Fibers over the Sphere of a
Uniformly Convex Banach Space

JEFF D. FARMER

1. Introduction: Bounded Analytic Functions
on the Unit Ball

Over the past years, a significant interest has developed in the study of holomor-
phic functions defined on a domain in an infinite-dimensional Banach space and of
their constituents (via Taylor expansions), the homogeneous polynomials. Many
of the questions that have been studied have arisen from considerations of infinite-
dimensional topology and from standard function algebra questions [CCG]. Re-

cently, there has been an interest in connecting the well-developed theory of the
geometry of Banach spaces with the function theory questions that have been
studied classically, and some progress has been made in this direction [ACG; D;
F; CCG; CGJ]. In addition, connections between properties of polynomials and

geometry of the unit ball has been of interest (see [GJL] for a survey of this topic).

The present work is an attempt to study some of the properties of bounded ana-
lytic functions on the unit ball of an infinite-dimensional Banach space. In par-
ticular, we are interested in understanding something of boundary behavior; we
combine techniques from the several fields to investigate it, especially with regard
to the interplay with convexity and smoothness.

Many of the results here apply to the classical “nice” reflexive spaces, such as
I,andL, (1 < p < 00). Itis almost certain that there is much more to be learned
even about the Hilbert space case.

We consider the boundary behavior &f° functions onB, the open unit ball
of an infinite-dimensional complex Banach space that has the geometric proper-
ties of uniform convexity, uniform smoothness, or both. By uniform smoothness,
we mean uniform (real) Frechet differentiability of the norm, with the space con-
sidered as a real Banach space. Uniform convexity will mean that the dual is uni-
formly smooth; since spaces with either property are reflexive, this definition is
complete. To be specific however, we state the following (after [LT]).

DerFiNiTION 1.1, Acomplex Banach space is said toleformly convexu.c.) if

5(¢) =inf{1— ”x—;’y” ’ xoyeX. Ixl =yl =L fx -yl =s} -0 Ve>0.
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In geometric terms, uniform convexity means that, for each point on the sphere
and for each direction one can move from that point, the norm increases strictly in
a way that is uniform with respect to the point and the direction. This notion can

be quantified, in a manner that we will use repeatedly.

CoRroLLARY 1.2. If X isu.c., ifx*(x) = |x|| = ||x*|| = 1, and if Re[x*(y)] >
1—28(e), then||x — y| <.

Proof. The proof is immediate from applying the functionel to the vector
x+y. UJ

An important consequence of uniform smoothness is that every norm-1 vector has
a unique norming functional in the dual; uniform convexity implies that any norm-
ing functional will (by itself) generate the norm topology on the sphere at that
point. Thus weak and norm topologies, each restricted to the ball, will coincide at
points of the sphere.

The algebraHH*°(B) is a nice Banach function algebra having a spectrum that
fibers over points of the closed ball (actually, the closed ball of the second dual
[CCG; ACG]; here our spaces are reflexive). If we denotethg inclusion ofx*
into H*°(B), then the fibering is given by

M, = () H(x).
There is a standard metric on the spectrum:
d(¢,v) = sup (o (f) — v ()l

feH®(B), | flI=1
(This is just the norm in the spacé/>°(B)*.) It can be used to define Gleason
parts, one of which is the (evaluations at points of the) open ball. A natural ques-
tion to consider (see [ACG] or [CGJ]) is what kinds of analytic structure exist in
the spectrum; we obtain some new results here.

The paper is organized as follows. In Section 2 we consider certain subalge-
bras of H>°(B), some of which have been previously studied, that may be useful
to us. We also connect with previous work; in particular we recall the radius func-
tion of [ACG], which we will use later. In Section 3 we look at slices and single-
functional subalgebras, and we begin to consider how the theory of boundary be-
havior in one dimension applies to our situation; we also explore a consequence
of uniform convexity.

In Section 4 we identify a class of interpolating sequences for some subalge-
bras on the sphere as well as an associated class in the ball. Then we generalize
the classical result that if a sequence of homomorphisms in fibers over the bound-
ary converges (Gelfand) to another homomorphism, then all but a finite number
already lie in the limit fiber.

In Section 5 we move to a consideration of analytic structure in fibers. We prove
the most technical theorem of the paper (and one that is unique to the infinite-
dimensional situation); namely, that one can find uniformly homeomorphic copies
of balls of ultrapowers of,-spaces in fibers over boundary points of the sphere in
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I,. We note that our technique of proof gives us a way to find these in fibers over
interior points as well; copies of nonseparablevere first found in interior fibers
by Cole, Gamelin, and Johnson [CGJ].

