rB. Notice that, by considering functions in this algebra as functions on the
ball, we can viewHb as a subset ofH∞(B). Thus there is a natural adjoint that
mapsMH∞(B) toMb; this projection is 1–1 on elements whose images have ra-
dius less than 1 [ACG]. This map then induces a radius function onMH∞(B) (i.e.,
R(φ) = sup{ r : φ continuous onrB }).

In our approach to the subject we will have occasion to consider the subalge-
bra of elements whose Taylor series have weakly continuous partial sums. Recall-
ing that anyf ∈H∞(B) can be writtenf =∑∞i=0fi with fi an i-homogeneous
analytic polynomial, we define

H∞w (B) =
{
f ∈H∞(B)

∣∣∣∣ f = ∞∑
i=0

fi with fi weakly continuous∀i
}

We can equivalently require thatf be weakly continuous on any ball of radius less
than 1; this algebra is simply the closure of the weakly continouous polynomials
in the topology of uniform convergence on balls of radius strictly less than 1. This
topology is a topology in which the Taylor series forf converges; we will refer
to it from here on as theucb topology(notice that this is the analog of the topol-
ogy of uniform convergence on compact subsets in the classical case, for closed
bounded subsets are weakly compact in a reflexive Banach space).

It has been previously shown (see[F]) that, in the context of reflexivity and the
approximation property (AP), the requirement thatH∞(B) = H∞w (B) is equiv-
alent to so-called polynomial reflexivity, that is, the property that the spaces of
n-homogeneous polynomials are reflexive for everyn (which is the same as saying
that all polynomials are weakly continuous modulo the AP). This is one context
in which this subalgebra natually appears.

These algebras will not ever be the same in what follows here, however, for
the following reason. Uniformly convex spaces are superreflexive and therefore
have nontrivial type. By a geometric argument involving spreading models (see
[FJ]), it can be shown that such spaces are “polynomially Schur” (i.e., they enjoy
the “3-property” of [CCG]); as a consequence there always exists a homogeneous
polynomial of some degree that is not weakly continuous.



214 Jef f D. Farmer

The properties shown to be satisfied byH∞(B) in [F] for polynomially reflexive
spaces actually hold for the subalgebraH∞w (B) wheneverX is reflexive. Owing
to the inclusionH∞w (B) ⊂ H∞(B), there is a natural projection of the spectrum
of the second into that of the first (it acts by restriction). We can now adapt one
fact in particular from [F] to our situation here. Define

Kx =Mx ∩ (clB),

where clB is closure in the Gelfand topology.

Proposition 2.1(a consequence of [F, Thm. 4.5]).Letπw : MH∞(B)→MH∞w (B)
byπw(φ)(f ) = φ(f ). If R(φ) < 1 andφ ∈Kx, thenπwφ = δx.
This simply says that the projectionπw maps all elements of the noncorona part
of the fiber (i.e., the part that lies in the closure of the evaluations) that have radius
function less than 1 to the evaluations. Thus the only other homomorphisms in
fibers over interior points are elements whose radius function is 1; this says that, in
order for a net of evaluations to converge to something in the fiber over an interior
point, the net must move to the boundary.

We will find this subalgebra ofH∞(B) and its spectrum to be useful to us in
the sequel—many of the functions we use will come from this algebra. In the next
section we will also see that this algebra is closely related to the single-functional
subalgebras.

3. Single-Functional Subalgebras; Restrictions to Slices

A (real) observer standing on the unit sphere of a complex infinite-dimensional
Banach space (say at a pointx) can gaze in many directions; one of these is distin-
guished as being the direction of complex rotation of the vectorx. By restricting
consideration to the (complex) 1-dimensional subspace generated byx, our ob-
server finds an exact copy of the classicalH∞ space as follows. Letx∗ be any
norming functional forx. The map that takesg ∈ H∞ to g B x∗ ∈ H∞(B) is an
isometric embedding ofH∞ intoH∞(B).We call the image of this mapH∞x∗ (B),
its adjoint projection on the maximal ideal spacesπx∗ , with

πx∗ : MH∞(B)→M by πx∗(φ) = φ|H∞
x∗ (B)

∀φ ∈MH∞(B).

