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Abstract

We investigate the geometric structure of the unit ball of the Marcinkiewicz
sequence space m0

Ψ, giving characterisations of its real and complex ex-
treme points and of the exposed points in terms of the symbol Ψ. Using
our knowledge of the geometry of Bm0

Ψ
we then give necessary and suffi-

cient conditions for a subset of Bm0
Ψ

to be a boundary for Au(Bm0
Ψ

), the
algebra of functions which are uniformly continuous on Bm0

Ψ
and holo-

morphic on the interior of Bm0
Ψ

. We show that it is possible for the set of

peak points of Au(Bm0
Ψ

) to be a boundary for Au(Bm0
Ψ

) yet for Au(Bm0
Ψ

)

not to have a Šilov boundary in the sense of Globevnik.

Introduction

This paper examines the interaction between geometry of Banach spaces and al-
gebras of holomorphic functions. Specifically, we will show that, for a large class
of Banach spaces with an unconditional basis, the set of complex extreme points
of the unit ball coincides with the peak points of an algebra of holomorphic func-
tions defined on its ball. This allows us to give a complete characterisation of
the complex extreme points in terms of its coordinates. It also enables us to give
necessary and sufficient conditions on a subset of the unit sphere to be a bound-
ary for the algebra of functions which are continuous on the closed unit ball
and holomorphic on its interior. The connection between geometry of Banach
spaces and holomorphic functions is not without precedent. Complex extreme
points were introduced by Thorp and Whitley, [18], which allowed them to es-
tablish the Strong Maximum Modulus Principle while Globevnik, [12], showed
that peak points for the ball algebra over E are complex extreme points of the
unit ball of E.

Given a complex Banach space E we denote by Ab(BE) the Banach algebra
of all functions which are continuous and bounded on BE , the closed unit ball
of E, and holomorphic on the interior of BE . By Au(BE) we denote the Banach
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algebra of functions in Ab(BE) which are uniformly continuous on BE . We note
that Au(BE) = Ab(BE) if and only if E is finite dimensional. We use ∆ to
denote the open unit disc in C.

A subset B of BE is said to be a boundary for Ab(BE) (resp. Au(BE)) if
‖f‖ = supz∈B |f(z)| for all f in Ab(BE) (resp. Au(BE)). When E is finite
dimensional the intersection of all closed boundaries for Au(BE) is also a closed
boundary for Au(BE). Globevnik, [12], calls a minimal closed boundary for
Au(BE) a Šilov boundary of Au(BE). For E an infinite dimensional Banach
space the intersection of all closed boundaries of Au(BE) needs not be a bound-
ary (see [11]) and therefore Au(BE) may not have a Šilov boundary in the sense
of Globevnik. The first example of such a situation is due to Globevnik himself,
[11], who shows that Au(Bc0) does not have a Šilov boundary. Since then fur-
ther examples have followed. Aron, Choi, Lourenço and Paques, [5], show that
c0 may be replaced by `∞. In [16], Moraes and Romero Grados proved that
Au(BGp) has no Šilov boundary in the sense of Globevik for 1 ≤ p <∞ where
each Gp is the predual of a Lorentz sequence space modeled on that constructed
by Gowers in [13]. In [17] they establish the same result for Ab(BGp). Recently,
Choi and Han, [8], extended the results of the paper of Moraes and Romero
Grados to an even larger class of preduals of Lorentz spaces which includes
both c0 and the space Gp of Moraes and Romero Grados, [16], while Acosta,
Moraes and Romero Grados, [4], give a characterisation of boundaries of pred-
uals of Lorentz spaces in terms of the distance to the set of strong peak points.
Acosta, [1], shows that there is no Šilov boundary in the sense of Globevik for
Au(BC(K)) when K is infinite, compact and Hausdorff. This result extended
that of Choi, Garćıa, Kim and Maestre, [7], who have the additional assumption
that K is scattered. In [2], Acosta and Lourenço prove that the Schreier space
and the space of compact operators, K(`p, `q), 1 ≤ p ≤ q < ∞, both fail to
have Šilov boundaries in the sense of Globevnik. On the positive side however,
it is shown in [5] that the unit sphere is a Šilov boundary for Au(B`p) when
1 ≤ p <∞ while Acosta and Lourenço, [2], prove that the Lorentz space d(w, 1)
and the space of trace class operators both possess Šilov boundaries in the sense
of Globevnik. An excellent survey article on some of the results mentioned
above can be found in [3].

A point x in BE is said to be a peak point for Ab(BE) (resp. Au(BE))
if there is f in Ab(BE) (resp. Au(BE)) such that |f(y)| < f(x) for all y in
BE \ {x}. The set of all peak points of Ab(BE) (resp. Au(BE)) is called the
Bishop boundary of Ab(BE) (resp. Au(BE)).

Using a 1959 result of Bishop, [6], it can be shown that if E is finite dimen-
sional the Bishop boundary of Au(BE) is equal to its Šilov boundary. When E
is infinite dimensional, like the Šilov boundary, the Bishop boundary of Au(BE)
may be empty.

The class of spaces which we choose to work with in this paper are a class
of canonical ‘prebiduals’ of the Marcinkiewicz sequence spaces. This class will
include c0 and all the spaces which are discussed in both [16] and [8]. We shall
examine both their geometric and analytic structure. In the first section we
will characterise their complex extreme, real extreme and exposed points while
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in Section 2 we will give necessary and sufficient conditions on a subset of the
unit ball of the space, E, to be a boundary for the Au(BE). This allows us to
show that in many cases Au(BE) does not have a Šilov boundary in the sense
of Globevnik.

Given a bounded sequence z = (zn)n we define the distribution of z, dz, by
dz(s) = card{k ∈ N : |zk| > s} for s ≥ 0. Setting z∗n = inf{s > 0 : dz(s) ≤ n}
we obtain the decreasing rearrangement, z∗, of z.

