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Abstract

We prove that extendible 2-homogeneous polynomials on spaces
with cotype 2 are integral. This allows us to find examples of approx-
imable non-extendible polynomials on `p (1 ≤ p < ∞) of any degree.
We also exhibit non-nuclear extendible polynomials for 4 < p < ∞.
We study the extendibility of analytic functions on Banach spaces
and show the existence of functions of infinite radius of convergence
whose coefficients are finite type polynomials but which fail to be
extendible.

Introduction

The aim of this note is to study the extendibility of polynomials and analytic
functions on `p. This will allow us to show simple examples of non-extendible
polynomials and analytic functions. Recall [12] that a k-homogeneous poly-
nomial P : E → F is said to be extendible if given any Banach space G
containing E there exists a polynomial P̃ : G → F extending P . The Hahn-
Banach extension theorem gives the extendibility of all linear functionals
but, even in the scalar-valued case (F = R or C), this cannot be generalized
to polynomials of degree 2 or more. For example, `2 is contained in C[0, 1]
but the polynomial P (x) =

∑
k x2

k on `2 cannot be extended to C[0, 1] (this
last space has the Dunford-Pettis property and consequently any polynomial
on C[0, 1] is weakly sequentially continuous [16]). The question arises about
the existence of weakly sequentially continuous polynomials which fail to
be extendible (this question was posed by I. Zalduendo in personal commu-
nications). Kirwan and Ryan [12] showed that extendible polynomials on

Hilbert spaces are nuclear. In consequence, the polynomial P (x) =
∑∞

j=1

x2
j

j

is approximable (and therefore weakly sequentially continuous) but not ex-
tendible on `2 (see [17]). We show that this polynomial is not extendible on
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any `p with p ≥ 2 but it is nuclear (and therefore extendible) for 1 ≤ p < 2.
In the first section, we prove that 2-homogeneous extendible polynomials
on `p are integral for p = 1 and nuclear for 1 < p ≤ 2. We give examples
of non-nuclear extendible polynomials for p > 4. In the second section, we
give a characterization, for degree 2, of diagonal nuclear polynomials and
prove that diagonal extendible polynomials are nuclear (1 < p < ∞). These
results allow us to find examples of non-extendible approximable polynomi-
als of any degree (greater than 1) on `p for 1 ≤ p < ∞. In the last section
we define extendible analytic functions and show the existence of analytic
functions that are not extendible even though all their coefficients are finite
type polynomials.

Throughout, E, F and G are Banach spaces. Although definitions and
proofs are given for complex Banach spaces, slight modifications lead to
analogous results for the real case.

We recall some definitions. The space of finite type polynomials Pf (
kE; F )

is the subspace of P(kE; F ) (the space of all continuous polynomials form
E to F ) spanned by the monomials γ(·)ky, for all γ ∈ E ′, y ∈ F . The
approximable polynomials are those which can be approximated by finite
type polynomials uniformly on the unit ball of E.

A polynomial P ∈ P(kE; F ) is said to be nuclear if it can be written as

P (x) =
∞∑
i=1

γi(x)kyi ∀x ∈ E

where γi ∈ E ′, yi ∈ F, ∀i ∈ N and
∑∞

i=1 ‖γi‖k ‖yi‖ < ∞. The infimum of
these sums over all the representations of P is the nuclear norm ‖P‖N .

A polynomial P ∈ P(kE; F ) is said to be integral if there exists a
regular countably additive F -valued Borel measure µ, of bounded variation
on (BE′ , w∗), such that

P (x) =

∫
BE′

γ(x)k dµ(γ) ∀x ∈ E.

The integral norm ‖P‖I is the infimum of the norms of all the measures µ
that represent P as above.

Finally, for an extendible polynomial P ∈ P(kE; F ), its extendible norm
is defined as

‖P‖e = inf
{
‖Q‖ : Q ∈ P(k`∞(BE′); F ) is an extension of P

}
.

We refer to [10] and [15] for notation and results regarding polynomials.