Proposition 3.1. The mapπx∗ is Gelfand continuous, onto, and takes Gleason
parts onto Gleason parts.

The proof of the proposition is a straightforward verification: Since the norm of
the map is 1, it is a contraction in the Gleason metric; it is also clearly weak∗

(Gelfand) continuous. We will see that it is onto in a moment.

Proposition 3.2. Let x ∈ S, the sphere of a uniformly convex Banach space,
with x∗ any norming functional. Letg ∈ H∞, y ∈ S, y 6= λx, and λ ∈ C. Then
g B x∗ is weakly continuous aty.



Fibers over the Sphere of a Uniformly Convex Banach Space 215

Proof. First, if y 6= λx then|x∗(y)| < 1 by uniform convexity, sog B x∗ is de-
fined aty and is norm continuous there. But ifyα → y weakly then this says ex-
actly thatx∗(yα)→ x∗(y) and we are done. (In fact, this is true for any Banach
space and any pointx of strict convexity on its sphere.) The mapπx∗ produces
an additional fibering via its pullback, this time ofMH∞(B) overM.We will call
these fibers (π−1

x∗ (φ), φ ∈MH∞(B)) “x∗-fibers.”
On the other hand, given anyx ∈ S, we can define a map

ρx : H∞(B)→ H∞ by ρx(f )(λ) = f(λx), |λ| < 1,

by restricting each function inH∞(B) to the span of a single vector (the intersec-
tion of this span with the ball being a copy of the unit disk). We will call the ad-
joint of this mapρ∗x : MH∞ →MH∞(B). It is clear that, wheneverx∗ normsx,
πx∗ B ρ∗x is simply the identity on the spectrum ofH∞. (Verifying this statement
is simple, and proves the “onto” part of Proposition 3.1.)

The single functional subalgebras (denotedH∞x∗ (B)) are related to the algebra
H∞w (B) considered in the previous section. Each subalgebra is clearly contained
in H∞w (B) and thus so is the closure of the algebra they generate in the ucb topol-
ogy. On the other hand, weakly continuous polynomials onB will be in the uni-
form closure of the algebra generated by the single-functional subalgebras if the
space has an appropriate approximation property. Denote byA(B) the uniform
closure of the polynomials weakly continuous onB and byP(B) the uniform
closure inH∞(B) of the algebra generated byX∗.

Proposition 3.3. The ucb closure ofalg
(⋃{H∞x∗ (B) | |‖x∗‖ = 1}) is con-

tained inH∞w (B). If the spaceX has the property that every weakly continuous
polynomial onB is a uniform limit of polynomials in linear functionals—that is,
if P(B) = A(B)—then equality holds.

Proof. We need merely observe that the stated property will guarantee that the
partial sums of the Taylor series of elements inH∞w (B) are weakly continuous on
B; since the Taylor series converges in the ucb topology, we are finished.

We now turn to an illustration of how certain results on boundary behavior from
the classical theory can be adapted to the infinite-dimensional situation. We use
the notation from [H].

Let X be any complex Banach space; letx ∈ SX, x∗(x) = 1, and‖x∗‖ = 1.
DefineW = {φ ∈My | y = λx, |λ| = 1}. Let W+ = W ∩ π−1

x∗ { y = λx |
Im(x∗(y)) > 0 } and likewise forW−, while W0 = Mx − clW+ − clW−.
Also, refer to the classical fiber inH∞ over the point 1 asM1. We then have
the following.

Theorem 3.4. LetX be any uniformly convex Banach space; letx ∈ SX, x∗(x) =
1, ‖x∗‖ = 1, andφ ∈Mx ⊂MH∞(B). Then the setsMx ∩ clW+,Mx ∩ clW−,
andW0 are disjoint and nonempty. In addition(if dimX > 1), eachx∗-fiber
over a classical homomorphism inπx∗(W0) contains many homomorphisms in the
closure of



216 Jef f D. Farmer

(MH∞(B) −W)−
⋃{Mz | z∈B },

that is to say, the closure of the set of homomorphisms in fibers over points of the
sphere that are not complex rotations ofx.

