Entire Functions on c_{0}

Seán Dineen
Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland

Communicated by the Editors
Received June 1982

Abstract

It is shown that every holomorphic function on c_{0} which is bounded on weakly compact sets is bounded on bounded sets.

In [9] Valdivia proved the following result (see also [8]):
Proposition 1. A Banach space E is reflexive if and only if every weakly continuous function on E is bounded on bounded subsets of E.

An infinite dimensional differentiable version of this proposition is proved in [5]. In [2] Aron et al. study various types of continuous and holomorphic functions on Banach spaces and in the course of their investigations ask if a holomorphic analog of Proposition 1 is valid. By considering holomorphic functions on c_{0} we provide (Theorem 7) a negative answer to their question. This theorem is the main result of this paper. Information on the significance of this result is given in [2]. We refer to [4] for the theory of holomorphic functions on Banach spaces.

Let E be a Banach space over the complex numbers. $P\left({ }^{n} E\right)$ is the space of all continuous n-homogeneous polynomials on $E . H(E)$ is the space of all (C-valued) holomorphic functions on $E, H_{\mathrm{wb}}(E)$ is the subspace of $H(E)$ consisting of all holomorphic functions which are bounded on weakly compact subsets of E and $H_{\mathrm{b}}(E)$ is the subspace of $H_{\mathrm{wb}}(E)$ consisting of all holomorphic functions which are bounded on the bounded subsets of E.

If E is reflexive, then $H_{\mathrm{wb}}(E)=H_{\mathrm{b}}(E)$ and in this article we show $H_{\mathrm{wb}}\left(\mathrm{c}_{0}\right)=H_{\mathrm{b}}\left(\mathrm{c}_{0}\right)$. A deep result of Josefson [6] states that $H_{\mathrm{b}}(E) \neq H(E)$ for any infinite dimensional Banach space. In certain cases (e.g., $E=l_{1}$) we may have $H(E)=H_{\mathrm{wb}}(E)$.

The elements of the above spaces of holomorphic functions may also be described in a useful fashion by using Taylor series expansions. This description is as follows.

If $\left(P_{n}\right)_{n=0}^{\infty}$ is a sequence of continuous homogeneous polynomials, P_{n} being n-homogeneous, then
(i) $\sum_{n=0}^{\infty} P_{n} \in H(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|_{K}^{1 / n}=0$ for every compact subset K of E,
(ii) $\sum_{n=0}^{\infty} P_{n} \in H_{w b}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|_{W}^{1 / n}=0$ for every weakly compact subset W of E,
(iii) $\sum_{n=0}^{\infty} P_{n} \in H_{\mathrm{b}}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|_{B}^{1 / n}=0$ for every bounded subset B of E.
c_{0} will denote the space of all null sequences of complex numbers endowed with the usual sup norm topology. For n a positive integer q^{n} and q_{n} will denote respectively the projections in c_{0} onto the first n and all but the first n coordinates. For n and m positive integers with $m \leqslant n$ we let $q_{m}^{n}=q^{n}-q^{m}$. If I is the identity mapping on c_{0} and 0 is the zero mapping we let $q_{0}=I$, $q^{0}=0, q_{0}^{n}=q^{n}-q^{0}=q^{n}$ for any positive integer $n, q^{\infty}=I, q_{\infty}=0, q_{m}^{\infty}=$ $q^{\infty}-q^{m}=I-q^{m}=q_{m}$ for any positive integer m and $q_{0}^{\infty}=q^{\infty}-q^{0}=$ $I-0=I$.

The following proposition may be deduced from results in [1-3,7] but we include a proof for the sake of completeness.

Proposition 2. Continuous polynomials on c_{0} are weakly continuous on weakly compact subsets of c_{0}.

Proof. It suffices to consider homogeneous polynomials of degree $\geqslant 1$. We first show that every continuous homogeneous polynomial is weakly sequentially continuous at zero. Let P be a continuous n-homogeneous polynomial on c_{0} and let $\left(x_{n}\right)_{n}$ be a weak null sequence in c_{0}. Suppose $P\left(x_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$. By taking a subsequence if necessary and on multiplying each x_{n} by a scalar we may suppose there exists $\delta>0$ and $\left(y_{n}\right)_{n}$ a sequence in c_{0} such that

$$
\left\|y_{n}\right\|=1 \quad \text { for all } n, \quad y_{n} \rightarrow 0 \text { weakly as } n \rightarrow \infty
$$

and

$$
\left|P\left(y_{n}\right)\right| \geqslant \delta \quad \text { for all } n
$$

Let $n_{0}=0$ and $N_{1}=1$.

Choose n_{1}, a positive integer, such that $\left|P\left(q^{n_{1}}\left(y_{1}\right)\right)\right| \geqslant \delta / 2$. Since $y_{n} \rightarrow 0$ weakly as $n \rightarrow \infty$ we can choose N_{2} such that $\left\|q^{n_{1}}\left(y_{n}\right)\right\| \leqslant 1 / 2^{2}$ for all $n \geqslant N_{2}$. By induction we now choose two strictly increasing sequences of positive integers $\left(n_{j}\right)_{j}$ and $\left(N_{j}\right)_{j}$ such that

$$
\begin{equation*}
\left|P\left(q^{n_{j}}\left(y_{N_{i}}\right)\right)\right| \geqslant \frac{\delta}{2} \quad \text { for all } \quad j \geqslant 1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|q^{n_{1}}\left(y_{N_{j+1}}\right)\right\| \leqslant \frac{1}{2^{j}} \quad \text { for all } \quad j \geqslant 1 \tag{2.2}
\end{equation*}
$$

By using the inequality

$$
\sup _{\substack{1=1=1 \\ z \in C}}\left|\sum_{j=0}^{n} a_{j} z^{j}\right| \geqslant \sum_{i=0}^{n}\left|a_{i}\right|^{2}
$$

(2.1), and induction we can choose for any positive integer l a sequence of scalar $\left(\lambda_{j}\right)_{j=1}^{2 l}$ such that

$$
\begin{equation*}
\left|\lambda_{j}\right| \leqslant 1 \quad \text { for all } j \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P\left(\sum_{j=1}^{2 l} \lambda_{j} q^{n_{j}}\left(v_{N_{j}}\right)\right)\right| \geqslant \frac{\delta}{2}(\sqrt{2})^{\prime} . \tag{2.4}
\end{equation*}
$$