The author wishes to thank the Departamento de Análisis Matemático
de la Universidad Complutense de Madrid (where this note was finished)
for its hospitality and Nacho Zalduendo and Nacho Villanueva for helpful
conversations.
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1 Extendibility of polynomials on `p

Pisier (see [14]) showed the existence of spaces X for which the projective
and injective tensor products⊗2

s,πX and⊗2
s,εX are isometrically isomorphic.

This means that every 2-homogeneous polynomial on X is integral and in
particular extendible [5]. Note that, since X is not a L∞−space, polynomials
on X cannot be extended in a linear and continuous way (see [13, 17]).

Pisier spaces will be useful to show spaces where only integral polyno-
mials are extendible (this result was also obtained independently in [6]):

Proposition 1 Let E be a Banach space with cotype 2. Then extendible 2-
homogeneous polynomials are integral (and the extendible and integral norms
coincide).

Proof: If E has cotype 2, E can be isometrically embedded in a Pisier
space X [14]. If P is an extendible polynomial on E, it can be extended

to a polynomial P̃ on X with
∥∥∥P̃∥∥∥ ≤ ‖P‖e. Since ⊗2

s,πX and ⊗2
s,εX are

isometrically isomorphic, P̃ is integral and
∥∥∥P̃∥∥∥

I
=
∥∥∥P̃∥∥∥. But the restriction

of an integral polynomial is integral and also ‖P‖I ≤
∥∥∥P̃∥∥∥

I
≤ ‖P‖e. The

reverse inequality always holds.

If 1 ≤ p ≤ 2 and X is an Lp−space, then X has cotype 2 and every ex-
tendible 2-homogeneous polynomial is integral. Moreover, if 1 < p ≤ 2 and
µ is a measure, since Lp(µ) is reflexive, its dual has the Radon Nikodym
property and every integral polynomial is nuclear [1]. Consequently, ex-
tendible 2-homogeneous polynomials on Lp(µ) are nuclear (for p = 2 this
was proved by Kirwan and Ryan [12]). In particular we have the following:

Corollary 2 For 1 < p ≤ 2, a 2-homogeneous polynomial on `p is ex-
tendible if and only if it is nuclear.

Corollary 2 is not true for 4 < p < ∞. We show, for any p ∈ (4, +∞),
an example of an extendible polynomial which fails to be nuclear (we have
no example of such a polynomial for 2 < p ≤ 4). We follow the idea of [7,
10.4].

Example 3 Consider the bilinear form An on `n
∞ given by the “Fourier

matrix”

An(x, y) =
1√
n

n∑
k,l=1

e2πi kl
n xkyl

which has norm ‖An‖ ≤ n but nuclear norm ‖An‖N = n3/2 [7, ex 4.3].
Therefore, the nuclear norm of the polynomial Pn(x) = An(x, x) is at least
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n3/2 on `n
∞. If we consider it on `n

p , since the identity map `n
∞ → `n

p has

norm n1/p, we have
‖Pn‖N,`n

∞
≤ n2/p ‖Pn‖N,`n

p

and then

‖Pn‖N,`n
p
≥ n3/2

n2/p
= n3/2−2/p.

Fix 1 < d < 2
1
2
− 2

p <
√

2 and define Qm = 1
(2d)m P2m. Identifying c0 with

c0

(
(`2m

∞ )m

)
, it is easy to see that the polynomial Q = ⊕mQm is well defined

and continuous on c0. Let ip : `p → c0 be the canonical inclusion. Since
every polynomial on c0 is extendible, Q is extendible and consequently so is
Q ◦ ip [4]. Let’s see that Q ◦ ip is not nuclear. If it were, identifying `p with

`p

((
`2m

p

)
m

)
we would have that

‖Qm‖N,`2
m

p
≤ ‖Q ◦ ip‖N,`p

.

But what we have is

‖Qm‖N,`2m
p
≥ 2m(3/2−2/p)

(2d)m =

(
21/2−2/p

d

)m

which goes to infinity with m. Therefore, Q◦ ip is extendible but not nuclear
on `p for 4 < p < ∞.