Proof. Following [Ho, pp. 165–166], definef ∈ H∞ to be holomorphic on the
disk and continuous at every point on the circle except at 1 and−1; f has the value
e on the lower half and 1 on the upper half of the circle and has radial limit

√
e

at±1. Now, by Lemma 4.4 (to be proved in the next section),f B x∗ ∈ H∞(B)
will be constant on fibers over pointsλx if λ 6= ±1; thus, it will separate clW+
and clW− sinceW+ ⊂ f̂ B x∗

−1
(1) andW− ⊂ f̂ B x∗

−1
(e). The sets are seen to

be nonempty by lifting viaρ∗x from the analogous sets provided for the classical
case by [Ho, p. 165], bearing in mind that(πx∗ B ρ∗x )(ν) = ν (ν ∈M).

We prove the additional fact. First, suppose thatφ ∈ W0; it lies in thex∗-
fiber π−1

x∗ πx∗φ. By Carleson’s theorem, findzα ∈ D converging toπx∗φ. Make
any selection (using choice and the fact that dimX > 1) of pointswα ∈ SX and
homomorphisms satisfying

x∗(wα) = zα and φα ∈Mwα .

Now the net{φα}must have a convergent subnet inMH∞(B), say toφ′; this is the
point we seek:

πx∗φ
′ = πx∗ lim

β
φβ = lim

β
πx∗φβ = lim

β
wβ = πx∗φ,

by Gelfand continuity ofπx∗ .

We can actually say a bit more about this situation. The functionf has radial limit√
e at 1, so it has nontangential limit

√
e there. If the{φα} are in fibers over points

wα ∈ SX having the property that thex∗(wα) = zα ∈D approach1nontangentially,
then we know that any limit point will be inW0 because

{φα}(f B x∗) = πx∗φα(f ) = f(zα)→
√
e,

sinceπx∗φα is just a classical homomorphism in the fiber overzα ∈D, a fiber that
contains only the evaluation. Thus, in order to have a net approaching an element
not inW0, it must lie in fibers over points whose projection byx∗ approaches the
boundary quickly. We quantify this statement as follows.

Theorem 3.5. Let δ : (0,1] → (0,1] be the modulus of uniform convexity for
X. Letx ∈ Sx, x∗(x) = ‖x∗‖ = 1, φα ∈Mwα → φ, andx∗(wα) = zα → πx∗φ,
and suppose

lim inf
α

{
δ(d(wα, {eiθx}))
‖wα − x‖

}
= c > 0.

Thenφ ∈W0.

Proof. The claim is that the condition of the proposition guarantees that thezα
converge nontangentially to1, which will finish the proof by our previous remarks.
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Let c > c ′ > 0. Then by hypothesis there exists aβ such that for allα > β we
have

δ(d(wα, {eiθx})) > c ′‖wα − x‖
or

δ(‖eiθwα − x‖) > c ′‖wα − x‖ ∀θ,
which by uniform convexity (Corollary 1.2) implies that

Re[x∗(eiθwα)] < 1− 2c ′‖wα − x‖ ∀θ
and hence

|zα| = |x∗(wα)| < 1− 2c ′‖wα − x‖ < 1− 2c ′|zα − 1|
or

2c ′|zα − 1| < 1− |zα|.
This is exactly what we need for nontangential convergence in the unit disk.

4. Fibers over the Boundary; Interpolating Sequences

An important consequence of uniform convexity for us is that at any pointx ∈ S,
the intersection of a weak neighborhood determined byx∗ andS is contained in
the intersection ofS with a norm neighborhood ofx; thus, the weak and norm
topologies (on the ball) coincide at points of the sphere. This allows us to create
some peaking functions.

Proposition 4.1. For any uniformly convex Banach spaceX, for all ε > 0,
1/2> δ > 0, λ∈C, andx ∈ S, there is a function inf ∈A(B) satisfying

f(x) = λ, ‖f ‖ ≤ |λ|,
and

|f(y)| < ε whenevery ∈ B̄ and ‖x − y‖ > δ.

Proof. Letx∗ be a norming functional forx.By uniform convexity there is a num-
berη > 0 such that, fory ∈ B̄, Re(x∗(y)) ≥ 1− η implies that‖x − y‖ ≤ δ.
Now there is a numberσ > 0 such that, if Re(x∗(y)) < 1− η with y ∈ B̄, then∣∣( 1+x∗

2

)
(y)
∣∣ < 1− σ. Simply choosem so that|λ|(1− σ)m < ε and letf =

λ
(

1+x∗
2

)m
. Thenf ∈P(B) ⊂ A(B) has the desired properties.