2. Subalgebras and Fiberings; the Radius Function

The Banach algebrH*°(B) is extremely large. It therefore makes sense to begin
by considering some smaller subalgebras contained within it that have accessible
properties and are related to it. An example appears in [ACG], WHEFEB)

is studied by first considering the Frechet algehiaof entire functions that are
bounded on bounded subsets¥fvith the topology of uniform convergence on
bounded subsets. Aron, Cole, and Gamelin consider a radius function defined on
the spectrumM,, of H, in the following way: Forp € M,,, R(¢) is the infimum

of positive real numberswith ¢ continuous with respect to uniform convergence

on rB. Notice that, by considering functions in this algebra as functions on the
ball, we can viewH, as a subset off*°(B). Thus there is a natural adjoint that
maps.M () 10 M,,; this projection is 1-1 on elements whose images have ra-
dius less than 1 [ACG]. This map then induces a radius functiatviQpe ) (i.e.,

R(¢) = sup(r : ¢ continuous onB }).

In our approach to the subject we will have occasion to consider the subalge-
bra of elements whose Taylor series have weakly continuous partial sums. Recall-
ing that anyf € H>(B) can be writtenf = ) 2, f; with f; ani-homogeneous
analytic polynomial, we define

oo

HX(B) = {f € H®(B) ‘ f=)_fi with f; weakly continuousi }
i=0

We can equivalently require th#tbe weakly continuous on any ball of radius less

than 1, this algebra is simply the closure of the weakly continouous polynomials

in the topology of uniform convergence on balls of radius strictly less than 1. This

topology is a topology in which the Taylor series férconverges; we will refer

to it from here on as thecb topology(notice that this is the analog of the topol-

ogy of uniform convergence on compact subsets in the classical case, for closed

bounded subsets are weakly compact in a reflexive Banach space).

It has been previously shown (sgg) that, in the context of reflexivity and the
approximation property (AP), the requirement th&°(B) = HS°(B) is equiv-
alent to so-called polynomial reflexivity, that is, the property that the spaces of
n-homogeneous polynomials are reflexive for evefwhich is the same as saying
that all polynomials are weakly continuous modulo the AP). This is one context
in which this subalgebra natually appears.

These algebras will not ever be the same in what follows here, however, for
the following reason. Uniformly convex spaces are superreflexive and therefore
have nontrivial type. By a geometric argument involving spreading models (see
[FJ]), it can be shown that such spaces are “polynomially Schur” (i.e., they enjoy
the “A-property” of [CCG]); as a consequence there always exists a homogeneous
polynomial of some degree that is not weakly continuous.
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The properties shown to be satisfied#$ (B) in [F] for polynomially reflexive
spaces actually hold for the subalgelfgr (B) wheneverX is reflexive. Owing
to the inclusionH . °(B) C H*(B), there is a natural projection of the spectrum
of the second into that of the first (it acts by restriction). We can now adapt one
fact in particular from [F] to our situation here. Define

K, = M, N (clB),

where cIB is closure in the Gelfand topology.

ProposiTION 2.1 (aconsequence of [F, Thm. 4.5]Letm,,: Myoog) — Mpx )
by, (@)(f) = ¢ (f). If R(¢) < land¢ € K,, thenm,¢ = §,.

This simply says that the projection, maps all elements of the noncorona part

of the fiber (i.e., the part that lies in the closure of the evaluations) that have radius
function less than 1 to the evaluations. Thus the only other homomorphisms in
fibers over interior points are elements whose radius function is 1; this says that, in
order for a net of evaluations to converge to something in the fiber over an interior
point, the net must move to the boundary.

We will find this subalgebra off*°(B) and its spectrum to be useful to us in
the sequel—many of the functions we use will come from this algebra. In the next
section we will also see that this algebra is closely related to the single-functional
subalgebras.

3. Single-Functional Subalgebras; Restrictions to Slices

A (real) observer standing on the unit sphere of a complex infinite-dimensional
Banach space (say at a paintcan gaze in many directions; one of these is distin-
guished as being the direction of complex rotation of the vect®y restricting
consideration to the (complex) 1-dimensional subspace generatedday ob-
server finds an exact copy of the classi¢&r space as follows. Let* be any
norming functional forx. The map that takeg € H* to g o x* € H*(B) is an
isometric embedding df* into H>°(B). We call the image of this mag >’ (B),

its adjoint projection on the maximal ideal spaegs, with

Tyt Mpooigy = M by me(p) = ¢|H;’§(B) Vo € My (p).

