Decomposable symmetric mappings between infinite dimensional spaces

Christopher Boyd \& Silvia Lassalle*

Abstract

Decomposable mappings from the space of symmetric k-fold tensors over E, $\bigotimes_{s, k} E$, to the space of k-fold tensors over $F, \otimes_{s, k} F$, are those linear operators which map nonzero decomposable elements to nonzero decomposable elements. We prove that any decomposable mapping is induced by an injective linear operator between the spaces on which the tensors are defined. Moreover, if the decomposable mapping belongs to a given operator ideal, then so does its inducing operator. This result allows us to classify injective linear operators between spaces of homogeneous approximable and between spaces of nuclear polynomials which map rank-1 polynomials to rank- 1 polynomials.

1 Introduction

Given Banach spaces E and F there are, in general, far too many linear mappings from E into F to allow a systematic classification. Extra conditions either on the spaces or the mappings can sometimes make our task realisable. Symmetric tensor products and spaces of homogeneous polynomials are places where this additional structure is available. Indeed, in [4] we were able to classify all linear mappings of the spaces of symmetric injective tensors which map the set of powers to itself. This in turn allowed us to characterise the isometries of various spaces of homogeneous polynomials. Decomposable mappings are similar to power preserving mappings and in this paper we shall look for a characterisation of decomposable mappings analogous to that obtained in [4] for power preserving mappings. This will allow us to describe mappings between spaces of homogeneous polynomials which preserve rank-1 polynomials.

The main result of this paper is the characterisation of decomposable mappings between spaces of symmetric tensor products. The approach we shall take is based on that of Cummings [8] in his description of decomposable mappings between spaces of symmetric tensor products over finite dimensional vector spaces. However, the infinite dimensional

[^0]setting requires a more general approach and some of Cummings definitions must be altered to suit this more general situation.

In section 2 we present the results closely related with the finite dimensional case, where there is no need to consider any particular tensor norm. In the final three sections we will examine decomposable mappings which belong to a given operator ideal. To facilitate this, in Section 3 we will examine families of symmetric tensor norms of different degrees on infinite dimensional spaces defined in such a way that we have natural complementations of the space of symmetric tensors of a fixed degree in spaces of symmetric tensors of higher degrees.

In Section 4 and 5 we characterise the decomposable mappings between symmetric tensor spaces of the same and different degrees, respectively. We prove that any decomposable linear operator T from a symmetric k-fold tensor product over a Banach space E into a symmetric l-fold tensor product over a Banach space F, with $k \leq l$, considered with suitable symmetric tensor norms, is a power of an injective operator A from E into F, multiplied by a fixed $l-k$ decomposable tensor. Moreover, if T belongs to any given ideal of operators, then also does A.

Because of the one-to-one correspondence between symmetric injective tensor products and approximable polynomials and the one-to-one correspondence between spaces of symmetric projective tensor products and nuclear polynomials, for spaces whose dual has the approximation property, we will be also able to describe rank-1 preserving mappings between spaces of approximable polynomials and rank-1 preserving mappings between spaces of nuclear polynomials. Results of this type are discussed in Section 6.

Given a Banach space E we can form the space $\bigotimes_{k} E$ of all k-fold tensors in E. We consider the subspace, $\bigotimes_{s, k} E$, of $\bigotimes_{k} E$ consisting of all tensors of the form $\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes$ $\cdots \otimes x_{i}$, where $\lambda_{i}= \pm 1$. Such k-fold tensors are said to be symmetric. There are two natural symmetric norms defined on the, in general, uncompleted space $\bigotimes_{s, k} E$, the least or injective and the greatest or projective symmetric tensor norms.

Given a k-fold symmetric tensor $\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes \cdots \otimes x_{i}$ on E we define its symmetric injective or $\epsilon_{s, k}$ norm by

$$
\sup _{\phi \in B_{E^{\prime}}}\left|\sum_{i=1}^{n} \lambda_{i} \phi\left(x_{i}\right)^{k}\right| .
$$

We denote the completion of $\bigotimes_{s, k} E$ with respect to this norm by $\widehat{\bigotimes}_{s, k, \epsilon_{s, k}} E$.
The symmetric projective or $\pi_{s, k}$ norm is defined as follows. Suppose that θ belongs to $\bigotimes_{s, k} E, \theta=\sum \lambda_{i} x_{i} \otimes \cdots \otimes x_{i}$. We would like to define the norm of θ to be $\sum\left\|x_{i}\right\|^{k}$. Unfortunately tensors in $\bigotimes_{k} E$ do not have unique representation as a sum of basic symmetric tensors. Therefore the projective norm of θ is defined to be the infimum of $\sum\left\|x_{i}\right\|^{k}$ over all possible representations of θ as sums of basic symmetric tensors. We use $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E$ to denote the completion of $\bigotimes_{s, k, \pi_{s, k}} E$ with respect to this norm.

When the underlying space is a dual space both of these spaces of symmetric tensor products have representations as spaces of homogeneous polynomials. A function $P: E \rightarrow$ $\mathbf{K}(\mathbf{K}=\mathbf{R}, \mathbf{C})$ is said to be a (continuous) k-homogeneous polynomial if there exists a unique symmetric (continuous) k-linear map $L_{P}: \underbrace{E \times \cdots \times E}_{\text {k-times }} \rightarrow \mathbf{K}$ such that $P(x)=$ $L_{P}(x, \ldots, x)$ for all $x \in E$. Continuous k-homogeneous polynomials are bounded on the unit ball and we denote by $\mathcal{P}\left({ }^{k} E\right)$ the Banach space of all continuous k-homogeneous polynomials on E endowed with the norm: $P \rightarrow\|P\|:=\sup _{\|x\| \leq 1}|P(x)|$.

A k-homogeneous polynomial P in $\mathcal{P}\left({ }^{k} E\right)$ is said to be of finite type if there is $\left\{\phi_{j}\right\}_{j=1}^{n}$ in E^{\prime} such that $P(x)=\sum_{j=1}^{n} \pm \phi_{j}(x)^{k}$ for all x in E. Polynomials in the closure of the finite type k-homogeneous polynomials in $\mathcal{P}\left({ }^{k} E\right)$ are called the approximable polynomials. We use $\mathcal{P}_{f}\left({ }^{k} E\right)$ to denote the space of all finite type k-homogeneous polynomials and $\mathcal{P}_{A}\left({ }^{k} E\right)$ to denote the space of all k-homogeneous approximable polynomials. The mapping $\phi^{k} \longmapsto$ $\phi \otimes \cdots \otimes \phi$ induces an isometric isomorphism between the spaces $\mathcal{P}_{A}\left({ }^{k} E\right)$ and $\widehat{\bigotimes}_{s, k, \epsilon_{s, k}} E^{\prime}$.

In relation with the projective norm, the space of nuclear polynomials comes into play. We say that a k-homogeneous polynomial P on a Banach space E is nuclear if there is a bounded sequence $\left(\phi_{j}\right)_{j=1}^{\infty} \subset E^{\prime}$ and a sequence $\left(\lambda_{j}\right)_{j=1}^{\infty}$ in ℓ_{1} such that

$$
P(x)=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(x)^{k}
$$

for every x in E. The space of all k-homogeneous nuclear polynomials on E is denoted by $\mathcal{P}_{N}\left({ }^{k} E\right)$ and becomes a Banach space when the norm of $P,\|P\|_{N}$, is given as the infimum of $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|\left\|\phi_{j}\right\|^{k}$ taken over all representations of P of the form described above. When E^{\prime} has the approximation property $\left(\mathcal{P}_{N}\left({ }^{k} E\right),\|\cdot\|_{N}\right)$ is isometrically isomorphic to $\widehat{\bigotimes}_{s, k, \pi_{k}} E^{\prime}$ under the map induced by $\phi^{k} \longmapsto \phi \otimes \cdots \otimes \phi$.

A k-homogeneous polynomial P is said to be a rank-1 polynomial if it has the form $P=\phi_{1} \phi_{2} \cdots \phi_{k}$ for $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ in E^{\prime}.

We refer the reader to [11] for further information on homogeneous polynomials and symmetric tensor products and to $[17,18]$ for an overview of decomposable mappings on finite dimensional vector spaces.

