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It is shown that every holomorphic function on ¢, which is bounded on weakly
compact sets is bounded on bounded sets.

In [9] Valdivia proved the following result (see also [8]):

PROPOSITION 1. A4 Banach space E is reflexive if and only if every
weakly continuous function on E is bounded on bounded subsets of E.

An infinite dimensional differentiable version of this proposition is proved
in [5]. In [2] Aron et al. study various types of continuous and holomorphic
functions on Banach spaces and in the course of their investigations ask if a
holomorphic analog of Proposition 1 is valid. By considering holomorphic
functions on ¢, we provide (Theorem 7) a negative answer to their question.
This theorem is the main result of this paper. Information on the significance
of this result is given in [2]. We refer to [4] for the theory of holomorphic
functions on Banach spaces.

Let E be a Banach space over the complex numbers. P("E) is the space of
all continuous n-homogeneous polynomials on E. H(E) is the space of all
(C-valued) holomorphic functions on E, H,,(E) is the subspace of H(E)
consisting of all holomorphic functions which are bounded on weakly
compact subsets of E and H,(E) is the subspace of H,,(E) consisting of all
holomorphic functions which are bounded on the bounded subsets of E.

If E is reflexive, then H,,(E)=H,(E) and in this article we show
H,,(c,) = Hy(cy). A deep result of Josefson [6] states that H,(E) # H(E) for
any infinite dimensional Banach space. In certain cases (e.g.. E = /,) we may
have H(E) = H ,,(E).
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206 SEAN DINEEN

The elements of the above spaces of holomorphic functions may also be
described in a useful fashion by using Taylor series expansions. This
description is as follows.

If (P,);, is a sequence of continuous homogeneous polynomials, P
being n-homogeneous, then

(i) Y2.,P,E H(E)if and only if lim, ,, ||P,||" = O for every

n

compact subset K of E, (1.1)
(i) Y% ,P,€E H,,(E)if and only if lim,_, . || P,||}" = O for
every weakly compact subset W of E, (1.2)
(iii) .50 P, € Hy(E)if and only if lim,_ || P,|;" = O for
every bounded subset B of E. (1.3)
2

c, will denote the space of all null sequences of complex numbers endowed
with the usual sup norm topology. For n a positive integer ¢" and ¢, will
denote respectively the projections in ¢, onto the first # and all but the first n
coordinates. For # and m positive integers with m < n we let g, =q" —q". If
I is the identity mapping on ¢, and O is the zero mapping we let g, =1,
q°=0, g3 =q" —q° =q" for any positive integer n, g° =1, g, =0, ¢g= =
q*—qm"=I1—q™=q, for any positive integer m and ¢°=q* —q°=
I-0=1

The following proposition may be deduced from results in [1-3, 7] but we
include a proof for the sake of completeness.

PROPOSITION 2. Continuous polynomials on c, are weakly continuous on
weakly compact subsets of c,.

Proof. 1t suffices to consider homogeneous polynomials of degree >1.
We first show that every continuous homogeneous polynomial is weakly
sequentially continuous at zero. Let P be a continuous n-homogeneous
polynomial on ¢, and let (x,), be a weak null sequence in c¢,. Suppose
P(x,)#»0 as n— oo. By taking a subsequence if necessary and on
multiplying each x, by a scalar we may suppose there exists d > 0 and (y,),
a sequence in ¢, such that

[yall=1 foralln, y,— Oweaklyasrn— o0
and

|P(y,)| >0 for all n.