By (2.2) and (2.3)

$$
\begin{align*}
\left\|\sum_{j=1}^{2^{\prime}} \lambda_{j} q^{n_{j}}\left(y_{N_{j}}\right)\right\| & =\left\|\sum_{j-1}^{\sum_{j}^{l}} \lambda_{j} q^{n_{j-1}}\left(y_{N_{j}}\right)+\sum_{j=1}^{2!} \lambda_{j} q_{n_{t-1}}^{n_{j}}\left(y_{N_{j}}\right)\right\| \\
& \leqslant \sum_{j=1}^{2!} \frac{1}{2^{j}}+\sup _{j}\left\|y_{N_{j}}\right\| \leqslant 2 . \tag{2.5}
\end{align*}
$$

Hence (2.4) and (2.5) imply

$$
\sup _{\|x\| \leqslant 2}|P(x)| \geqslant \sup , \frac{\delta}{2}(\sqrt{2})^{l}=\infty
$$

Since P is continuous this is impossible and hence every continuous polynomial on c_{0} is weakly sequentially continuous at zero.

Let Q be a continuous m-homogeneous polynomial on $c_{0}(m \geqslant 1)$ and let A denote the symmetric m linear form associated with Q. Let W be a weakly
compact subset of c_{0}. Since $c_{0}^{\prime}=l_{1}$ is separable W is metrizable and hence to complete the proof if suffices to show $\left.Q\right|_{W}$ is weakly sequentially continuous.

Let $x_{n} \in W \rightarrow x$ weakly as $n \rightarrow \infty$. Now

$$
\begin{aligned}
Q\left(x_{n}\right)-Q(x) & =Q\left(x+x_{n}-x\right)-Q(x) \\
& =\sum_{j=0}^{m-1}\binom{m}{j} A(x)^{j}\left(x_{n}-x\right)^{m-j} .
\end{aligned}
$$

For each integer $j, 0 \leqslant j \leqslant m-1$, the mapping

$$
y \in c_{0} \rightarrow\binom{m}{j} A(x)^{f}(y)^{m-j}
$$

is a homogeneous polynomial of degree $\geqslant 1$. Since $x_{n}-x \rightarrow 0$ weakly as $n \rightarrow \infty$ the first part of our proof shows that

$$
\binom{m}{j} A(x)^{j}\left(x_{n}-x\right)^{m-j} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { for all } j, \quad j \leqslant m-1 .
$$

Hence $Q\left(x_{n}\right) \rightarrow Q(x)$ as $n \rightarrow \infty$. Hence Q is continuous on W and this completes the proof.

Proposition 3. If $f \in H_{w b}\left(c_{0}\right)$ and W is a weakly compact subset of c_{0}, then $\left.f\right|_{w}$ is weakly continuous.
Proof. Since $\sum_{n=0}^{\infty}\left\|\tilde{d}^{n} f(0) / n!\right\|_{W}<\infty$ we see that $\left.f\right|_{W}$ is the uniform limit of a sequence of weakly continuous functions. Hence $\left.f\right|_{\mathscr{N}}$ is continuous. This completes the proof.

In proving the remainder of our results we shall frequently need to take subsequences. An examination of our proofs shows that in all the cases we consider we may assume without loss of generality that the subsequence is in fact the original sequence. Hence when we use the phrase "without loss of generality" it shall include, where appropriate, the operation of taking subsequences. This convention helps to reduce the number of subscripts and superscripts we shall need.

If $\alpha=\left(\alpha_{j}\right)_{j=1}^{\infty} \in c_{0}$ we let $\tilde{\alpha}=\left\{\left(\beta_{j}\right)_{j} ;\left|\beta_{j}\right| \leqslant\left|\alpha_{j}\right| \forall j\right\}$. Also α is a compact polydisc in c_{0}. If $\Omega \subset c_{0}$ we let $\bar{\Omega}=\bigcup_{\alpha \in \Omega} \tilde{\alpha}$. We call $\tilde{\Omega}$ the solid hull of Ω and Ω is said to be solid of $\Omega=\tilde{\Omega}$.

Lemma 4. If Ω is a bounded (resp. compact, weakly compact) subset of c_{0}, then $\tilde{\Omega}$ is bounded (resp. compact, weakly compact).

Proof. First suppose $\sup \{\|\alpha\| ; \alpha \in \Omega\}=M<\infty$. If $\beta=\left(\beta_{n}\right) \in \Omega$, then there exists $\alpha=\left(\alpha_{n}\right)_{n} \in \Omega$ such that $\left|\beta_{n}\right| \leqslant\left|\alpha_{n}\right|$ for all n. Hence $\sup _{n}\left|\beta_{n}\right|=$ $\|\beta\| \leqslant \sup _{n}\left|\alpha_{n}\right|=\|\alpha\| \leqslant M$ and $\sup \{\|\beta\| ; \beta \in \Omega\}=M<\infty$. Hence $\bar{\Omega}$ is bounded whenever Ω is bounded. Now suppose Ω is compact. Let $x_{n} \in \tilde{\Omega}$ for each n. For each n suppose $x_{n} \in \tilde{y}_{n}$, where $y_{n} \in \Omega$. By hypothesis and without loss of generality we may suppose there exists $y=\left(y^{m}\right)_{m=1}^{\infty \in} \in \Omega$ such that $\left\|y_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$. For each positive integer n there exists $\theta_{n}=\left(\theta_{n}^{m}\right)_{m=1}^{\infty} \in D^{N} \quad(D$ is the unit dist in $C)$ such that $x_{n}=\theta_{n} y_{n}$ (multiplication is coordinatewise). Now D^{N} is a compact metric space when endowed with the product topology and hence we may suppose without loss of generality that $\theta_{n} \rightarrow \theta=\left(\theta^{m}\right)_{m-1}^{\infty} \in D^{N}$ as $n \rightarrow \infty$. Since $y \in \Omega, \theta y \in \tilde{\Omega}$ and to complete the proof we show $\left\|\theta_{n} y_{n}-\theta y\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Let $\varepsilon>0$ be arbitrary. Choose n_{1} such that $\left|y^{m}\right| \leqslant \varepsilon$ for all $m \geqslant n_{1}$. Next choose n_{2} such that $\left\|y_{n}-y\right\| \leqslant \varepsilon$ for all $n \geqslant n_{2}$ and $\left|\theta_{n}^{m}-\theta^{m}\right| \leqslant \varepsilon /(1+\|y\|)$ for all $n \geqslant n_{2}$ and $1 \leqslant m \leqslant n_{1}$. Now for $n \geqslant n_{2}$ we have