2 Decomposable mappings and adjacent subspaces

The space of k-fold symmetric tensors, $\bigotimes_{s, k} E$, is a complemented subspace of the space of full k-fold tensors, $\bigotimes_{k} E$, with projection given by

$$
x_{1} \otimes \cdots \otimes x_{k} \longmapsto \frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(k)}
$$

where S_{k} is the symmetric group on $\{1, \ldots, k\}$. Symmetric tensors in $\bigotimes_{s, k} E$ of the form $\sum_{\sigma \in S_{n}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(k)}$ are called decomposable elements. For simplicity of notation we use $x_{1} \vee \cdots \vee x_{k}$ instead of $\frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(k)}$ and x^{k} to denote $x \vee x \vee \cdots \vee x$.

A decomposable element $x_{1} \vee \cdots \vee x_{k}$ is zero if and only if $x_{i}=0$ for at least one $i=1, \ldots, k$. Moreover,

$$
\begin{equation*}
x_{1} \vee \cdots \vee x_{k}=y_{1} \vee \cdots \vee y_{k} \neq 0 \quad \Leftrightarrow \quad y_{i}=\lambda_{i} x_{\sigma(i)}, \text { for } i=1, \ldots, k \tag{1}
\end{equation*}
$$

for some $\sigma \in S_{k}$ and scalars $\lambda_{1}, \ldots, \lambda_{k}$ so that $\lambda_{1} \lambda_{2} \cdots \lambda_{k}=1$.
A linear mapping, T, between spaces of symmetric tensors over E and F which contain $\bigotimes_{s, k} E$ and $\bigotimes_{s, k} F$ respectively is said to be power-preserver if given any x in E there exists y in F so that $T\left(x^{k}\right)= \pm y^{k}$, while T is said to be decomposable if T maps decomposable elements to decomposable elements and $\operatorname{ker} T \cap\left\{x_{1} \vee \cdots \vee x_{k}: x_{1}, \ldots, x_{k} \in E\right\}=\{0\}$. We note that if T is injective and maps decomposable elements to decomposable elements then T is decomposable.

Since decomposable mappings preserve both the decomposable and the linear structure of spaces of symmetric tensors, they will also preserve subspaces of the space of k-fold symmetric tensors where all elements are decomposable tensors. Such subspaces are called decomposable subspaces and their study will provide us with a method of classifying decomposable mappings. The simplest way of constructing a decomposable subspace of $\bigotimes_{s, k} E$ is to take a subspace S of E and vectors x_{1}, \ldots, x_{k-1} in E and to set

$$
M=x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee S=\left\{x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee s: s \in S\right\}
$$

We call $\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{k-1}\right\rangle$ the factors of M and say that M is directed by S. Note that the dimension of M is equal to that of S. We shall call such decomposable subspaces type-1 subspaces. We note that our definition of a type-1 subspace is more general than that given by Cummings in [7] where E is finite dimensional and type- 1 subspaces are always directed by E.

When E is a real Banach space, type- 1 subspaces are the only decomposable subspaces which arise. For complex Banach spaces however we have a second family of decomposable subspaces. Suppose x and y are two linearly independent vectors in E. Let $\langle x, y\rangle$ denote the two dimensional subspace of E spanned by x and y. For $1 \leq r \leq k$ and x_{1}, \ldots, x_{k-r} in E consider the subset $x_{1} \vee \cdots \vee x_{k-r} \vee\langle x, y\rangle_{r}$ consisting of all decomposable elements of the form $x_{1} \vee \cdots \vee x_{k-r} \vee z_{1} \vee \cdots \vee z_{r}$ with z_{1}, \ldots, z_{r} in $\langle x, y\rangle$. Each element of the set $x_{1} \vee \cdots \vee x_{k-r} \vee\langle x, y\rangle_{r}$ can be written in the form

$$
x_{1} \vee \cdots \vee x_{k-r} \vee\left(\gamma_{0} x^{r}+\gamma_{1} x^{r-1} \vee y+\cdots+\gamma_{r-1} x \vee y^{r-1}+\gamma_{r} y^{r}\right)
$$

This means that $x_{1} \vee \cdots \vee x_{k-r} \vee\langle x, y\rangle_{r}$ can be identified with a subset of $P_{r}(\alpha)$, the vector space of all polynomials of degree at most r over the complex numbers, under the mapping

$$
x_{1} \vee \cdots \vee x_{k-r} \vee\left(\gamma_{0} x^{r}+\gamma_{1} x^{r-1} \vee y+\cdots+\gamma_{r} y^{r}\right) \longmapsto \gamma_{0}+\gamma_{1} \alpha+\cdots+\gamma_{r} \alpha^{r}
$$

Because each polynomial over \mathbf{C} can be written as a product of linear factors it follows from [7, Proposition 10] that this mapping is surjective. This means that for complex Banach spaces $x_{1} \vee \cdots \vee x_{k-r} \vee\langle x, y\rangle_{r}$ will also be a decomposable subspace. Such subspaces are called type- r subspaces. Type- r subspaces have dimension $r+1$.

There is no unique representation of a type-1 subspace. The following lemma will therefore be of use to us when we want to compare such subspaces.

Lemma 1 Fix $k \geq 2$ a positive integer and let S, \widetilde{S} be subspaces of E such that

$$
x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee S=y_{1} \vee y_{2} \vee \cdots \vee y_{k-1} \vee \widetilde{S}
$$

Then $S=\widetilde{S}$ and $\left\langle x_{1} \vee x_{2} \vee \cdots \vee x_{k-1}\right\rangle=\left\langle y_{1} \vee y_{2} \vee \cdots \vee y_{k-1}\right\rangle$ in $\bigotimes_{s, k-1} E$.
Proof: Take $t \in \widetilde{S}$ so that $t \notin\left[x_{1}\right] \cup \cdots \cup\left[x_{k-1}\right]$, then there exists $s \in S$ so that

$$
x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee s=y_{1} \vee y_{2} \vee \cdots \vee y_{k-1} \vee t
$$

By our choice of t, it follows that $t=\lambda s$ for some $\lambda \in \mathbf{K}$ and therefore, $\widetilde{S} \subset S$. Also we have that $y_{j}=\lambda_{j} x_{\sigma(j)}$, for $j=1, \ldots, k-1$. By symmetry we have that $S \subset \widetilde{S}$ and the lemma is proved.

We now show that type-1 and type-r subspaces are the only decomposable subspaces.
Theorem 2 Let k be a positive integer and E be a Banach space of dimension strictly greater than $k+1$. Then every decomposable subspace of $\bigotimes_{s, k} E$ of dimension strictly greater than $k+1$ is a type- 1 subspace.

Proof: Let V be a decomposable subspace of $\bigotimes_{s, k} E$ with $\operatorname{dim}(V)>k+1$. Choose $\left\{z_{1}, \ldots, z_{k+2}\right\}$ a linearly independent set in V and set $Z=\operatorname{span}\left\{z_{1}, \ldots, z_{k+2}\right\}$. For each i, write z_{i} as $z_{i}=x_{i 1} \vee \cdots \vee x_{i k}$ and consider the finite dimensional subspace of E, given by $X=\left\langle x_{i j}: 1 \leq i \leq k+2,1 \leq j \leq k\right\rangle$. It is clear that $Z \subset \otimes_{s, k} X$. It follows from [7, Theorem] that Z must be a type-1 subspace or a type- r subspace with $r \leq k$. Since type- r subspaces have dimension $r+1, Z$ is a type- 1 subspace. Write Z as $Z=x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee S$ for some finite dimensional subspace S of E. If \tilde{Z} is any other finite dimensional subspace of V with $\operatorname{dim}(\tilde{Z})>k+1$ it follows from Lemma 1 that $Z+\tilde{Z}$ can be written as $x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee \tilde{S}$ for \tilde{S} a finite dimensional subspace of E. Hence $\tilde{Z}=x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee W$ and we see that V is a type- 1 subspace.

The hypothesis on the dimension can be slighted improved in the case where the decomposable subspace is the image under a decomposable mapping of a type- 1 subspace. The proof of the following can be deduced from that of [19, Theorem 3].

Corollary 3 Let k be a positive integer and E and F be Banach spaces of dimension at least $k+1$. Let $T: \bigotimes_{s, k} E \rightarrow \bigotimes_{s, k} F$ be a decomposable mapping. Then T maps any type- 1 subspace of dimension greater than or equal to $k+1$ onto a type- 1 subspace.