Let ng=0 and N, = L.
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Choose n,, a positive integer, such that |P(g"'(y,))| > d/2. Since y,— 0
weakly as n— oo we can choose N, such that [|g"'(y,)| < 1/2% for all
n > N,. By induction we now choose two strictly increasing sequences of
positive integers (#;); and (N;); such that

. 0
[P(q"( vy ) 2 5 forall j>1 (2.1)
and
n, L .
llq (.VNJ-H)” < 27 forall j> L (2.2)

By using the inequatity

n
sup | N a2 [ >N gl
tzl=1 {j=0 =0
reC

(2.1), and induction we can choose for any positive integer / a sequence of
scalar (A;)?L, such that

A<t forall j (2.3)
and
o |
'P(\ )’ ~(\/2)’ (2.4)
By (2.2) and (2.3)
2! 2l :,
\" "1( Yy )“ \7 _q’lj—l(yNj) _+_ n, , |( ¥ N,
J= J= j:' 1
2!
<L grtswll<2 (2.5)
— j

Hence (2.4) and (2.5) imply

sup | P(x)| > sup, % (/2)' = co.

Ixli<2

Since P is continuous this is impossible and hence every continuous
polynomial on ¢, is weakly sequentially continuous at zero.

Let Q be a continuous m-homogeneous polynomial on ¢, (> 1) and let
A denote the symmetric m linear form associated with Q. Let W be a weakly
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compact subset of ¢,. Since ¢; =/, is separable W is metrizable and hence to
complete the proof if suffices to show Q| is weakly sequentially continuous.
Let x, € W— x weakly as n - c0. Now

Q(x,) — Q(x) = Q(x + x, — x) — Q(x)
N (m i — xym=i
N (j )A(x) (x, —x)" .

j=0

For each integer j, 0 < j < m — 1, the mapping
m . .
vea~ (7 )Aer i

is a homogeneous polynomial of degree >1. Since x, —x— 0 weakly as
n— oo the first part of our proof shows that

m ; .
(j )A(x)’(x,,—x)"'“’—»O as n—oo forall j, j<m—1.

Hence Q(x,)— Q(x) as n— oo. Hence Q is continuous on W and this
completes the proof.

ProposITION 3. Iff € H,,(c,) and W is a weakly compact subset of c,,
then f|, is weakly continuous.

Proof. Since Y%, ||d"f(0)/n!||, < co we see that f], is the uniform
limit of a sequence of weakly continuous functions. Hence f/,, is continuous.
This completes the proof.

2

In proving the remainder of our results we shall frequently need to take
subsequences. An examination of our proofs shows that in all the cases we
consider we may assume without loss of generality that the subsequence is in
fact the original sequence. Hence when we use the phrase “without loss of
generality” it shall include, where appropriate, the operation of taking sub-
sequences. This convention helps to reduce the number of subscripts and
superscripts we shall need.

If @ = ()2, Ec, we let d={(f));; |8;]<|a;| Vj}. Also a is a compact
polydisc in c,. If 2 c¢, we let 2=),cqd. We call 2 the solid hull of 2
and £ is said to be solid of 2= 4.



ENTIRE FUNCTIONS ON ¢, 209

LEMMA 4. If Q is a bounded (resp. compact, weakly compact) subset of
Co. then  is bounded (resp. compact, weakly compact).

Proof. First suppose sup{jlal; a €2} =M < . If f=(B,) € 2, then
there exists a = (a,), € 2 such that |8,| < |a,| for all n. Hence sup, |8,| =
18Il < sup, |a,| = lal <M and sup{|Bl; BE R} =M< w. Hence @ is
bounded whenever £2 is bounded. Now suppose £ is compact. Let x, € 2 for
each n. For each n suppose x,€ J,, where y, € 2. By hypothesis and
without loss of generality we may suppose there exists y = (y™)5_, €2
such that ||y, — y|l—0 as n— oo. For each positive integer n there exists
0,=0N)%_,€D” (D is the unit dist in C) such that x,=80,y,
(multiplication is coordinatewise). Now D" is a compact metric space when
endowed with the product topology and hence we may suppose without loss
of generality that 6, - 8 = (6™)%_, € D" as n - . Since vy € 2, 6y € 2 and
to complete the proof we show ||8,y, — 0y|| - 0 as n — .