$$
\begin{aligned}
\left\|\theta_{n} y_{n}-\theta y\right\| \leqslant & \left\|\theta_{n} y_{n}-\theta_{n} y\right\|+\left\|\theta_{n} y-\theta y\right\| \\
& \leqslant\left\|y_{n}-y\right\| \cdot \sup _{n, m}\left|\theta_{n}^{m}\right|+\sup _{m}\left|y^{m}\right| \cdot \sup _{m \leqslant m_{1}}\left|\theta_{n}^{m}-\theta^{m}\right| \\
& +\sup _{n, m}\left(\left|\theta_{n}^{m}\right|+\left|\theta^{m}\right|\right) \cdot \sup _{m \geqslant n_{1}}\left|y^{m}\right| \\
& \leqslant \varepsilon+\|y\| \cdot \frac{\varepsilon}{1+\|y\|}+2 \varepsilon \leqslant 4 \varepsilon .
\end{aligned}
$$

Hence $\theta_{n} y_{n} \rightarrow \theta y$ as $n \rightarrow \infty$ and $\tilde{\Omega}$ is compact. Now suppose Ω is weakly compact. To show Ω is weakly compact it suffices to show $\theta_{\alpha} y_{\alpha} \rightarrow \theta y$ weakly as $\alpha \rightarrow \infty$, where $y_{\alpha} \in \Omega \rightarrow y \in \Omega$ weakly as $\alpha \rightarrow \infty$ and $\theta_{\alpha} \in D^{N} \rightarrow \theta \in D^{N}$ as $\alpha \rightarrow \infty$. Since Ω is bounded $\theta_{\alpha} y_{a} \rightarrow \theta y$ weakly as $\alpha \rightarrow \infty$ if and only if $\theta_{\alpha} y_{\alpha} \rightarrow \theta y$ in each coordinate as $\alpha \rightarrow \infty$ and this follows immediately from our hypothesis. This completes the proof.

If $P \in P\left({ }^{m} c_{0}\right)$ and A is the associated symmetric m-linear form, $\left(n_{j}\right)_{j=1}^{l-1}$ is a strictly increasing sequence of positive integers, $\left(k_{j}\right)_{j=1}^{l}$ are nonnegative integers with $\sum_{j=1}^{l} k_{j}=m$ and $\lambda \in C,|\lambda| \leqslant 1$, then for any x in c_{0} we let

$$
\begin{aligned}
& \left(\lambda(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right]\right)(x) \\
& \quad=\lambda\binom{m}{k_{1}, \ldots, k_{l}} A\left(q^{n_{1}}(x)\right)^{k_{1}}\left(q_{n_{1}}^{n_{2}}(x)\right)^{k_{2}} \cdots\left(q_{n_{l-1}}(x)\right)^{k_{l}}
\end{aligned}
$$

where $\lambda(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right]$ is called a modification of P and belongs to $P\left({ }^{m} c_{0}\right)$.

If $n_{l}>n_{l-1}$ and $0 \leqslant s \leqslant k_{l}$, then

$$
\begin{aligned}
& \left.\beta(\lambda(P))\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right]\right)\left[s, k_{l}-s ; n_{l}\right] \\
& \quad=\lambda \beta(P)\left[k_{1}, \ldots, k_{l-1}, s, k_{l}-s ; n_{1}, \ldots, n_{l}\right]
\end{aligned}
$$

Lemma 5. Let $P \in P\left({ }^{m} c_{0}\right)$ and $\Omega \subset c_{0}$. If Q is a modification of P, then $\|Q\|_{\Omega} \leqslant\|P\|_{\Omega}$.

Proof. Let $Q=\lambda(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right]$ and let $n_{0}=0$ and $n_{l}=\infty$. If $x \in \Omega$, let $x_{j}=q_{n_{j-1}}^{n_{j}} x$ for $l \leqslant j \leqslant l$. Note that $x=\sum_{j=1}^{l} x_{j}$ and $\sum_{j=1}^{l} \lambda_{j} x_{j} \in \tilde{\Omega}$ for all $\lambda_{i} \in C,\left|\lambda_{i}\right| \leqslant 1$. Now

$$
P=\sum_{\substack{0 \leqslant k_{i} \leqslant m \\ \Sigma_{k_{i}}=m}}(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right]
$$

Hence

$$
P\left(\sum_{j=1}^{i} \lambda_{j} x_{j}\right)=\sum_{\substack{0 \leq k_{i} \leq m \\ \Sigma k_{i}=m}} \lambda_{1}^{k_{1}} \lambda_{2}^{k_{2}} \cdots \lambda^{k_{l}}(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right](x)
$$

By Parseval's inequality we have

$$
\begin{aligned}
|Q(x)|^{2} & =\left|\lambda(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right](x)\right|^{2} \\
& \leqslant \sum_{\substack{0<k_{i}<m \\
\leq k_{i}=m}}\left|(P)\left[k_{1}, \ldots, k_{l} ; n_{1}, \ldots, n_{l-1}\right](x)\right|^{2} \\
& \leqslant \sup _{\left|\lambda_{i}\right| \leqslant 1}\left|P\left(\sum_{i=1}^{l} \lambda_{i} x_{i}\right)\right|^{2} \leqslant\|P\|_{\tilde{\Omega}}^{2} .
\end{aligned}
$$

Hence $\|Q\|_{\Omega} \leqslant\|P\|_{\Omega}$ and this completes the proof.
If $f=\sum_{n=0}^{\infty} P_{n} \in H\left(c_{0}\right)$ and $g=\sum_{n=0}^{\infty} Q_{n}$, where each Q_{n} is a modification of P_{n}, then we call the formal series $\sum_{n=0}^{\infty} Q_{n}$ a modification of f.

Lemma 6. If $f \in H\left(c_{0}\right)\left(\right.$ resp. $\left.H_{\mathrm{b}}\left(c_{0}\right), H_{\mathrm{wb}}\left(c_{0}\right)\right)$ and g is a modification of f, then $g \in H\left(c_{0}\right)\left(\right.$ resp. $\left.H_{b}\left(c_{0}\right), H_{w b}\left(c_{0}\right)\right)$.

