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REGULARITY AND ALGEBRAS OF ANALYTIC FUNCTIONS

IN INFINITE DIMENSIONS

R. M. ARON, P. GALINDO, D. GARCÍA, AND M. MAESTRE

Abstract. A Banach space E is known to be Arens regular if every continuous
linear mapping from E to E′ is weakly compact. Let U be an open subset of E,
and letHb(U) denote the algebra of analytic functions on U which are bounded
on bounded subsets of U lying at a positive distance from the boundary of U.
We endow Hb(U) with the usual Fréchet topology. Mb(U) denotes the set of
continuous homomorphisms φ : Hb(U) → C. We study the relation between
the Arens regularity of the space E and the structure of Mb(U).

Introduction

For an open subset U of a complex Banach space E, let Hb(U) denote the
algebra of holomorphic functions f on U such that for all bounded subsets B ⊂ U
satisfying dist(B,E\U) > 0, ||f ||B = supx∈B |f(x)| < ∞. There is a countable
family of such bounded sets B which exhausts U , and thus there is a countable
family of norms (|| ||B) which determines a metric on Hb(U). It is easy that with
this metric Hb(U) is a Fréchet algebra. In Sections 1 and 2, we will be interested
in the set Mb(U) of continuous homomorphisms φ : Hb(U)→ C. The most obvious
homomorphism on Hb(U) is point evaluation at a point a ∈ U, δa, and it is classical
that in the finite dimensional setting U is a domain of holomorphy if and only if the
only homomorphisms are such evaluations. The situation for infinite dimensional
Banach spaces is usually quite different, even for the case U = E. In [2], for
example, it was shown that there is a continuous, linear, multiplicative, mapping
from Hb(E) to Hb(E

′′) which extends each function f ∈ Hb(E) to f̃ ∈ Hb(E
′′).

(The extension technique, which has been considerably studied and refined by [8],
[11], [14], and [20], will be outlined in Section 1.) Thus, to each point a′′ in E′′ we

can associate a homomorphism δ̃a′′ , by δ̃a′′(f) = f̃(a′′). At this point, it is natural
to ask whether this process could continue. Specifically, starting with f ∈ Hb(E),

could we not “doubly extend” f to
˜̃
f ∈ Hb(E

iv), and obtain a “new” homomorphism
˜̃
δaiv corresponding to each point of the fourth dual Eiv of E, and so on? As we will
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see in Section 1, Arens regularity [1] plays a crucial role in determining whether or
not elements of the fourth dual produce new homomorphisms. In Section 2, we will
see that Mb(U) has a natural analytic structure precisely when E is symmetrically
regular. (This answers a problem which was discussed in [4].)

The algebra Hb(E) was studied in [4], where it was found useful in studying the
Banach algebra H∞(B) of bounded analytic functions on the open unit ball B of
E. In a natural way, Mb(E) can be made into a convolution algebra, making it a
semi-group with identity. In Section 3, we examine this convolution product, giving
a partial solution to a question in [4] .

For background information on holomorphic functions in infinite dimensions, we
refer to [10] or to [21]. Our general notation will follow [4]. In order to deal with
many duals of a Banach space E and many transposes of linear maps T : E → F ,
we have chosen the following convenient, albeit inconsistent, notation: E′, E′′, E′′′

denote the first, second, and third duals of E, respectively, while the fourth, etc.,
duals will be denoted Eiv, etc. Similarly, T t, T tt, T ttt denote the first, second,
and third transposes of T , respectively, while the fourth, etc., transpose of T will
be denoted T iv, etc.

1. Regularity and Eiv

Given a continuous, n−linear mapping A : E× · · ·×E → C, A can be extended
to a continuous, n−linear mapping Ã : E′′ × · · · ×E′′ → C by

Ã(x′′1 , ..., x
′′
n) = lim

α1

. . . lim
αn

A(xα1 , ..., xαn),

where for each j, (xαj ) is a net in E converging weak-* to x′′j . It will be important

for us that, in general, Ã will not be symmetric even if A is [1]. However, for every
x1, . . . , xp−1 ∈ E and x′′p+1, . . . , x

′′
n ∈ E′′ the mapping

x′′ ∈ E′′ ; Ã(x1, . . . , xp−1, x
′′, x′′p+1, . . . , x

′′
n)

is w(E′′, E′)−continuous. Recalling that an n-homogeneous continuous polynomial
P : E → C is defined by the relation P (x) = A(x, ..., x) for a unique symmetric
continuous n-linear formA (see, e.g. [10]), we see that each such P has an extension,

P̃ : E′′ → C. Moreover, ||P || = ||P̃ || ([8]) and so we may extend any f ∈ Hb(E) to

f̃ ∈ Hb(E
′′). It is routine that the extension mapping taking f to f̃ is continuous,

linear, and multiplicative between the Fréchet algebras Hb(E) and Hb(E
′′). As a

result, for each x′′ ∈ E′′, we can define an element δ̃x′′ ∈Mb(E) by δ̃x′′(f) = f̃(x′′).
Of course, we can continue this procedure to obtain extensions of the original

function to any even dual of E. In particular, for each xiv ∈ Eiv we can obtain an

element
˜̃
δxiv ∈Mb(E), given by

˜̃
δxiv (f) =

˜̃
f(xiv) for all f ∈ Hb(E). However, by so

doing, have we actually obtained a new element of Mb(E)? That is, is there some

x′′ ∈ E′′ such that δ̃x′′ = ˜̃δxiv? We will show in this section that the answer to this
question is closely connected with the question of whether E is regular. Specifically,
we show that if E is symmetrically regular, in a sense to be defined below, then every

homomorphism obtained by evaluating a doubly-extended function ˜̃f at a point of
the fourth dual of E is, in fact, equal to a homomorphism obtained by evaluating
f̃ at a point of E′′. On the other hand, we show that if E fails to be symmetrically
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regular then there are points of Eiv which yield “new” homomorphisms. Recall that
E is said to be regular if every continuous bilinear A : E×E → C is Arens regular,
(see, e.g. [1], [23]) i.e., the following two extensions of A to E′′ ×E′′ coincide:

(x′′, y′′)→ lim
α

lim
β
A(xα, yβ)

and

(x′′, y′′)→ lim
β

lim
α
A(xα, yβ),

(where (xα), resp. (yβ), is a net in E converging weak-* to x′′, resp. y′′). Equiva-
lently, E is regular if every bounded linear mapping from E to E′ is weakly compact
(see, e.g. [23]). E will be said to be symmetrically regular if the above extensions
coincide for every continuous bilinear symmetric A. Equivalently, E is symmetri-
cally regular if every continuous symmetric linear mapping T : E → E′ is weakly
compact. Recall that T is symmetric means that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ E.

We begin with the following simple but useful result. Observe that to each
continuous bilinear form A : E × E → C one can associate a continuous linear
mapping T : E → E′ by 〈Tx, y〉 = A(x, y).

Lemma 1.1. Let A : E × E → C be a continuous symmetric bilinear form, with
associated linear mapping T , and let x′′ ∈ E′′ be fixed. Then T tt(x′′) /∈ E′ if and

only if there exists y′′ ∈ E′′ such that Ã(x′′, y′′) 6= Ã(y′′, x′′).