Decomposable mappings from $\bigotimes_{s, k} E$ into $\bigotimes_{s, k} F$ which map type- 1 subspaces to type-1 subspaces are called type-1 mappings. Of course, for real Banach spaces every decomposable mapping is a type-1 mapping however in the complex case there may be decomposable mappings which are not type-1. For example, given any complex Banach space E of dimension strictly greater than 2 , consider the projection from $\bigotimes_{s, k} E$ onto a type- k subspace. This is a decomposable mapping which is not type-1.

Suppose T is a type- 1 mapping of $\bigotimes_{s, k} E$ into $\bigotimes_{s, k} F$. Let $M=x_{1} \vee \cdots \vee x_{k-1} \vee S$. Choose y_{1}, \ldots, y_{k-1} in F and a subspace \widetilde{S} of F so that $T(M)=y_{1} \vee \cdots \vee y_{k-1} \vee \widetilde{S}$. Then T induces a linear mapping A of S into \widetilde{S} by $A s=t$ where

$$
T\left(x_{1} \vee \cdots \vee x_{k-1} \vee s\right)=y_{1} \vee \cdots \vee y_{k-1} \vee t .
$$

Following [8] we call A an associate mapping. The associate mapping A depends on the choice of M and y_{1}, \ldots, y_{k-1}, however, it follows as in [8, Proposition 2] that any two associate mappings with respect to the same type-1 subspace are multiples of each other.

To characterise decomposable mappings we generalise the concept of adjacent type-1 subspaces of [8] to our setting.

Definition 4 Let k be a positive integer and E be a Banach space. We say that two elements of $\bigotimes_{s, k} E$ are adjacent if they share precisely $k-1$ factors (counting multiplicity). That is, they can be written in the form $x_{1} \vee \cdots \vee x_{k-1} \vee z_{1}$ and $x_{1} \vee \cdots \vee x_{k-1} \vee z_{2}$, with z_{1}, z_{2} linearly independent. We say that two type-1 subspaces M and N of $\bigotimes_{s, k} E$ are adjacent if they are directed by the same subspace and share exactly $k-2$ factors (counting multiplicity). This means they can be written in the form $M=x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee S$ and $N=x_{1} \vee \cdots \vee x_{k-2} \vee z_{2} \vee S$, for some S subspace of E with z_{1}, z_{2} linearly independent. When $k=2$ we say that any two type-1 subspaces directed by the same subspace are adjacent.

When M and N are adjacent type- 1 subspaces we write $M \curlywedge N$. Any two type- 1 subspaces of $\bigotimes_{s, k} E$ which are directed by the same subspace of E can be 'linked' to each other through a chain of at most $k-1$ pairwise adjacent subspaces.

Decomposable mappings and adjacency can also be defined for the space of full k-fold tensors (see [20]). Westwick, [20] shows that decomposable mappings between spaces of k-fold tensors map adjacent decomposable elements to adjacent decomposable elements. When E has dimension at least $k+1$ this result is also true for spaces of symmetric k-fold tensors. The proof, as we shall see, is completely different.

Proposition 5 Let k be a positive integer and E and F be Banach spaces of dimension at least $k+1$ and let $T: \bigotimes_{s, k} E \rightarrow \bigotimes_{s, k} F$ be a decomposable mapping. Then T maps adjacent decomposable elements to edjacent decomposable elements.

Proof: Consider $v=x_{1} \vee \cdots \vee x_{k-2} \vee x_{k-1} \vee z_{1}$ and $\bar{v}=x_{1} \vee \cdots \vee x_{k-2} \vee x_{k-1} \vee z_{2}$ any two adjacent elements in $\bigotimes_{s, k} E$. Take $M=x_{1} \vee \cdots \vee x_{k-2} \vee x_{k-1} \vee S$ where S is a subspace of E containing z_{1}, z_{2} with $\operatorname{dim}(S) \geq k+1$. As $v, \bar{v} \in M$ we know that $T(v)$ and $T(\bar{v})$ belong to $T(M)$ which, by Corollary 3 , is a type- 1 subspace. Therefore $T(v)$ and $T(\bar{v})$ are adjacent.

The following proposition gives a necessary and sufficient condition for two type-1 subspaces directed by the same subspace to be adjacent. The proof is very similar to that given in [8, Proposition 4]. Since the definition for adjacent type-1 subspaces in [8] and ours is slightly different, we include a proof for the sake of completeness.

Proposition 6 Let k be a positive integer and E be a Banach space. Let M and N be a pair of type-1 subspaces of $\bigotimes_{s, k} E$ directed by the same subspace. If $\operatorname{dim}(M \cap N)=1$ then $M \curlywedge N$. Conversely, with the additional assumption that N and M are directed by E then $M \curlywedge N$ implies that $\operatorname{dim}(M \cap N)=1$.

Proof: Suppose that $M=x_{1} \vee \cdots \vee x_{k-1} \vee S, N=y_{1} \vee \cdots \vee y_{k-1} \vee S$ and $\operatorname{dim}(M \cap N)=1$. Then $M \cap N \neq 0$. Take $s, t \in S$ so that $x_{1} \vee \cdots \vee x_{k-1} \vee s=y_{1} \vee \cdots \vee y_{k-1} \vee t$. If $\langle s\rangle=\langle t\rangle$ then, $x_{i}=\lambda_{i} y_{\sigma(i)}$ for $i=1, \ldots, k-1$, which means that $M=N$. Otherwise, we may assume without loss of generality that $\left\langle x_{1}\right\rangle=\langle t\rangle$ and $\langle s\rangle=\left\langle y_{1}\right\rangle$. Then $y_{i}=\lambda_{i} x_{\sigma(i)}$ for $i=2, \ldots, k-1$ and we get $M \curlywedge N$.

Conversely, suppose that M and N are both directed by E and that $M \curlywedge N$. Then $M=x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee E$ and $N=x_{1} \vee \cdots \vee x_{k-2} \vee z_{2} \vee E$, with z_{1}, z_{2} linearly independent. We proceed as in [8, Proposition 4]. It follows that $M \cap N \neq 0$. Consider s, t in E with

$$
\begin{equation*}
x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee s=x_{1} \vee \cdots \vee x_{k-2} \vee z_{2} \vee t \tag{2}
\end{equation*}
$$

For each $j=1, \ldots, k-1$ and $x \in E$ let $g_{j}(x): E^{j} \rightarrow \bigotimes_{s, j+1} E$ be the symmetric multilinear mapping defined by

$$
\left(u_{1}, \ldots, u_{j}\right) \longmapsto x \vee u_{1} \vee \cdots \vee u_{j} .
$$

The function $g_{j}(x)$ induces a map $h_{j}(x): \bigotimes_{s, j} E \rightarrow \bigotimes_{s, j+1} E$. If x is nonzero then each $h_{j}(x)$ is injective and so is the composition

$$
h=h_{k-1}\left(x_{1}\right) \circ \cdots \circ h_{k-i}\left(x_{i}\right) \circ \cdots \circ h_{2}\left(x_{k-2}\right) .
$$

We can write (2) as $h\left(z_{1} \vee s\right)=h\left(z_{2} \vee t\right)$ and so $z_{1} \vee s=z_{2} \vee t$. Since z_{1} and z_{2} are linearly independent, z_{1} must be a multiple of t. Thus

$$
M \cap N=\left\langle x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee z_{2}\right\rangle
$$

Proposition 7 Let k be a positive integer, S a finite dimensional space of dimension at least $k+1$ and F a Banach space. Let $T: \bigotimes_{s, k} S \rightarrow \bigotimes_{s, k} F$ be a type-1 mapping. Let M, N be adjacent type-1 subspaces directed by S. Then $T(M)$ and $T(N)$ are also adjacent.