We end this section with some comments about L1−spaces. We always
have that integral polynomials are extendible and that a 2-homogeneous
extendible polynomial has an absolutely 2-summing differential [12]. Kirwan
and Ryan also showed that, for L1−spaces, this last condition is sufficient for
a polynomial to be extendible. Since L1−spaces have cotype 2, proposition
1 implies that extendible polynomials are integral. Therefore we have:

Corollary 4 If P is a 2-homogeneous polynomial on a L1−space, the fol-
lowing are equivalent:

a) P is integral.
b) P is extendible.
c) The differential dP is absolutely 2−summing.

2 Examples of non-extendible polynomials

Throughout, p and q will be such that 1
p

+ 1
q

= 1. Corollary 2 affirms
that extendible 2-homogeneous polynomials on `p are nuclear for 1 < p ≤
2. Although this is not true for all p (as shown above), we will see that
extendible “diagonal” polynomials are nuclear. Therefore, a way to detect
non-nuclear polynomials on `p will be helpful. The following lemma is our
first step.
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Lemma 5 Let P be a nuclear 2-homogeneous polynomial on `p.
1) If 1 < p < 2, (P (en))n ∈ `q/2.
2) If 2 ≤ p < ∞, (P (en))n ∈ `1.

Proof: 1) If P is nuclear then it is continuous for the injective norm. Then,
if (αk)k is a finite sequence, we have∣∣∣∣∣∑

k

P (αkek)

∣∣∣∣∣ ≤ C sup
b∈B`q

∣∣∣∣∣∑
k

b(αkek)
2

∣∣∣∣∣ = C sup
b∈B`q

∣∣∣∣∣∑
k

b2
kα

2
k

∣∣∣∣∣
= C sup

c∈B`q/2

∣∣∣∣∣∑
k

ckα
2
k

∣∣∣∣∣ .
Since |

∑
k α2

kP (ek)| =|
∑

k P (αkek)| ≤ C supc∈B`q/2
|
∑

k ckα
2
k| for every finite

sequence (αk)k we conclude that (P (en))n ∈ `q/2.
2) P being nuclear, we can write

P (x) =
∑

k

(∑
j

bk,jxk

)2

with
∑

k

(∑
j

|bk,j|q
) 2

q

< ∞.

Since q < 2, we have

∑
n

|P (en)| =
∑

n

∣∣∣∣∣∑
k

(bk,n)2

∣∣∣∣∣ ≤∑
k

(∑
n

|bk,n|q
) 2

q

< ∞

and then (P (en))n ∈ `1.

We will now consider polynomials on `p of the form

P (x) =
∞∑

j=1

ajx
2
j

which we will call diagonal. It is clear that if
∑∞

j=1 |aj| < ∞, then P is
nuclear. Surprisingly enough, a diagonal polynomial can be nuclear even
though the coefficients (aj)j are not summable. The extreme case is `1,
where any null sequence (aj)j gives a nuclear polynomial. The following
two propositions clarify the situation:

Proposition 6 Let P (x) =
∑∞

j=1 ajx
2
j be a diagonal polynomial on `p.

1) For 1 < p < 2, P is nuclear if and only if (ak)k ∈ `q/2.
2) For 2 ≤ p < ∞, P is nuclear on if and only if (ak)k ∈ `1.
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Proof: 1) It only remains to prove the sufficiency. Suppose that (ak)k ∈
`q/2. To see that P is nuclear, it is enough to show that the nuclear norm

of the polynomial
∑n+l

k=n akx
2
k can be made arbitrarily small taking n ∈

N large enough, independently of the size of l (since this means that P
can be written as the sum of a sequence of polynomials with summable
nuclear norms). Consider the operator T : `p → `l+1