ProrosiTIiON 3.1. The mapr,« is Gelfand continuous, onto, and takes Gleason
parts onto Gleason parts.

The proof of the proposition is a straightforward verification: Since the norm of
the map is 1, it is a contraction in the Gleason metric; it is also clearly tveak
(Gelfand) continuous. We will see that it is onto in a moment.

ProrosiTioN 3.2. Letx € S, the sphere of a uniformly convex Banach space,
with x* any norming functional. Leg € H®, y € S, y # Ax, andx € C. Then
g o x* is weakly continuous at.
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Proof. First, if y # Ax then|x*(y)| < 1 by uniform convexity, sg o x* is de-
fined aty and is norm continuous there. Butyif — y weakly then this says ex-
actly thatx*(y,) — x*(y) and we are done. (In fact, this is true for any Banach
space and any point of strict convexity on its sphere.) The map: produces
an additional fibering via its pullback, this time 8y~ 5, over M. We will call
these fiberssit (), ¢ € My () “x*-fibers.”

On the other hand, given anye S, we can define a map

pet HZ(B) —> H* by pu(f)M) = fOx), Al <1,

by restricting each function i *° (B) to the span of a single vector (the intersec-
tion of this span with the ball being a copy of the unit disk). We will call the ad-
joint of this mapp}: My~ — Mpyp. Itis clear that, whenever* normszx,

e+ o pr is simply the identity on the spectrum &f>. (Verifying this statement

is simple, and proves the “onto” part of Proposition 3.1.) O

The single functional subalgebras (denotég(B)) are related to the algebra
HZ*(B) considered in the previous section. Each subalgebra is clearly contained
in Ho°(B) and thus so is the closure of the algebra they generate in the ucb topol-
ogy. On the other hand, weakly continuous polynomialsomill be in the uni-

form closure of the algebra generated by the single-functional subalgebras if the
space has an appropriate approximation property. Denot&( By the uniform
closure of the polynomials weakly continuous Bnand by P(B) the uniform
closure inH*(B) of the algebra generated Bg.

ProposiTioN 3.3. The ucb closure oflg(J{ HX(B) | ||lx*]| = 1}) is con-
tained in H°(B). If the spaceX has the property that every weakly continuous
polynomial onB is a uniform limit of polynomials in linear functionals—that is,
if P(B) = A(B)—then equality holds.

Proof. We need merely observe that the stated property will guarantee that the
partial sums of the Taylor series of elementgiff (B) are weakly continuous on
B; since the Taylor series converges in the uch topology, we are finishedD

We now turn to an illustration of how certain results on boundary behavior from
the classical theory can be adapted to the infinite-dimensional situation. We use
the notation from [H].

Let X be any complex Banach space; fet Sy, x*(x) = 1, and|x*|| = L
DefineW = {¢p e M, | y = Ax, |A| = 1}. Let W, = W Ny = ax |
Im(x*(y)) > 0} and likewise forw_, while Wog = M, — clW, — clW_.

Also, refer to the classical fiber i> over the point 1 as\{;. We then have
the following.

THEOREM 3.4. LetX be any uniformly convex Banach spacexet Sy, x*(x) =

1, |x*|| = 1, and¢ € M, C Mpy~(p). Then the setdA, Ncl Wy, M, NclW_,
and Wy are disjoint and nonempty. In additiofif dimX > 1), eachx*-fiber
over a classical homomorphisman- (Wy) contains many homomorphisms in the
closure of
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Mpoy — W) —U{M; | zeB},

that is to say, the closure of the set of homomorphisms in fibers over points of the
sphere that are not complex rotationsxof

Proof. Following [Ho, pp. 165-166], defing € H> to be holomorphic on the
disk and continuous at every point on the circle except at 1dndf has the value
e on the lower half and 1 on the upper half of the circle and has radial ljfait
at+1. Now, by Lemma 4.4 (to be proved in the next sectiofiy x* € H*(B)
will be constant on fibers over pointsc if A # £1; thus, it will separate div,

and clW_ sinceW, C f/o?‘ l(1) andW_ C m 1(e). The sets are seen to
be nonempty by lifting vigo} from the analogous sets provided for the classical
case by [Ho, p. 165], bearing in mind th@t« o p¥)(v) = v (v e M).