Lemma 4.2. Let X be u.c. Suppose{8α} ⊂ MH∞(B) with 8α → 8 in the
Gelfand topology. Let8α|X∗ = xα and8|X∗ = x ∈ S (i.e., each8α lies in the
fiber overxα). Thenxα → x in norm.

Proof. Recalling that the Gelfand topology is the weak-star topology onH∞(B)∗

restricted to the spectrum, it is immediate that the convergence occurs weakly by
restricting the action of the homomorphisms toX∗ ⊂ H∞(B). But the weak and
norm topologies agree with regard to points on the sphere, so we are done.
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Since there is no known corona theorem even for two dimensions we do not ex-
pect one in our context soon. This means that on those occasions where we must
approach points of the spectrum from the ball, we will look only at the closure of
the ball in the spectrum and at fibers in this closure.

Lemma 4.3. Let B be the unit ball of any Banach space. Letf ∈ H∞(B) be
weakly continuous atx ∈ B̄. Thenf is constant onKx, the noncorona fiber over
x (i.e.,φ(f ) = f(x) for all φ ∈Kx).
The proof is an exercise. Ifx is a point on the sphere of a uniformly convex Banach
space where weak and norm continuity coincide, thenf need only be norm con-
tinuously extendable tox, and we can say a bit more; in this case we can actually
discuss the whole fiber.

Lemma 4.4. LetB be the ball of a u.c. Banach space. Thenf ∈H∞(B) is con-
tinuously extendable to a pointx on the sphere if and only iff is constant on the
whole fiberMx (i.e.,φ(f ) = f(x) for all φ ∈Mx).

Proof. The sufficiency is clear by taking cluster points of evaluations in the spec-
trum. The necessity is a consequence of the fact that each boundary point is a
strong peak point for the ball algebra, as follows. Suppose thatf is continu-
ously extendable tox with value zero. Take a sequence of strongly peaking func-
tions (pn) in P(B) that converge to zero uniformly on the ball off of norm neigh-
borhoods ofx (Proposition 4.1 shows how this may be done). Then(1− pn)f
converges uniformly tof on the ball, so that for any homomorphismφ ∈Mx,

φ(f ) = lim
n
φ((1− pn)f ) = [φ(1)− φ(pn)]φ(f ) = lim 0 = 0

by choice of thepn as strongly peaking elements ofP(B), the algebra generated
by linear functionals.

Definition. We shall say that a set{xn}n∈I in S is well-separatedif, for all k,
d(xk, {xn}n∈I − {xk}) = δn > 0 and if for alli 6= j there is no complex numberλ
such thatxi = λxj . We call the numbersδn theseparation indicesof the set.

If the set is finite or countably infinite, then it is enough to check that it does not
contain any of its accumulation points and that no element is a complex multiple
of another.

Theorem 4.5. Let {xn}n∈N be well-separated in the unit sphere. Letλn ∈ C,
|λn| = 1, and1> εn > 0, εn→ 0. Then there exists a bounded analytic function
f ∈H∞(B), continuous everywhere on the closed unit ball except at accumulation
points of {xn}, satisfying

(i) |f(xn)− λn| < εn and
(ii) ‖f ‖ ≤ supn{1+ εn}.
Proof. Let x∗n be the norming functionals for thexn, and letδn be the separation
indices. Apply Proposition 4.1 withx = x1, ε = 2−1−2ε1, δ = 1

2δ1, andλ = λ1,
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obtainingf1. To obtainfn for n ≥ 2, do the same thing except letx = xn, δ =
1
2δn, λ = λn −

∑n−1
i=1fi(xn), andε = inf k≤n{2−n−2εk}. Note that we will always

have|λ| < 1+ 1
2 supn εn. Then definef = ∑∞i=1 fi. One checks easily that the

estimate is obtained:

f(xn) =
∞∑
j=1

fj(xn) =
n∑
j=1

fj(xn)+
∞∑

j=n+1

fj(xn) = λn +
∞∑

j=n+1

fj(xn).