Let € > 0 be arbitrary. Choose n, such that | y™| < ¢ for all m > n,. Next
choose n, such that ||y, — y|| < e for all n > n, and |67 — 6™ < e/(1 + 1| ¥])
for all n2 n, and 1| < m < n,. Now for n > n, we have

”Hnyn - ey” < 10nyn - 0,,}’” + Heny - 0)’”
<

|
¥, — | - sup |67+ sup |»™|- sup |@7 —8"|
n.m m m<m;

+sup(1071 +167)) - sup ||

<e+|yl- I+28<4e.

&
L+1pl

Hence 6,y,— 6y as n— oo and 2 is compact. Now suppose £ is weakly
compact. To show £ is weakly compact it suffices to show 8,y — 6y
weakly as a— oo, where y, €02-5y€Q weakly as a— oo and
6,€ED">6€ D" as a— oo. Since 2 is bounded §,y, — 6y weakly as
a— oo if and only if 8,y,— 8y in each coordinate as a — co and this
follows immediately from our hypothesis. This completes the proof.

If P € P("c,) and A is the associated symmetric m-linear form, (n;)!Z| is a

strictly increasing sequence of positive integers, (kj)J’- ., are nonnegative
integers with }"|_, k,;=m and A € C, |A| < 1, then for any x in c, we let

APk peees Ky Ay ey 1y ()

=1 (kl ,'r.r'l’ kl )A(q"‘(x))"‘(q:‘,f(x))"’ . (q"l‘l(x))kl’
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where A(P)[k,,..., k3 0y, 1;_ 4] is called a modification of P and belongs to
P("cy).
If n,>n,_, and 0 <5 <k, then
BAP)Kk s ks 1yses )]s, ky — 551y
=AB(P)kysers ky_1s S k) — 5515y Y]

LEMMA 5. Let P€E€ P(™c,) and 2 c ¢,. If Q is a modification of P, then
1Qllg <11 Pllg-

Proof. Let Q=A(P)ky,r ki3 nypenny_,] and let ny=0 and n, = co. If
XE 0, let x;=q%_xfor 1 <j< I Notethat x=3]_,x;and 3}, 4,x,EQ
for all ,€ C, |4,] < 1. Now

P= N (P)kyweskisnysn_yl.
o0<ki<m

v
~ki=m

Hence

i
P (V‘ 1,x,.)= S 2B e Bk s K5 My 1y ).
j:l 0<k;<m
Yki=m
By Parseval’s inequality we have
|QEON? = AP Ky seers K5 Py ey 1y J(X)]?

< : I(P)[kl"“’kl;nl""’nl~l](x)|2

0 k;<m
Ski=m
I 2
< sup P(SA.-x,-) <IIPI3.
141 i=1

Hence || Q|5 < || Pllg and this completes the proof.

If f=Y%,P,€H(c,) and g=3"2 , Q,, where each Q, is a modification
of P,, then we call the formal series _,°, Q, a modification of /.

n=>0

LEMMA 6. Iff € H(c,) (resp. Hy(co), H,(Co)) and g is a modification of
/s then g € H(c,) (resp. Hy(co), Hp(co))-

Proof. 1t suffices to use (1.1)-(1.3), lemmata 4 and 5 to prove this resuit.

THEOREM 7. H,(c,) = Hy(cy).

Proof. Suppose the result is not true. Then there exists an f € 3" P, €
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H,(c,), where P, is a k,-homogeneous polynomial for all n and (k,), is a
strictly increasing sequence of positive integers, and a sequence of unit
vectors in ¢y, (x,)o.,, such that |P,(x,)>1 for all n. By taking a
modification of f if necessary we may suppose without loss of generality that

ky > for all 3.1
log(k"+1)/n or all n. (2.1)
Equation (3.1) implies k,>nlog(k,+ 1)=1log(k,+ 1)” and hence
exp(k,) > (k, + 1)" for all n. Hence

1 1k, l Lok, l
(m) 2 (m) }—g for all n. (3.2)

Note if we take a strictly increasing sequence of positive integers (#;); and let
Q;=P, and y;=x,, then g =372, Q; € Hyy(co) |Q«{(y;)| > 1 for all j and

deg(Q)) ~_ _ des(P,) Kk >n, >
log(deg(Q) + 1) log(deg(P,) + 1) log(k, + 1)~ ’

and hence (3.1) is preserved.