1 given by T (x) =

(a
1/2
n xn, . . . , a

1/2
n+lxn+l). The operator T has norm

(∑n+l
k=n |ak|q/2

) 1
q
. If we

show that the polynomial Ql(y) =
∑l+1

k=1 y2
k has unitary nuclear norm on

`l+1
1 (see also [7]), the composition Ql ◦T (x) =

∑n+l
k=n akx

2
k has nuclear norm

at most
(∑n+l

k=n |ak|q/2
) 2

q
on `n

p . Since (ak)k ∈ `q/2, we obtain that P is a

nuclear polynomial. But the polynomial Ql(y) =
∑l+1

k=1 y2
k can be rewritten

as

Ql(y) =
∑

ε1=±1,...εl+1=±1

(
ε1y1 + · · ·+ εl+1yl+1

2(l+1)/2

)2

(note that if we expand the expression above, the product yiyj appears
multiplied by 1 as many times as it appears multiplied by −1). Therefore,
the nuclear norm of Ql is not greater than

∑
ε1=±1,...εl+1=±1

∥∥∥∥ 1

2(l+1)/2
(ε1, · · · , εl+1)

∥∥∥∥2

∞
=

∑
ε1=±1,...εl+1=±1

1

2l+1
= 1.

Since ‖Ql‖N ≥ ‖Ql‖ = 1, we have that ‖Ql‖N = 1.
2) One implication follows from lemma 5 and the other is clear.

Proposition 7 Let P (x) =
∑∞

j=1 ajx
2
j be a diagonal polynomial on `1. The

following are equivalent:
a) P is nuclear
b) P is approximable
c) (aj)j is a null sequence.

Proof: It is clear that a) implies b). If P is approximable, then dP is a
compact operator [2]. For every j, we have that aje

′
j belongs to dP (B`1),

which is a compact subset of `∞. This forces (aj)j to be a null sequence. Now
suppose that c) is true. First observe that the polynomial Q(x) =

∑n
k=1 bkx

2
k

on `n
1 has nuclear norm maxk |bk|2 (independently of the size of n). Then,

choose ki ∈ N such that maxki≤k<ki+1
|ak|2 ≤ 1

2i . Thus, P can be written as
the sum of a sequence of polynomials with summable nuclear norms, which
shows that P is nuclear.

We will now characterize the diagonal 2-homogeneous extendible poly-
nomials on `p, for 1 < p < ∞. Together with our characterization of nuclear
polynomials, this will allow us to show the existence of approximable non-
extendible polynomials on every `p.
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Proposition 8 If 1 < p < ∞, diagonal extendible 2−homogeneous polyno-
mials on `p are nuclear.

Proof: For 1 < p ≤ 2, corollary 2 affirms that every extendible polynomial
is nuclear. For p > 2, let P ∈ Pe(

2`p) be given by P (x) =
∑

k akx
2
k and

consider Q ∈ P(2`2) given by the same formula. Since Q = P ◦ i (where
i : `2 → `p is the natural inclusion), Q is extendible [4] and therefore nuclear.
As we have already seen, this means that

∑
k |ak| < ∞ and consequently P

is also nuclear on `p.

The previous result is not true for p = 1, since the polynomial P (x) =∑
k x2

k on `1 is integral (and therefore extendible) but not nuclear. This
makes it harder to find approximable non-extendible polynomials on `1 than
on any other `p, where we can find diagonal polynomials satisfying our
requirements.

Corollary 9 There are approximable non-extendible 2-homogeneous polynomials
on every `p (1 ≤ p < ∞).

Proof: For 1 < p ≤ 2, the polynomial P (x) =
∑

k akx
2
k is approximable

whenever ak is a null sequence but is not extendible if we take (ak)k /∈ `q/2

(note that if p = 2, then q
2

= 1).
For p > 2, the polynomial P (x) =

∑
k akx

2
k is well defined and approx-

imable for (ak)k ∈ `r if r = 1 + 2
p−2

. Taking (ak)k in `r but not in `1,
we get a non-nuclear diagonal polynomial which cannot be extendible by
proposition 8.