Proof. First, observe that if (yβ) converges weak-* to y′′, then for any xα ∈ E the
following holds:

A(xα, yβ) = 〈Txα, yβ〉 = 〈Tyβ, xα〉 = 〈yβ , T txα〉,

using the symmetry of A, so that by the weak-* density of E in E′′,

〈Txα, y′′〉 = 〈T tty′′, xα〉 = 〈y′′, T txα〉.(1)

Suppose that there exists a y′′ satisfying the condition of the lemma. Let (xα)
tend weak-* to x′′ and let (yβ) tend weak-* to y′′. Then

Ã(x′′, y′′) = lim
α

lim
β
A(xα, yβ) = lim

α
lim
β
〈Txα, yβ〉 = lim

α
〈Txα, y′′〉.(2)

Since T tt : (E′′,weak-*) → (E′′′,weak-*) is continuous, it follows from (2) that

Ã(x′′, y′′) = lim
α
〈T ttxα, y′′〉 = 〈T ttx′′, y′′〉.(2′)

Also, by (1),

Ã(y′′, x′′) = lim
β

lim
α
A(yβ , xα)

= lim
β

lim
α
〈Tyβ, xα〉 = lim

β
〈Tyβ, x′′〉 = lim

β
〈T ttx′′, yβ〉(3)

If T ttx′′ were an element of E′, then (3)= limβ〈T ttx′′, yβ〉 = (2′), which is a con-
tradiction.

The converse argument is similar. If T ttx′′ /∈ E′, then there is y′′ ∈ E′′ and a net
(yβ) ⊂ E which tends weak-* to y′′, but such that 〈T ttx′′, yβ〉 6→ 〈T ttx′′, y′′〉. By

(2′) , Ã(x′′, y′′) = 〈T ttx′′, y′′〉, which by (3) and the above observation is different

from Ã(y′′, x′′) = limβ〈T ttx′′, yβ〉. Q.E.D.
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Let ρ : Eiv → E′′ denote the natural restriction mapping of an element xiv ∈
(E′′′)′ to E′, so that every xiv ∈ Eiv can be written uniquely as xiv = ρ(xiv) + w,
where w annihilates E′. As motivation for the following results, consider a contin-
uous 2−homogeneous polynomial P : E → C. If E is symmetrically regular, then
the associated linear mapping T : E → E′ is weakly compact and, consequently,
T tt : E′′ → E′′′, T iv : Eiv → Ev, etc. all map into E′. Because of this, it should

not be surprising that the extension ˜̃P should in fact be equal to P̃ ◦ ρ.

Lemma 1.2. If E is symmetrically regular, then for every symmetric continuous

m-linear mapping A : E × · · · × E → C , ˜̃A(xiv1 , . . . , x
iv
m) = Ã(ρ(xiv1 ), . . . , ρ(xivm)).

In particular ˜̃A(xiv1 , . . . , x
iv
m) = 0 if xivj ∈ Eiv is in (E′)⊥ for some j = 1, ...,m.

Proof. First, recall (see, e.g., 8.3 Thm. [4]) that under the assumption of symmetric
regularity, the extension of an arbitrary symmetric multilinear form in E to E′′ is
separately weak-*continuous and symmetric.

Fix (xiv1 , . . . , x
iv
m) ∈ Eiv × ...×Eiv. By definition, for every z1, . . . , zm−1 ∈ E′′

˜̃A(z1, . . . , zm−1, x
iv
m) = lim

x′′m→xivm
Ã(z1, . . . , zm−1, x

′′
m),

where x′′m → xivm in the w(Eiv , E′′′)-topology. But then x′′m → ρ(xivm) in the

w(E′′, E′)-topology so by the weak-* separate continuity of Ã ,

˜̃A(z1, . . . , zm−1, x
iv
m) = Ã(z1, . . . , zm−1, ρ(xivm)).

Next,

˜̃A(z1, . . . , zm−2, x
iv
m−1, x

iv
m) = lim

x′′
m−1
→xiv

m−1

˜̃A(z1, . . . , zm−2, x
′′
m−1, x

iv
m)

= lim
x′′
m−1
→xiv

m−1

Ã(z1, . . . , zm−2, x
′′
m−1, ρ(xivm)) = Ã(z1, . . . , zm−2, ρ(xivm−1), ρ(xivm)),

again by the weak-* separate continuity of Ã. The conclusion follows by repeating
this argument m times. Q.E.D.

Theorem 1.3. Suppose that E is symmetrically regular. Then to every point xiv ∈
Eiv corresponds a point x′′ ∈ E′′ such that ˜̃δxiv = δ̃x′′ . Conversely, if E is not

symmetrically regular, then there exists a point xiv ∈ Eiv for which
˜̃
δxiv 6= δ̃x′′ for

any x′′ ∈ E′′.

Proof. First, we note that any point xiv ∈ Eiv can be expressed as xiv = x′′ + z,

where x′′ = ρ(xiv) and z annihilates E′. If ˜̃δxiv = δ̃y′′ for some y′′ ∈ E′′, then

necessarily ˜̃φ(xiv) = φ̃(y′′) for all φ ∈ E′, so that x′′(φ) + z(φ̃) = y′′(φ) for all

φ. Since z(φ̃) = 0, the Hahn-Banach theorem implies that x′′ = y′′. In other
words, given xiv ∈ Eiv, the only possible point in E′′ which can yield the same
homomorphism is the point x′′ arising from the decomposition of Eiv.

If E is symmetrically regular, it follows by Lemma 1.2 that for all n-homogeneous

polynomials P : E → C and all xiv ∈ Eiv , we have ˜̃P (xiv) = P̃ (ρ(xiv)). Therefore,
˜̃δxiv = δ̃ρ(xiv) because the set of all continuous polynomials is dense in Hb(E).

Conversely, suppose that E is not symmetrically regular, let T : E → E′ be a
continuous symmetric, non-weakly compact linear mapping, and let P : E → C be
the 2-homogeneous polynomial given by P (x) = 〈Tx, x〉. By ([12], Thm. VI.4.2)
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it follows that there is x′′0 ∈ E′′ such that T tt(x′′0 ) ∈ E′′′\E′. Hence there is
w ∈ (E′)⊥ ⊂ Eiv such that 〈T ttx′′0 , w〉 6= 0. We will prove that there exists

α ∈ C such that
˜̃
δx′′0 +αw(P ) 6= δ̃x′′0 (P ). To do this, first define B : E × E → C

by B(x, y) = 〈Tx, y〉 and note that B̃(x′′, y′′) = 〈T ttx′′, y′′〉 for all x′′ and y′′ in

E′′. By Lemma 1.1, B̃ is not symmetric. Define C : E′′ × E′′ → C to be the
symmetrization of B, C(x′′, y′′) = 1

2 [B̃(x′′, y′′) + B̃(y′′, x′′)]. A calculation ([4],

Lemma 8.1) then shows that the bilinear mapping C̃ : Eiv × Eiv → C is given by

C̃(xiv , yiv) = 1
2 [〈T ivxiv, yiv〉 + 〈πT ivxiv, yiv〉], where T iv : Eiv → Ev denotes the

fourth transpose of T and π : Ev → E′′′ is the mapping which restricts an element
of Ev to E′′. In addition, we observe that P̃ (x′′) = B̃(x′′, x′′) = C(x′′, x′′) and that
˜̃P (xiv) = C̃(xiv , xiv) = 1

2 [〈T ivxiv, xiv〉+ 〈πT ivxiv, xiv〉].
Now,

˜̃P (x′′0 + αw) =
1

2
[〈T ivx′′0 , x′′0 〉+ α〈T ivx′′0 , w〉+ α〈T ivw, x′′0 〉+ α2〈T ivw,w, 〉]

+
1

2
[〈πT ivx′′0 , x′′0 〉+ α〈πT ivx′′0 , w〉+ α〈πT ivw, x′′0 〉+ α2〈πT ivw,w〉].