We prove the additional fact. First, suppose that Wp; it lies in the x*-
fibern;lnx*dx By Carleson’s theorem, fingl, € D converging tor,«¢. Make
any selection (using choice and the fact that dins- 1) of pointsw, € Sx and
homomorphisms satisfying

X (we) =z and ¢, e M,,.

Now the nef{¢,} must have a convergent subnetty«z), say tog’; this is the
point we seek:

7Tx*¢/ = 7,+ lim (bﬂ = lim ﬂx*(f)ﬂ = lim wg = T+,
B B B
by Gelfand continuity ofr,«. O

We can actually say a bit more about this situation. The functibas radial limit
J/e at1, so it has nontangential limjte there. If the{¢,} are in fibers over points
wy € Sy having the property that the (w,) = z, € D approach 1 nontangentially,
then we know that any limit point will be iy because

[P} (f 0 x*) = merdpo(f) = f(za) = Ve,

sincer ¢, is just a classical homomorphism in the fiber oyge D, a fiber that
contains only the evaluation. Thus, in order to have a net approaching an element
not in Wy, it must lie in fibers over points whose projection byapproaches the
boundary quickly. We quantify this statement as follows.

THEOREM 3.5. Lets: (0,1] — (0, 1] be the modulus of uniform convexity for
X.Letxe S, x*(x) = |x*| =1, ¢o € Mwa — ¢, andx*(wa) = Zg = T,
and suppose

lim inf =c>0.

o

{S(d(wm {e'’x})) }
lwe — x|
Theng € Wy.

Proof. The claim is that the condition of the proposition guarantees thatthe
converge nontangentially to 1, which will finish the proof by our previous remarks.
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Letc > ¢’ > 0. Then by hypothesis there existgauch that for ale > g we
have

8(d(we, {e"x})) > ¢/lwy — x|
or
8(lle®we — xI) > ¢'lwg — x| VO,

which by uniform convexity (Corollary 1.2) implies that

Re[x*(e?wq)] < 1 —2¢/||lwe — x|| VO
and hence

[zal =[x (we)] < 1= 2¢ | we — x|l < 1—2¢"|zq — 1
or
2c|zq — 1] < 1— |zql.

This is exactly what we need for nontangential convergence in the unit digk.

4. Fibers over the Boundary; Interpolating Sequences

An important consequence of uniform convexity for us is that at any poins,

the intersection of a weak neighborhood determinedbgndS is contained in

the intersection off with a norm neighborhood of; thus, the weak and norm
topologies (on the ball) coincide at points of the sphere. This allows us to create
some peaking functions.

ProrosiTioN 4.1. For any uniformly convex Banach spag&e for all ¢ > 0,
1/2> 68 >0, »e€C, andx € S, there is a function inf € A(B) satisfying

fx)y=x, Nfll <Al
and
|f(y)] <& wheneverye B and ||x — y| > 6.

Proof. Letx* be a norming functional for. By uniform convexity there is a num-
bern > 0 such that, fory € B, Re(x*(y)) > 1 — n implies that||x — y|| < §.
Now there is a number > 0 such that, if Réx*(y)) < 1 — n with y € B, then
|(222)(»)| < 1 - o. Simply choosen so that/A|(1 — o)™ < ¢ and letf =
A(”—z"*)m . Then f € P(B) C A(B) has the desired properties. O

LEMMA 4.2. Let X be u.c. Supposeb,} C Mpywg) with &, — @ in the
Gelfand topology. Let,|x+ = x, and ®|x+ = x € S (i.e., eachd, lies in the
fiber overx,). Thenx, — x in norm.

Proof. Recalling that the Gelfand topology is the weak-star topologiéh(B)*
restricted to the spectrum, it is immediate that the convergence occurs weakly by
restricting the action of the homomorphismsXé ¢ H*°(B). But the weak and
norm topologies agree with regard to points on the sphere, so we are done.
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Since there is no known corona theorem even for two dimensions we do not ex-
pect one in our context soon. This means that on those occasions where we must
approach points of the spectrum from the ball, we will look only at the closure of
the ball in the spectrum and at fibers in this closure.

Lemma 4.3. Let B be the unit ball of any Banach space. Lgtc H>(B) be
weakly continuous at € B. Thenf is constant oriC,, the noncorona fiber over

x (i.e,¢(f) = f(x) forall ¢ € y).