Let us recall the definition and some elementary facts about Marcinkiewicz
sequence spaces. We let Ψ = (Ψ(n))∞n=0 be an increasing sequence of nonnega-
tive real numbers with Ψ(0) = 0 and Ψ(n) > 0 if n ≥ 1. Such functions will be
called symbols. The Marcinkiewicz sequence space associated to the symbol Ψ,
mΨ, is the vector space of all bounded sequences (zn)n such that

‖z‖ := sup
k≥1

∑k
j=1 z

∗
j

Ψ(k)
<∞,

where z∗ = (z∗n) is the decreasing rearrangement of (zn)n. We denote by m0
Ψ

the subspace of mΨ consisting of all z such that

lim
k→∞

∑k
j=1 z

∗
j

Ψ(k)
= 0.

To avoid the case where m0
Ψ = {0} we shall assume that limn→∞Ψ(n) =∞.

We assume without loss of generality that Ψ(1) = 1. This condition is
equivalent to the assumption that ‖ej‖ = 1 for all j in N. It follows from
[14] that we can also assume that (Ψ(n)/n) is decreasing. From this it follows
that if z ∈ m0

Ψ then limn |zn| = 0 and ‖z‖∞ ≤ ‖z‖. Thus m0
Ψ ↪→ c0 and the

standard unit vectors (ej)j form an unconditional basis for m0
Ψ. However, this

will also follow if we relax the condition and require that (Ψ(n)/n) is eventually
decreasing allowing a wider class of symbols to which our results apply.

Choi and Han, [8], examine the boundaries Au(Bm0
Ψ

) when Ψ is strictly
increasing. Here we will investigate the geometric structure of the unit ball of
m0

Ψ along with the boundaries of Au(Bm0
Ψ

) for arbitrary Ψ.
Given a Banach space E, a point z in BE is said to be a real extreme point

of BE if z is not the midpoint of any line segment which is contained in BE .
When E is a complex Banach space we shall say that z in BE is a complex
extreme point of BE if ‖z + λy‖ ≤ 1 for all λ ∈ ∆ implies that y = 0. The
real extreme points of BE are denoted by ExtR(BE) while the complex extreme
points are denoted by ExtC(BE).

Let E be a complex Banach space. A point z in E is said to be exposed point
of the unit ball of E if there is a linear function, ϕ ∈ E′, such that ϕ(z) = 1 and
Re(ϕ(y)) < 1 for all y ∈ BE , y 6= z. A unit vector z is strongly exposed if there
is a unit vector ϕ ∈ E′ so that ϕ(z) = 1 and given any sequence (zk) ⊆ BE with
ϕ(zk)→ 1 we can conclude that zk converges to z in norm. We will say that ϕ
strongly exposes BE at z. We denote the set of exposed points of the unit ball
of E by Exp(BE) and the set of strongly exposed points by St− Exp(BE).
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1 Geometry of m0
Ψ

In order to study the geometry of m0
Ψ we introduce the notion of the torus of

level n for any n ∈ N.

Definition 1 The n-torus, Tn, is the set of all z ∈ m0
Ψ such that

(Tn1) z has support of length n,

(Tn2)
∑n
j=1 z

∗
j = Ψ(n),

(Tn3)
∑k
j=1 z

∗
j ≤ Ψ(k), for all k < n.

Since (Ψ(n))n≥0 is an increasing sequence, for any symbol Ψ, Tn is actually
a subset of the unit sphere of m0

Ψ.
We say that the support of z is σ = {j1, . . . , jn} if z =

∑n
k=1 zjkejk , where

each zjk is nonzero and j1 < · · · < jn. By mσ
Ψ we understand the finite di-

mensional subspace of m0
Ψ given by Πσ(m0

Ψ) where Πσ is the continuous linear
operator on m0

Ψ defined by Πσ(z) =
∑n
k=1 zjkejk . We endow mσ

Ψ with the norm
induced from that on m0

Ψ. We denote by mn
Ψ the space associated to the initial

set σ = {1, . . . , n} and use Πn to denote the projection of mΨ or m0
Ψ onto mn

Ψ

which sends z to (zj)nj=1.

Proposition 2 Let Ψ be a symbol. Let z ∈ Tn and let σ be the support of z.
Then Πσ(z) is a peak point for Au(BmσΨ).

Proof: When n = 1 Av(Bm1
Ψ

) is the disc algebra A(∆) and every point of T1,
the unit sphere, is a peak point. We suppose that n ≥ 2. If σ = {j1, . . . , jn}
then Πσ(z) = (zj1 , . . . , zjn). Since zjk 6= 0, θk = − arg(zjk) is defined for all
k = 1, . . . , n. Now, by (Tn2), we may consider the polynomial g : BmσΨ → C
associated to Πσ(z), defined, for x = (x1, x2, . . . , xn), by

g(x) =
n∑
k=1

(1 +
eiθkxk

Ψ(n)− |zjk |

)(
1 +

1
|zjk |

∑
l 6=k

eiθlxl

) . (1)

It is clear that g belongs to Au(BmσΨ) and g(Πσ(z)) > 0. Following the
proof of [16, Theorem 2.3] it is possible to show that |g(x)| < g(Πσ(z)) for all
x 6= Πσ(z). It follows that Πσ(z) is a peak point of Au(BmσΨ). �

As a consequence of [11, Theorem 4], we also obtain that Πσ(z) is a complex
extreme point of BmσΨ . The next proposition states that having finite support
is a necessary condition to be a complex extreme point in m0

Ψ. In its proof we
adapt some techniques from [15].

Proposition 3 Let Ψ be a symbol and z ∈ ExtC(Bm0
Ψ

). Then z has finite
support.

