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WEAKLY CONTINUOUS FUNCTIONS 
ON BANACH SPACES NOT CONTAINING 11 

JOAQUIN M. GUTIItRREZ 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. Banach spaces not containing 11 are characterized in terms of con- 
tinuous and holomorphic functions and polynomials which are weakly sequen- 
tially continuous and weakly continuous on bounded subsets. An application to 
(bounded linear) operators is also given. 

Throughout, E and F are Banach spaces. We write E* for the dual of E 
and BE for its closed unit ball. R, C, and N denote the real, complex, and 
natural numbers, respectively. By Cwk(E, F) we denote the space of all maps 
taking weakly convergent sequences in E to convergent ones in F, and by 
Cwb(E, F) we denote the space of those maps whose restrictions to bounded 
subsets of E are weakly continuous. Clearly, Cwb(E, F) C CWk(E, F). When 
E and F are complex Banach spaces, H(E, F) stands for the space of all 
holomorphic maps from E to F. 

For each k E N, .9(kE, F) is the space of k-homogeneous continuous 
polynomials from E to F. We identify 9A(0E, F) = F. The space of con- 
tinuous symmetric k-linear mappings from E x (k) x E to F is denoted by 
L5(kE, F). The operator LS(kE, F) __ 3p(kE, F) taking the k-linear map A 
to the polynomial P defined by P(x) = A(x, ... , x) is an isomorphism of 
Banach spaces [14]. If F(E, F) is a family of continuous maps from E to 
F, then we write 

ga-(E, F) = 9(E F) n C(E , F) 

for a = wb or wk. Throughout, if the range space is omitted, it is understood 
to be the scalar field K (= C or R); thus, J (kE) - ?(kE, K). 

In recent years, many authors have studied such function spaces (see, e.g., [1, 
3-6, 9, 11, 13]). The aim of this note is to give refinements of results from [5, 9] 
characterizing Banach spaces not containing 11 in terms of the aforementioned 
spaces. 

We say that a (linear bounded) operator T: E -* F is completely continuous 
if it takes weakly convergent sequences in E to convergent ones in F. Clearly, 
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S'Wk(1E, F) is the space of completely continuous operators from E to F. 
On the other hand, 9wb(I E, F) coincides with the space of compact operators 
from E to F [6, Proposition 2.5]. We say that A c E is a Rosenthal (or 
conditionally weakly compact) subset if each sequence in A admits of a weak 
Cauchy subsequence. 

The following result, extending a theorem by Rosenthal, is proved in [10]. 

1. Theorem. Every Rosenthal subset of a Banach space is weakly sequentially 
dense in its weak closure. 

2. Corollary. The space CWk(E, F) consists ofthosefunctions f: E -* F whose 
restrictions to Rosenthal subsets of E are weakly continuous. 
Proof. If f E Cwk(E, F) and A c E is a Rosenthal subset, then, by Theorem 
1, for every x E A a(E E*), there is a sequence (xn) C A converging weakly to 
x. Hence, (f(xn)) converges to f(x); so, f(A:(EE*)) c f(A), and fIA is 
weakly continuous. C 

3. Theorem. Let E be a complex Banach space. The following assertions are 
equivalent. 

(a) E contains no copy of 11. 
(b) For every F, CWk(E, F) CWb(E, F). 
(c) For every complex F, Hwk(E, F) = HWb(E, F). 
(d) For some complex F, Hwk(E, F) = HWb(E, F). 
(e) HWk(E) = HWb(E). 

Proof. (a) =- (b) Since, in a space not containing 1l, bounded subsets are 
Rosenthal, it is enough to apply Corollary 2. 

(b) = (c) =- (d) are obvious. 
(d) = (e) Suppose there is a function f E HWk(E)\Hwb(E). Choose y E F 

with IIYII = 1, and let j:R -* F be given by j(A) = Ay . Then j o f E 
Hwk(E, F)\Hwb(E, F). 