The proofis an exercise. His a point on the sphere of a uniformly convex Banach
space where weak and norm continuity coincide, tfieveed only be norm con-
tinuously extendable to, and we can say a bit more; in this case we can actually
discuss the whole fiber.

LEmMA 4.4. Let B be the ball of a u.c. Banach space. Thér H*>(B) is con-
tinuously extendable to a pointon the sphere if and only if is constant on the
whole fiberM, (i.e.,¢(f) = f(x) forall ¢ € M,).

Proof. The sufficiency is clear by taking cluster points of evaluations in the spec-
trum. The necessity is a consequence of the fact that each boundary point is a
strong peak point for the ball algebra, as follows. Suppose fhist continu-

ously extendable t® with value zero. Take a sequence of strongly peaking func-
tions (p,) in P(B) that converge to zero uniformly on the ball off of norm neigh-
borhoods ofx (Proposition 4.1 shows how this may be done). Tlkr p,)f
converges uniformly tgf on the ball, so that for any homomorphigie M,

¢(f) =MoL = p)f) =D - ¢(p)]¢(f) =m0 =0

by choice of thep, as strongly peaking elements Bf B), the algebra generated
by linear functionals. O

DerFINITION.  We shall say that a sék, },<; In S is well-separatedf, for all k,
d(xi, {xn},e; — {xx}) = 8, > 0 and if for alli # j there is no complex number
such thaty; = Ax;. We call the number8, theseparation indicesf the set.

If the set is finite or countably infinite, then it is enough to check that it does not
contain any of its accumulation points and that no element is a complex multiple
of another.

THEOREM 4.5. Let {x,},en be well-separated in the unit sphere. Legte C,

A, =1,and1 > ¢, > 0, ¢, — 0. Then there exists a bounded analytic function
f € H*®(B), continuous everywhere on the closed unit ball except at accumulation
points of {x,}, satisfying

(I) |f(xn) - )\nl <& and

(i) 171 <sup{l+e,}.

Proof. Letx} be the norming functionals for the,, and lets, be the separation
indices. Apply Proposition 4.1 with = x;, 8 = 27172¢;, § = %81, andi = Aq,
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obtaining f1. To obtain f, for n > 2, do the same thing except let= x,, § =
%8,1, A=A, — Z?;llﬁ(xn), ande = inf,<,{27"2¢;}. Note that we will always
have|r| < 1+ %sug &,. Then definef = >"°°, f;. One checks easily that the
estimate is obtained:

f(xn)—Zf,(xn)—Zf,(xn)Jr Z £iGen) =2y + Z ().

j=n+1 j=n+1
Hence
00
|f(xn) - )\n| = Z 2_1_2&1 < &p.
j=n+1

The same kind of calculation proves uniform convergence on bounded subsets of
B, and in any neighborhood of a point §fthat does not contain an accumulation
point of thex,,, sinced(y, x,) < %8,, for at most one value of.

For example, ify happens to be close tg, (i.e., if |y — x,| < %81,, which
implies|ly — x;|| > 38; for all j # p), then

Ifnl<y 27" 2<Inf 8k> + 5
J#p

<3 supe; + [ f |
< %supei +1+ %supe,-

=1+ sups;. U

Theorem 4.5 has some immediate corollaries; all apply to a uniformly convex
space.

CoRroLLARY 4.6. If X is uniformly convex, then any two points.®f in different
fibers over boundary points are in different Gleason parts.

Proof. Let ®; e M,, (i =1, 2). If {x1, x2} is well-separated, apply the theorem
to obtain 1= f(x1) = — f(x2); if not well-separated, the result is classical (by
means of Mébius transformations). O

Now we have the following generalization of a classical result.

THEOREM 4.7. Let®; € K ¢ M — B lie in fibers over the boundary such that
®; — @ in the Gelfand topology. Then all but a finite number of dhdie in the
same fiber a® does.