Proof: Suppose that z ∈ Sm0
Ψ

does not have finite support. Let m ∈ N be
the largest positive integer such that 1 = ‖z‖ = 1

Ψ(m)

∑m
j=1 z

∗
j . We have that
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z∗m+1 6= 0, otherwise z∗k = 0 for all k ≥ m+ 1 implying that z∗ and therefore z
have finite support. Take 0 < r < z∗m+1. Since lim |zj | = 0, there exists n > m

so that |zj | < r for all j > n. Finally, note that a = 1−max
{

1
Ψ(l)

∑l
j=1 z

∗
j : l >

m
}
> 0.

Consider b = min{z∗m+1 − r, a} and let y = ben+1 ∈ Bm0
Ψ

. We claim that
‖z+λy‖ ≤ 1 for all λ ∈ ∆. Indeed, for j > m we have |zj +λyj | ≤ r+b ≤ z∗m+1.
Then, if k ≤ m we have

k∑
j=1

(z + λy)∗j =
k∑
j=1

z∗j ≤ Ψ(k)

while if k > m we have

k∑
j=1

(z + λy)∗j ≤
k∑
j=1

z∗j + |λ|b ≤ (1− a)Ψ(k) + aΨ(k) = Ψ(k).

Hence z is not a complex extreme point of Bm0
Ψ

. �

Proposition 4 Let Ψ be a symbol and z ∈ ExtC(Bm0
Ψ

). Then there exists a
positive integer n so that Πn(z∗) ∈ ExtC(BmnΨ) and Ψ(n) = Ψ(n+ 1).

Proof: By Proposition 3 we know that z has finite support. Let us suppose
that z has length n. It follows that z∗n 6= 0. Clearly we have that Πn(z∗) ∈
ExtC(BmnΨ). Suppose that Ψ(n) < Ψ(n+ 1). Let a = min{z∗n, 1−

Ψ(n)
Ψ(n+1)} > 0

and consider y = aeN ∈ Bm0
Ψ

where N − 1 is the index of the last nonzero
coordinate of z. We have that

∑n
j=1 z

∗
j ≤ Ψ(n) ≤ (1− a)Ψ(n+ 1). For |λ| ≤ 1

n+1∑
j=1

(z + λy)∗j ≤
n∑
j=1

z∗j + a ≤ (1− a)Ψ(n+ 1) + aΨ(n+ 1) = Ψ(n+ 1).

Also, if k ≤ n,
∑k
j=1(z + λy)∗j =

∑k
j=1 z

∗
j ≤ Ψ(k). Since (Ψ(n)) is increasing

the same holds for k > n+1. Therefore ‖z+λy‖ ≤ 1 for all λ ∈ ∆ contradicting
the fact that z is a complex extreme point of Bm0

Ψ
. �

Given a symbol Ψ we denote by NΨ the set of all the positive integers
n ∈ N such that Ψ(n) = Ψ(n + 1). In [15] Kamińska and Lee prove that
the unit ball of m0

Ψ has an extreme point if an only if there is n in N with
Ψ(n) = Ψ(n + 1). Specifically, they show that for each n in NΨ the point
Ψ(n)
n

∑n
i=1 ei is an extreme point of the unit ball of m0

Ψ. The following theorem
gives a complete characterisation of the extreme points of the unit ball of m0

Ψ

and proves that for the unit ball of m0
Ψ the sets of complex extreme points and

peak points coincide.

Theorem 5 Let Ψ be a symbol. The following are equivalent:
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(a) z is a peak point for Au(Bm0
Ψ

),

(b) z ∈ ExtC(Bm0
Ψ

),

(c) there is n in NΨ such that z ∈ Tn.

Proof: An application of [11, Theorem 4] gives us that (a) implies (b).
To show that (b) implies (c) take z ∈ ExtC(Bm0

Ψ
). By Proposition 3 z

has finite support. Let us suppose that z has support of length n. Clearly∑k
j=1 z

∗
j ≤ Ψ(k) for all k ∈ N. Suppose that

∑n
j=1 z

∗
j < Ψ(n). Since z∗n 6= 0 we

may consider a = min{z∗n, Ψ(n) −
∑n
j=1 z

∗
j } > 0 and y = aeN where N − 1 is

the index of the last nonzero coordinate of z.
Let w = z + λy with |λ| ≤ 1, then w∗ = (z∗1 , z

∗
2 , . . . , z

∗
n, |λ|a, 0, . . .). For

k ≤ n we have
∑k
j=1 w

∗
j =

∑k
j=1 z

∗
j ≤ Ψ(k). For k ≥ n+ 1

k∑
j=1

w∗j =
n+1∑
j=1

w∗j =
n∑
j=1

z∗j+|λ|a ≤
n∑
j=1

z∗j+Ψ(n)−
n∑
j=1

z∗j = Ψ(n) ≤ Ψ(n+1) ≤ Ψ(k).

Hence ‖z + λy‖ ≤ 1 for all λ ∈ ∆ contradicting the fact that z is a complex
extreme point. Therefore z ∈ Tn. The proof of Proposition 4 shows that
Ψ(n) = Ψ(n+ 1) for n = |supp(z).

Since m0
Ψ is a rearrangement invariant space, to prove that (c) implies (a)

it is enough to show that z∗ is a peak point for Au(Bm0
Ψ

).
Consider the linear functional ϕ ∈ (m0

Ψ)′ associated to z∗, defined by

ϕ(x) =
1

Ψ(n)

n∑
j=1

xj +
1

Ψ(n)

∞∑
j=1

xn+j

3j
. (2)

Since Ψ(n) = Ψ(n+ 1) we have that

|ϕ(x)| ≤ 1
Ψ(n)

n∑
j=1

|xj |+
1

Ψ(n)

∞∑
j=1

|xn+j |
3j

≤ 1
Ψ(n)

n∑
j=1

x∗j +
1

Ψ(n)

∞∑
j=1

x∗n+j

3j

≤ 1
Ψ(n)

n∑
j=1

x∗j +
1
2

1
Ψ(n)

x∗n+1

≤ 1
Ψ(n+ 1)

n+1∑
j=1

x∗j .