Hence

|f(xn)− λn| ≤
∞∑

j=n+1

2−j−2εn < εn.

The same kind of calculation proves uniform convergence on bounded subsets of
B, and in any neighborhood of a point ofS that does not contain an accumulation
point of thexn, sinced(y, xn) < 1

2δn for at most one value ofn.
For example, ify happens to be close toxp (i.e., if ‖y − xp‖ < 1

2δp, which
implies‖y − xj‖ > 1

2δj for all j 6= p), then

|f(y)| ≤
∑
j 6=p

2−j−2

(
inf
k≤j

εk

)
+ fp(y)

< 1
2 sup

i

εi + ‖fp‖

≤ 1
2 sup

i

εi + 1+ 1
2 sup

i

εi

= 1+ sup
i

εi .

Theorem 4.5 has some immediate corollaries; all apply to a uniformly convex
space.

Corollary 4.6. If X is uniformly convex, then any two points ofM in different
fibers over boundary points are in different Gleason parts.

Proof. Let8i ∈Mxi (i = 1,2). If {x1, x2} is well-separated, apply the theorem
to obtain 1= f(x1) = −f(x2); if not well-separated, the result is classical (by
means of Möbius transformations).

Now we have the following generalization of a classical result.

Theorem 4.7. Let8i ∈ K ⊂M − B lie in fibers over the boundary such that
8i → 8 in the Gelfand topology. Then all but a finite number of the8i lie in the
same fiber as8 does.

Proof. Suppose not. Now8i ∈Mxi . By passing to a subsequence, we may as-
sume that all of thexi are distinct and that none of them are complex multiples of
x. (For if at any point all of the remaining elements of the sequencewerecomplex
multiples ofx then we could apply the classical result toρ∗x8i; see [Ho].) Since
xi → x in norm, we may also assume by passing to a subsequence that none of
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them are complex multiples of one another. But this means that the sequence is
well-separated, so we may apply Theorem 4.5 to obtain a function that is close to
both−1 and 1 on infinitely many of thexi and also norm continuous (hence also
weakly) at each one of them. Since thisf will then be constant on the fibers over
thexi, we will have8(f ) equal to 1 and−1, a contradiction.

5. Analytic Structures in Fibers

The investigation of analytic structures that can be biholomorphically mapped
into fibers was begun in the Banach space context by Cole, Gamelin, and Johnson
[CGJ], who showed that the fiber over zero contains (at the least) a large num-
ber of analytic disks and, in the case of superreflexive spaces, a copy of the ball
of a nonseparable Hilbert space. In this section, we wish to investigate structures
in boundary fibers. As a consequence of our construction, we will see that some
very large structures appear in interior fibers as well.

Our venue will be thelp-spaces(1< p <∞), and the goal will be to prove the
following theorem.

Theorem 5.1. Letx ∈ Slp . Then there is a copy ofB5U lp × (βN−N) in the fiber
over x (in MH∞w (B)), embedded via a uniform homeomorphism with uniformly
continuous inverse, that is analytic for each point ofβN− N.

The proof will also give us a new structure in fibers over interior points.

Corollary 5.2. Theorem 5.1 remains true ifx ∈Blp .
By the Dvoretzky theorem, this also gives us a copy of the unit ball of a nonsepa-
rable Hilbert space in each fiber. However, this structure will be seen to be distinct
from that embedded in the fiber over 0 by [CGJ].

The idea here will be to embed copies of the ball of thelnp in very small slices
near elements of a convergent sequencexi, and disjoint from them with respect to
the basis. The fact that we can explicitly calculate the norm inlp will be of great
help to us. We begin with some lemmas from calculus. For the remainder of the
proof, fix 1< p <∞.
Lemma 5.3. For anyλ > 0 andn∈N, the functiongn(a, b) = λ−1a

(
1+b

2

)n
sub-

ject toap + bp = 1 has a single maximum value on the unit square at(a0, b0),

where
n− 1

n+ 1
< b

p

0 <
n

n+ 2
and hence

2

n+ 2
< a

p

0 <
2

n+ 1
;

the maximum valuegn(a0, b0) < λ−1
(

2
n

)1/p
.