Our aim now is to construct a sequence (4,), of positive numbers with
certain properties and then to show that the existence of the sequence (J,),
leads to a contradiction. The construction of (d,), is rather technical and is
by induction. We first show how to obtain 4, and similar construction is
used to obtain J,.

First choose a positive integer n, such that

[P (@ (x) > 1 forall j>n,. (3.3
For any positive integers { and n we have
kn
N Pl k=g ll(x,) | = Py(x,) > 1
ji=0

Hence we can choose for any integers / and n an integer j,, such that
0<j,, <k, and

|(Pn)[j’l.l’ kn_jn.l;ll(xn)l > (3'4)

k,+ 1’

We claim there exists an integer n, > n, and a choice of (j, , ),_ satisfying
(3.4) such that

: . jnn
| oot .
0

SRO 52 2.8
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Suppose otherwise. Then without loss of generality we can choose a sequence
of positive integers (j,),,, such that 0 j, <k, for all n, j,/k,—0 as
n—o and [(P)J,, k,—j.; nl(x,)|> 1/(k,+1) all n>n,. Let a,=
exp(—(k,/j,)"?) for n > n,. Then a,— 0 as n—» oo and

. 172
alm*n = exp (—(i—") )—»1 as n-— oo.

n

Now g=13",, 4, (Pn)ljn>» ky — Jn3 n] is a modification of £ and hence belongs
to Hwb(co)'
We have

le.q"(xn) + gulxn)ll < sup(la, ), 1%, 1) < 1

and so {a,q"(x,) + qu(x,)}n>n, is a bounded subset of c,. Since (a,), € ¢,
each coordinate of «,q"(x,) +g,(x,) tends to zero as n— oo and hence
a,q"(x,) + q,(x,)~ 0 weakly as n— oo.
For each n let A, be the symmetric k,-linear form associated with P,,.
Since

(P js Ky = s n1(@,q"(x,) + @ulc, )

k ) . 1/kn
ﬂ@ﬂmmwmmmmww~
> an'kn ( ! )”k”—+ 1 ‘as n—oow
" k,+1

we have reached a contradiction.
Hence we may suppose, without loss of generality, that there exist n, > n,,
;> 0, and (j,,, )a=> such that

0<jnn Sk, forall n>2, (3.5)
ZML > —5—' forall n>2, (3.6)
k, 2
and
Bl ba = il > T forall 032 (38)

By (3.5) and (3.7) we always have 0 < §, | and we now show that we also
have J, < 1.
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Suppose  otherwise. ~Then lim,_(k, —j,,.)/k,=0. Let f,=
exp(—(k,/(k, —jn‘nl))”z). Then (8,), € ¢, and B ~/nm/*» 5 1 as n - co0. The
sequence (8,4, (x,))s-, is a null sequence in c, and (¢"'(x,)),, is a finite
dimensional subset of c,. Hence {(¢g"'(x,)+f,9,,(x,))}x_, is a relatively
compact subset of c,.

Now Zoozz (Pn)[jn.n" kn _jn,nl;nll € H(CO) and

) mngs K = Fmgs 1@ ) + B O

1k,

(f )A"(‘I"'(xn))j"‘"'(ﬁnq..,(x,,))krfn.",

ik,
— ﬁkn"jn.nl/kn
n

(f: ) A (g (XY (g, (x,))en nn

= ﬂ:(!,,~j,,_,,l/k,. ‘(Pn)[jn.nw kn - jn.nl sy ](X")| {7k

Tkn
kn_jn.n /kn 1 l
Py i ' PR -1 as n— .