Thus |ϕ(x)| ≤ 1 for all ‖x‖ ≤ 1 and ϕ(z∗) = 1. Note that the last inequality
in the above estimate of |ϕ(x)| is strict whenever |supp(z)| > n and hence
|ϕ(x)| < 1 if |supp(x)| > n.

Let g : BmnΨ → C be the polynomial associated to (z∗1 , . . . , z
∗
n) defined as in

(1)

g(x) =
n∑
j=1

(1 +
xj

Ψ(n)− z∗j

)(
1 +

1
z∗j

∑
l 6=j

xl

) .
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Now consider the holomorphic function f : Bm0
Ψ
→ C given by f = 1

2 (g+ϕ). By
the proof of [16, Theorem 2.3] we have that |g(x)| < g(z∗) for all x with Πn(x) 6=
Πn(z∗). Whenever Πn(x) = Πn(z∗) but x 6= z∗ we have that supp(x) > n and
|ϕ(x)| < ϕ(z∗). Therefore |f(x)| < f(z∗) for any x 6= z∗ and f/f(z∗) peaks
over Bm0

Ψ
at z∗. �

Corollary 6 Let Ψ be a symbol. Let z ∈ ExtC(BmnΨ) and suppose that |supp(z)|−
k. Then either k = n or k < n and k ∈ NΨ.

Proof: Suppose that k = |supp(z)| < n and Ψ(k) < Ψ(k + 1). Let z∗ =
(z∗1 , . . . , z

∗
k, 0, . . .) and a = min{z∗k, 1 −

Ψ(k)
Ψ(k+1)} > 0. Set y = aek+1. As in

Proposition 4 we can show that z∗, and therefore z, is not an extreme point.
The result now follows. �

Denote by P the set of all the peak points of Au(Bm0
Ψ

) and for n in N, denote
by Pn the set of all points z in m0

Ψ with support of length at most n such that
Πn(z∗) is a peak point for Au(BmnΨ).

The equivalence between (a) and (c) of Theorem 5 gives the following result.

Corollary 7 Let Ψ be a symbol. Then P =
⋃
n∈NΨ

Tn.

As consequence of the above, we obtain another characterisation of the set
of all peak points in terms of the sets of peaks points of level n. To be more
precise we have:

Corollary 8 Let Ψ be a symbol. Then P =
⋃
n∈NΨ

Pn.

Proof: Suppose z belongs to Pn for some n in NΨ, then there exists g in
Au(mn

Ψ) such that g peaks at Πn(z∗). Let k be the length of the support of
z∗. It follows from [11, Theorem 4] and Corollary 6 that k ∈ NΨ. Let ϕ in
(m0

Ψ)′ be the linear function associated to z∗ defined as in (2). It follows as in
Theorem 5 that f = 1

2 (g + ϕ) is in Au(Bm0
Ψ

) and f/f(z∗) peaks over Bm0
Ψ

at
z∗. Consequently, z∗ and z belong to P.

Conversely, if z ∈ P then z∗ ∈ P. By Theorem 5, there exists n ∈ NΨ such
that |supp(z∗)| = n. Restricting the function f which peaks Bm0

Ψ
at z∗ we get

that z ∈ Pn. �

It is perhaps worth observing that in general ExtC(Bm0
Ψ

) fails to be equal
to
⋃
n∈NΨ

{z : Πn(z∗) ∈ ExtC(BmnΨ)}. To see this consider any weight Ψ with
Ψ(1) = 1, Ψ(2) = 2, Ψ(3) = 2.5, Ψ(4) = 3.25, Ψ(5) = Ψ(6) = 4. In fol-
lows from [8, Proposition 2.5] that the point (1, 1, 1

2 ,
1
2 ,

1
2 ) is a complex ex-

treme point of Bm5
Ψ

. However, using Theorem 5, we can readily check that
(1, 1, 1

2 ,
1
2 ,

1
2 , 0, 0, . . .) is not a complex extreme point of Bm0

Ψ
.

Theorem 9 The set of all peak points, P, is closed.
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Proof: Let z belong to P, the closure of P, and NΨ = {nj}j≥1. Choose N ∈ N
so that for all n ≥ N ,

1
Ψ(n)

n∑
i=1

z∗i <
1
2
.

We first show that z belongs to
⋃
nj<N

Tnj and then we show that
⋃
nj<N

Tnj
is closed. Suppose nj ∈ NΨ, with nj ≥ N , and take y in Tnj . We have

‖y − z‖ ≥ 1
Ψ(nj)

nj∑
i=1

|yi − zi| ≥
1

Ψ(nj)

(
nj∑
i=1

|yi| −
nj∑
i=1

z∗i

)
≥ 1− 1

2
=

1
2
.

Hence z 6∈
⋃
nj≥N Tnj and therefore, by Corollary 7, z ∈

⋃
nj<N

Tnj . Choose
a sequence (zn)∞n=1 in

⋃
nj<N

Tnj which converges to z. As N is finite there is
a largest positive integer M ∈ NΨ, M < N , so that TM contains infinite many
(zn)n. Without loss of generality, we may assume that (zn)∞n=1 is contained in
TM .

We observe that the length of the support of z cannot be greater than M .
To see this, note that if zi 6= 0 we can find ni so that |zi − zni | < |zi|/2 for all
n > ni and hence zni 6= 0 for all n sufficiently large. As the length of the support
of each term in the sequence (zn)∞n=1 is M , z has support of length at most M .

Given ε > 0 choose n0 so that ‖z − zn0‖ < ε/Ψ(M). Let (i1, i2, . . . , iM ) be
the support of zn0 . Then we have that

∣∣∣ M∑
j=1

|zij |−Ψ(M)
∣∣∣ =

∣∣∣ M∑
j=1

|zij |−
M∑
j=1

|zn0
ij
|
∣∣∣ ≤ M∑

j=1

|zij−z
n0
ij
| ≤ Ψ(M)‖z−zn0‖ < ε.