Note that T ivx′′0 = T ttx′′0 , so that πT ivx′′0 = πT ttx′′0 = T ttx′′0 . In addition,

〈T ivw, x′′0 〉 = 〈w, T tttx′′0 〉 = 〈w, T tx′′0 〉 = 0

since w ∈ (E′)⊥. Moreover, since πT ivw = T ivw|E′′ , we also have that 〈πT ivw, x′′0 〉
= 0. Therefore,

˜̃P (x′′0 + αw) = P̃ (x′′0 ) + α〈T ttx′′0 , w〉 +
α2

2
[〈T ivw,w > + < πT ivw,w〉]

= δ̃x′′
0
(P ) + α〈T ttx′′0 , w〉+ α2 ˜̃δw(P ),

which is not equal to δ̃x′′0 (P ) for all except at most two values of α ∈ C. Q.E.D.

Remark 1.4. (a). For certain Banach spaces, there is a continuous symmetric non-
weakly compact operator T : E → E′ such that T tt(E′′\E) ⊂ E′′′\E′. For such
a Tauberian [13] symmetric operator T , choose x′′0 ∈ E′′\E,w ∈ (E′)⊥, and α ∈
C such that ˜̃P (x′′0 + αw) − P̃ (x′′0 ) 6= 0. Since the function θα,w : x′′ ∈ E′′ →
˜̃P (x′′ + αw) − P̃ (x′′) is analytic, it follows that θα,w is non-zero on a dense open
subset of E′′. However, we do not know if θα,w(0) 6= 0 or even if θα,w|E can be
identically 0.

(b). Note that the argument in Theorem 1.3 only shows that if E fails to be

symmetrically regular then
˜̃
δxiv is a “new” homomorphism for some xiv ∈ Eiv\E′′.

We do not know of conditions which imply that every element of Eiv\E′′ yields
such a homomorphism. For example, not every point of (`1)iv yields a new homo-
morphism. Indeed, if this were not the case, then the mapping

xiv ∈ (`1)iv → ( ˜̃f(xiv))f∈Hb(`1) ∈
∏

f∈Hb(`1)

C

would be one-to-one. However, since `1 is separable, the space Hb(`1) has cardinal-
ity c and, consequently, the cardinality of Πf∈Hb(`1)C is 2c. Since the cardinality of

`iv1 is at least 22c ([9], p. 211), we have a contradiction. This type of cardinality
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argument can be extended to certain non-regular Banach spaces E, to show that
in general not every element of every even dual of E yields a new homomorphism.

(c). Even if it were true that every element xiv ∈ Eiv\E′′ yielded a homomor-

phism
˜̃
δxiv /∈ {δ̃x′′ : x′′ ∈ E′′}, it is not at all clear that the process could be

continued to find points xvi ∈ Evi\Eiv which correspond to new homomorphisms.
Indeed, since the elements in E′ do not separate points in Eiv, the argument given
at the start of the above proof, showing that there is at most one “candidate” in
E′′ corresponding to a point in Eiv, does not extend to this case.

(d). If E is symmetrically regular, then no point of any even dual of E yields a
new homomorphism. In fact for Evi we have that

˜̃̃
A(xvi1 , . . . , x

vi
m) = Ã(ρ(xvi1 ), . . . , ρ(xvim))

where ρ(xvij ) denotes the restriction of xvij to E′. The same argument used in

Lemma 1.2 yields this for Evi, and the same proof works for each succesive even
dual space. Since each even dual of a C∗−algebra is also a C∗−algebra, this remark
is also seen to be true, in the context of C∗−algebras, by repeated application of
Theorem 1.3. We are grateful to Peter Harmand for pointing out that in general
the bidual of a symmetrically regular Banach space may fail to be symmetrically
regular and so this argument cannot be applied in general. Since by ([17], Chap-
ter III Example 3.5,5) the Banach space E = (c0(`n1 ), ‖ . ‖∞) has property (V )
of Pe lczyński, it follows by [15] (see also [14], 7.6. Example) that E is regular.
However, E′′ is isometrically isomorphic to the space l∞(`n1 ) which contains as a
complemented subspace a copy of `1, and so E′′ is not symmetrically regular.

Whether or not E is symmetrically regular, there are in general (many) more
homomorphisms in Mb(E) than those obtained by evaluating at points of E′′ :

Proposition 1.5 (cf. Theorem 7.2 [5]). If E is a Banach space and there is a poly-
nomial P ∈ P (nE) which is not weakly continuous on bounded sets, then there exists
a homomorphism θ which does not belong to E′′.

Proof. We first observe that if (xi)i∈I is any bounded subset of E and U an ul-
trafilter on I then the function defined as the limit of (f(xi)) along the ultrafilter
U ,

θU : Hb(E) −→ C
f ; θU (f) := limU f(xi),

is an element of Mb(E).
By hypothesis, there exists a bounded net (xd)d∈(D,≤) which is weakly convergent

to a point x0 ∈ E such that P (xd) does not converge to P (x0) in C. Considering
a subnet and multiplying by a scalar, if necessary, we can suppose that |P (xd) −
P (x0)| ≥ 1 for every d ∈ D. On D we take the base of filter B := {{d ∈ D : d ≥
d0}, d0 ∈ D}. Let U be an ultrafilter such that B ⊂ U . We claim that θU /∈ E′′.
To see this, suppose instead that there exists x′′ ∈ E′′ such that δ̃x′′ = θU . Since
E′ is a subset of Hb(E) we have

x′′(x′) = δ̃x′′(x
′) = θU (x′) for every x′ ∈ E′.(4)

On the other hand, given x′ ∈ E′ and ε > 0 there exists U ∈ U verifying |θU (x′)−
x′(xd)| < ε for every d ∈ U , and since (xd) is weakly convergent to x0, we can
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find a d0 ∈ D such that | x′(xd) − x′(x0) |< ε for every d ≥ d0, d ∈ D. But
U ∩ {d ∈ D : d ≥ d0} 6= ∅, hence | θU (x′)− x′(x0) |< 2ε for every ε > 0. Thus

θU (x′) = x′(x0) for every x′ ∈ E′.(5)

As a consequence of (1) and (2) and the fact that E′ separates points of E′′ we

obtain that x′′ = x0. Hence, since we are assuming that θU = δ̃x′′ , θU (P ) =
δx0(P ) = P (x0). But since θU (P ) = limU P (xd) and |P (xd)−P (x0)| ≥ 1 for every
d ∈ D, we have |θU(P )− P (x0)| ≥ 1, which is a contradiction. Q.E.D.

Remark 1.6. The hypothesis in Proposition 1.5 is fulfilled if `2 is a quotient of E. To
see this, take the 2−homogeneous polynomial P ◦q : E → C, where q is the quotient
map and P (a) =

∑∞
n=1 a

2
n for a = (an) ∈ `2. Let (xn) ⊂ E be a bounded sequence

such that q(xn) = en for every n. Then the set {xn : n ∈ N} is weakly precompact,
and therefore 0 ∈ E is a weak cluster point of {(xn − xm) : m 6= n, m, n ∈ N}. If
P ◦q were weakly continuous on bounded sets, then it would follow that 0 = P ◦q(0)
would be a cluster point of {P ◦ q(xn − xm) : n 6= m} = {2}. In particular, the
hypothesis holds whenever E contains an isomorphic copy of `1 [6].

We devote the final part of this section to studying the relationship between
regularity and symmetric regularity.

Proposition 1.7. Consider E and F two Banach spaces. E×F is a regular space
if and only if every map in any of the following four spaces L(E,E′), L(E,F ′),
L(F,E′), L(F, F ′) is weakly compact.