Proof. Since the function is zero at the endpoints and nonnegative, it should have
a maximum. Lagrange multipliers tell us that at this point(

a

b

)p−1

= 1+ b
an

or
ap

bp
= 1+ b

bn
.
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Solving forap and plugging into the constraint gives

n = bp−1+ bp(1+ n),
from which the estimates are obtained by noting thatbp < bp−1 < 1.

Corollary 5.4. If λp = 1 − (21−1/n − 1)p then lim n→∞ λpn = 2p log 2.
Hence, for anyC > 1 there exists anN ∈N such that, forn ≥ N andλ as before,
gn(a, b) < C(p log 2)−1/p.

Proof. This is an application of L’Hopital’s rule and Lemma 5.3.

Lemma 5.5. For fixed0< a, b < 1, ap + bp = 1, andλ = λ(n) as before:

(i) lim n→∞ gn(a, b) = 0; and
(ii) for anyn, if b < b0(n) ( from Lemma 5.3) thengn(a′, b ′) < gn(a, b) when-

everb ′ < b.

Proof. (i) To check this, apply L’Hopital’s rule once to thepth power ofg; the
new limit is easily seen to be zero.

(ii) Calculus and Lemma 5.3.

We are now ready to begin proving Theorem 5.1. Choosexi ∈ S finitely supported
on the basis and converging tox, say with suppxi ⊂ σi, where the supports form
an increasing sequence of finite subsets of the integers (σ1 ⊂ σ2 ⊂ · · · ). We also
choose the sequence so that none of the elements are multiples ofx and so that, at
every(kth) basis element where both are nonzero,

arg(xk) = arg(xki )

and arg(xki ) = 0 otherwise. This is done slightly differently depending on whether
x is finitely supported or not, but is nevertheless easily done in either case. All of
this will result in the sequence being well-separated; we can thus find numbersδi
to satisfy the following: Re(x∗i (y)) > δi implies Re(x∗j (y)) < δj wheneverj 6=
i. (Herex∗i (xi) = ‖x∗i ‖ = 1 and naturally it has the same support asxi.) Hence
eachδi is an amount by which the hyperplane [Re(x∗i ) = 0] may be translated
in order for the slices thus formed to be disjoint. (Theδi may be explicitly cal-
culated using Corollary 1.2; ifµi are the separation indices defined in Section 4,
thenδi = 1− 2δ(µi/2) will do.) Call the slicesC ′i (i.e.,C ′i = B ∩ [Re(x∗i ) =
δi ]). Letting λi be defined byni as in Corollary 5.4, chooseni large enough so
that the maximum ofgi (= gni ) occurs atb0,i with δi < b0,i < 1 (by Lemma 5.3),

gi((1− δpi )1/p, δi) < 2−i (by Lemma 5.5(i)), and also so that(21−1/ni − 1)p =
1−λpi > δ

p

i (clear since theδi are defined). LetEi be finite-dimensionallp-spaces
of increasing dimension. We will consider these spaces isometrically embedded
on dimEi elements of the standard basis in the following rather careful way.

Go out far enough on the basis to choose a blockρ1 such that‖xi |ρ1‖ < 2−7λ1

for all i > 1 (where dimE1 = |ρ1|) and such thatρ1 is disjoint from the support
of x1. This can be accomplished becausexi → x ∈ lp. Continue similarly so that
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‖xi |ρj ‖ < 2−6−jλj ∀i > j,

whereρj is disjoint fromσj (the support ofxj ). MapEi isometrically tolp(ρi).
We will suppress any further reference to this embedding, and just think of the

Ei as living on these blocks of the basis. LetDi = (21−1/ni −1)xi + (λi/3)BEi be
isometric affine copies of the ball ofEi scaled byλi/3; call the affine embedding
ψi : BEi → Di, where

ψi(y) = (21−1/ni − 1)xi + λi
3
y for y ∈BEi

and whereDi ⊂ Ci = [Re(x∗i ) = (21−1/n − 1)] ∩ B. Our previous choice ofni,
which determinesλi, ensures that the sliceCi is closer to the boundary thanC ′i .
This map uses one third of the room available in the sliceCi in these directions.