Since ε is arbitrary we get that
∑M
j=1 z

∗
j = Ψ(M). As z ∈ Bm0

Ψ
we have that∑k

j=1 z
∗
j ≤ Ψ(k) for all k. Thus

∑M
j=1 z

∗
j = Ψ(M). Note that the length of the

support of z could be l < M but since z belongs to the unit ball this will merely
imply that Ψ(l) = Ψ(M) and therefore

∑l
j=1 z

∗
j = Ψ(l). Hence z belongs to Tl,

with l ∈ NΨ. �

The above Theorem shows that any finite union of Tn is closed.
The real extreme points of a finite dimensional Lorentz space are charac-

terised in [10, Proposition 8]. These correspond to the Marcinkiewicz space
mn

Ψ where Ψ(j + 1) − Ψ(j), 1 ≤ j ≤ n − 1, is a decreasing function of j. For
an arbitrary symbol Ψ we obtain the following characterisation of real extreme
points.

Theorem 10 Let Ψ be a symbol. Then z ∈ ExtR(Bm0
Ψ

) if and only if there is
n in NΨ such that z belongs to Tn and Πn(z∗) ∈ ExtR(BmnΨ).

Proof: First suppose that z ∈ ExtR(Bm0
Ψ

). Then z ∈ ExtC(Bm0
Ψ

) and so
it follows from Theorem 5 that there is n in NΨ such that z belongs to Tn.
Moreover, if Πn(z∗) 6∈ ExtR(BmnΨ) then we can find y in mn

Ψ, y 6= 0, so that
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Πn(z∗)± y ∈ BmnΨ . Define ỹ in m0
Ψ by

ỹj =

{
yj if zj 6= 0,
0 if zj = 0.

It follows that z ± ỹ ∈ Bm0
Ψ

contradicting the fact that z ∈ ExtR(Bm0
Ψ

).
Now suppose that z belongs to Tn and Πn(z∗) ∈ ExtR(BmnΨ). Let σ =

{j1, . . . , jn} be the support of z, with n ∈ NΨ, and suppose y is a point of m0
Ψ

with the property that ‖z ± y‖m0
Ψ
≤ 1. Since z ∈ ExtR(BmnΨ) and ‖z ± y‖mσΨ ≤

‖z ± y‖m0
Ψ
≤ 1 we have that yj1 = · · · = yjn = 0. For k 6∈ σ

1
Ψ(n+ 1)

n∑
l=1

|zjl |+
|yk|

Ψ(n+ 1)
≤
n+1∑
i=1

(z ± y)∗i
Ψ(n+ 1)

≤ ‖z ± y‖m0
Ψ
≤ 1.

We also have that

1
Ψ(n+ 1)

(
n∑
l=1

|zjl |+ |yk|

)
=

1
Ψ(n)

(Ψ(n) + |yk|) = 1 +
|yk|

Ψ(n)
.

Hence

1 +
|yk|

Ψ(n)
≤ 1

and yk = 0 for all k proving that z ∈ ExtR(Bm0
Ψ

). �

We note that the real and complex extreme points of m0
Ψ are, in general,

different. To see this consider any symbol Ψ with Ψ(1) = 1, Ψ(2) = 2, Ψ(3) =
Ψ(4) = 2.5. Using Theorem 5 we see that the point (1, 3

4 ,
3
4 , 0, 0, . . .) is a complex

extreme point of Bm0
Ψ

. However, since (1, 3
4 ,

3
4 , 0, 0, . . .) = 1

2 (1, 1, 1
2 , 0, 0, . . .) +

1
2 (1, 1

2 , 1, 0, 0, . . .), it is not a real extreme point of Bm0
Ψ

.
We are also in a position to characterise the exposed points of the unit ball

of m0
Ψ.

Theorem 11 Let Ψ be a symbol. Then z is an exposed point of Bm0
Ψ

if and
only if there is n in NΨ such that z belongs to Tn and Πn(z∗) is an exposed point
of BmnΨ .

Proof: If z is an exposed point of Bm0
Ψ

then z is a complex extreme point of
Bm0

Ψ
. It follows from Theorem 5 that there is n in NΨ such that z belongs to

Tn. Moreover, restricting the functional which exposes z to mn
Ψ we see that z

is an exposed point of BmnΨ .
Conversely, suppose there exists n in NΨ such that z belongs to Tn and

Πn(z∗) is an exposed point of BmnΨ . Then we can find γ in (mn
Ψ)′ such that

γ(Πn(z∗)) = 1 and γ(w) < 1 for w in BmnΨ with w 6= Πn(z∗). Let ϕ be as in

(2), arguing as in Theorem 5 we see that
1
2

(γ + ϕ) peaks over Bm0
Ψ

at z and

hence z is an exposed point of the unit ball of m0
Ψ. �

We finish our discussion on the geometry of m0
Ψ with two examples.
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Example 12 Consider the symbol with Ψ(1) = Ψ(2) = . . . = Ψ(n) = Ψ(n +
1) = 1 and Ψ(j) = j for j ≥ n + 2. Using [14, Theorem 3.2 (4)] we see that
m0

Ψ is isomorphic to c0. Moreover, mn
Ψ is isometrically isomorphic to `n1 . Using

Theorem 5 we see that every point of the unit sphere of mn
Ψ is a complex extreme

point. It follows from Theorems 10 and 11 that

ExtR(m0
Ψ) = Exp(m0

Ψ) = {λei : i ∈ N, |λ| = 1}.