Proof. Suppose that the four spaces of functions have the property. Let T =
(T1, T2) : E × F −→ E′ × F ′ be a continuous linear mapping. Then

T (x, y) = (T1(x, 0), 0) + (T1(0, y), 0) + (0, T2(x, 0)) + (0, T2(0, y))

for every (x, y) ∈ E × F. We define

R1 : E −→ E′ by R1(x) := T1(x, 0), x ∈ E,

R2 : F −→ E′ by R2(y) := T1(0, y), y ∈ F,

R3 : E −→ F ′ by R3(x) := T2(x, 0), x ∈ E,

R4 : F −→ F ′ by R4(y) := T2(0, y), y ∈ F.
Since Rj , j = 1, 2, 3, 4, are weakly compact operators and since

T (x, y) = (R1(x), 0) + (R2(y), 0) + (0, R3(x)) + (0, R4(y))

for every (x, y) ∈ E × F , the conclusion holds.
The other implication is clear. Q.E.D.

Corollary 1.8. (1) If E is regular, then E ×E is regular too.
(2) If E is regular, then E × C is regular too.
(3) If E is not reflexive, then E ×E′ is not regular.

The proof of (3) above is immediate from the observation that the immersion
of E into E′′ = (E′)′ cannot be weakly compact. In fact, E × E′ is not even
symmetrically regular, since the mapping T : E × E′ → (E × E′)′ defined as
T (x, x′) = (x′, x) is easily seen to be symmetric and not weakly compact. So, for
example, for the version of James space E which has the property that both it
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and its dual are regular ([18]) we have that the bidual E′′ is regular because E has
codimension one in E′′, although by (3) E ×E′ is not (symmetrically) regular.

Proposition 1.9. (1) If E ×E is symmetrically regular, then E is regular.
(2) If E is a Banach space, E × E is regular if and only if it is symmetrically

regular.

Proof. (1) Let B be a continuous bilinear form in E. Define a continuous bi-
linear form CB on E × E by CB((x, y), (u, v)) = B(x, v) + B(u, y). Since CB
is symmetric, its extension to (E × E)′′ , C̃B , is symmetric and weak-* sepa-

rately continuous. Then it can be checked that B̃(x′′, y′′) = limα limβ B(xα, yβ) =

limα limβ CB((xα, 0), (0, yβ)) = C̃B((x′′, 0), (0, y′′)). Therefore B̃ is weak-* sepa-
rately continuous and the value of the iterated limit is independent of the order in
which we take limits. As a result, E is regular.

The proof of (2) follows from (1) and from Corollary 1.8 (1). Q.E.D.

Since for many Banach spaces, E and E × E are isomorphic, this proposition
shows that it is very often the case that E is regular if and only if E is symmetrically
regular. We are grateful to Denny Leung [19] who has pointed out that the dual J ′

of James space is symmetrically regular although J ′ is not regular.

2. Analytic structure on Mb(U)

Let U be a domain in E. For each φ ∈ Mb(U), there is a bounded subset
Ur = {x ∈ E : ||x|| ≤ r and dist (x,E\U) > 1

r} such that |φ(f)| ≤ ||f ||Ur for all
f ∈ Hb(U). The homomorphism φ lies in a fiber over a point w0 of E′′, which is
defined by w0 = π(φ) = φ|E′ . Following ([16], Ch. I, Sec. G) for each w ∈ E′′ with
||w|| ≤ δ, where δ < 1

r , define φw : Hb(U)→ C by

φw(f) =
∞∑
n=0

φ

(
d̃nf(·)
n!

(w)

)
,

where
∑∞
n=0

dnf(x)
n! is the Taylor series expansion of f about x ∈ U. Note that the

function

x ∈ U
d̃nf(·)
n! (w)−→ d̃nf(x)

n!
(w)

is indeed in Hb(U), since

|| d̃
nf(·)
n!

(w)||Um ≤ sup
x∈Um

|| d̃
nf(x)

n!
|| · ||w||n = sup

x∈Um
||d

nf(x)

n!
|| · ||w||n,

by [8] and supx∈Um ||
dnf(x)
n! || ≤ K||f ||Up for some p ∈ N and K > 0 by Cauchy’s

inequalities. Applying Cauchy’s inequalities again,

|
∞∑
n=0

φ

(
d̃nf(·)
n!

(w)

)
| ≤

∞∑
n=0

sup
x∈Ur

||d
nf(x)

n!
|| · ||w||n ≤ Cδ||f ||Ur+1 .



REGULARITY AND ALGEBRAS OF ANALYTIC FUNCTIONS 551

Thus, φw is a well-defined, continuous linear form on Hb(U). In fact, φw ∈Mb(U),
since

φw(fg) =
∞∑
n=0

φ

(
˜dnfg(·)
n!

(w)

)
=
∞∑
n=0

n∑
k=0

φ

(
d̃kf(·)
k!

(w)
˜dn−kg(·)

(n − k)!
(w)

)
= φw(f)φw(g).

Also note that π(φw) = w + π(φ).

We can attempt to put an analytic structure on Mb(U) by defining a basic
neighborhood about a homomorphism φ ∈Mb(U) to be the set Vφ, 1

m
= {φw : w ∈

E′′, ||w|| < 1
m}, where m ∈ N, m > r. As we will see, our attempt will

succeed exactly when we have symmetric regularity. In the case when U = E, the
definition of φw is considerably simpler. Here, for each z ∈ E′′ define τz : E → E′′

by τz(x) = x + z. The mapping τz induces a type of adjoint τ∗z : Hb(E) → Hb(E)

by τ∗z (f) = f̃ ◦ τz. Now, since φw(f) = φ

(∑∞
n=0

d̃nf(·)
n! (w)

)
= φ

(
f̃(·+ w)

)
, φw

can be described as φ ◦ τ∗w. Thus the neighborhoods about φ ∈ Mb(E) have the
form {φ ◦ τ∗z : z ∈ E′′, ||z|| ≤ δ}.

Although the following equivalence is known ([4] Thm. 8.3 vii), we include a
proof of one implication since the argument is essential to our next result.

Lemma 2.1. E is symmetrically regular (if and) only if for all v, w ∈ E′′, τ∗w+v(P )
= τ∗w ◦ τ∗v (P ) for all P ∈ P (nE), n ∈ N.

Proof. Suppose that E is symmetrically regular and let v and w be elements
of E′′. Fix P ∈ P (nE) and let A be the associated symmetric n-linear form.

For u ∈ E′′ and x ∈ E, (P̃ ◦ τu)(x) = P̃ (x + u) = Ã(x + u, ..., x + u) =∑m
k=0

m!
k!(m−k)! Ã(xk, um−k). For each k, the k-homogeneous polynomial x ∈ E →

Ã(xk, um−k) is associated to the symmetric k-linear form (x1, ..., xk) ∈ Ek →
Ã(x1, ..., xk, u, ..., u). Because of the symmetric regularity of E, we see that the ex-
tension of this k-linear form to (E′′)k must coincide with the mapping (z1, ..., zk) ∈
(E′′)k → Ã(z1, ..., zk, u, ..., u). Therefore, ˜̃P ◦ τu(z) =

∑m
k=0

(
m
k

)
Ã(zk, um−k) =

P̃ (z+u). Hence, for all x ∈ E, τ∗w (τ∗v (P )) (x) = ˜̃P ◦ τv|E◦τw(x) = ˜̃P ◦ τv|E(w+x) =
˜̃P ◦ τv(w + x), which by the above equality, = P̃ (w + x + v) = (P̃ ◦ τw+v)(x) =
τ∗w+v(P )(x). Consequently, τ∗w+v = τ∗w ◦ τ∗v . Q.E.D.

Theorem 2.2. If E is a symmetrically regular Banach space, then for all open
subsets U of E, the family V := {Vφ,ε : φ ∈ Mb(U) and ε > 0 chosen as above}
is a basic neighborhood system for a Hausdorff topology on Mb(U).