For p = 1, we have that extendible polynomials are integral by propo-
sition 1, so we have to see that there are approximable polynomials which
are not integral. If every approximable polynomial is integral, by the closed
graph theorem, the inclusion PA(2`1) ↪→ PI(

2`1) is continuous. Since we
always have that ‖P‖ ≤ ‖P‖I , both norms turn out to be equivalent on
PA(2`1). On the other hand, the space PN(2`1) is dense in (PA(2`1), ‖·‖)
and, by theorem VIII.3.10 of [8], closed in (PI(

2`1), ‖·‖I). By the equiva-
lence of the norms, PN(2`1) and PA(2`1) coincide. Taking duals (see [11]
and [9]), we obtain that P(2`∞) = PI(

2`∞) and, in particular, every 2-
homogeneous polynomial on c0 should be integral. Since this assertion is
false [5], we conclude that there are approximable polynomials on `1 which
are not integral and consequently fail to be extendible.

Example 10 The polynomial

P (x) =
∑

k

x2
k

k

is approximable but not extendible on every `p, p ≥ 2 (but is nuclear, and
therefore extendible, for 1 ≤ p < 2). The polynomial

Q(x) =
∑

k

x2
k

ln(k + 1)
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is approximable but not extendible for 1 < p ≤ 2 (observe that Q is nuclear
if we consider it on `1 and is not defined for p > 2).

We want to generalize corollary 9 for polynomials of any degree. This
will be easy with the help of the following:

Proposition 11 Let P be a k−homogeneous polynomial on a Banach space
E and γ ∈ E ′, γ 6= 0. Then P is extendible if and only if the (k + 1)−ho-
mogeneous polynomial γ(x)P (x) is extendible.

Proof: If P is extendible then it is clear that γP is extendible. Conversely,
let Q be an extension of γP to a Banach space F containing E and φ ∈ F ′ an
extension of γ. If e ∈ E is such that γ(e) = 1, there exist a k−homogeneous
polynomial Q0 on F such that

Q(f)−Q(f − φ(f)e) = φ(f)Q0(f) for f ∈ F

(see [3]). For x ∈ E, we have

(γP )(x)− (γP )(x− γ(x)e) = γ(x)Q0(x)

γ(x)P (x) = γ(x)Q0(x)

and since γ is nonzero on a dense subset of E we have that Q0 extends P
to F .

Corollary 12 There are approximable non-extendible polynomials of any
degree k ≥ 2 on `p for 1 ≤ p < ∞.

Proof: If P is an approximable non-extendible 2-homogeneous polynomial,
then for any γ ∈ `q, γ 6= 0, the polynomial γk−2P is approximable but non-
extendible.

Note that the previous results not only prove the existence of approx-
imable non-extendible polynomials of any degree, but also show a way to
find examples of them. Following the idea of proposition 11 we obtain that
the product of linear functionals with the polynomial exhibited in example
3 will give extendible non-nuclear polynomials of any degree.

Another consequence of proposition 11 is:

Corollary 13 If every k-homogeneous polynomial on E is extendible, so is
every j-homogeneous polynomial for 1 ≤ j ≤ k.
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3 Extendibility of analytic functions

Let U be an open subset of E. We will say that an analytic function f :
U → F is extendible at a ∈ U if for any G ⊃ E there exists an open subset
V of G containing a and an analytic function f̃ : V → F which coincides
with f on V ∩ E. If such an f has a Taylor expansion

f(x) =
∞∑

k=0

Pk(x− a)

where Pk ∈ P(kE, F ), from the uniqueness of these expansions we have
that every Pk must be extendible. We will see that the extendibility of the
coefficients Pk is not enough to ensure the extendibility of f . First we define
the extendibility radius of f (at a) as

re =
1

lim sup
k→∞

‖Pk‖1/k
e

if every Pk is extendible. Since ‖Pk‖ ≤ ‖Pk‖e for all k, the extendibility
radius is not greater than the radius of uniform convergence.

Proposition 14 Let f(x) =
∑∞

k=0 Pk(x − a) be an analytic function from
U ⊂ E to F . The following conditions are equivalent

a) f is extendible at a.
b) Every Pk is extendible and the extendibility radius re is positive.
Moreover, if a) and b) occur, given G containing E we can extend f to

an analytic function on a ∈ G with radius of uniform convergence at least
re.