Proof: Let us write M as $M=x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee S$ and N as $N=x_{1} \vee \cdots \vee x_{k-2} \vee z_{2} \vee S$ for linearly independent z_{1}, z_{2} in S. Then there are injective linear operators A and B from S into F, such that $A(S)$ directs $T(M)$ and $B(S)$ directs $T(N)$. Since $M \curlywedge N$ Proposition 6 implies that $\operatorname{dim}(M \cap N)=1$ and therefore $T(M) \cap T(N) \neq 0$. We claim that $T(M)$ and $T(N)$ share at least $k-2$ factors. To see this let $T(M)=y_{1} \vee \cdots \vee y_{k-2} \vee y_{k-1} \vee A(S)$ and $T(N)=\tilde{y}_{1} \vee \cdots \vee \tilde{y}_{k-2} \vee \tilde{y}_{k-1} \vee B(S)$ and take $u \neq 0, u \in T(M) \cap T(N)$. As

$$
u=y_{1} \vee \cdots \vee y_{k-2} \vee y_{k-1} \vee y=\tilde{y}_{1} \vee \cdots \vee \tilde{y}_{k-2} \vee \tilde{y}_{k-1} \vee \tilde{y}
$$

our assertion follows. We can now write $T(M)=y_{1} \vee \cdots \vee y_{k-2} \vee w_{1} \vee A(S)$ and $T(N)=$ $y_{1} \vee \cdots \vee y_{k-2} \vee w_{2} \vee B(S)$, for some $w_{1}, w_{2} \in F$. If we show that $A(S)=B(S)$ then, provided $T(M)$ and $T(N)$ are distinct, Proposition 6 will ensure that $T(M) \curlywedge T(N)$. Let $p=\operatorname{dim}(S)$. If $A(S) \subset B(S)$ then they are equal. Suppose that there is s_{1} in S so that $A s_{1} \notin B(S)$. Complete $\left\{s_{1}\right\}$ to form a basis, $\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$, for E. Now consider the adjacent pairs $v_{i}=x_{1} \vee \cdots \vee x_{k-2} \vee z_{1} \vee s_{i}$ and $\bar{v}_{i}=x_{1} \vee \cdots \vee x_{k-2} \vee z_{2} \vee s_{i}, i=1, \ldots, p$. By definition, type-1 mappings are decomposable then, by Proposition 5, v_{i} and \bar{v}_{i} have adjacent images $T\left(v_{i}\right)=y_{1} \vee \cdots \vee y_{k-2} \vee w_{1} \vee A s_{i}$ and $T\left(\bar{v}_{i}\right)=y_{1} \vee \cdots \vee y_{k-2} \vee w_{2} \vee B s_{i}$, for all $i=1, \ldots, p$. Since $A s_{1} \notin B(S),\left\langle A s_{1}\right\rangle=\left\langle w_{2}\right\rangle$. The injectivity of A now implies that no other $A s_{i}$ is a multiple of w_{2}, i.e. $A s_{i} \in B(S)$, for all $i=2, \ldots, p$. Also $\left\langle A\left(s_{1}+s_{2}\right)\right\rangle=\left\langle w_{2}\right\rangle$ would imply $\left\langle A s_{2}\right\rangle=\left\langle w_{2}\right\rangle$ which is impossible. Thus $A\left(s_{1}+s_{2}\right)$ belongs to $B(S)$ and therefore so does $A s_{1}$. From this contradiction we get $A(S) \subset B(S)$. So we have just proved that $T(M)$ and $T(N)$ are directed by the same subspace. The proof given in [8, Proposition 5] assures that $T(M)$ and $T(N)$ are distinct and therefore they are adjacent.

Following the proof of $[8$, Theorem 1] we obtain:
Theorem 8 Let k be a positive integer, S a finite dimensional space of dimension at least $k+1$ and F a Banach space. Let $T: \bigotimes_{s, k} S \rightarrow \bigotimes_{s, k} F$ be a type- 1 mapping. Then the associated mappings to any type-1 subspace of $\bigotimes_{s, k} S$, directed by S, form a one dimensional space of $\mathcal{L}(S ; F)$.

Note that for a type-1 mapping any associated mapping to a type-1 subspace must be injective.

Theorem 9 Let k be a positive integer, S be a finite dimensional space of dimension at least $k+1$ and F be a Banach space. Let $T: \bigotimes_{s, k} S \rightarrow \bigotimes_{s, k} F$ be a type-1 mapping.

Then there exists an injective operator $A \in \mathcal{L}(S ; F)$ such that for any $x=x_{1} \vee \cdots \vee x_{k}$ in $\bigotimes_{s, k} S$,

$$
T(x)= \pm A x_{1} \vee \cdots \vee A x_{k} .
$$

Proof: First we show that there exists an injective operator $A \in \mathcal{L}(S ; F)$ so that given $x=x_{1} \vee \cdots \vee x_{k}$ nonzero, there exists $\lambda_{x} \in \mathbf{K}$ such that

$$
\begin{equation*}
T(x)=\lambda_{x} A x_{1} \vee \cdots \vee A x_{k} \tag{3}
\end{equation*}
$$

For each $i=1, \ldots, k$, consider the type- 1 subspaces of dimension at least $k+1$

$$
V_{i}=x_{1} \vee \cdots \vee \widehat{x_{i}} \vee \cdots \vee x_{k} \vee S \text {, }
$$

where $\widehat{x_{i}}$ means that the i-th factor is omitted. Then $\langle x\rangle=\bigcap_{i=1}^{k} V_{i}$ and by Theorem 8, the mappings associated to T respect to any of these type- 1 subspaces are all multiples of an operator in $\mathcal{L}(S ; F)$. Let us fix one of these associated mappings and call it A. Since

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee s\right)=y_{1} \vee y_{2} \vee \cdots \vee y_{k-1} \vee A s
$$

we know that $\left\langle A x_{i}\right\rangle$ is a factor of $T(x)$, for each $i=1, \ldots, k$. If x has k distinct factors then (3) holds.

Next, suppose that for $m<k,\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{m}\right\rangle$ are all the distinct factors in x, each $\left\langle x_{i}\right\rangle$ with multiplicity $p_{i}, i=1, \ldots, m$. Then $x=x_{1} \vee \cdots \vee x_{1} \vee \cdots \vee x_{m} \vee \cdots \vee x_{m}$ and for at least one $i_{0}, p_{i_{0}} \geq 2$. Choose $\left\langle x_{m+1}\right\rangle, \ldots,\left\langle x_{k-1}\right\rangle$ so that together with $\left\langle x_{1}\right\rangle, \ldots,\left\langle x_{m}\right\rangle$ we have $k-1$ distinct factors. Without loss of generality we may assume that x_{1} has multiplicity $p_{1} \geq 2$. Take the adjacent type- 1 subspaces, M and N, the first one has all its factors distinct and the second has precisely one of its factors $\left\langle x_{1}\right\rangle$ repeating twice

$$
\begin{aligned}
M & =x_{1} \vee \cdots \vee x_{k-2} \vee x_{k-1} \vee S, \\
N & =x_{1} \vee \cdots \vee x_{k-2} \vee x_{1} \vee S .
\end{aligned}
$$

As $M \curlywedge N$, by Proposition 7 we have that $T(M) \curlywedge T(N)$. Then, as

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k-1} \vee s\right)=y_{1} \vee y_{2} \vee \cdots \vee y_{k-1} \vee A s
$$

Theorem 8 implies that $\left\langle A x_{j}\right\rangle$, for $j=1, \ldots, m$, are distinct factors of $T(M)$ and $T(N)$ and

$$
\begin{align*}
& T(M)=A x_{1} \vee \cdots \vee A x_{m} \vee q_{m+1} \vee \cdots \vee q_{k-2} \vee z \vee A(S), \tag{4}\\
& T(N)=A x_{1} \vee \cdots \vee A x_{m} \vee q_{m+1} \vee \cdots \vee q_{k-2} \vee w \vee A(S) . \tag{5}
\end{align*}
$$

Since $v=x_{1} \vee \cdots \vee x_{k-2} \vee x_{k-1} \vee x_{1} \in M \cap N$, taking $s=x_{1}, s=x_{k-1}$ respectively and comparing (4) and (5), we have that

$$
\begin{aligned}
T(v) & =A x_{1} \vee \cdots \vee A x_{m} \vee q_{m+1} \vee \cdots \vee q_{k-2} \vee z \vee A x_{1} \\
& =A x_{1} \vee \cdots \vee A x_{m} \vee q_{m+1} \vee \cdots \vee q_{k-2} \vee w \vee A x_{k-1} .
\end{aligned}
$$