Proof. Fix Vφ,ε and a point ψ = φw ∈ Vφ,ε. The first part of the argument consists
in showing that for some δ > 0, Vψ,δ ⊂ Vφ,ε; that is, we must prove that every
ψv = (φw)v ∈ Vψ,δ is in Vφ,ε. For this, the symmetric regularity of E will be used
to show that (φw)v = φw+v.

Consider v ∈ E′′, chosen so small that (φw)v is well-defined, and fix f ∈ Hb(U).

In order to simplify the notation, we write Pn(x) instead of dnf(x)
n! and An(x) for

its associated multilinear mapping. It is known [2] that by means of the Taylor

series expansions f has an analytic extension f̃ to some open subset U ′′ ⊂ E′′.
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Let’s first calculate the Taylor series expansion of the function P̃m(·)(v) about

a given point x ∈ U, where P̃m(·)(v) : x ∈ U ; P̃m(x)(v). Let n ∈ N be such that
x ∈ Un and y ∈ E. Since for any complex number µ,

m∑
k=0

| (mk )µkÃm(x)(ym−k, vk) |≤
m∑
k=0

(mk )|µ|k sup
x∈Un

{|Ãm(x)(ym−k, vk)|}

≤
m∑
k=0

(mk )
||y||m−k||µv||k

εm
sup
x∈Un

{||Ãm(x)||εB} ≤
m∑
k=0

(mk )
||y||m−k||µv||k

εm
mm

m!
||f ||Ur+εB

= (
||y||+ ||µv||

ε
)m
mm

m!
||f ||Ur+εB,

it turns out that the double series
∑∞
m=0

∑m
k=0(mk )µk(Ãm(x)(ym−k, vk)) is abso-

lutely convergent if (||y|| + ||µv||) < ε
e . Choose y ∈ E such that ||y|| < ε

e and pick
µ0 > 0 so that (||y|| + ||µ0v||) < ε

e . By our assumption of symmetric regularity,

P̃m(x)(y + µv) =
∑m
k=0(mk )µkÃm(x)(ym−k, vk) and

∞∑
n=0

P̃n(x+ y)(µv) = f̃(x+ y + µv) =
∞∑
m=0

P̃m(x)(y + µv)

for all |µ| ≤ µ0. Hence,

∞∑
n=0

P̃n(x+ y)(µv) =
∞∑
m=0

m∑
k=0

(mk )µkÃm(x)(ym−k, vk).

Since the double series is absolutely convergent for |µ| ≤ µ0, we may reverse the
order of the summation to obtain

∞∑
k=0

∞∑
m=k

(mk )µkÃm(x)(ym−k, vk) =
∞∑
n=0

P̃n(x+ y)(µv) =
∞∑
k=0

µkP̃k(x+ y)(v)

for all |µ| ≤ µ0. So by the uniqueness of the Taylor expansion, P̃k(x + y)(v) =∑∞
m=k(mk )Ãm(x)(ym−k, vk), and therefore the Taylor series expansion of P̃k(·)(v)

at x must be P̃k(x+ y)(v) =
∑∞
m=k(mk )Ãm(x)(ym−k, vk).

Next, we prove that (φw)v = φw+v. Using the argument of the previous lemma,
we see that

(φw)v(f) =
∞∑
k=0

φw(P̃k(·)(v)) =
∞∑
k=0

∞∑
m=k

(mk )φ(Ãm(·)(wm−k , vk)).

Since |φ(g)| ≤ ||g||Ur for some r ∈ N , we have

m∑
k=0

|(mk )φ(Ãm(·)(wm−k, vk))| ≤
m∑
k=0

(mk ) sup
x∈Ur
{|Ãm(x)(wm−k, vk)|}

≤
m∑
k=0

(mk )
||w||m−k||v||k

εm
sup
x∈Ur
{||Ãm(x)||εB} ≤

m∑
k=0

(mk )
||w||m−k||v||k

εm
mm

m!
||f ||Ur+εB

= (
||w|| + ||v||

ε
)m
mm

m!
||f ||Ur+εB.
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Therefore the double series
∑∞
m=0

∑m
k=0(mk )φ(Ãm(·)(wm−k, vk)) is absolutely con-

vergent if (||w||+ ||v||) < ε
e , so we may reverse the order of summation to obtain

(φw)v(f) =
∞∑
m=0

m∑
k=0

(mk )φ(Ãm(·)(wm−k , vk)) =
∞∑
m=0

φ{
m∑
k=0

(mk )(Ãm(·)(wm−k, vk))}

=
∞∑
m=0

φ
(
P̃m(·)(w + v)

)
= φw+v(f).

We should mention that in the case U = E, the proof of φw+v = (φw)v is
immediate from the fact that the symmetric regularity assumption implies that
τ∗w+v = τ∗w ◦ τ∗v .

Now we verify that if ψ ∈ Vφ,ε, then for some δ > 0, Vψ,δ ⊂ Vφ,ε. Indeed, ψ = φw

for some w ∈ E′′ with ||w|| < ε . If δ < ε − ||w|| and δ is chosen so that (ψ)v is
defined for every v ∈ E′′ with ||v|| < δ, then ψv = (φw)v = φw+v ∈ Vφ,ε.

Finally, we establish that this is a Hausdorff topology. Take φ and ψ ∈Mb(U), ψ
6= φ. We distinguish two cases:

(i) π(ψ) 6= π(φ). We claim that if r > 0 is chosen so that r < ||π(ψ)−π(φ)||
2 and

Vψ,r, Vφ,r ∈ V , then Vφ,r ∩Vψ,r = ∅. Otherwise, there would exist v, w ∈ E′′, ||v||,
||w|| < r such that ψv = φw. Hence π(ψ) + v = π(ψv) = π(φw) = π(φ) +w, so that
||π(ψ)− π(φ)|| = ||w − v|| < 2r, which is a contradiction.

(ii) π(ψ) = π(φ). We claim that if there exist Vφ,r, Vψ,s ∈ V such that Vφ,r ∩
Vψ,s 6= ∅, then ψ = φ. Given θ ∈ Vφ,r ∩ Vψ,s, there are v, w ∈ E′′ with ||v|| < r and
||w|| < s satisfying φv = θ = ψw. Since π(ψ) + v = π(ψv) = π(φw) = π(φ) + w we

have v = w . Let ρ = min{r, s} and δ > 0 so that (ψv)v
′

= (φv)v
′

is well-defined
for all v′, ||v′|| < δ. Given f ∈ Hb(U), the functions α, β : {w : ||w|| < ρ} → C

defined by α(w) = ψw(f), β(w) = φw(f) are both analytic, because φ( d̃
nf(·)
n! (w))

is analytic for all n and the series
∑∞
n=0 ||

dnf(·)
n! ||Urρn is convergent as we have seen

at the beginning of this section. Since ||v|| < ρ, α and β coincide on the non-empty
open subset {v + v′ : ||v′|| < δ} ∩ {w : ||w|| < ρ}, so they coincide by the identity
theorem. In particular, ψ(f) = α(0) = β(0) = φ(f). Q.E.D.

Proposition 2.3. If E is not symmetrically regular, the collection {Vφ,ε : φ ∈
Mb(E)} does not define a topology on Mb(E).