Proof. It suffices to use (1.1)-(1.3), lemmata 4 and 5 to prove this result.
Theorem 7. $H_{\mathrm{wb}}\left(c_{0}\right)=H_{\mathrm{b}}\left(c_{0}\right)$.
Proof. Suppose the result is not true. Then there exists an $f \in \sum_{n=0}^{\infty} P_{n} \in$
$H_{w b}\left(c_{0}\right)$, where P_{n} is a k_{n}-homogeneous polynomial for all n and $\left(k_{n}\right)_{n}$ is a strictly increasing sequence of positive integers, and a sequence of unit vectors in $c_{0},\left(x_{n}\right)_{n=1}^{\infty}$, such that $\left|P_{n}\left(x_{n}\right)\right|>1$ for all n. By taking a modification of f if necessary we may suppose without loss of generality that

$$
\begin{equation*}
\frac{k_{n}}{\log \left(k_{n}+1\right)} \geqslant n \quad \text { for all } n \tag{3.1}
\end{equation*}
$$

Equation (3.1) implies $k_{n} \geqslant n \log \left(k_{n}+1\right)=\log \left(k_{n}+1\right)^{n}$ and hence $\exp \left(k_{n}\right) \geqslant\left(k_{n}+1\right)^{n}$ for all n. Hence

$$
\begin{equation*}
\left(\frac{1}{\left(k_{n}+1\right)^{n}}\right)^{1: k_{n}} \geqslant\left(\frac{1}{\exp \left(k_{n}\right)}\right)^{1: k_{n}} \geqslant \frac{1}{e} \quad \text { for all } n \tag{3.2}
\end{equation*}
$$

Note if we take a strictly increasing sequence of positive integers $\left(n_{j}\right)_{j}$ and let $Q_{j}=P_{n_{j}}$ and $y_{j}=x_{n_{j}}$, then $g=\sum_{j=1}^{\infty} Q_{j} \in H_{\mathrm{wb}}\left(c_{0}\right),\left|Q_{j}\left(y_{j}\right)\right|>1$ for all j and

$$
\frac{\operatorname{deg}\left(Q_{j}\right)}{\log \left(\operatorname{deg}\left(Q_{j}\right)+1\right)}=\frac{\operatorname{deg}\left(P_{n_{j}}\right)}{\log \left(\operatorname{deg}\left(P_{n_{j}}\right)+1\right)}=\frac{k_{n_{j}}}{\log \left(k_{n_{j}}+1\right)} \geqslant n_{i}>j
$$

and hence (3.1) is preserved.
Our aim now is to construct a sequence $\left(\delta_{n}\right)_{n}$ of positive numbers with certain properties and then to show that the existence of the scquence $\left(\delta_{n}\right)_{n}$ leads to a contradiction. The construction of $\left(\delta_{n}\right)_{n}$ is rather technical and is by induction. We first show how to obtain δ_{1} and similar construction is used to obtain δ_{n}.

First choose a positive integer n_{0} such that

$$
\begin{equation*}
\left|P_{1}\left(q^{j}\left(x_{1}\right)\right)\right|>1 \quad \text { for all } j \geqslant n_{0} . \tag{3.3}
\end{equation*}
$$

For any positive integers l and n we have

$$
\mid \sum_{j=0}^{k_{n}}\left(P_{n}\right)\left[j, k_{n}-j ; l\left|\left(x_{n}\right)\right|=\left|P_{n}\left(x_{n}\right)\right|>1 .\right.
$$

Hence we can choose for any integers l and n an integer $j_{n, l}$ such that $0 \leqslant j_{n, l} \leqslant k_{n}$ and

$$
\begin{equation*}
\left|\left(P_{n}\right)\right| j_{n, l}, k_{n}-j_{n, l} ; l\left|\left(x_{n}\right)\right|>\frac{1}{k_{n}+1} . \tag{3.4}
\end{equation*}
$$

We claim there exists an integer $n_{1} \geqslant n_{0}$ and a choice of $\left(j_{n, n_{1}}\right)_{n=2}^{\infty}$ satisfying (3.4) such that

$$
\liminf _{n \rightarrow \infty} \frac{j_{n, n_{1}}}{k_{n}}>0
$$

Suppose otherwise. Then without loss of generality we can choose a sequence of positive integers $\left(j_{n}\right)_{n>n_{0}}$ such that $0 \leqslant j_{n} \leqslant k_{n}$ for all $n, j_{n} / k_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left|\left(P_{n}\right)\left[j_{n}, k_{n}-j_{n} ; n\right]\left(x_{n}\right)\right|>1 /\left(k_{n}+1\right)$ all $n \geqslant n_{0}$. Let $\alpha_{n}=$ $\exp \left(-\left(k_{n} / j_{n}\right)^{1 / 2}\right)$ for $n \geqslant n_{0}$. Then $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\alpha_{n}^{j_{n} / k_{n}}=\exp \left(-\left(\frac{j_{n}}{k_{n}}\right)^{1 / 2}\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

Now $g=\sum_{n>n_{0}}\left(P_{n}\right)\left[j_{n}, k_{n}-j_{n} ; n\right]$ is a modification of f and hence belongs to $H_{\mathrm{wb}}\left(c_{0}\right)$.

We have

$$
\left\|\alpha_{n} q^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)\right\| \leqslant \sup \left(\left|\alpha_{n}\right|,\left\|x_{n}\right\|\right) \leqslant 1
$$

and so $\left\{\alpha_{n} q^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)\right\}_{n>n_{0}}$ is a bounded subset of c_{0}. Since $\left(\alpha_{n}\right)_{n} \in c_{0}$ each coordinate of $\alpha_{n} q^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)$ tends to zero as $n \rightarrow \infty$ and hence $\alpha_{n} q^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right) \rightarrow 0$ weakly as $n \rightarrow \infty$.