Let U be a free ultrafilter on the positive integers; form the ultraproduct of the
Ei alongU, which is isometrically an ultrapower oflp. (This space contains both
a nonseparablelp and a nonseparableLp; for details, see [He].) Ifzi ∈BEi , then
z = {zi}∞i=1 is a representative of an element in5UEi and we define

9(z) = lim
U
ψi(zi),

where the pointsψi(zi) are identified with evaluations and the limit is taken in the
(compact) maximal ideal space. First of all, sinceλi → 0, each of these limits
lies in the fiber overx (this is true also in the case of Corollary 5.2, where thexi
converge only weakly). The map is naturally analytic, since the embeddings are
affine. Our task is to show that the embedding is uniformly continuous in both
directions (which, by the definition of the ultraproduct, will also show that it is
well-defined).

Let z = {zi}∞i=1 andw = {wi}∞i=1 be representatives of distinct points in the ball
of our biglp-space. Then dist(z, w) = lim U‖zi − wi‖.

Distance in the maximal ideal space considered as a subset of the dual space of
H∞w (B) is now given by

‖9(z)−9(w)‖ = sup
‖f ‖∞=1

{|9(z)(f )−9(w)(f )|}

= sup
‖f ‖∞=1

{
lim
U
|f(ψi(zi))− f(ψi(wi))|

}
,

where eachf is inH∞w (B). So this comes down to checking each coordinate map
ψi. Here we use the Schwartz lemma. Let us omit the tedious (fixed) indexi for
a moment onw, z, E, λ, andψ. Notice that no matter wherez (= zi) is mapped,
we can center a complex disk there in the direction ofw with radius 2λ/3 (sincez
is already in a disk of radiusλ/3 centered in the sliceC, which is of sizeλ in the
relevant directions—namely, those ofE, which has support on the basis disjoint
from xi). Call the map from the unit disk to this diskh; that is,

h(v) = ψz+ 2vλ

3‖ψ(w)− ψ(z)‖ (ψ(w)− ψ(z)).
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The Schwartz estimate for the composition1
2(f − f(ψz)) B h (when applied to

the pointh−1(ψ(w)) = 3
2λ‖ψ(w)− ψ(z)‖; noteh−1(ψ(z)) = 0 here) gives

1

2
|f(ψ(w))− f(ψ(z))| = 1

2
(f − f(ψ(z))) B h

(
3

2λ
‖ψ(w)− ψ(z)‖

)
<

3

2λ
‖ψ(w)− ψ(z)‖ = 1

2
‖w − z‖

(recall that the affine mapsh andψ scale by 2λ/3 andλ/3, respectively). Hence
9 is uniformly continuous.

To see that9 does not appreciably decrease distances as well, we need to con-
struct a specificH∞w (B) functionf that will separate two given points in the im-
age of the ball of the ultraproduct. To this end, letz andw be representatives as
before. (We return to the use of the indexi). Takeφi in BE∗

i
so thatφi(wi − zi) =

‖wi − zi‖. (We will not distinguish betweenφi in E∗i andφi ∈ l∗p supported on
ρi.) Due to the disjoint supports of theEi, we haveφj(ψ(wi)) = φj(ψ(zi)) = 0
if i 6= j. By the definition of the mapsψi, we also have

x∗i (ψ(wi)) = x∗i (ψ(zi)) = 21−1/ni − 1.

Now define

f =
∞∑
i=1

λ−1
i φi

(
1+ x∗i

2

)ni
.

Let us make some remarks aboutf. It is defined on the unit ball. The main diffi-
culty is to show that it is bounded there. Lety ∈ Blp . Choosey ′ so that the mod-
ulus of each coordinate is the same as that ofy, but rotated so thatx∗i (y

′) is al-
ways positive. This can be done because of the way thexi were chosen; the ar-
guments of their coordinates agree for each coordinate in their common support.
Now notice that

|f(y)| ≤
∞∑
i=1

τiλ
−1
i φi(y)

(
1+ x∗i (y)