Proof. Because of the assumption, there exists a symmetric bilinear form A : E ×
E → C whose associated linear mapping T is not weakly compact. Thus there is
x′′ ∈ E′′ such that T ttx′′ /∈ E′′, and by Lemma 1.1 there exists y′′ ∈ E′′ such that
Ã(x′′, y′′) 6= Ã(y′′, x′′). Let P be the polynomial associated to A. For any µ ∈ C,

consider the function Qµ ∈ Hb(E) defined by Qµ(x) = τ∗µx′′(P ) = P̃ (µx′′ + x). A

routine calculation shows that Qµ(x) = P (x) +µ2P̃ (x′′) +µÃ(x, x′′) +µÃ(x′′, x) =

P (x) + µ2P̃ (x′′) + 2µÃ(x, x′′) , and so it follows that Q̃µ(z) = P̃ (z) + µ2P̃ (x′′) +

2µÃ(z, x′′) for all z ∈ E′′. Thus if λ and µ are nonzero complex numbers,

(δ0 ◦ τ∗λy′′) ◦ (τ∗µx′′)(P ) = (δ0 ◦ τ∗λy′′)Qµ = (Q̃µ ◦ τλy′′)(0) = Q̃µ(λy′′)

= P̃ (λy′′) + µ2P̃ (x′′) + 2µÃ(λy′′, x′′)

6= P̃ (µx′′) + λ2P̃ (y′′) + µλ[(Ã(x′′, y′′) + Ã(y′′, x′′)] = Ã(µx′′ + λy′′, µx′′ + λy′′)

= P̃ (µx′′ + λy′′) = (δ0 ◦ τ∗λy′′+µx′′)(P ).
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Therefore, (δ0 ◦ τ∗λy′′) ◦ (τ∗µx′′) 6= (δ0 ◦ τ∗λy′′+µx′′) for all non-zero λ and µ.

Suppose that the collection {Vφ,ε : φ ∈ Mb(E) } defines a topology in Mb(E).
Then for sufficiently small λ0 > 0, Vδ0,ε is a neighborhood of φ = (δ0 ◦ τ∗λ0y′′

). So
for small enough r > 0 , we have Vφ,r ⊂ Vδ0,ε. In particular, for a suitable choice of
r0, φ ◦ τ∗υ0x′′

belongs to Vδ0,ε, i.e. there is z ∈ E′′ so that φ ◦ τ∗r0x′′ = δ0 ◦ τ∗z . Then
π(φ ◦ τ∗r0x′′) = π(δ0 ◦ τ∗z ); that is, λ0y

′′ + r0x
′′ = z and this contradicts the above

inequality. Q.E.D.

Corollary 2.4. If E is symmetrically regular, then π is a local homeomorphism
over E′′ and Mb(U) has an analytic structure over E′′.

Proof. For every φ ∈ Mb(U), π(φ) = w0 , the inverse mapping of πφ : Vφ,δ → E′′

is given by π−1
φ : {w + w0 : ||w|| < δ} → Vφ,δ, π

−1
φ (w + w0) = φw. Now for any

ψ ∈Mb(U), πψ ◦π−1
φ (w+w0) = π(φ) +w = w+w0 is obviously analytic. Q.E.D.

Given φ ∈Mb(E) , we consider the “sheet” S(φ) = {φ ◦ τ∗v : v ∈ E′′}, which is
an open subset of Mb(E) homeomorphic to E′′. Since such sets S(φ) either coincide
or are disjoint, S(φ) is also closed.

Corollary 2.5. Assume that E is symmetrically regular. Then Mb(E) is connected
if and only if every homomorphism in Hb(E) is an evaluation at some point of E′′.

Proof. The connectedness of Mb(E) leads to Mb(E) = S(δ0). Hence every ψ ∈
Mb(E) has the form ψ = δ0 ◦ τ∗v for some v ∈ E′′, i.e., ψ = δ̃v. Conversely, if
Mb(E) = E′′ then π is a global homeomorphism. Q.E.D.

3. The convolution operator on symmetrically regular spaces

Let us recall the necessary definitions. Given f ∈ Hb(E) and φ ∈ Mb(E),
the convolution φ ∗ f is the element in Hb(E) defined by φ ∗ f(x) = φ(f ◦ τx)
for x ∈ E. Moreover the convolution φ ∗ ψ of φ, ψ ∈ Mb(E) is defined by
φ ∗ ψ(f) = φ(ψ ∗ f) where f ∈ Hb(E). It turns out that φ ∗ ψ is in Mb(E) and, in
fact, that π(ψ ∗ φ) = π(ψ) + π(φ) (see §6 of [4]).

Proposition 3.1. The following are equivalent:
1. Given φ, ψ ∈Mb(E) and v, w ∈ E′′ we have (ψ◦τ∗v )∗(φ◦τ∗w) = (ψ∗φ)◦τ∗v+w .
2. E is symmetrically regular and the convolution operator ∗ : Mb(E)×Mb(E)→

Mb(E) is analytic.

3. θ ◦ τ∗z = δ̃z ∗ θ for all θ ∈Mb(E) and z ∈ E′′.
δ̃z ∗ θ = θ ∗ δ̃z for all θ ∈Mb(E) and z ∈ E′′.

Proof. 1⇒ 2. Taking φ = ψ = δ0, we have δ̃v ∗ δ̃w = δ̃v+w and this is equivalent to
symmetric regularity ([4], Thm. 8.3). For the analyticity of ∗ , let φ, ψ ∈ Mb(E).
Our hypothesis implies that the convolution does indeed map S(ψ) × S(φ) into
S(ψ ∗ φ). Since the atlas giving the structure in Mb(E) is {π}, the proof follows by
observing that the mapping

E′′ × E′′ (π−1,π−1)−→ S(ψ)× S(φ)
∗−→ S(ψ ∗ φ)

π−→ E′′

(v,w) ; (ψ ◦ τ∗v , φ ◦ τ∗w) ; (ψ ◦ τ∗v ) ∗ (φ ◦ τ∗w) ; π(ψ) + v + π(φ) + w

is analytic.
2 ⇒ 3. Since the convolution product is continuous on Mb(E), the mapping

φ ∈Mb(E)→ φ∗ θ ∈Mb(E) is continuous for every θ ∈Mb(E). S(δ0) is connected
since it is homeomorphic to E′′, and therefore its image under the above mapping,
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Im(S(δ0)), is also connected. But θ = δ0 ∗θ ∈ Im(S(δ0)), and so S(θ)∩ Im(S(δ0)) is
non empty. Thus Im(S(δ0)) ⊂ S(θ) because S(θ) is an open and closed set. Then

δ̃z ∗ θ ∈ S(θ) for all z ∈ E′′ which means that for every z ∈ E′′, there exists w ∈ E′′
such that δ̃z ∗ θ = θ ◦ τ∗w. Finally, z + π(θ) = π(δ̃z ∗ θ) = π(θ ◦ τ∗w) = π(θ) + w, so

z = w and δ̃z ∗ θ = θ ◦ τ∗z .
3 ⇒ 4. First, we show that E is symmetrically regular. Suppose that E is not

symmetrically regular. Let x′′, y′′ and P be as in the proof of Proposition 2.3 and

consider θ = δ̃y′′ . For Q = (τ∗x′′)(P ), we know that Q̃(z) = P̃ (z)+ P̃ (x′′)+2Ã(z, x′′)

for all z ∈ E′′. Thus, (δ̃y′′ ◦τ∗x′′)(P ) = Q̃(y′′) = P̃ (y′′)+ P̃ (x′′)+2Ã(y′′, x′′). On the

other hand, (δ̃y′′ ∗P )(x) = P̃ (x+y′′) = P̃ (x)+P̃ (y′′)+Ã(x, y′′)+Ã(y′′, x) = P (x)+

P̃ (y′′)+2Ã(x, y′′). Then, δ̃x′′∗δ̃y′′(P ) = (˜̃δy′′ ∗ P )(x′′) = P̃ (x′′)+P̃ (y′′)+2Ã(x′′, y′′).