For each n let A_{n} be the symmetric k_{n}-linear form associated with P_{n}.
Since

$$
\begin{aligned}
& \left.\left|\left(P_{n}\right)\right| j_{n}, k_{n}-j_{n} ; n\right]\left.\left(\alpha_{n} q^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)\right)\right|^{1 / k_{n}} \\
& \quad=\left|\binom{k_{n}}{j_{n}} A_{n}\left(\alpha_{n} q^{n}\left(x_{n}\right)\right)^{j_{n}}\left(q_{n}\left(x_{n}\right)\right)^{k_{n}-j_{n}}\right|^{1 / k_{n}} \\
& \quad \geqslant \alpha_{n}^{j_{n} / k_{n}}\left(\frac{1}{k_{n}+1}\right)^{1 / k_{n}} \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

we have reached a contradiction.
Hence we may suppose, without loss of generality, that there exist $n_{1} \geqslant n_{0}$, $\delta_{1}>0$, and $\left(j_{n, n_{1}}\right)_{n=2}^{\infty}$ such that

$$
\begin{align*}
0 \leqslant j_{n, n_{1}} & \leqslant k_{n} \quad \text { for all } \quad n \geqslant 2 \tag{3.5}\\
\frac{j_{n, n_{1}}}{k_{n}} & >\frac{\delta_{1}}{2} \quad \text { for all } \quad n \geqslant 2 \tag{3.6}\\
& \lim _{n \rightarrow \infty} \frac{j_{n, n_{\perp}}}{k_{n}}=\delta_{1} \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\left(P_{n}\right)\left[j_{n, n_{1}}, k_{n}-j_{n, n_{1}} ; n_{1}\right]\left(x_{n}\right)\right|>\frac{1}{k_{n}+1} \quad \text { for all } n \geqslant 2 \tag{3.8}
\end{equation*}
$$

By (3.5) and (3.7) we always have $0<\delta_{1} \leqslant 1$ and we now show that we also have $\delta_{1}<1$.

Suppose otherwise. Then $\lim _{n \rightarrow \infty}\left(k_{n}-j_{n, n_{1}}\right) / k_{n}=0$. Let $\beta_{n}=$ $\exp \left(-\left(k_{n} /\left(k_{n}-j_{n, n_{1}}\right)\right)^{1 / 2}\right)$. Then $\left(\beta_{n}\right)_{n} \in c_{0}$ and $\beta_{n}^{k_{n}-j_{n, n_{1}} / k_{n}} \rightarrow 1$ as $n \rightarrow \infty$. The sequence $\left(\beta_{n} q_{n_{1}}\left(x_{n}\right)\right)_{n=2}^{\infty}$ is a null sequence in c_{0} and $\left(q^{n_{1}}\left(x_{n}\right)\right)_{n=2}^{\infty}$ is a finite dimensional subset of c_{0}. Hence $\left\{\left(q^{n_{1}}\left(x_{n}\right)+\beta_{n} q_{n_{1}}\left(x_{n}\right)\right)\right\}_{n=2}^{\infty}$ is a relatively compact subset of c_{0}.

Now $\sum_{n=2}^{\infty}\left(P_{n}\right)\left[j_{n, n_{1}}, k_{n}-j_{n, n_{1}} ; n_{1}\right] \in H\left(c_{0}\right)$ and

$$
\begin{aligned}
\mid\left(P_{n}\right) & {\left.\left[j_{n, n_{1}}, k_{n}-j_{n, n_{1}} ; n_{1}\right]\left(q^{n_{1}}\left(x_{n}\right)+\beta_{n} q_{n_{1}}\left(x_{n}\right)\right)\right|^{1 / k_{n}} } \\
& =\left|\binom{k_{n}}{j_{n}} A_{n}\left(q^{n_{1}}\left(x_{n}\right)\right)^{j_{n, n_{1}}}\left(\beta_{n} q_{n_{1}}\left(x_{n}\right)\right)^{k_{n}-j_{n, n_{1}}}\right|^{1 / k_{n}} \\
& =\beta_{n}^{k_{n}-j_{n, n_{1}} / k_{n}}\left|\binom{k_{n}}{j_{n}} A_{n}\left(q^{n_{1}}\left(x_{n}\right)\right)^{j_{n, n_{1}}}\left(q_{n_{1}}\left(x_{n}\right)\right)^{k_{n}-j_{n, n_{1}}}\right|^{1 / k_{n}} \\
& =\beta_{n}^{k_{n}-j_{n, n_{1}} / k_{n}} \mid\left(P_{n}\right)\left[j_{n, n_{1}}, k_{n}-j_{n, n_{1}} ; n_{1}\left|\left(x_{n}\right)\right|^{1 / k_{n}}\right. \\
& \geqslant \beta_{n}^{k_{n}-j_{n, n_{1}} / k_{n}}\left(\frac{1}{k_{n}+1}\right)^{1 / k_{n}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

This is impossible and hence we may suppose $0<\delta_{1}<1$. This completes the first step in our induction. Now suppose we are given for the positive integer $l,\left(\delta_{i}\right)_{i=1}^{l},\left(n_{i}\right)_{i=1}^{l}$, and $\left(j_{n, n_{i}}\right)_{n-i+1}^{\infty}, l \leqslant i \leqslant l$, such that

$$
\begin{equation*}
0<\delta_{i}<1 \quad \text { for all } i \text { and } \quad \sum_{i=1}^{l} \delta_{i}<1 \tag{3.9}
\end{equation*}
$$

the sequence $\left(n_{i}\right)_{i=1}^{l}$ is a strictly increasing sequence of positive integers;
$\frac{j_{n, n_{i}}}{k_{n}} \geqslant \frac{\delta_{i}}{2}$ for all $n \geqslant i+1 \quad$ and $\quad \lim _{n \rightarrow \infty} \frac{j_{n, n_{i}}}{k_{n}}=\delta_{i}$ for all i;
$0 \leqslant \sum_{i=1}^{l} j_{n, n_{i}} \leqslant k_{n}$ for all $n \geqslant l+1 \quad$ and $\quad 0 \leqslant \sum_{i=1}^{n-1} j_{n, n_{i}} \leqslant k_{n}$ for $2 \leqslant n \leqslant l$.