2

)ni
≤
∞∑
i=1

τ ′i λ
−1
i φi(y

′)
(

1+ x∗i (y ′)
2

)ni
,

whereτi andτ ′i are constants of modulus 1 chosen in each case to make each term
positive. The first inequality is due to simple properties of the complex numbers;
the second is due to the fact that the size of each (now positive) term is only in-
creased by the change fromy to y ′, by the choice ofy ′. Because of the foregoing
inequality, we need simply assume that we are working in reallp (in fact, in the
positive cone). Now the maximum of Lemma 5.3 also holds in the set{ap+ bp ≤
1}, andx∗i (y) > δi for at most one index, sayk; we thus may write

f(y) ≤
∑
i 6=k

gi(φi(y), x
∗
i (y))+ gk(φk(y), x∗k (y));

by Lemma 5.5(ii) and our choice ofδi, this means that
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f(y) ≤
∑
i 6=k

2−i + gk(φk(y), x∗k (y)) ≤ 1+ 2= 3

owing to Corollary 5.4. Thus‖f ‖∞ < 3 andf ∈H∞w (B).
Let us now calculate

f(9w) = lim
U
f(ψi(wi)) = lim

U
f

(
(21−1/n − 1)xi + λi

3
wi

)
.

Sinceφj(wi) = 0 wheneveri 6= j andφj(xi) = 0 if i < j, we have

f(9w) = λ−1
i φi

(
λi

3
wi

)(
1+ 21−1/ni − 1

2

)ni
+

i−1∑
j=1

λ−1
j φj((2

1−1/ni − 1)xi)

(
1+ x∗j (ψ(wi))

2

)nj
= 1

2
λ−1
i φi

(
λi

3
wi

)
+

i−1∑
j=1

λ−1
j φj((2

1−1/ni − 1)xi)

(
1+ x∗j (ψ(wi))

2

)nj
.

Let’s call the preceding summation term the “error”. A similar calculation works
for zi, and sinceφi is linear we can say that

|f(9w)− f(9z)|

=
∣∣∣∣limU f(ψ(wi))− lim

U
f(ψ(zi))

∣∣∣∣
≥ lim
U

(
1

2
λ−1
i φi

(
λi

3
wi

)
− 1

2
λ−1
i φi

(
λi

3
zi

)
− |errorw − errorz|

)
= lim
U
(

1
6φi(wi − zi)− |errorw − errorz|

)
= lim
U
(

1
6‖wi − zi‖ − |errorw − errorz|

)
,

which will be greater than1
10‖w − z‖ provided the error terms are small enough.

But the error terms may be bounded as a proportion of the distance betweenw and
z by a Schwartz estimate as before in conjuntion with our choices of supports for
theEi. Note that

|errorw − errorz|

=
i−1∑
j=1

λ−1
j φj((2

1−1/ni − 1)xi)

{(
1+ x∗j (ψ(wi))

2

)nj
−
(

1+ x∗j (ψ(zi))
2

)nj}
.

Now by the choice of supports for theEi we have|φj(xi)| ≤ 2−6−jλj . By the
Schwartz lemma, applied as before but now to the function((1+ x∗j )/2)nj (with a
suitable constant added), which has norm1inB,we bound the error by 2−6‖w−z‖.

This shows that the map has uniformly continuous inverse and so completes
the proof of Theorem 5.1. The same construction will work in the same way in
H∞(B).
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Some remarks are in order. First, let us note that nothing in the theorem changes
if the sequence(xi) converges weakly to a point in the interior of the ball. Thus
we see that the same structure can be found in fibers over interior points. (This is
Corollary 5.2.) We can check that this is an essentially different structure (in case
p = 2; in other cases, it is trivially different) than that found in [CGJ] by not-
ing that, in our construction (unlike theirs), the value of the radius function (see
[ACG]) is equal to 1 at every point of the embedded ball.

Second, we note that the structure of thelp-spaces is very important in this con-
struction. Although something similar might be true for some wider class of spaces
with very nice structure, it is not immediately clear how. But in spaces without un-
conditional structure of some sort, boundary slices tend to be shaped very oddly;
although one could imagine finding some sort of topological nonstandard hull of
bits of boundary slices in a fiber, it seems possible that nothing looking very much
like an infinite-dimensional unit ball is there.

Third, this construction sheds some light on an interesting special case, namely
that of the unit ball of Hilbert space. We now have identified several different
kinds of Gleason parts, some in interior fibers and some over the boundary, which
have copies of a ball of nonseparable Hilbert space in them. One wonders if the
construction of [CGJ] could be combined with this one to find more, and if some
sort of classification of parts is possible. Very little is known even in this “nicest
possible” case.
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