Example 13 Consider the symbol with Ψ(1) = 1,Ψ(2) = 2, . . . ,Ψ(n − 1) =
n − 1, Ψ(n) = Ψ(n + 1) = n and Ψ(j) = j for j ≥ n + 2. Using [14, Theo-
rem 3.2 (4)] again we obtain another renorming of c0. This time we see that
mn

Ψ is isometrically isomorphic to `n∞. The set of complex extreme points, real
extreme points and exposed points all coincide with

{λ1ei1 + · · ·+ λnein : i1, . . . , in are distinct, |λj | = 1}.

2 Boundaries of Au(Bm0
Ψ
)

Following the notation introduced in Section 1, for a finite ordered set σ =
{j1, . . . , jn} we denote by Pσ the set of all points z in m0

Ψ with support con-
tained in σ such that Πσ(z) is a peak point of Au(BmσΨ). This last condi-
tion is equivalent to requiring that Πn(z∗) be a peak point of Au(BmnΨ). Note
that our definition of Pn, in the previous section, does not correspond to any
Pσ since an element in Pσ may have support of length strictly less than n.
We denote by |σ| the length of σ and by Tσ the restricted torus defined by
Tσ = {z ∈ mσ

Ψ : z ∈ T|σ|} .

Lemma 14 Let σ be a finite ordered set. Then Pσ = Tσ ∪
⋃

γ⊂σ
|γ|∈NΨ

Tγ . In
particular, Pσ is closed.

Proof: Let σ = {j1, . . . , jn}. For each z in Tσ the polynomial g, defined as in
(1), associated to (z∗j1 , . . . , z

∗
jn

) will peak at z∗. This implies that Tσ ⊂ Pσ. On
the other hand, given z in Tγ with γ ⊂ σ, |γ| ∈ NΨ, Theorem 5 implies that z
is a peak point of Au(Bm0

Ψ
). Restricting the function which peaks at z to mσ

Ψ

we see that Pσ contains Tγ .
Suppose that Pσ contains a point z which is not in Tσ∪

⋃
γ⊂σ
|γ|∈NΨ

Tγ . Let g be

the function in Au(BmσΨ) which peaks at z. Define a symbol Ψ̃ by Ψ̃(k) = Ψ(k)
for k ≤ n and Ψ̃(k) = Ψ(k− 1) for k ≥ n+ 1. Consider f in Au(Bmσ

Ψ̃
) given by

f = 1
2 (g + ϕ) where ϕ is a linear functional defined similarly to (2). It follows

that f/|f(z)| peaks at z and thus z belongs to P(Ψ̃). This however contradicts
Theorem 5 for the symbol Ψ̃. Thus Pσ = Tσ ∪

⋃
γ⊂σ
|γ|∈NΨ

Tγ and, in particular, Pσ
is closed. �

Lemma 15 Let (nj)j∈N be an increasing sequence of positive integers and σnj
be a sequence of finite ordered sets with |σnj | = nj. Then

⋃
j≥1 Pσnj is closed

in Bm0
Ψ

.
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Proof: Take z in the closure of
⋃
j≥1 Pσnj . Since

∑n
k=1 z

∗
k

Ψ(n)
tends to zero there

exists N ∈ N so that for any n ≥ N we have
∑n
k=1 z

∗
k

Ψ(n)
<

1
2

.

Let x ∈ Tγ with l = |γ| ≥ N and γ = {i1, . . . , il} ⊆ σnj some j in N. We
have

‖x− z‖ ≥
∑l
k=1 |x− z|ik

Ψ(l)
≥
∑l
k=1 |xik |
Ψ(l)

−
∑l
k=1 |zik |
Ψ(l)

≥ 1−
∑l
k=1 z

∗
k

Ψ(l)
>

1
2
.

By Lemma 14 it follows that z 6∈
⋃
j≥1

⋃
γ⊆σnj
|γ|≥N

Tγ and hence z ∈
⋃
j≥1

⋃
γ⊆σnj
|γ|<N

Tγ .

Therefore there exists a sequence (zk)k converging to z with zk in some Tγk and
|γk| < N . The proof of Theorem 9 now shows that

⋃
j≥1

⋃
γ⊆σnj
|γ|<N

Tγ is closed

and hence
⋃
j≥1 Pσnj is closed. �

The following Theorem may also be deduced from [9, Corollary 2.3].

Theorem 16 Let S be a subset of Bm0
Ψ

and let (Πσn)n a sequence of finite
dimensional projections with {σn}n increasing and

⋃
n∈N σn = N. Then S is a

boundary for Au(Bm0
Ψ

) if and only if for every n, Pσn is contained in the closure
of Πσn(S).

Proof: Assume that Pσn is contained in the closure of Πσn(S) for every n
and suppose that S is not a boundary for Au(Bm0

Ψ
). Then we can find ε > 0

and f ∈ Au(Bm0
Ψ

) with ‖f‖ = 1 and |f(z)| < 1 − ε for all z ∈ S. Since
m0

Ψ has a Schauder basis, the vectors with finite support are dense in Bm0
Ψ

.
Therefore, there is a sequence of vectors (wk) with finite support in Bm0

Ψ
such

that limk→∞ |f(wk)| = 1.
For each k we consider mk so that Πσmk

(wk) = wk. As Pσmk is a boundary
forAu(m

σmk
Ψ ) we can choose xk in Pσmk so that |f(wk)| ≤ |f(xk)| ≤ 1, obtaining

a sequence (xk)k with limk→∞ |f(xk)| = 1.
As the closure of Πσmk

(S) contains Pσmk there exists uk in Πσmk
(S) such

that |f(uk)| converges to 1. Choose zk in S with uk = Πσmk
(zk) and set

vk = zk − uk.
Fix 0 < δ < 1 and let ξ ∈ ∆. Note that since uk and vk are of disjoint

support
‖uk + ξ(1− δ2)vk‖ ≤ ‖uk + vk‖ = ‖zk‖ ≤ 1.

By [11, Lemma 1.4] there exits C > 0 so that for any choice of α, β in ∆,

|f(uk + α(1− δ)vk)− f(uk + β(1− δ)vk)| ≤ C(1− |f(uk + α(1− δ)vk)|).