To define the remaining conditions we need some notation. Let

$$
\begin{aligned}
k_{n, i} & =k_{n}-\sum_{s=1}^{i} j_{n, n_{s}} & & \text { if } \quad i \leqslant l<n \\
& =k_{n}-\sum_{s=1}^{n-1} j_{n, n_{s}} & & \text { if } \quad i=n \leqslant l .
\end{aligned}
$$

Let

$$
\begin{array}{rlr}
a_{k, i} & =1 & \text { if } k=1 \\
& =\frac{1}{k_{i}+1} & \text { if } k=2 . \\
& =\frac{1}{k_{i}+1} \frac{1}{k_{i}+1-j_{i, n_{1}}} \frac{1}{k_{i}+1-j_{i, n_{1}}-j_{i, n_{2}}} \cdots \frac{1}{k_{i}+1-\sum_{s=1}^{k-2} j_{i, n_{s}}} & \text { if } k>2 .
\end{array}
$$

We require

$$
\mid P_{1}[0 ; 0]\left(q ^ { j } (x _ { 1 }) \left|=\left|P_{1}\left(q^{j}\left(x_{1}\right)\right)\right|>1 \quad \text { for all } j>n_{1}\right.\right.
$$

and

$$
\begin{aligned}
& \mid\left(P_{i}\right)\left[j_{i, n_{1}}, j_{i, n_{2}} \ldots . . j_{i, n_{i-1}}, k_{i, i} ; n_{1}, \ldots, n_{i-1}\left|\left(q^{j}\left(x_{i}\right)\right)\right|\right.>a_{i, i} \\
& \text { for } \quad 2 \leqslant i \leqslant l \text { and } j \geqslant n_{i}
\end{aligned}
$$

and

$$
\begin{equation*}
\left|\left(P_{n}\right)\left[j_{n, n_{1}}, j_{n, n_{2}}, \ldots, j_{n, n_{i}}, k_{n, i} ; n_{1}, \ldots, n_{i}\right]\left(x_{n}\right)\right|>a_{i+1, n} \tag{3.14}
\end{equation*}
$$

for each integer $i, 1 \leqslant i \leqslant l$ and $n>l$. The triple $\left(n_{1}, \delta_{1},\left(j_{n, n_{1}}\right)_{n=2}^{\infty}\right)$ satisfy (3.9) to (3.14), where $l=1$.

We now construct δ_{l+1}, n_{l+1} and $\left(j_{n, n_{l+1}}\right)_{n=l+1}^{n}$. By (3.14)

$$
\left|\left(P_{l+1}\right)\left[j_{l+1, n_{1}}, \ldots, j_{l+1, n_{l}}, k_{l+1, l} ; n_{1}, \ldots, n_{l}\right]\left(x_{l+1}\right)\right|>a_{l+1, l+1}
$$

Hence there exists a positive integer N_{1} such that

$$
\left.\left|\left(P_{l+1}\right)\right| j_{l+1, n_{1}}, \ldots, j_{l+1, n_{l}}, k_{l+1, l} ; n_{1}, \ldots, n_{l}\right]\left(q^{j}\left(x_{l+1}\right)\right) \mid>a_{l+1, l+1}
$$

for all $j \geqslant N_{1}$.
Hence any choice of $n_{l+1} \geqslant N_{1}$ will satisfy (3.13). Since

$$
\begin{gathered}
\sum_{j=0}^{k_{n, l}}\left(P_{n}\right)\left[j_{n, n_{1}}, \ldots, j_{n, n_{l}}, j, k_{n, l}-j ; n_{1}, \ldots, n_{l+1}\right] \\
=\left(P_{n}\right)\left[j_{n, n_{l}}, \ldots, j_{n, n l}, k_{n, l} ; n_{1}, \ldots, n_{l}\right]
\end{gathered}
$$

Equation (3.14) implies that we can choose for each $n>l+1$ a $j_{n, n_{i+1}}$ suct that $0 \leqslant j_{n, n_{l+1}} \leqslant k_{n, l}$ and

$$
\begin{gathered}
\left|\left(P_{n}\right)\right| j_{n, n_{1}}, \ldots, j_{n, n_{l}}, j_{n, n_{l+1}}, k_{n, l+1} ; n_{1}, \ldots, n_{l+1}\left|\left(x_{n}\right)\right| \\
>\frac{a_{l+1, n}}{k_{n, l}+1}=\frac{a_{l+1, n}}{k_{n}-\sum_{s=1}^{l} j_{n, n_{s}}}=a_{l+2, n}
\end{gathered}
$$

Hence (3.14) is satisfied and so also is (3.12).
It remains to show that the sequence $\left(j_{n, n_{+1}}\right)_{n>1+1}$ can be chosen so that (3.9) and (3.11) are satisfied. First suppose that any choice of $\left(j_{n, n_{t-1}}\right)_{n, 1-1}$ implies

$$
\liminf _{n \rightarrow \infty} \frac{j_{n, n_{l+1}}}{k_{n}}=0
$$

We may then suppose, without loss of generality, that for all $n \geqslant N_{1}$ there exists $j_{n}, 0 \leqslant j_{n} \leqslant k_{n . l}$, such that $\lim _{n \rightarrow \infty} j_{n} / k_{n}=0$ and

$$
\left|\left(P_{n}\right)\right| j_{n, n_{1}}, \ldots, j_{n, n_{l}}, j_{n}, k_{n, l}-j_{n} ; n_{1}, \ldots, n_{l}, n\left|\left(x_{n}\right)\right|>a_{1+2}, n
$$

Let $\alpha_{n}=\exp \left(-\left(k_{n} / j_{n}\right)^{1 / 2}\right.$) for $n \geqslant N_{1}$. Then $\left(\alpha_{n}\right)_{n} \in c_{0}$ and $\alpha_{n}^{j_{n} k_{n}} \rightarrow 1$ as $n \rightarrow \infty$. Now

$$
h=\sum_{n \geqslant N_{1}}^{\infty}\left(P_{n}\right)\left[j_{n, n_{1}}, j_{n, n_{2}}, \ldots, j_{n, n_{i}}, j_{n}, k_{n, 1}-j_{n} ; n_{1}, \ldots, n_{1}, n\right]
$$

is a modification of f and hence belongs to $H_{w b}\left(c_{0}\right)$. The sequence $\left\{\alpha_{n} q_{n_{i}}^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)\right\}_{n>N_{1}}$ is a weak null sequence in c_{0} since $\left(\alpha_{n}\right)_{n} \in c_{0}$ and $\left\{x_{n} \|=1\right.$ all n. Since the sequence $\left\{q^{n}\left(x_{n}\right)\right\}_{n \geqslant v}$, is contained in a finite dimensional compact subset of c_{0} the sequence $\left\{q^{n_{1}}\left(x_{n}\right)+\alpha_{n} q_{n}^{n}\left(x_{n}\right)+\right.$ $\left.q_{n}\left(x_{n}\right)\right\}_{n \geqslant v_{1}}$ is a weakly relatively compact subset of c_{0}.