(e) =b (a) Suppose there is a closed subspace M C E and an isomorphism 
S: M -* 11 , and let T: 1i -* c0 be the natural inclusion. By standard arguments, 
T can be factored through Lo [0, 1] and so extended to an operator U: E 
c0 . Since every operator from Lo [0, 1] to c0 is weakly compact, and Lo [0, 1] 
has the Dunford-Pettis property, U is completely continuous. If (en) denotes 
the unit vector basis of 1l., write On = 2en o U . Clearly, the sequence (qn) C E* 
is a(E*, E)-null. Define a function f: E -* C by 

00 

f(x) = ZG(On(X))n (x E E). 
n=1 

Then f is well defined and holomorphic [14, 5.5]. 
We now prove that f V CWb(E). Indeed, otherwise we would have that 

g f oS' E Cwb(l1) . If qn denotes the nth coordinate mapping on 1l , then 

On ? S-1 (y) = 2en ? U o S-1 (y) = 2en ? T(y) 2qn(y) (Y E 11); 

so, for y e 1l, 
00 00 

g(y) = foS1-(y) = E(qon oS-I(y))n = (2qn(y))n. 
n=1 n=1 
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We now show that g fails to be weakly continuous on the 2-ball. This follows 
an idea of Professor R. M. Aron which simplifies the author's original proof. 
Take . C 4,,o with n' = (n)= (1 < j < k). We can find an 
increasing sequence (n1) c N such that, for each j (1 < j < k), the sequence 
(n)i is convergent; therefore, there is an integer r such that, for p > q > r, 

4np -nqI < 1 (1 < j ? k). 

For y = enp - enr E 11, with p > r, we have 

IlyII = 2, 

15V: (y) I lnp -tnrlI < I (I1 < j < k), 
and 

g(y) = 2np + 2nr ( 1 )nr > 2. 

Finally, we show that f E Cwk(E). Indeed, let L be a weakly compact 
subset of E. Then U(L) is compact in co. Set e > 0 andk E N with 
2-k <e. Since the sequence (en) is weak-star null, it converges to 0 uniformly 
on compact subsets of co; hence, there exists m E N (m > k) such that 

Ien ? U(x)I < 1 
(XEL; n>m) 

and so 
I O)n(X) In < 2-n (x E L; n > m). 

Let fN(x) = EN1 (On (x))n for each N E N; it is clear that fN E Cwb (E). If 
N > M > m, we have, for every x E L, 

N 00 

IfN(x) - fM(x)I < A 1qn$(x)In < 2 = 2m < 2-k <. 

n=M+1 n=M+1 

Therefore (fN)"i c C CWb(E) is a Cauchy sequence in the topology of uni- 
form convergence on weakly compact subsets of E. Now Cwk(E) is the com- 
pletion of CWb(E) in this topology [9, Proposition 2], so (fN)f1f0 converges to 
f, and we conclude that f E Cwk(E). 5 

The equivalence (a) X (b) was proved in [9]. 

4. Theorem. The following assertions are equivalent. 
(a) E contains no copy of 11 . 
(b) For every F and k E N, 3Mwk(kE, F) = 3'wb(kE, F). 
(c) There exists F such that, for every k E N, 3MPwk(kE, F) = 36wb(kE, F). 
(d) For some F and some k E N (k > 2), wk(kE, F) =3wb(kE, F). 
(e) For some k E N (k > 2), 3wk(kE) = wb(kE). 

Proof. (a) =E (b) by Theorem 3 (a) => (b). 
(b) = (c) =* (d) are obvious. 
(d) * (e) as in Theorem 3. 
(e) = (a) Suppose M C E is a closed subspace and S: M -*11 an iso- 

morphism. Let T: 11 -* 12 be the natural inclusion. Since T is absolutely 
summing [12, Theorem 2.b.6], we can apply the Grothendieck-Pietsch domina- 
tion theorem [8, p. 60]. Then there exists a regular Borel probability measure 
#u defined on a compact space such that T factors through L??0(a). By the 
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injectivity of L??(u), T extends to an operator V:E -* 12 which is com- 
pletely continuous by the Dunford-Pettis property of L??(pu). For x E E, 
write V(x) = (V,(x)) 'IO e 12. For each integer k > 2, define Pk: E -* K by 

00 

Pk(x) = Z(Vn(x))k. 