Therefore, δ̃y′′ ◦ τ∗x′′ 6= δ̃x′′ ∗ δ̃y′′ .
To finish the proof let us point out that if E is symmetrically regular then

θ ◦ τ∗z = θ ∗ δ̃z for every θ ∈ Mb(E) and every z ∈ E′′. Indeed, given P ∈ P (nE),

for x ∈ E we have (δ̃z ∗ P )(x) = δ̃z(P ◦ τx) = P̃ ◦ τx(z) = (P̃ ◦ τz)(x) as we

have seen in Lemma 2.1 . Therefore, (θ ∗ δ̃z)(P ) = θ(P̃ ◦ τz) = (θ ◦ τ∗z )(P ). Since

θ ∗ δ̃z = θ ◦ τ∗z = δ̃z ∗ θ, the implication 3⇒ 4 follows.
4⇒ 1. Since E is symmetrically regular ([4], Thm. 8.3) applying the argument in

the preceding paragraph and the fact that ∗ is associative ([4], Lemma 6.5), we have

(ψ◦τ∗v )∗(φ◦τ∗w) = (ψ∗δ̃v)∗(φ∗δ̃w) = ψ∗(δ̃v∗φ)∗δ̃w = (ψ∗φ)∗(δ̃v∗δ̃w). But (δ̃v∗δ̃w) =

δ̃v+w, applying ([4], Thm. 8.3). Finally, (ψ ∗ φ) ∗ δ̃v+w = (ψ ∗ φ) ◦ τ∗v+w. Q.E.D.

As is pointed out in ([4], Thm. 8.3) symmetric regularity is a necessary condition
for the commutativity of the convolution. Now we present a condition under which
all the equivalent statements in Proposition 3.1 hold. In particular it yields a
sufficient condition for commutativity of convolution on every sheet. This also
gives a partial answer to the question of whether θ ◦ τ∗z = δ̃z ∗ θ for all θ ∈ Mb(E)
and z ∈ E′′ (cf. §9 of [4]).

Let us introduce some convenient notation to be used in the next few results.
Given P ∈ P (mE) and its symmetric associated m-linear mapping A, we may
consider its first derivative dP : E → E′, dP (x)(u) = mA(u, x, . . . , x), x, u ∈ E. In
particular, if m = 2, the linear mapping dP = 2T where T is the linear mapping
of Section 1. The linear transpose of dP, dP t : E′′ → P (m−1E), is an extension to
E′′ of the mapping CP : E → P (m−1E), given by CP (x)(u) = A(x, um−1). Recall
that a (vector valued) polynomial is called weakly compact if it maps the unit ball
onto a weakly relatively compact set [22].

Proposition 3.2. Suppose that for every P ∈ P (mE) and all m ∈ N, dP : E → E′

is weakly compact. Then φ ◦ τ∗z = δ̃z ∗ φ for all φ ∈Mb(E) and all z ∈ E′′.
Proof. It is enough to prove the equality for all P ∈ P (mE), that is, to prove that

(δ̃z ∗ φ)(P ) = ˜(φ ∗ P )(z) coincides with (φ ◦ τ∗z )(P ) = φ(P̃ ◦ τz) for every z ∈ E′′.
Note that the hypothesis implies that E is symmetrically regular.

For every x, u ∈ E,

(φ ∗ P )(x) = φ(u; P (x+ u))

= φ(u;
m∑
k=0

m!

k!(m− k)!
A(xk, um−k)) =

m∑
k=0

φ(u;
m!

k!(m− k)!
A(xk, um−k)).
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For each k consider the k-linear form Bk on E defined by

Bk(x1, . . . , xk) = φ(u; A(x1, . . . , xk, u
m−k)).

Then B̃k(z1, . . . , zk) = limα1 . . . limαk φ(u ; A(xα1 , ..., xαk , u
m−k)), z1, . . . , zk ∈

E′′, where {xαi} is a (bounded) net in E converging to zi in the weak-* topology,
1 ≤ i ≤ k. For any i = 1, . . . , k, let z1, . . . , zk ∈ E′′ and xα1 , ..., xαi−1 be fixed.

Since Ã is w(E′′, E′)−separately continuous (and symmetric), the net in P (m−kE)

{u; Ã(xα1 , . . . , xαi , zi+1, . . . , zk, u
m−k)}αi

is pointwise convergent to the polynomial u ; Ã(xα1 , . . . , xαi−1 , zi, . . . , zk, u
m−k).

Define an m− k + 1-homogeneous polynomial on E by

Q(u) = Ã(xα1 , . . . , xαi−1 , u, zi+1, . . . , zk, u
m−k).

Then dQ : E → E′ is given by

dQ(x)(u) = (m− k + 1)Ã(xα1 , ..., xαi−1 , u, zi+1, ..., zk, x
m−k)

and, by assumption, dQ is weakly compact. Then applying ([22], Prop. 2.1),
dQt is weakly compact, hence CQ : E → P (m−kE) is also weakly compact. Ob-
serve that CQ(xαi)(u) = A(xα1 , . . . , xαi , zi+1, ..., zk, u

m−k). Now, since {xαi} is a
bounded net in E, the net {CQ(xαi )}αi has a weakly convergent subnet in P (m−kE)
which will also be pointwise convergent, and hence it must converge weakly to
u; Ã(xα1 , . . . , xαk−1

, zi, . . . , zk, u
m−k). There is no loss of generality if we assume

that this subnet is the whole net. Therefore, since φ is continuous on P (m−kE),

lim
αi
φ(u; Ã(xα1 , ..., xαi , zi+1, . . . , zk, u

m−k))

= φ(u; Ã(xα1 , . . . , xαi−1 , zi, . . . , zk, u
m−k)).

Hence,

lim
α1

. . . lim
αk

φ(u; Ã(xα1 , ..., xαk , u
m−k)) = φ(u; Ã(z1, ..., zk, u

m−k)).

Consequently, B̃k(z, . . . , z) = φ(u; Ã(z, ..., z, um−k)) and recalling Lemma 2.1,
˜(φ ∗ P )(z) = φ(u; P̃ (z + u)) as we wanted. Q.E.D.

Remark 3.3. (a) The hypothesis in Proposition 3.2 is satisfied by every reflexive
space E and by every Banach space in which all continuous polynomials are weakly
continuous on bounded sets.

The first case is trivial. For the second, let P : E → C be an (n+1)−homogeneous
polynomial. Since P is weakly continuous on bounded sets, the associated mappings
CP : E → P (nE), defined by CP (x)(u) = A(x, u, . . . , u), and C′P : P (nE)′ → E′

are compact [7]. Moreover, the polynomial ∆ : E → P (nE)′ given by ∆(x) = δx is
continuous and dP = nC′P ◦∆, so dP is compact.

(b) If E satisfies the hypothesis in Proposition 3.2 and if E also has the Dunford-
Pettis property, then E has the (RP) property of [3]. Recall that the (RP) prop-
erty means that whenever (uj) and (vj) are bounded sequences in E such that
{P (uj − vj)} converges to 0 for all polynomials P in E, then {P (uj) − P (vj)}
converges to 0. To see this, note that the sequence (uj−vj) is weakly null and since
CP is weakly compact, it follows from the Dunford-Pettis property that
{CP (uj − vj)} is a norm null sequence in P (nE). This yields by the polarization
formula that {P (uj)− P (vj)} converges to 0.
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As a result, since neither `∞ nor C([0, 1]) has the (RP) property [3], neither of
them satisfies the assumption of the former proposition.

The convolution product is not commutative in general. The following example
shows that even under the (equivalent) conditions of Proposition 3.1, commutativity
still may not hold. Our example is constructed in Mb(`2).