On the other hand

$$
\begin{aligned}
& \left.\left|\left(P_{n}\right)\right| j_{n, n_{1}}, \ldots . j_{n, n_{1}}, j_{n}, k_{n, l}-j_{n} ; n_{1}, \ldots . n_{l}\right]\left.\left(q^{n_{1}}\left(x_{n}\right)+\alpha_{n} q_{n}^{n}\left(x_{n}\right)+q_{n}\left(x_{n}\right)\right)\right|^{1 k_{n}} \\
& \quad=\alpha_{n}^{j_{n} \cdot k_{n}} \mid\left(P_{n}\right)\left[j_{n, n_{1}}, \ldots, j_{n, n_{l}}, j_{n}, k_{n, l}-j_{n} ; n_{1}, \ldots . n_{l}, n\left|\left(x_{n}\right)\right|^{1 k_{n}}\right. \\
& \quad \geqslant \alpha_{n}^{j_{n} / k_{n}} a_{l+2, n}^{1 / k_{n}} .
\end{aligned}
$$

Since

$$
\alpha_{n}^{j_{n} \cdot k_{n}} \rightarrow 1 \quad \text { as } n \rightarrow \infty \quad \text { and } \quad a_{l+2, n}^{1 / k_{n}} \geqslant\left(\frac{1}{2 k_{n}}\right)^{l+1 k_{n}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

this is impossible.
Hence we may suppose without loss of generality that there exists $n_{l, 1}>n_{l}, \delta_{l+1}>0$ and $\left(j_{n, n_{l+1}}\right)_{n=l+2}^{\infty}$ such that (3.10)-(3.14) are satisfied and also $\sum_{i=1}^{l+1} \delta_{i} \leqslant 1$.

We now show that $\sum_{i=1}^{l+1} \delta_{i}<1$. Suppose otherwise. Then $\lim _{n \rightarrow \infty}\left(k_{n, n_{l+1}} / k_{n}\right)=1-\sum_{i=1}^{l+1} \delta_{i}=0$. Let $\theta_{n}=\exp \left(-\left(k_{n} / k_{n, n_{l+1}}\right)^{1 / 2}\right)$ for all $n \geqslant l+2$. Then $\left(\theta_{n}\right)_{n} \in c_{0}$ and $\theta_{n}^{k_{n . l+1} / k_{n}} \rightarrow 1$ as $n \rightarrow \infty$. The sequence $\left\{q^{n_{l+1}}\left(x_{n}\right)\right\}_{n>j+2}$ is a relatively compact subset of c_{0} and the sequence $\left\{\theta_{n} q_{n_{1+1}}\left(x_{n}\right)\right\}_{n>1+2}$ is a null sequence in c_{0}. Hence the sequence $\left\{q^{n_{l, 1}}\left(x_{n}\right)+\right.$ $\left.\theta_{n} q_{n_{1+1}}\left(x_{n}\right)\right\}_{n>1+2}$ is a relatively compact sequence in c_{0}. Now $g=\sum_{n_{l+2}}^{\infty}\left(P_{n}\right)\left[j_{n, n_{1}}, \ldots, j_{n, n_{l+1}}, k_{n, l} ; n_{1}, \ldots, n_{l+1}\right]$ is a modification of f and hence is a holomorphic function on c_{0}. Since

$$
\begin{aligned}
& \mid\left(P_{n}\right)\left[j_{n, n_{1}}, \ldots, j_{n, n_{l+1}}, k_{n, l} ; n_{1}, \ldots, n_{l+1}\right]\left(q^{n_{l+1}}\left(x_{n}\right)+\left.\theta_{n} q_{n_{l+1}}\left(x_{n}\right)\right|^{1 / k_{n}}\right. \\
& =\theta_{n}^{k_{n, l+1} / k_{n}}\left|\left(P_{n}\right)\left[j_{n, n_{1}}, \ldots, j_{n, n_{l+1}}, k_{n, l} ; n_{1}, \ldots, n_{l+1}\right]\left(x_{n}\right)\right|^{1 / k_{n}} \\
& \geqslant \theta_{n}^{k_{n, l+1} / k_{n}} \cdot a_{l+2, n}^{1 / k_{n}} \geqslant \theta_{n}^{k_{n, l+1} / k_{n}}\left(\frac{1}{2 k_{n}}\right)^{1+1 / k_{n}} \\
& \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

we have a contradiction and hence $\sum_{i=1}^{l+1} \delta_{i}<1$. By induction we have shown the existence of $\left\{\delta_{i}, n_{i}, \quad\left(j_{n, n_{i}}\right)_{n=i+1}^{\infty}\right\}_{i=1}^{\infty}$ satisfying (3.9)-(3.14). Since $\sum_{n=1}^{\infty} \delta_{n} \leqslant 1$ we can choose $\left(\psi_{n}\right)_{n=1}^{\infty}$ such that $\psi_{n}>0$ all $n, \psi_{n} \rightarrow+\infty$ as $n \rightarrow \infty$ and $\sum_{n=1}^{\infty} \delta_{n} \psi_{n} \leqslant \log 2$.

Let $\varepsilon_{n}=\exp \left(-\psi_{n}\right)$ for all n. Then $\varepsilon_{n}<1$ for all n and $\left(\varepsilon_{n}\right)_{n} \in c_{0}$. Since $\sum_{n=1}^{\infty} \delta_{n} \log 1 / \varepsilon_{n}=\sum_{n=1}^{\infty}-\delta_{n} \log \varepsilon_{n}=\sum_{n=1}^{\infty} \delta_{n} \psi_{n} \leqslant \log 2$ we have for any integer l

$$
\begin{align*}
& \sum_{n=1}^{l} \delta_{n} \log \varepsilon_{n}=-\sum_{n=1}^{l} \delta_{n} \log 1 / \varepsilon_{n} \geqslant-\log 2=\log \frac{1}{2}, \\
& \text { i.e., } \log \left(\varepsilon_{1}^{\delta_{1}} \varepsilon_{2}^{\delta_{2}} \cdots \varepsilon_{l}^{\delta_{l}}\right) \geqslant \log \frac{1}{2} \text { and hence } \\
& \varepsilon_{1}^{\delta_{1}} \varepsilon_{2}^{\delta_{2}} \cdots \varepsilon_{l}^{\delta_{l}} \geqslant \frac{1}{2} \text { for all } l \text {. } \tag{3.15}
\end{align*}
$$