Proof. Suppose not. Nowb; € M,,. By passing to a subsequence, we may as-
sume that all of the; are distinct and that none of them are complex multiples of

x. (For if at any point all of the remaining elements of the sequeverecomplex
multiples ofx then we could apply the classical resulidpd;; see [Ho].) Since

x; — x in norm, we may also assume by passing to a subsequence that none of
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them are complex multiples of one another. But this means that the sequence is
well-separated, so we may apply Theorem 4.5 to obtain a function that is close to
both —1 and 1 on infinitely many of the; and also norm continuous (hence also
weakly) at each one of them. Since thiswill then be constant on the fibers over
thex;, we will have® (f) equal to 1 and-1, a contradiction. O

5. Analytic Structures in Fibers

The investigation of analytic structures that can be biholomorphically mapped
into fibers was begun in the Banach space context by Cole, Gamelin, and Johnson
[CGJ], who showed that the fiber over zero contains (at the least) a large num-
ber of analytic disks and, in the case of superreflexive spaces, a copy of the ball
of a nonseparable Hilbert space. In this section, we wish to investigate structures
in boundary fibers. As a consequence of our construction, we will see that some
very large structures appear in interior fibers as well.

Our venue will be thé,-spacegl < p < oo), and the goal will be to prove the
following theorem.

Tueorem 5.1.  Letx € §;,. Then there is a copy dfp,,;, x (BN —N) in the fiber
overx (in Mpyz()), embedded via a uniform homeomorphism with uniformly
continuous inverse, that is analytic for each poinsdf — N.

The proof will also give us a new structure in fibers over interior points.
CoroLLARY 5.2. Theorem 5.1 remains trueife B;,.

By the Dvoretzky theorem, this also gives us a copy of the unit ball of a nonsepa-
rable Hilbert space in each fiber. However, this structure will be seen to be distinct
from that embedded in the fiber over 0 by [CGJ].

The idea here will be to embed copies of the ball of #hin very small slices
near elements of a convergent sequencand disjoint from them with respect to
the basis. The fact that we can explicitly calculate the noriy will be of great
help to us. We begin with some lemmas from calculus. For the remainder of the
proof, fix 1 < p < oo.

Lemma 5.3. Foranyi > 0andn e N, the functiong, (a, b) = )fla(%)" sub-
jecttoa? 4+ b? = 1 has a single maximum value on the unit squaréaat bo),
where
n—1
_— <<
n+1

the maximum valug, (ao, bo) < Fl(,—zl)l/p.

n 2
b < —— andhence —— < df < :
0 n-+2 n—+2 0

n+1

Proof. Since the function is zero at the endpoints and nonnegative, it should have
a maximum. Lagrange multipliers tell us that at this point

(a)p_l 1+5 a?>  14+b
= or =

b an b~ bn




Fibers over the Sphere of a Uniformly Convex Banach Space 221

Solving fora? and plugging into the constraint gives
n=>b""1t+bP(1+n),

from which the estimates are obtained by noting titak 571 < 1. O

COROLLARY 5.4. If A7 = 1 — (2¥"¥Y" — 1)? thenlim,_ . A’n = 2plog2.
Hence, for anyC > 1there exists aV € N such that, form > N and x as before,
gnla,b) < C(plog2)~"r.

Proof. This is an application of L'Hopital’s rule and Lemma 5.3. O

LeEmMA 5.5. ForfixedO <a,b <1, a? +b? =1, and i = A(n) as before:

(1) lim, o gu(a, b) = 0; and
(i) foranyn, if b < bo(n) (from Lemma 5.Btheng, (@', b’) < g,(a, b) when-
everb’ < b.

Proof. (i) To check this, apply L'Hopital’s rule once to theth power ofg; the
new limit is easily seen to be zero.
(i) Calculus and Lemma 5.3. O

We are now ready to begin proving Theorem 5.1. Chagses finitely supported
on the basis and converging.tosay with supp; C o;, where the supports form
an increasing sequence of finite subsets of the integers o, C ---). We also
choose the sequence so that none of the elements are multiplesidfso that, at
every(kth) basis element where both are nonzero,

arg(x*) = arg(xf)

and argx¥) = 0 otherwise. This is done slightly differently depending on whether
x is finitely supported or not, but is nevertheless easily done in either case. All of
this will result in the sequence being well-separated; we can thus find nufbers
to satisfy the following: Reéx}(y)) > §; implies Rex] () < §; wheneverj #
i. (Herex}(x;) = ||x}|| = 1 and naturally it has the same supporka$ Hence
eachg; is an amount by which the hyperplane [R¢) = 0] may be translated
in order for the slices thus formed to be disjoint. (Thenay be explicitly cal-
culated using Corollary 1.2; i; are the separation indices defined in Section 4,
thens; = 1 — 28(u;/2) will do.) Call the sliceC/ (i.e.,C/ = BN [Re(x}) =
8;]). Letting &; be defined by:; as in Corollary 5.4, choose large enough so
that the maximum of; (= g,,) occurs abg; with §; < bg; < 1 (by Lemma 5.3),
gi((1 =877 5, < 271 (by Lemma 5.5(i)), and also so the@*~¥m — 1)» =
1-17 > 87 (clear since thé; are defined). LeE; be finite-dimensiond|,-spaces
of increasing dimension. We will consider these spaces isometrically embedded
on dimE; elements of the standard basis in the following rather careful way.