Taking α = 0 and β = 1 we have

|f(uk)− f(uk + (1− δ)vk)| ≤ C(1− |f(uk)|).

From our choice of uk we conclude that |f(uk + (1− δ)vk)| = |f(zk− δvk)| → 1,
for any 0 < δ < 1. The uniform continuity of f gives that limk→∞ |f(zk)| = 1.
Since (zk)k ⊂ S this is a contradiction. Thus S is a boundary for Au(Bm0

Ψ
).

11



Conversely, suppose S is a boundary for Au(Bm0
Ψ

) and that there exists σn
so that the closure of Πσn(S) does not contain Pσn . Then there exists z ∈ Pσn
and δ > 0 such that for all x ∈ Πσn(S) we have ‖x − z‖ ≥ δ. Take g as in (1)
which peaks over Bm0

Ψ
at z. Set f = g/g(z).

Let K = {x ∈ BmσnΨ
: ‖x−z‖ ≥ δ} and h = f ◦Πσn . Then there is ε > 0 such

that |f(x)| ≤ 1− ε for all x ∈ K. Since Πσn(S) ⊂ K, we have that |h(y)| ≤ 1− ε
for all y ∈ S contradicting the fact that S is a boundary for Au(Bm0

Ψ
). �

Theorem 16 extends [8, Proposition 4.2], [12, Theorem 1.5] and [16, Theo-
rem 3.5].

Proposition 17 Let Ψ be a symbol. Then P is a boundary for Au(Bm0
Ψ

) if and
only if NΨ is infinite.

Proof: Suppose that NΨ is finite. By Corollary 8, P =
⋃
n∈NΨ
1≤n≤r

Pn, where

r = max NΨ. Then any z in P has support of length at most r. Moreover,
Lemma 14 tells us that Pn contains elements with support of length n. Thus,
for any k > r, Πk(P) = Πk(P) cannot contain Pk. Since Πk is a sequence of
finite dimensional projections satifying the conditions of Theorem 16 it follows
that P is not a boundary for Au(Bm0

Ψ
).

Conversely, suppose NΨ is infinite and that (σn)n is an increasing sequence
of finite ordered sets with |σn| in NΨ. Then (Πσn)n with {σn}n increasing and⋃
n∈N σn = N. By Corollary 8, P =

⋃
n∈NΨ

Pσn and hence Πσn(P) ⊃ Pσn .
Another application of Theorem 16 gives the desired result. �

It follows from Theorem 5 that P is a boundary for Au(Bm0
Ψ

) if and only if
ExtC(Bm0

Ψ
) is.

Corollary 18 Let Ψ be a symbol such that NΨ is finite. Then Au(Bm0
Ψ

) does
not have a Šilov boundary in the sense of Globevnik.

Proof: For each j ∈ N, let Sj =
⋃
k≥j Pk. Since (Πk)k≥j which satisfies

Theorem 16 and Πk(Sj) ⊃ Pk, applying both Lemma 15 and Theorem 16, we
have that Sj is a closed boundary.

Let r = max NΨ. For each k ≥ r, Proposition 2 and Lemma 14 imply that
Pk = P ∪ Tk. Then

⋂k
j=1 Sj = P ∪

⋃∞
l=k Tl and letting k tend to infinity we

get that
⋂∞
j=1 Sj = P. Applying Corollary 8 we have that P =

⋃
n∈NΨ
1≤n≤r

Pn =⋂∞
j=1 Sj . For each k > r, Πk(

⋂∞
j=1 Sj) = Πk(

⋂∞
j=1 Sj) does not contain Pr+1

and therefore Theorem 16 implies that P =
⋂∞
j=1 Sj is not a boundary for

Au(Bm0
Ψ

). �

Theorem 19 Let Ψ be a symbol such that NΨ is infinite and for each k ∈ NΨ

the sequence (Φk(n))n>k+1 given by Φk(n) =
Ψ(n)−Ψ(k + 1)
n− (k + 1)

is decreasing.

Then Au(Bm0
Ψ

) does not admit a Šilov boundary in the sense of Globevnik.
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Proof: For the proof we assume that NΨ does not have consecutive elements.
The proof for a general symbol is more technical and can be adapted from what
follows.

Suppose a Šilov boundary in the sense of Globevnik, S, for Au(Bm0
Ψ

) exists.
By Proposition 17, P contains S.

Take x ∈ S. As x ∈ P, by Corollary 7, there exists q ∈ NΨ so that x ∈ Tq.
We claim that,

Ψ(n)−Ψ(q + 1)
Ψ(n− (q + 1))

is bounded below. Indeed, choose N sufficiently large so that Ψ(q+1)
Ψ(n−(q+1)) <

1
2

for all n ≥ N . Then Ψ(n)−Ψ(q+1)
Ψ(n−(q+1)) > Ψ(n)

Ψ(n−(q+1)) −
1
2 ≥

1
2 , for n ≥ N .

Now take 0 < δ < min{ 1
2 , x
∗
q ,

Ψ(n)−Ψ(q+1)
Ψ(n−(q+1)) : n = q + 2, . . . , N} and let U =

B(x, δ2 ) be the open ball of radius δ
2 centred at x. We will show that S \ U is

also a boundary for Au(BmoΨ) which is a contradiction.
Let y ∈ S. Since y ∈ P, by Corollary 7, y ∈ Tk for some k ∈ NΨ. Let

σ = {i1, . . . , ik} be the support of y with |yi1 | ≥ |yi2 | ≥ . . . ≥ |yik |.
In what follows we split the proof in two parts. First suppose that k ≥ q.