It follows from (1) that the factors in both expressions are equal (counting multiplicity). By the choice of $x_{m+1}, \ldots, x_{k-1},\left\langle A x_{1}\right\rangle \neq\left\langle A x_{k-1}\right\rangle$ whence $\left\langle A x_{1}\right\rangle$ must be $\langle w\rangle$ or one of the factors $\left\langle q_{i}\right\rangle$, for $i=m+1, \ldots, k-2$. We may assume without loss of generality that $q_{m+1}=\lambda_{1} A x_{1}$. Then by the symmetry of symmetric tensor products we can write, using the expression for $T(N)$,

$$
\begin{equation*}
T\left(x_{1} \vee \cdots \vee x_{k-2} \vee x_{1} \vee S\right)=\lambda_{1} A x_{1} \vee A x_{1} \vee \cdots \vee A x_{m} \vee q_{m+2} \vee \cdots \vee q_{k-2} \vee w \vee A(S) \tag{6}
\end{equation*}
$$

If $p_{1} \geq 3$ take the pair of adjacent type- 1 subspaces $M=x_{1} \vee x_{1} \vee \cdots \vee x_{k-2} \vee S$ and $N=x_{1} \vee x_{1} \vee \cdots \vee x_{k-3} \vee x_{1} \vee S$. The first is the former N for which (6) holds. In the second $\left\langle x_{1}\right\rangle$ appears 3 times. Reasoning as above we now obtain that $\left\langle A x_{1}\right\rangle$ is a factor of $T(N)$ with multiplicity at least 3 . Repeating this construction $p_{1}-1$ times we get that $A x_{1}$ is a factor of $T\left(x_{1} \vee \cdots \vee x_{1} \vee \cdots \vee x_{m} \vee \cdots \vee x_{m}\right)$ with multiplicity p_{1}. Completing this procedure with all the $x_{i}{ }^{\prime} s$ such that $p_{i} \geq 2$ we obtain a chain of pairs of type-1 subspaces, the last of which is

$$
x_{1} \vee \cdots \vee x_{1} \vee \cdots \vee x_{m} \vee \cdots \vee x_{m} \vee S
$$

where x_{i} appears p_{i}-times except for the last one which appears $p_{m}-1$ times. (Of course this could be zero.) We also have that
$T\left(x_{1} \vee \cdots \vee x_{1} \vee \cdots \vee x_{m} \vee \cdots \vee x_{m} \vee S\right)=\lambda_{x} A x_{1} \vee \cdots \vee A x_{1} \vee \cdots \vee A x_{m} \vee \cdots \vee A x_{m} \vee A(S)$
and taking $s=x_{m}$ we get (3).
The last expression above also shows that the value of λ_{x} is independent of s in S. For decomposables x and y in $\bigotimes_{s, k} S$ which are not in the same type- 1 subspace consider type-1 subspaces M_{x} and M_{y} containing x and y and a chain of pairs of adjacent type-1 subspaces from M_{x} to M_{y}. Since the intersection of any two consecutive subspaces is non empty we have that $\lambda_{x}=\lambda_{M_{x}}=\lambda_{M_{y}}=\lambda_{y}$. Then $T(x)=\lambda A x_{1} \vee \cdots \vee A x_{k}$ or equivalently if $\tilde{A}=\lambda^{\frac{1}{k}} A, T(x)= \pm \tilde{A} x_{1} \vee \cdots \vee \tilde{A} x_{k}$ which completes the proof of the theorem.

Note that the sign \pm in the statement of Theorem 9 may be avoided if the spaces are complex or if they are real and k is odd.

3 Families of complemented symmetric seminorms

The purpose of this section is to describe a method of obtaining families of seminorms on spaces of symmetric tensors, $\left(\alpha_{k}\right)_{k}$ such that for each k and l with $k<l$ and each Banach space E we have 'natural' identifications of $\bigotimes_{s, k, \alpha_{k}} E$ with a complemented subspace of $\bigotimes_{s, l, \alpha_{l}} E$. These families will prove useful in the next section when we study decomposable mapping between Banach spaces. Recall that ϵ_{k} and π_{k} denote, respectively, the injective and symmetric projective tensor norms on $\bigotimes_{k} E$ while $\epsilon_{s, k}$ and $\pi_{s, k}$ denote, respectively,
the symmetric injective and symmetric projective tensor norms on $\bigotimes_{s, k} E$. It is worthwhile to note that although the restriction of π_{k} to the symmetric k-tensors, usually denoted by $\left.\pi_{k}\right|_{s}$, does not coincide with $\pi_{s, k}$, both are equivalent norms on $\bigotimes_{s, k} E$. The same holds for $\left.\epsilon_{k}\right|_{s}$, the restriction of ϵ_{k} to the symmetric k-tensors and the symmetric injective tensor norm $\epsilon_{s, k}$.

In what follows, we will work with the following definition.

Definition 10 Let E be a Banach space. A family of complemented symmetric seminorms on E is a function α which assigns to each k in \mathbf{N} a norm α_{k} on $\bigotimes_{s, k} E$ such that
(i) for each positive integer k, α_{k} is a reasonable symmetric norm on $\bigotimes_{s, k} E$ in the sense that $\epsilon_{s, k} \leq \alpha_{k} \leq \pi_{s, k}$,
(ii) for any pair of positive integers k and l there are constants $C_{k, l}$ and $D_{k, l}$ such that

$$
\alpha_{k+l}(\theta \vee \xi) \leq C_{k, l} \alpha_{k}(\theta) \alpha_{l}(\xi) \leq D_{k, l} \alpha_{k+l}(\theta \vee \xi)
$$

for all θ in $\bigotimes_{s, k} E$ and ξ in $\otimes_{s, l} E$.
By a family of complemented symmetric seminorms we shall understand a function α which assigns to each Banach space E a family of complemented symmetric seminorms on E.

Condition (ii) tells us that for any fixed non-zero θ in $\bigotimes_{s, l} E$ the mapping $\xi \longmapsto \theta \vee \xi$ is an isomorphism of $\bigotimes_{s, k, \alpha_{k}} E$ onto the subspace $\left\{\theta \vee \xi: \xi \in \bigotimes_{s, k} E\right\}$ of $\bigotimes_{s, k+l} E$ with the topology induced from $\bigotimes_{s, k+l, \alpha_{k+l}} E$. We denote the completion of $\bigotimes_{s, k, \alpha_{k}} E$ with respect to the norm α_{k} by $\widehat{\bigotimes}_{s, k, \alpha_{k}} E$.

Let us give some examples of families of complemented symmetric seminorms. One of the methods at our disposal is via the concepts of tensor norms of order k and s-tensor norm of order k introduced by Floret in [12].

According to Floret, [12], a tensor norm of order k is an assignment to each k-tuple $\left(E_{1}, \ldots, E_{k}\right)$ of normed spaces a norm $\beta\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ on $E_{1} \otimes E_{2} \otimes \cdots \otimes E_{k}$ (denoted by $\otimes_{\beta, j=1}^{k} E_{j}$) such that
(i) $\epsilon_{k} \leq \beta \leq \pi_{k}$,
(ii) Given continuous linear mappings $A_{j}: E_{j} \rightarrow F_{j}, j=1, \ldots, k$,

$$
\left\|\bigotimes_{j=1}^{k} A_{j}: \bigotimes_{\beta, j=1}^{k} E_{j} \rightarrow \bigotimes_{\beta, j=1}^{k} F_{j}\right\|=\left\|A_{1}\right\| \ldots\left\|A_{k}\right\|
$$

In an analogous way, in [12] an s-tensor norm of order k is defined as an assignment to each normed space E a norm α on $\bigotimes_{s, k} E$ (denoted $\left.\bigotimes_{s, k, \alpha} E\right)$ such that
(i) $\epsilon_{s, k} \leq \alpha \leq \pi_{s, k}$,
(ii) for all continuous linear mappings $A: E \rightarrow F$ we have

$$
\left\|\bigotimes_{s, k, \alpha} A: \bigotimes_{s, k, \alpha} E \rightarrow \bigotimes_{s, k, \alpha} F\right\|=\|A\|^{k}
$$

Properties (ii) in the defintion of a tensor norm of order k and an s-norm of order k are known as the metric mapping property. By restriction, each tensor norm of order k to the space of symmetric tensors defines an s-tensor norm of order k. Floret, [12, Norm Extension Theorem] shows that the converse is also true in that given any s-tensor norm, α, of order k there is a tensor norm of the same order, β, such that for every Banach space E the norm α on $\bigotimes_{s, k, \alpha} E$ is the restriction of β to $\bigotimes_{s, k} E$.