Let $g=\sum_{l=2}^{\infty}\left(P_{l}\right)\left[j_{l, n_{1}}, \ldots, j_{l, n_{l-1}}, k_{l, l} ; n_{1}, \ldots, n_{l-1}\right]$. Since g is a modification of f it belongs to $H_{w b}\left(c_{0}\right)$. Let

$$
\begin{aligned}
w_{n} & =\varepsilon_{1} & & \text { for } \quad j \leqslant n_{1} \\
& =\varepsilon_{l+1} & & \text { for } \quad n_{l-1}<j \leqslant n_{l} \quad \text { all } l>1 .
\end{aligned}
$$

Since $\left(\varepsilon_{n}\right)_{n} \in c_{0}$ we have $w=\left(w_{n}\right)_{n} \in c_{0}$. The solid hull of w, \tilde{w}, is a compact subset of c_{0}. The sequence $q^{n_{1}}\left(x_{1}\right), q_{n_{1}}^{n_{2}}\left(x_{2}\right), \ldots, q_{n_{i-1}}^{n_{1}}\left(x_{1}\right), \ldots$, is a weak null sequence in c_{0} and hence its closed convex hull L is a weakly compact subset of c_{0}. Thus the set $\tilde{w}+L=W$ is also a weakly compact subset of c_{0}. For any integer l the vector

$$
y_{l}=\varepsilon_{1} q^{n_{1}}\left(x_{l}\right)+\varepsilon_{2} q_{n_{1}}^{n_{2}}\left(x_{l}\right)+\cdots+\varepsilon_{l-1} q_{n_{i-2}}^{n_{i-1}}\left(x_{l}\right)+q_{n_{l-1}}^{n_{1}}\left(x_{l}\right)
$$

belongs to W since $\varepsilon_{1} q^{n_{1}}\left(x_{l}\right)+\cdots+\varepsilon_{l-1} q_{n_{l-2}}^{n_{l-1}}\left(x_{l}\right) \in \tilde{w}$ and $q_{n_{l-1}}^{n_{l}}\left(x_{l}\right)$ belongs to L.

Now $\left(a_{l, l}\right)^{-1}$ is the product of $l-1$ integers each of which is less than $k_{l}+1$. Hence

$$
a_{1, l} \geqslant\left(\frac{1}{k_{1}+1}\right)^{1-1} \geqslant\left(\frac{1}{k_{1}+1}\right)^{\prime}
$$

and so by (3.2)

$$
\begin{equation*}
a_{l, l}^{1 / k_{l}} \geqslant\left(\frac{1}{k_{l}+1}\right)^{1 / k_{l}} \geqslant \frac{1}{e} \tag{3.16}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \left|\left(P_{l}\right)\left[j_{l, n_{1}}, \ldots, j_{l, n_{l-1}}, k_{l, l} ; n_{1}, \ldots, n_{l-1}\right]\left(y_{l}\right)\right|^{1 / k_{l}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\varepsilon_{1}^{f_{1}, n_{1}} \varepsilon_{2}^{f_{1, n_{2}}} \cdots \varepsilon_{l-1}^{j_{1, n_{1}-1}}\right]^{1 / k_{n}} \\
& \times\left|\binom{k_{l}}{j_{l, n_{1}}, \ldots, j_{l, n_{l-1}}, k_{l, l}} A_{l}\left(q^{n_{1}}\left(x_{l}\right)\right)^{n_{l, n_{1}}} \ldots\left(q_{n_{l-2}}^{n_{l-1}}\left(x_{l}\right)\right)^{j_{l, n_{l-1}}}\left(q_{n_{l-1}}^{n_{l}}\left(x_{l}\right)\right)^{k_{l, l}}\right|^{1: k_{l}} \\
& =\varepsilon_{1}^{j_{l, n_{1}} / k_{l}} \cdots \varepsilon_{l-1}^{j_{l, n_{l}-1} / k_{l}}\left|\left(P_{l}\right)\left[j_{l, n_{1}}, \ldots, j_{l, n_{l-1}}, k_{l, l} ; n_{1}, \ldots, n_{l-1}\right)\left(x_{l}\right)\right|^{1, k_{l}} \\
& \geqslant \varepsilon_{1}^{\delta_{1,2}} \cdots \varepsilon_{l-1}^{\delta_{l-1 / 2}}\left(a_{l, l}\right)^{1 / k_{l}} \quad \text { (by } 3.11 \text { and 3.13) } \\
& \geqslant \frac{1}{\sqrt{2}} \cdot \frac{1}{e} \quad(\text { by } 3.15 \text { and } 3.16) \text {. }
\end{aligned}
$$

This contradicts the fact that $g \in H_{w b}\left(c_{0}\right)$ and completes the proof.

References

1. R. Aron. Compact polynomials and compact differentiable mappings between Banach spaces, in "Seminaire Pierre Lelong. 1974-1975." Springer-Verlag Lecture Notes in Math.. pp. 213-222, No. 524, 1976.
2. R. Aron, C. Herves, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204.
3. W. Bogdanowicz, On the weak continuity of the polynomial functionals defined on the space c_{0}, Bull. Acad. Polon. Sci. Ser. Sci. Math. 5 (1957), 243-246. [Russian]
4. S. Dineen, "Complex Analysis in Locally Convex Spaces," North Holland Math. Studies, No. 57, 1981.
5. J. Gomes Gil, "Espacios de Funciones Delibmente Diferènciables," Thesis, Univ. Complutense de Madrid, 1980.
6. B. Josefson, Weak* sequential convergence in the dual of a Banach space docs not imply norm convergence, Ark. Math. 13 (1975), 79-89.
7. A. Pelczynski. A property of multilinear operations, Studia Math. 16 (1958), 173-182.
8. V. Piak. Two remarks on weak compactness, Czechoslovak Math. J. 80(5) (1955). 532-545.
9. M. Valdivia. Some new results on weak compactness, J. Funct. Anal. 24 (1977), 1-10.