Example 3.4. Let Γ be an ultrafilter on N containing all sets of the form En =
{2n, 2n + 2, 2n + 4, . . . } and let Θ be an ultrafilter on N containing all sets of
the form On = {2n + 1, 2n + 3, 2n + 5, . . . }. For every f ∈ Hb(`2), we define
γ(f) = limn∈Γ f(en) and θ(f) = limn∈Θ f(en). It is immediate that γ and θ belong
to Mb(`2). Observe that (γ ∗ f)(x) = limn∈Γ f(en + x) and that (θ ∗ f)(x) =
limn∈Θ f(en + x).

Let P be the continuous 4-homogeneous polynomial on `2 defined by P ((xn)) =∑∞
j=1(x2

1 + x2
3 + · · · + x2

2j+1)x2
2j . For every k ∈ N , we have (γ ∗ P )(e2k+1) =

limn∈Γ P (en + e2k+1), but whenever n is an even number bigger than 2k + 1,
P (en + e2k+1) = 1, and therefore (γ ∗ P )(e2k+1) = 1. Thus

(θ ∗ γ)(f) = lim
n∈Θ

(γ ∗ P )(en) = 1

because every On ∈ Θ. On the other hand, (θ ∗ P )(e2k) = limn∈Θ P (en + e2k),
but P (en + e2k) = 0 if n > 2k + 1, so (θ ∗ P )(e2k) = 0. Thus (γ ∗ θ)(P ) =
limn∈Γ(θ ∗ P )(en) = 0 because every En ∈ Γ. Therefore (γ ∗ θ) 6= (θ ∗ γ). Q.E.D.

We remark that the non-commuting homomorphisms γ and θ constructed above
both lie in the same fiber π−1(0). We deal with γ and the same applies to θ. If
f ∈ (`2)′ then {f(en)} is a null sequence, hence γ(f) = limn∈Γ f(en) must be 0
because it is the only cluster value of f(en) ; so γ(f) = 0 and π(f) = 0.

Remark 3.5. The argument used in the above example can be adapted to show the
following:

(a). If E is a Banach space with a normalized basis (xj) and associated coefficient
functionals (Lj), and if for some positive integer N ,

∑
|Lj(x)|N < ∞ for all x =∑

Lj(x)xj in E, then the convolution product is not commutative on Mb(E). This
case includes the spaces `p, Lp[0, 1] for 1 ≤ p <∞.

(b). The completed projective tensor product, `2⊗̂π`2, is not symmetrically
regular. Indeed, let A be the bilinear form on `2⊗̂π`2 given by:

A(
∑
n

λnan ⊗ bn,
∑
m

µmcm ⊗ dm) =
∑
n,m

λnµmA(an ⊗ bn, cm ⊗ dm),

where A(a⊗b, c⊗d) =
∑∞
k=1(α1β1 + · · ·+α2k+1β2k+1)γ2kδ2k (a = (α1, α2, ...) ∈ `2,

etc.). A calculation shows that

lim
n∈Θ

lim
m∈Γ

P (en ⊗ en + em ⊗ em) 6= lim
m∈Γ

lim
n∈Θ

P (en ⊗ en + em ⊗ em),

where P is the 2−homogeneous polynomial on `2⊗̂π`2 associated to A.

The next proposition shows that the above example is sharp in the sense that
the convolution of two homomorphisms restricted to the polynomials of degree less
than four is commutative.

Proposition 3.6. A Banach space E is symmetrically regular if and only if ∗
is commutative when restricted to polynomials of degree two. Furthermore, ∗ is
commutative for polynomials of degree three if it is analytic on Mb(E).
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Proof. As usual, we let A denote the symmetric multilinear form associated with a
homogeneous polynomial P. Recall that given y ∈ E, x′′ ∈ E′′ and A a continuous
symmetric bilinear form

x′′(v ∈ E ; A(y, v)) = Ã(y, x′′).

Hence given φ ∈Mb(E) we have

φ(v ∈ E ; A(y, v)) = Ã(y, π(φ)).

Similarly, if A is a continuous symmetric trilinear form

φ(v ∈ E ; A(y, y, v)) = Ã(y, y, π(φ)).

Let φ and ψ be continuous homomorphisms on Hb(E). Fix P ∈ P (2E). For
every x ∈ E,

(ψ ∗ P )(x) = ψ(P ◦ τx) = ψ(u; P (x+ u)) = ψ(u; P (x) + P (u) + 2A(x, u))

= P (x) + ψ(P ) + ψ(u; 2A(x, u)) = P (x) + ψ(P ) + 2Ã(x, π(ψ)).

Therefore, (φ ∗ ψ)(P ) = φ(x ; P (x) + ψ(P ) + 2Ã(x, π(ψ)) = φ(P ) + ψ(P ) +

φ(x ; 2Ã(x, π(ψ)) = φ(P ) + ψ(P ) + 2Ã(π(φ), π(ψ)), by the very definition of Ã.
Thus,

(ψ ∗ φ)(P ) = φ(P ) + ψ(P ) + 2Ã(π(φ), π(ψ)).

Since φ and ψ are arbitrary, the commutativity holds if and only if Ã is symmetric
for every continuous bilinear form A defined on E. That is, commutativity holds if
and only if E is symmetrically regular.

Hence to finish the proof it is enough to check that if E satisfies the conditions
of 3.1 the equality

(φ ∗ ψ)(P ) = (ψ ∗ ψ)(P )

holds for every φ , ψ ∈Mb(E) and every continuous 3–homogeneous polynomial P .
First of all let’s suppose that π(φ) = π(ψ) = 0. Let P ∈ P (3E). For every x ∈ E,
(ψ ∗ P )(x) = ψ(P ◦ τx)=ψ(u ; P (x + u)) = ψ(u ; P (x) + P (u) + 3A(x, u, u) +
3A(x, x, u)) = P (x) + ψ(P ) + ψ(u ; 3A(x, u, u) + 3A(x, x, u)) = P (x) + ψ(P ) +
ψ(u; 3A(x, u, u))+3A(x, x, π(ψ)) = P (x)+ψ(P )+ψ(u; 3A(x, u, u)). Therefore,

(φ ∗ ψ)(P ) = φ(x; P (x) + ψ(P )) + φ(x; ψ(u; 3A(x, u, u)))

= φ(P ) + ψ(P ) + ψ(u; 3A(u, u, π(φ))) = φ(P ) + ψ(P )

because the mapping x; ψ(u; 3A(u, u, x)) is linear and continuous and π(φ) =
0 ∈ E. The calculation of (ψ ∗ φ)(P ) would yield the same result.

Now let φ and ψ be arbitrary continuous homomorphisms on Hb(E). Put π(φ) =

v and π(ψ) = w and suppose P ∈ P (3E). Then F := P̃ ◦τv+w is a non-homogeneous

polynomial on E. Since φ ∗ δ̃−v and ψ ∗ δ̃−w lie in the fiber over 0 ∈ E, we have

(φ ∗ δ̃−v) ∗ (ψ ∗ δ̃−w)(F ) = (ψ ∗ δ̃−w) ∗ (φ ∗ δ̃−v)(F ),

but by the associativity of ∗ and Proposition 3.1, we have (φ∗ δ̃−v)∗ (ψ ∗ δ̃−w)(F ) =

[(φ∗ψ)∗ δ̃−v−w](F ) = (φ∗ψ)(F ◦τ−v−w) = (φ∗ψ)(P ). Working in the same manner
with the right side of the above identity, we reach the desired conclusion. Q.E.D.
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Remark 3.7. The above proof shows that if φ and ψ lie in fibers over points in E,
φ ∗ ψ(P ) = ψ ∗ φ(P ) for every polynomial P of degree less than or equal to three,
regardless of the analyticity of ∗.
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