Proof: If f is extendible every Pk is extendible, as we observed above.
f being extendible, we extend it to an open subset of `∞(BE′) containing
a and call the coefficients of the extension P̄k (which are extensions of Pk).
Therefore,

∥∥P̄k

∥∥ ≥ ‖Pk‖e and

re =
1

lim sup
k→∞

‖Pk‖1/k
e

≥ 1

lim sup
k→∞

∥∥P̄k

∥∥1/k

which is positive since
∑

k P̄k(x−a) is analytic at a (and has positive radius
of convergence).

Conversely, suppose b) is true and let G be a Banach space containing E.

For any k we take εk > 0 such that lim sup
k→∞

‖Pk‖1/k
e = lim sup

k→∞
(‖Pk‖e + εk)

1/k.

We also take for each k an extension P̃k of Pk to G such that
∥∥∥P̃k

∥∥∥ ≤
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‖Pk‖e + εk. If we define f̃(z) =
∑∞

k=0 P̃k(z − a) (for z ∈ F ) we have

1

lim sup
k→∞

∥∥∥P̃k

∥∥∥1/k
≥ 1

lim sup
k→∞

(‖Pk‖e + εk)
1/k

=
1

lim sup
k→∞

‖Pk‖1/k
e

= re

This means that f̃ is analytic and has radius of uniform convergence (at a)
greater or equal to re. In consequence, a) is true, as well as the statement
about the convergence radius of the extensions.

We have shown that there are approximable non extendible polynomials
of any degree k ≥ 2 in every `p (1 ≤ p < ∞). For such a polynomial P ,
there exists a sequence of finite type polynomials which approximate it in
norm. However, this sequence cannot approximate P in extendible norm,
since it would mean that P is extendible (since finite type polynomials are
extendible and the extendible norm is complete). So we can conclude that
the usual norm and the extendible norm are not equivalent on the subspace
Pf (

k`p) of finite type polynomials, for any k ≥ 2 and 1 ≤ p < ∞. Therefore,
for each k ≥ 2 we can find a finite type polynomial Pk of degree k such that

‖Pk‖ ≤
1

kk
and ‖Pk‖e ≥ kk.

If we define f(x) =
∑

k Pk(x) on `p (P0 and P1 are arbitrary), f is an analytic
function with infinite radius of uniform convergence . All its coefficients are
finite type polynomials (and therefore extendible) but f is not extendible
since its extendible radius is 0.

Note that the previous idea can be used for any space on which there is
an approximable non-extendible polynomial. If we only know that there ex-
ists a non-extendible polynomial, we make use of the following fact ([12], see
also [4]): the extendible norm is equivalent to the usual norm on Pe(

kE) if
and only if every k-homogeneous polynomial is extendible. With this result,
proposition 11 and a similar construction we can find a non-extendible ana-
lytic function with infinite radius of convergence such that every coefficient
is extendible. We summarize all this in the following theorems:

Theorem 15 1) On any space with an approximable non-extendible poly-
nomial there exists an analytic function (of infinite radius of convergence)
with finite type coefficients that is not extendible.

2) On any space with a non-extendible polynomial there exists an analytic
function (of infinite radius of convergence) with extendible coefficients that
is not extendible.

10



References

[1] R. Alencar, On reflexivity and basis for P(mE), Proc. Royal Irish Acad.
85A, No 2 (1985), 131-138.

[2] R. Aron, C. Hervés, M. Valdivia, Weakly continuous mappings on Ba-
nach spaces, J. Funct. Anal. 52 (1983), 189-204.

[3] R. Aron, M Schottenloher, Compact holomorphic mappings on Banach
spaces and the approximation property, J. Funct. Anal. 52 (1983), 189-
204.

[4] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal.
Appl. 233 (1999), 359-372.

[5] D. Carando, I. Zalduendo, A Hahn Banach theorem for integral poly-
nomials, Proc. Amer. Math. Soc. 127 (1999), 241-250.
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