n=I 

Pk is the product of the maps 
V I W 

E 12 lk K, 

where I is the natural inclusion and W the k-homogeneous polynomial given 
by 

00 

W() = Z(cn)k for= (4n) E lk 
n=I 

Hence, Pk E A(kE). Moreover, since V is completely continuous, Pk E 

gUwk(kE). 
Let us now see that pk ? ?wb(kE) ; otherwise we would have Rk = PkOS-1 E 

Mwb(kll). If qn is the nth coordinate map on 11 , we have 

00 00 

Rk(Y) = Pk ? S1 (y) = (Vn ? S- (y))k = (qn (y))k (y E 
n=l n=l 

The continuous symmetric k-linear map Ak associated to Rk is given by 
00 

Ak(YI Yk) = 
1:qn(YI) * -qn(Yk) (Y1,* Yk E 11). 

n=l 

Let Ck: 11 -k L,(k- Ill ) be the operator defined by 

Ck(X)(Yl ..., Yk-1) = Ak(x Y, ..., Yk-1) (X, Y1,, Yk-1 E 1). 

Then, if (en) is the unit vector basis in 11, we have, for n 5# m, 

IICk(en) - Ck(em)JI > ICk(en)(en , ('...), en) - Ck(em)(en, ( en)I 

= IAk(en ,Y9.en)-Ak(em, en, (k .., en)( = 1; 

therefore, Ck is not compact. Applying [5, Theorem 2.9], we conclude that 

Rk 9Uwb(kll). 0 

The same argument would give another proof of Theorem 3 on holomorphic 
functions. Nevertheless, we present both since the one of Theorem 3 only 
needs basic tools from Banach space theory and gives a concrete example of a 
holomorphic function that could be useful in other applications. 

The equivalence (a) 4 (b) is proved in [5, Proposition 2.12 and following 
comment]. As far as we know, (c), (d), and (e) are new. 

Assertions (d) and (e) of the last theorem show a different behaviour of 
polynomials and operators. Odell proved (see [15, p. 377]) that E contains 
no copy of '1 if and only if every completely continuous operator on E is 
compact. Theorem 4, however, is no longer true for k = 1 in (e), since for 
every E, ""Awk(1E) = ,9wb(1E) = E*. Even if F were restricted in (d) to be 
infinite dimensional, the theorem would fail for k = 1 . Indeed, it is known [7, 
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Proposition 3.7] that E contains no complemented copy of 11 if and only if 
there exists an infinite-dimensional F such that every completely continuous 
operator from E to F is compact. 

Finally, we give a corollary on operators. We say that an operator T: E -E* 
is symmetric if it verifies 

(y, Tx)= (x, Ty) (x,y eE). 

The symmetric operators are studied in [2, ?8] in relation to spectral properties 
of algebras of analytic functions and Arens regularity. It is an open problem 
whether the fact that every symmetric operator from E to E* is weakly com- 
pact implies that every operator from E to E* is weakly compact too. Here 
we give an answer to a similar question. 

5. Corollary. The following assertions are equivalent. 
(a) E contains no copy of 11 . 
(b) Every completely continuous operator on E is compact. 
(c) Every completely continuous operator from E to E* is compact. 
(d) Every symmetric completely continuous operator from E to E* is com- 

pact. 

Proof. (a) =* (b) is included in (a) =* (b) of Theorem 4. 
(b) = (c) =* (d) are obvious. 
(d) = (a) Suppose E contains an isomorphic copy of l . As in the proof of 

Theorem 4, we can find a completely continuous operator V: E -k 12 extending 
the inclusion T: 11 - 12. For every x E E we write V(x) = (Vn(x))?? E 12 
and define the 2-homogeneous polynomial P: E -- K by 

00 

P(x) = Z(Vn(x))2. 
n=1 

Let C: E E* be the associated operator given by 
00 

(y, C(x)) = E Vn(x)Vn(Y) (X, y E E). 
n=1 

Since P w 94b(2E), C is not compact [5, Theorem 2.9]. Obviously, C is 
symmetric, and if (xm)?,?= c E is a weakly null sequence, then 

IIC(Xm)II = SUp{I(y, C(Xm)): Y E BE} 

= SuP{I(V(xm), V(y))I:y E BE} < IIV(Xm)II * IIVII. 

Since V is completely continuous, so is C. o 

The equivalence (a) 4* (b) is Odell's theorem [15, p. 377]. 
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