Go out far enough on the basis to choose a bjockuch that|x;| || < 27 "A1
foralli > 1 (where dimE; = |p;|) and such thap, is disjoint from the support
of x1. This can be accomplished because- x €/,. Continue similarly so that
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lxilp Il < 27%772; Vi > j,

wherep; is disjoint fromo; (the support of;). Map E; isometrically tol, (p;).

We will suppress any further reference to this embedding, and just think of the
E; as living on these blocks of the basis. I&t= (2'~Y" —1)x; + (1;/3) B, be
isometric affine copies of the ball &; scaled by;/3; call the affine embedding
/7 BE,- — D;, where

Aj
Vi(y) = @Y — Dx; + 3y for yeBy

and whereD; C C; = [Re(x}) = (21¥" — 1)] N B. Our previous choice of;,

which determines.;, ensures that the sliag; is closer to the boundary thagy.

This map uses one third of the room available in the dlican these directions.
LetU/ be a free ultrafilter on the positive integers; form the ultraproduct of the

E; alongl{, which is isometrically an ultrapower &f. (This space contains both

a nonseparablg and a nonseparable,; for details, see [He].) It; € Bg,, then

z = {z;)%2, is a representative of an elementlip, E; and we define

(@) = lim ¥i(z),

where the pointg;(z;) are identified with evaluations and the limit is taken in the
(compact) maximal ideal space. First of all, singe— 0, each of these limits
lies in the fiber over (this is true also in the case of Corollary 5.2, whereithe
converge only weakly). The map is naturally analytic, since the embeddings are
affine. Our task is to show that the embedding is uniformly continuous in both
directions (which, by the definition of the ultraproduct, will also show that it is
well-defined).

Letz = {z;}2; andw = {w;};2, be representatives of distinct points in the ball
of our bigl,-space. Then digt, w) = limlz; — w;ll.

Distance in the maximal ideal space considered as a subset of the dual space of
HZ*(B) is now given by

[W(z) = W)l = sup {[¥()(f) = ¥w)(Hl}

1 fllo=1

= sup {”m |f(Wi(zi)) — f(lﬁi(wi))|},

Ifllo=11 ¥
where eacly is in H:°(B). So this comes down to checking each coordinate map
¥;. Here we use the Schwartz lemma. Let us omit the tedious (fixed) infibax
amoment orw, z, E, A, andy. Notice that no matter where(= z;) is mapped,
we can center a complex disk there in the directiow afith radius 2./3 (sincez
is already in a disk of radius/3 centered in the slic€, which is of sizex in the
relevant directions—namely, those Bf which has support on the basis disjoint
from x;). Call the map from the unit disk to this digk that is,

2vA

) = Y2+ = (w) - Y (2)).
W=V gy — g Y TV
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The Schwartz estimate for the compositi%a(rf — f(¥2)) o h (when applied to
the pointh (v (w)) = %Ilw(w) — ¥(2)|I: noteh1(y(z)) = O here) gives

1 1 3
S @) = f@ @)= 5(f = fW @) e h(ﬁnww - Iﬁ(z)ll)

3 1
< o W) =y @l = lw =<

(recall that the affine magsandy scale by 2./3 andi /3, respectively). Hence
W is uniformly continuous.