Let $\beta=\left(\beta_{k}\right)_{k}$ be a family of tensor norms with β_{k} of order k. We shall say that β is an associative family of tensor norms if for every pair of positive integers k and l and for every $k+l$-tuple of normed spaces $E_{1}, \ldots, E_{k}, E_{k+1}, \ldots, E_{k+l}$ we have that $\beta_{k+l}\left(E_{1}, \ldots, E_{k+l}\right)$ is isomorphic to $\beta_{2}\left(\bigotimes_{\beta_{k}, i=1}^{k} E_{i}, \bigotimes_{\beta_{l}, j=1}^{l} E_{k+j}\right)$. It can be shown that if $\left(\beta_{k}\right)_{k}$ is an associative family of tensor norms then their restriction to the spaces of symmetric tensor products is a family of complemented symmetric seminorms.

It is readily checked that both the families of injective and projective tensor norms are associative families of tensor norms. Therefore, $\left.\epsilon_{k}\right|_{s}$ and $\left.\pi_{k}\right|_{s}$, the respective restriction to the symmetric k-tensors, are families of complemented symmetric seminorms and so are both $\epsilon_{s}=\left(\epsilon_{s, k}\right)_{k}$ and $\pi_{s}=\left(\pi_{s, k}\right)_{k}$ by the equivalence mentioned above.

Let us give another example of families of complemented symmetric seminorms, which are related to the class of extendible polynomials. There is, in general, no Hahn-Banach Theorem for k-homogeneous polynomials. However, Kirwan and Ryan, [15], examine which k-homogeneous polynomials on a Banach space E have continuous extensions to every superspace. These polynomials are called extendible. Every algebraic k-homogeneous polynomial on a Banach space E determines a unique linear map from $\bigotimes_{s, k} E$ into \mathbf{K} and the extendible polynomials are those polynomials whose linearization are continuous with respect to a specific norm on $\bigotimes_{s, k} E$, which we now proceed to describe.

First, fix a Banach space F containing E and an injective continuous operator $i: E \rightarrow$ F. Let $i^{k}=\bigotimes_{s, k} i$. Then, i^{k} is a continuous injection of $\bigotimes_{s, k} E$ into $\bigotimes_{s, k} F$. The η^{F} norm on $\bigotimes_{s, k} E$, defined by Carando in [5] is given by $\eta_{s, k}^{F}(z)=\pi_{s, k}\left(i^{k}(z)\right)$. Here, by $\pi_{s, k}$ we mean the symmetric projective norm on $\bigotimes_{s, k} F$. The dual of $\bigotimes_{s, k, \eta_{F}} E$ is the space of all k-homogeneous polynomials on E which have a continuous extension to F. Once a k-homogeneous polynomial on E can be extended to $\ell_{\infty}\left(B_{E^{\prime}}\right)$ it can be extened to every superspace of E and we simply denote $\eta_{\ell_{\infty}\left(B_{E^{\prime}}\right)}$ by η, see [5].

Let $C_{k, l}$ and $D_{k, l}$ denote the smallest constants such that

$$
\pi_{s, k}(\theta) \pi_{s, l}(\xi) \leq C_{k, l} \pi_{s, k+l}(\theta \vee \xi)
$$

and

$$
\pi_{s, k+l}(\theta \vee \xi) \leq D_{k, l} \pi_{s, k}(\theta) \pi_{s, l}(\xi)
$$

for all θ in $\bigotimes_{s, k} E$, all ξ in $\bigotimes_{s, l} E$ and all Banach spaces E. Suppose we are given θ in $\bigotimes_{s, k} E$ and ξ in $\bigotimes_{s, l} E$. Then, clearly we have that $i^{k}(\theta) \vee i^{l}(\xi)=i^{k+l}(\theta \vee \xi)$. Thus we have that

$$
\begin{aligned}
\eta_{s, k}^{F}(\theta) \eta_{s, l}^{F}(\xi) & =\pi_{s, k}\left(i^{k}(\theta)\right) \pi_{s, l}\left(i^{l}(\xi)\right) \\
& \leq C_{k, l} \pi_{s, k+l}\left(i^{k}(\theta) \vee i^{l}(\xi)\right) \\
& =C_{k, l} \pi_{s, k+l}\left(i^{k+l}(\theta \vee \xi)\right) \\
& =C_{k, l} \eta_{s, k+l}^{F}(\theta \vee \xi)
\end{aligned}
$$

Similarly we get that

$$
\eta_{s, k+l}^{F}(\theta \vee \xi) \leq D_{k, l} \eta_{s, k}^{F}(\theta) \eta_{s, l}^{F}(\xi)
$$

for all θ in $\bigotimes_{s, k} E$ and all ξ in $\bigotimes_{s, l} E$. In particular, when we take $F=\ell_{\infty}\left(B_{E^{\prime}}\right)$ we get constants $C_{k, l}$ and $D_{k, l}$ such that $\eta_{s, k}(\theta) \eta_{s, l}(\xi) \leq C_{k, l} \eta_{s, k+l}(\theta \vee \xi)$ and $\eta_{s, k+l}(\theta \vee$ $\xi) \leq D_{k, l} \eta_{s, k}(\theta) \eta_{s, l}(\xi)$ for all θ in $\bigotimes_{s, k} E$ and all ξ in $\bigotimes_{s, l} E$. Therefore η is a family of complemented seminorms. In addition, given a Banach space F, for each Banach space E which is a subspace of F, η^{F} will be a family of complemented seminorms on E. We note that since η^{F} is not an s-norm of order k, the fact that it is a family of complemented seminorms on a given Banach space E must be established with a different method to that used for ϵ_{s} and π_{s} above.

Let E and F be Banach spaces and $A: E \rightarrow F$ be a linear operator. Given a positive k we use A^{k} to denote the linear operator from $\bigotimes_{s, k} E$ into $\bigotimes_{s, k} F$ defined by

$$
A^{k}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

for all x_{1}, \ldots, x_{k} in E and extended by linearity to $\bigotimes_{s, k} E$. Let α_{k} be a symmetric tensor norm of order k. Since α_{k} satisfies the metric mapping property, A^{k} is continuous. An operator ideal \mathcal{A} is said to be α-tensorstable for the tensor norm α if $A \in \mathcal{A}\left(E_{1} ; F_{1}\right)$, $B \in \mathcal{A}\left(E_{2} ; F_{2}\right)$ implies that $A \otimes B \in \mathcal{A}\left(E_{1} \bigotimes_{\alpha} E_{2} ; F_{1} \bigotimes_{\alpha} F_{2}\right)$. See [10, Section 34] for a discussion of tensorstable ideals. The following proposition investigates the converse of this result for families of complemented symmetric seminorms.

Proposition 11 Let E and F be Banach spaces and α and β be families of complemented symmetric seminorms on E and F respectively. Let $A: E \rightarrow F$ be a continuous linear operator and \mathcal{A} be an operator ideal. If $A^{k} \in \mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, k, \beta_{k}} F\right)$ then $A \in \mathcal{A}(E ; F)$.
Proof: We adapt some ideas from [3]. Fix e in E and choose ϕ in F^{\prime} with $\phi(A e)=1$. Given a positive integer m we define $j_{m}: \bigotimes_{s, m} E \rightarrow \bigotimes_{s, m+1} E$ by

$$
j_{m}\left(x^{m}\right)=\sum_{i=1}^{m+1}\binom{m+1}{i}(-1)^{i+1} \phi(A x)^{i-1} \underbrace{e \vee \cdots \vee e}_{\mathrm{i} \text { times }} \vee \underbrace{x \vee \cdots \vee x}_{\mathrm{m}-\mathrm{i}+1 \text { times }}
$$

on the elementary tensors and extended by linearity to $\bigotimes_{s, m} E$. It is easily checked that j_{m} satisfies

$$
\phi(A x) j_{m}\left(x^{m}\right)=x^{m+1}-(x-\phi(A x) e)^{m+1}
$$

We also define $p_{m}: \bigotimes_{s, m+1} F \rightarrow \bigotimes_{s, m} F$ on the elementary tensors by

$$
p_{m}\left(y^{m+1}\right)=\phi(y) y^{m}
$$

and extended by linearity to $\bigotimes_{s, m+1} F$.
We claim that for each integer m we have

$$
p_{m} \circ A^{m+1} \circ j_{m}=A^{m}
$$

To see this consider $\phi(A x) x^{m}$ in $\bigotimes_{s, m} E$. Then

$$
\begin{aligned}
p_{m} \circ A^{m+1} \circ j_{m} \phi(A x)\left(x^{m}\right) & =p_{m} \circ A^{m+1}\left(x^{m+1}-(x-\phi(A x) e)^{m+1}\right) \\
& =p_{m}\left((A x)^{m+1}-(A x-\phi(A x) A e)^{m+1}\right) \\
& =\phi(A x)(A x)^{m}-\phi(A x-\phi(A x) A e)(A x-\phi(A x) A e)^{m} \\
& =\phi(A x)(A x)^{m} .
\end{aligned}
$$