This is impossible and hence we may suppose 0 < d, < 1. This completes
the first step in our induction. Now suppose we are given for the positive
integer £, (8;)i- 1> (,)i=y» and (j, , )iy 1, 1 i< A such that

I
0<d; <1 foralli and N §,<1; (3.9)

i=1

the sequence (n,)!_, is a strictly increasing sequence

of positive integers; (3.10)
jn.n, 5[ . . jn,n' i (
P >7f0ralln>l+l and lim =% =, for all i; (3.11)
-n = n
! n—-‘l
0K N jun<k, foralln>/+1 and 0 N j, <k, for 2<n<l.
i=1 i=1
' (3.12)

To define the remaining conditions we need some notation. Let

i
kpi=ky—= N o, if i<l<n,
s=1
n—1
=k,— N jua. if i=nglL

s=1
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Let
a, ;=1 if k=1
- if k=2
SE T i =2
1 1 | I
ki +1 ki +1 _ji,nl ki + 1 _-ji.nl _ji‘nz ki +1- Zi(;f./:n,
if k>2
We require
|P1[0;0](g’Cx ) = |Pi(g’(x))) > 1 forall j>n,,
and
I(P(')[ji,npji‘nz""'ji.n,-,," Kiis My My g’ (x ) > a;, (3.13)
for 2<ig! and j>n,
and

l(Pn)[jn.n,9jn,n2""’ jn.n,-* kn.i.’ Rpaees nl](xn)‘ > Aivin (314]

for each integer i, 1 i</ and n > I The triple (n,.6,, (J,..,)5-,) satisfy
(3.9) to (3.14), where /= 1.
We now construct ,, ,, 7, and (j,.,, )=y, By (3.14)

I(Pl+l)[jl+l,nl""’jl+l.n,’ Kpovgs By B0 I > @

Hence there exists a positive integer N, such that

'(Pl+l)[jl+l,n1""’j1+l.n1’ Kpy 0515 n[](qj(xl+l))l >0+

for all j > N,.
Hence any choice of n,,, > N, will satisfy (3.13). Since

kn.i

}: (Pn)[jn.n;""’jn,n,’j9 kn.l _./’ nl""’ nl+l]

j=0

= (Prl)[jn‘n,*"'q jn,n,a kn,[; M yaeeen n,]

Equation (3.14) implies that we can choose for each n>/+ 1 aj, ,,  suct
that 0 < j, . <k, and
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\(Pn)[jn.nl""’ jn.n,’ jn,n“,' kn.l+ 13 My Yy l(xn)l

al+l.n _ Asin

= n =a 2on-
kn.l+ 1 kn—z.i:l.ln,ns e

>

Hence (3.14) is satisfied and so also is (3.12).

It remains to show that the sequence (j,,, )..,.. can be chosen so that
(3.9) and (3.11) are satisfied. First suppose that any choice of (Juen,.)
implies

n {1

. odnn
l N I+l: X
lr?lécnf__—k,, 0

We may then suppose, without loss of generality, that for all n > N, there
exists j,. 0 < j, <k, ,, such that lim,,_ _ j,/k, =0 and

I(Pn)[jn.nl""* jn.n,’ jn* kn.l _jn e 1y, "](xn)l > S ER(N

Let a,=exp(—(k,/j,)"*) for n>N,. Then (a,),€c, and a/* -1 as
n— oo. Now

h = ,\;, (Pn)[jn.nl’ jn.nl""’ jn,n,’ jn" kn.l ﬂjn; nl""’ nl‘ n]
n>N,
is a modification of f and hence belongs to H,,(c,). The sequence
{@, gy (X,) + q,(x,)} a5, is @ weak null sequence in ¢, since (a,), € ¢, and
flx,ll=1 all n. Since the sequence {g"(x,)}y5y, is contained in a finite
dimensional compact subset of ¢, the sequence {g¢"(x,)+ a,q,(x,)+
dn(X,)}a5y, is @ weakly relatively compact subset of c,.
On the other hand

ll Ay

|(Pn)[jn.n,3"“ jn,n,’ jn’ kn.l —jn; nl s nI](q"l(x") + anq’:l,(xn) + qn(xn))
= qJnhn P o, svees Jmomys s Kt = Jin Ay wenes s ] ) k,
> aithally,,
Since

1
2k,

I+1 k,
ajp*»~1 as n->o0 and  al,.> ( ) -1 as n— o.

this is impossible.