To see thatl does not appreciably decrease distances as well, we need to con-
struct a specifidi>°(B) function f that will separate two given points in the im-
age of the ball of the ultraproduct. To this end,detndw be representatives as
before. (We return to the use of the indgxTakeg; in Bg: so thatg; (w; —z;) =
lw; — z;]l. (We will not distinguish betweet; in E7 and¢; € [; supported on
pi.) Due to the disjoint supports of th&;, we havep; (Y (w;)) = ¢;(¥(z;)) =0
if i # j. By the definition of the map#;, we also have

XFwy)) = xF(P(z)) = 28 Ym — 1,

(o] 1 * n;
:in—lq),»( +x’) :
i=1 2

Let us make some remarks abqutt is defined on the unit ball. The main diffi-
culty is to show that it is bounded there. Let B;,. Choosey’ so that the mod-

ulus of each coordinate is the same as that,dfut rotated so that’(y’) is al-

ways positive. This can be done because of the wax tiveere chosen; the ar-
guments of their coordinates agree for each coordinate in their common support.
Now notice that

Now define

1 * ni
O Zm‘%p( )(Lm)

[e8) * / nj
=3 ey )(”T(”) ,
i=1

wherer; andr; are constants of modulus 1 chosen in each case to make each term
positive. The first inequality is due to simple properties of the complex nhumbers;
the second is due to the fact that the size of each (now positive) term is only in-
creased by the change fropto y’, by the choice ofy’. Because of the foregoing
inequality, we need simply assume that we are working inlfeéh fact, in the
positive cone). Now the maximum of Lemma 5.3 also holds in théxdet b7 <

1}, andx?(y) > §; for at most one index, say, we thus may write

FO) <Y 8i@i(3), X7 (3) + (i (), x5 (3);
ik

by Lemma 5.5(ii) and our choice &f, this means that
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fM =Y 27+ (), 5 () <1+2=3
ik
owing to Corollary 5.4. Thug f |, < 3andf € H;°(B).
Let us now calculate

Ai
—1i (w)) = li 1-1/n _ PRI
f(Yw) = Ilum f(i(w;)) = “um f<(2 Dx; + w,).

Sinceg;(w;) = 0 whenevei # j and¢;(x;) = 0ifi < j, we have

ol (A w)’“
f(Pw) = A; ¢,<3wl>< >

i-1 1 * ; nj
+vawmem@ﬂ%@2)
j=1

. i—1 1 * i 0,
= 3ot0(Bo) + o a e v - pa (LY
j=1

Let’s call the preceding summation term the “error”. A similar calculation works
for z;, and sincep; is linear we can say that

Lf(Yw) — f(¥z)]
= 'Iim F@r(w)) —lim f(l/f(zi))‘

1 1., (A
> |ZT —A; Yol Zw; ) — Eki b §Zi — |error, — error,|
= I81( oi(w; — z,~) — lerror, — error.|)
= g]( lw; — z;ill — |error, — errom)a

which will be greater thaq%nw — z|| provided the error terms are small enough.
But the error terms may be bounded as a proportion of the distance batvaseh

z by a Schwartz estimate as before in conjuntion with our choices of supports for
the E;. Note that

lerror,, — error,|

i-1 T4\ (142 W@)\Y
— Zl)”;lqu((zl_l/ni _ 1))([){(#) — <+W> }
j=

Now by the choice of supports for the we have|¢;(x;)| < 2757/;. By the
Schwartz lemma, applied as before but now to the fundtibr- x:)/2)" (with a
suitable constant added), which has norma jmve bound the error by 2 ||w —z||.

This shows that the map has uniformly continuous inverse and so completes
the proof of Theorem 5.1. The same construction will work in the same way in
H>®(B). O
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Some remarks are in order. First, let us note that nothing in the theorem changes
if the sequencéx;) converges weakly to a point in the interior of the ball. Thus
we see that the same structure can be found in fibers over interior points. (This is
Corollary 5.2.) We can check that this is an essentially different structure (in case
p = 2; in other cases, it is trivially different) than that found in [CGJ] by not-
ing that, in our construction (unlike theirs), the value of the radius function (see
[ACG]) is equal to 1 at every point of the embedded ball.

Second, we note that the structure of thispaces is very important in this con-
struction. Although something similar might be true for some wider class of spaces
with very nice structure, itis notimmediately clear how. Butin spaces without un-
conditional structure of some sort, boundary slices tend to be shaped very oddly;
although one could imagine finding some sort of topological nonstandard hull of
bits of boundary slices in a fiber, it seems possible that nothing looking very much
like an infinite-dimensional unit ball is there.

Third, this construction sheds some light on an interesting special case, namely
that of the unit ball of Hilbert space. We now have identified several different
kinds of Gleason parts, some in interior fibers and some over the boundary, which
have copies of a ball of nonseparable Hilbert space in them. One wonders if the
construction of [CGJ] could be combined with this one to find more, and if some
sort of classification of parts is possible. Very little is known even in this “nicest
possible” case.
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