By [3, Lemma 2], it is possible to write each θ in $\bigotimes_{s, k} E$ as $\theta=\sum_{r=1}^{l} \lambda_{r} y_{r}^{k}$ with $\phi\left(A y_{r}\right) \neq 0$ it follows that

$$
p_{1} \cdots p_{k-1} \circ A^{k} \circ j_{k-1} \cdots j_{2} j_{1}=A
$$

As the mappings j_{1}, \ldots, j_{k-1} and the composition $p_{1} \cdots p_{k-1}$, induced by $p_{1} \cdots p_{k-1}\left(x^{k}\right)=$ $\phi^{k}(x) x$, are continuous linear mappings and A^{k} is in $\mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, k, \beta_{k}} F\right)$ it follows that A belongs to $\mathcal{A}(E ; F)$.

Before we finish this section we show that for any α a family of complemented symmetric seminorms on a Banach space E there is a 'natural' way in which the space of symmetric k-fold tensors $\bigotimes_{s, k, \alpha_{k}} E$ can be identified with a complemented subspace of the space of $\bigotimes_{s, k+1, \alpha_{k+1}} E$. Fix a nonzero element e in E and choose ϕ in E^{\prime} with $\phi(e)=1$. Define $S_{k+1, e}$ by

$$
S_{k+1, e}:=e \vee \bigotimes_{s, k} E=\left\{e \vee \theta: \theta \in \bigotimes_{s, k} E\right\}
$$

and endow $S_{k+1, e}$ with the topology induced from $\bigotimes_{s, k+1, \alpha_{k+1}} E$. The mapping $\xi \longmapsto e \vee \xi$ is an isomorphism of $\bigotimes_{s, k, \alpha_{k}} E$ onto $S_{k+1, e}$. Let us see that $S_{k+1, e}$ is a complemented subspace of $\bigotimes_{s, k+1} E$. Define $\Pi_{e}: \bigotimes_{s, k+1} E \rightarrow \bigotimes_{s, k+1} E$ by

$$
\begin{aligned}
& \Pi_{e}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k+1}\right)= \\
& \quad x_{1} \vee x_{2} \vee \cdots \vee x_{k+1}-\left(x_{1}-\phi\left(x_{1}\right) e\right) \vee\left(x_{2}-\phi\left(x_{2}\right) e\right) \vee \cdots \vee\left(x_{k+1}-\phi\left(x_{k+1}\right) e\right)
\end{aligned}
$$

on basic symmetric tensors and extend to $\bigotimes_{s, k+1} E$ by linearity. To see that Π_{e} is welldefined suppose that $\theta=\sum_{i=1}^{m} \lambda_{i} x_{i}^{k+1}=\sum_{j=1}^{n} \delta_{j} y_{j}^{k+1}$. Given any $k+1$ homogeneous polynomial P on E define another $k+1$ homogeneous polynomial Q by

$$
Q(x)=\left\langle P, \Pi_{e}\left(x^{k+1}\right)\right\rangle=P(x)-P(x-\phi(x) e) .
$$

If L_{P} is the symmetric k-linear form associated with P we have that

$$
Q(x)=\sum_{i=1}^{k+1}\binom{k+1}{i}(-1)^{i+1} \phi(x)^{i} L_{P}(\underbrace{e, \ldots, e}_{\mathrm{i} \text { times }} \underbrace{x, \ldots, x}_{\mathrm{k}-\mathrm{i}+1 \text { times }}) .
$$

Then for each $k+1$ homogeneous polynomial P on E we have

$$
\left\langle P, \Pi_{e}\left(\sum_{i=1}^{m} \lambda_{i} x_{i}^{k+1}\right)\right\rangle=\left\langle Q, \sum_{i=1}^{m} \lambda_{i} x_{i}^{k+1}\right\rangle=\left\langle Q, \sum_{j=1}^{n} \delta_{j} y_{j}^{k+1}\right\rangle=\left\langle P, \Pi_{e}\left(\sum_{j=1}^{n} \delta_{j} y_{j}^{k+1}\right)\right\rangle
$$

and therefore $\Pi_{e}\left(\sum_{i=1}^{m} \lambda_{i} x_{i}^{k+1}\right)=\Pi_{e}\left(\sum_{j=1}^{n} \delta_{j} y_{j}^{k+1}\right)$.
Clearly Π_{e} maps $\bigotimes_{s, k+1} E$ into $S_{k+1, e}$. To see that Π_{e} maps $\bigotimes_{s, k+1} E$ onto $S_{k+1, e}$ we note that

$$
\begin{aligned}
\Pi_{e}\left(e \vee x_{2} \vee \cdots \vee x_{k}\right) & =e \vee x_{2} \vee \cdots \vee x_{k}-(e-e) \vee\left(x_{2}-\phi\left(x_{2}\right) e\right) \vee \cdots \vee\left(x_{k}-\phi\left(x_{k}\right) e\right) \\
& =e \vee x_{2} \vee \cdots \vee x_{k}-0 \\
& =e \vee x_{2} \vee \cdots \vee x_{k} .
\end{aligned}
$$

Since $\Pi_{e}\left(\Pi_{e}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)\right)=\Pi_{e}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)$ we see that Π_{e} is a projection of $\bigotimes_{s, k+1} E$ onto $S_{k+1, e}$.

4 Decomposable mappings between symmetric tensor spaces of the same degree

Our main result of this section is as follows.
Theorem 12 Let E and F be Banach spaces of dimension at least $k+1$, and let α and β be families of complemented symmetric seminorms on E and F respectively. Suppose that $T: \widehat{\bigotimes}_{s, k, \alpha_{k}} E \rightarrow \widehat{\bigotimes}_{s, k, \beta_{k}} F$ is a decomposable linear operator. Then there is a continuous injective linear operator $A: E \rightarrow F$ such that $T= \pm A^{k}$. Moreover, given any operator ideal \mathcal{A}, if $T \in \mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, k, \beta_{k}} F\right)$ then $A \in \mathcal{A}(E ; F)$.

Proof: Fix x_{o} in E. Let S be a finite dimensional subspace of E containing x_{o} which has dimension at least $k+1$. Consider $\left.T\right|_{S}: \bigotimes_{s, k, \alpha_{k}} S \rightarrow \widehat{\bigotimes}_{s, k, \beta_{k}} F$. By Theorem 9 we know that there is an injective linear operator $A_{S}: S \rightarrow F$ such that

$$
\left.T\right|_{S}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A_{S} x_{1} \vee A_{S} x_{2} \vee \cdots \vee A_{S} x_{k}
$$

for all $x_{1}, x_{2}, \ldots, x_{k}$ in S. This means that T is a power-preserver and since $\left\|A_{S}(x)\right\|^{k}=$ $\beta_{k}\left(A_{S}(x)^{k}\right)=\left\|\left.T\right|_{S}\left(x^{k}\right)\right\|$ we have $\left\|A_{S}\right\| \leq\left\|\left.T\right|_{S}\right\|^{1 / k} \leq\|T\|^{1 / k}$. We note that the sign \pm can easily be shown to independent of the subspace S. Choose y_{o} in F so that $T\left(x_{o}^{k}\right)= \pm y_{o}^{k}$. Using [4, Lemma 4] we may suppose that in addition to A_{S} satisfying

$$
\left.T\right|_{S}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A_{S} x_{1} \vee A_{S} x_{2} \vee \cdots \vee A_{S} x_{k}
$$

we have that $A_{S}\left(x_{o}\right)=y_{o}$. These two conditions uniquely determine A_{S}. For finitedimensional subspaces S and \tilde{S} of E containing x_{o} with $S \subset \tilde{S}$ we have that $\left.A_{\tilde{S}}\right|_{S}=A_{S}$. Since E is the union of its finite dimensional subspaces and $\left\|A_{S}\right\| \leq\|T\|^{1 / k}$ we have that if follows that $A(x)=A_{S}(x)$, where S is any finite dimensional subspace of E which contains x_{o}, defines an injective continuous linear mapping from E into F such that

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

for all x_{1}, \ldots, x_{k} in E. Since T maps $\widehat{\bigotimes}_{s, k, \alpha_{k}} E$ into $\widehat{\bigotimes}_{s, k, \beta_{k}} F$ it follows that A maps E into F.