Take ε > 0 such that ε < y∗k. Since (Φk(n))n is decreasing to zero, we can
find p ∈ NΨ so that p > N , p > imax = max{ij : j = 1, . . . , k} + 2 and
α = Φk(p) < min{ε, y∗k − ε}. Now define z = z(ε) by

z =
k−1∑
j=1

yijeij + (yik − λε)eik + εeik+1 +
p∑

j=imax+2

αelj

where the lj are chosen to have support disjoint from that of x and λ is a complex
number of modulus 1 such that |yik − λε| = |yik | − ε. As

∑p−(k+1)
j=1 (Πµ(x)− z)

contains
∑p
j=imax+2 αelj we have that

‖Πµ(x)−z‖ ≥
∑p−(k+1)
j=1 (Πµ(x)− z)∗j

Ψ(p− (k + 1))
≥ α(p− (k + 1))

Ψ(p− (k + 1))
=

Ψ(p)−Ψ(k + 1)
Ψ(p− (k + 1))

> δ.

We next show that z is in Tp. Since z∗ =
∑k−1
j=1 y

∗
j ej + (y∗k − ε)ek + εek+1 +∑p

j=k+2 αej ,
we consider the following three cases

1 ≤ n ≤ k :
∑n
j=1 z

∗
j ≤

∑n
j=1 y

∗
j ≤ Ψ(n).

k < n ≤ p :
∑n
j=1 z

∗
j =

∑k
j=1 y

∗
j + α(n− (k + 1))

= Ψ(k) + Φk(p)(n− (k + 1))
≤ Ψ(k) + Φk(n)(n− (k + 1)) = Ψ(n).

n ≥ p :
∑n
j=1 z

∗
j =

∑p
j=1 z

∗
j = Ψ(k) + α(p− (k + 1)) = Ψ(p) ≤ Ψ(n).

In the second case we used that Φk is decreasing. From the third case, taking
n = p, it follows that

∑p
j=1 z

∗
j = Ψ(p) and z ∈ Tp.
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Note that y −Πσ(z) = λεeik and therefore ‖y −Πσ(z)‖ = ε.
Since S is a boundary for Au(Bm0

Ψ
) by Theorem 16 we can find w ∈ S so

that ‖Πµ(w)− z‖ < min{ε, δ2}.
Then

‖x− w‖ ≥ ‖Πµ(x− w)‖ ≥ ‖Πµ(x)− z‖ − ‖z −Πµ(w)‖ > δ − δ/2 = δ/2.

We also have

‖y−Πσ(w)‖ ≤ ‖y−Πσ(z)‖+‖Πσ(z−w)‖ ≤ ε+‖Πµ(z−w)‖ = ε+‖z−Πµ(w)‖ ≤ 2ε.

Note that this can be done for any ε sufficiently small. Therefore w belongs
to S \ U and y is in the closure of Πσ(S \ U).

To conclude the proof we have to see what happens when y ∈ Tk with k < q.
In this case ‖x− y‖ ≥ x∗q > δ which implies that y 6∈ U .

Now fix ε > 0. Since S is a boundary and NΨ is infinite, by Theorem 16,
we can find w ∈ S so that ‖Πµ(w) − y‖ < min{ε, δ2}, where µ is a support
containing σ. We conclude as before that w 6∈ U and that y belongs to the
closure of Πσ(S \ U).

In both cases we arrive at the same situation which allows us to conclude,
applying Theorem 16, that S \U is a boundary for Au(Bm0

Ψ
) contradicting the

fact that S is the minimal closed boundary. �

Bishop [6, Theorem 1] shows that when A is a separating algebra of contin-
uous functions on C(K) with K a compact Hausdorff metrizable space then the
Bishop boundary of A and the Šilov boundary of A coincide. Theorem 19 shows
that the condition that K is compact cannot be dropped and it is possible for
the Bishop boundary of Au(Bm0

Ψ
) (or P) to be boundary for Au(Bm0

Ψ
) and yet

for Au(Bm0
Ψ

) to fail to have a Šilov boundary in the sense of Globevnik.
Let us now observe that we cannot replace exposed point with strongly

exposed point in Theorem 11. We will show that when Ψ satisfies the conditions
of Theorem 19 then the unit ball of m0

Ψ cannot contain any strongly exposed
point. In order to prove this we will need the concept of a strong peak point.
We recall that a point in the unit sphere of a Banach space E is a strong peak
point for Au(Bm0

Ψ
) if there is f in Au(Bm0

Ψ
) such that f(x) = 1 and given any

ε > 0 there is δ > 0 such that |1 − f(y)| < δ implies that ‖x − y‖ < ε. This is
equivalent to the condition that there is f in Au(Bm0

Ψ
) such that f(x) = 1 and

given any ε > 0 there is δ > 0 such that ‖x− y‖ ≥ ε implies that |f(y)| < 1− δ.

Theorem 20 Let Ψ be a symbol such that NΨ is infinite and for each k ∈ NΨ

the sequence (Φk(n))n>k+1 given by Φk(n) =
Ψ(n)−Ψ(k + 1)
n− (k + 1)

is decreasing.

Then BAu(B
m0

Ψ
) does not contain strongly exposed points.

Proof: It follows as in [11, Proposition 1] (replacing Ab(Bm0
Ψ

) in the proof with
Au(Bm0

Ψ
)) that any strongly exposed point x of Au(Bm0

Ψ
) would be a strong

peak point and hence a peak point for Au(Bm0
Ψ

). Let f denote a function in
Au(Bm0

Ψ
) which strongly peaks at x and denote by P the set of all peak points

14



of Au(Bm0
Ψ

). Taking y = x in the proof of Theorem 19 we see that it is possible
to remove a neighbourhood U of x and for the set P \ U to remain a boundary
for Au(Bm0

Ψ
). However, from the definition of strong peak point, we see that

‖f‖P\U < 1 contradicting the fact that P\U is a boundary for Au(Bm0
Ψ

). �

Since the exposed and strongly exposed points in a finite dimensional space
coincide we see that we cannot replace exposed points with strongly exposed
points in Theorem 11.
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