Hence we may suppose without loss of generality that there exists
R >ng, 6, >0 and (j,, )iz, such that (3.10)~(3.14) are satisfied
and also > 1714, < 1.
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We now show that }*14,<1. Suppose otherwise. Then
tim, o (ky p,, /hn) =1 —-31218;,=0. Let 6, =exp(—(ky/k,,, )" for all
n>1+2. Then (4,),E€Ec, and 0""’*‘/""—>1 as n— oo. The sequence
{q"+'(Xp)}usjs2 i @ relatively compact subset of ¢, and the sequence
{6, q,,Hl(x,,)},,), +2 is a null sequence in c,. Hence the sequence {g™+'(x,) +
0,9, (x)}as1+2 1is a relatively compact sequence in c¢,. Now

ﬁn,” P )iy Juomy s Kmas Mises iy, ] is a modification of f and
hence is a holomorphic function on ¢,. Since

I(Pn)[jn.n,""’ jn.n,H! kn.l; nyse, Ry, l](qnl“(x") + G"qnnl(x")[ Hhn
= 0:"'”]/’(" I(Pn)[jn,n, 9erey jn,n,H’ kn.l; nl 9erry n[+ 1 ](xn)| 1k

> Gkniei/hn al/kf, S Gnis1/kn ( 1 )l+1/k
+2,n 7 Yn 2k

n

-1 as n- o

we have a contradiction and hence } !} §, < 1. By induction we have shown
the existence of {d;,n,, (j,,',,l,),,:,J,,},=l satisfying (3.9)—(3.14). Since
a2 ,0,<1 we can choose (y,)s, such that y, >0 all n, w,— +o as
n—oo and 3%  d,w,<log2.

Let ¢, =exp(—y,) for all n. Then ¢, < 1 for all # and (g,), € ¢,. Since
L=, log lje, =370 — 4, loge, =37, d,v,<log2 we have for any
integer /

Y 1 6,loge,==Y"_,6,log /e, > —log2=1log 4,
i.e., log(e3es? -+ €%) > log 1 and hence
€y'est £} > L forall L. (3.15)

Let g =212, (P)Jrn, s Jtumy_,» Kiots Mismes My Since g is a modification
of f it belongs to H,(c,). Let

w,=¢, for j<n

=&, for n,_,<j<gn, allil>1

Since (g,), € ¢, we have w = (w,), € ¢,. The solid hull of w, w, is a compact
subset of c,. The sequence g"'(x,), g, (X)wes@n ,(X)ss is 2 weak null
sequence in ¢, and hence its closed convex hull L is a weakly compact subset
of ¢,. Thus the set w+ L = W is also a weakly compact subset of c,. For
any integer / the vector

yi=€q"(x) + Ezq:f(xl) + ot El—lq:t;('xl) + ‘?',',',nl(xl)
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belongs to W since €,4"(x;) +--- +&,_,4,/")(x,) €W and g/ _(x,) belongs
to L.

Now (a, ;)" is the product of /— 1 integers each of which is less than
k,+ 1. Hence

WV
——
Ken
7 -

1 -1
> (k + 1)
i

and so by (3.2)

1 1k 1
2> (—-—) > (3.16)

Hence

\(Pl)[jl,n.v---’ Jin_yo ki3 ngse ”1—1](}’1)“/’"

k j n f n M
- [( VAo )Y e g )Y@ )
Ji n,""’]l.n,_l’kl.l
- [afl‘l.nlglz'l.ng E{l_.nl,_lll/k,,
k, P
X (/ . )A,(q"‘(x,))"""' s (g )Y gy )
tonyess Jton,_ ,’kl i

i 1K Ik ,
:811""’/ I"‘SJ'"' VNPT v vees Tromy_ s K3 R n_ )l

>e87 . g2 g, JVM (by 3.11 and 3.13)

1 1
2——‘—; (by 3.15 and 3.16).

2

This contradicts the fact that g € H,,(c,) and completes the proof.
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