If T is in $\mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, k, \beta_{k}} F\right)$ then it follows from Proposition 11 that A belongs to $\mathcal{A}(E ; F)$.

In the definition of a decomposable linear mapping T we require $\operatorname{ker} T \cap\left\{x_{1} \vee \cdots \vee\right.$ $\left.x_{k}: x_{1}, \ldots, x_{k} \in E\right\}=\{0\}$. To see that this condition is necessary let E be a Banach space of dimension at least 2 and $k \geq 2$ be a positive integer. Consider k nonzero vectors $z_{1}, z_{2}, \ldots, z_{k}$ in E with z_{1} and z_{2} linearly independent. Let T be the projection of $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E$ onto the subspace spanned by $z_{1} \vee z_{2} \vee \cdots \vee z_{k}$. Then T maps decomposable elements of $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E$ to decomposable elements of $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E$. Suppose that there is a continuous linear mapping $A: E \rightarrow E$ such that

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

for all x_{1}, \ldots, x_{k} in E. As the range of T has dimension 1 , the range of A must also be onedimensional. However, if that is the case, the image of T has the form $\{\lambda y \vee \cdots \vee y: \lambda \in \mathbf{K}\}$ which is clearly not possible since z_{1}, z_{2} were chosen to be linearly independent.

Taking α or β equal to ϵ or π in Theorem 12 we get that if E and F are Banach spaces of dimension at least $k+1$ and $T: \widehat{\bigotimes}_{s, k, \pi_{s, k}} E \rightarrow \widehat{\bigotimes}_{s, k, \pi_{s, k}} F$ (resp. $T: \widehat{\bigotimes}_{s, k, \epsilon_{s, k}} E \rightarrow \widehat{\bigotimes}_{s, k, \epsilon_{s, k}} F$, $\left.T: \widehat{\bigotimes}_{s, k, \pi_{s, k}} E \rightarrow \widehat{\bigotimes}_{s, k, \epsilon_{s, k}} F\right)$ is a continuous decomposable linear operator then there is an injective operator $A \in \mathcal{L}(E ; F)$ such that

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)= \pm A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

for all x_{1}, \ldots, x_{k} in E. Moreover, given any operator ideal \mathcal{A}, when T belongs to \mathcal{A} then $A \in \mathcal{A}(E ; F)$.

The analogous result is also true when consider continuous linear operators from $\widehat{\bigotimes}_{s, k, \epsilon_{s, k}} E$ to $\widehat{\bigotimes}_{s, k, \pi_{s, k}} F$. It is still an open question if the set of all continuous linear operators $A: E \rightarrow F$, such that the mapping A^{k}, from $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E$ to $\widehat{\bigotimes}_{s, k, \epsilon_{s, k}} F$,

$$
x_{1} \vee x_{2} \vee \cdots \vee x_{k} \longmapsto A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

is well defined, is a subspace of $\mathcal{L}(E ; F)$, see [10, Section 24] and [14]. It is known that all integral operators are ' $\epsilon-\pi$ '-continuous, see [6], on the other hand John, [13], shows that every ' $\epsilon-\pi^{\prime}$ '-continuous operator of degree k is (k, k, k)-absolutely summing. These two ideals provide an lower and upper bound for the set of ' $\epsilon-\pi^{\prime}$ '-continuous operators.

5 Mappings between spaces of different degrees

In this section we consider decomposable mappings from the space $\widehat{\bigotimes}_{s, k, \alpha_{k}} E$ into the space $\widehat{\bigotimes}_{s, l, \beta_{l}} F$ where $k \leq l$.

The following lemma is proved in much the same way as [19, Lemma 5].
Lemma 13 Let S be a finite dimensional space, F be a Banach space. Let $k \leq l$, α be a reasonable crossnorms norm of order l and let $T: \bigotimes_{s, k} S \rightarrow \widehat{\bigotimes}_{s, l, \alpha} F$ be a decomposable mapping. Then the images of all type-1 subspaces in $\bigotimes_{s, k} S$ under T have $l-k$ common factors.

Proposition 14 Let S be a finite dimensional space of dimension at least $k+1$ and F be a Banach space. Let $k \leq l$, α be a family of complemented symmetric seminorms and let $T: \bigotimes_{s, k} S \rightarrow \widehat{\bigotimes}_{s, l, \alpha_{l}} F$ be a decomposable mapping. Then there is a decomposable tensor, w, of length $l-k, w=w_{1} \vee \cdots \vee w_{k-l}$, and an injective linear operator $A \in \mathcal{L}(S ; F)$ such that for any $x=x_{1} \vee \cdots \vee x_{k}$ in $\bigotimes_{s, k} S$,

$$
T(x)=w \vee A^{k}(x)
$$

Proof: By Lemma 13 there is a decomposable tensor w of length $l-k$ such that the image of $\bigotimes_{s, k} S$ under T is contained in $w \vee\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} F\right)$. Therefore T induces a decomposable mapping $T_{1}: \bigotimes_{s, k} S \rightarrow \widehat{\bigotimes}_{s, k, \alpha_{k}} F$ such that $T(x)=w \vee T_{1}(x)$ for all x in $\bigotimes_{s, k} S$. By Theorem 9, there exists a continuous injective linear operator $A: S \rightarrow F$ such that for all x_{1}, \ldots, x_{k} in $S, T_{1}\left(x_{1} \vee \cdots \vee x_{k}\right)= \pm A x_{1} \vee \cdots \vee A x_{k}$. Replacing w by $\pm w$ if necessary, this means that

$$
T(x)=w \vee A x_{1} \vee \cdots \vee A x_{k}
$$

for $x=x_{1} \vee \cdots \vee x_{k}$ in $\bigotimes_{s, k} S$.
Note that using condition (ii) in the definition of a family of complemented symmetric seminorms, we obtain that $\|A\| \leq M_{k, l}\|T\|^{1 / k}$ is independent of the space S.

Theorem 15 Let E and F be Banach spaces of dimension at least $k+1$, let $k \leq l$ and α and β be families of complemented seminorms on E and F respectively. Let $T: \widehat{\bigotimes}_{s, k, \alpha_{k}} E \rightarrow \widehat{\bigotimes}_{s, l, \beta_{l}} F$ be a decomposable linear operator. Then there is a decomposable tensor w of length $l-k \bigotimes_{s, l-k} F$ and an injective operator $A \in \mathcal{L}(E ; F)$ such that for any $x=x_{1} \vee \cdots \vee x_{k}$ in $\bigotimes_{s, k} E$

$$
T(x)=w \vee A^{k}(x)
$$

Moreover, given any operator ideal \mathcal{A}, if $T \in \mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, l, \beta_{l}} F\right)$, then $A \in \mathcal{A}(E ; F)$.
Proof: Fix x_{o} in E. For each finite dimensional subspace S of E containing x_{o} which has dimension at least $k+1$, Proposition 14 gives a decomposable tensor w_{S} of length $l-k$, an injective linear operator $A_{S}: S \rightarrow F$ and a constant $M_{k, l}$ independent of S with $\left\|A_{S}\right\| \leq M_{k, l}\left\|\left.T\right|_{S}\right\|^{1 / k} \leq M_{k, l}\|T\|^{1 / k}$ such that

$$
\left.T\right|_{S}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)=w_{S} \vee A_{S} x_{1} \vee A_{S} x_{2} \vee \cdots \vee A_{S} x_{k}
$$

for all x_{1}, \ldots, x_{k} in S.
Now consider two finite dimensional subspaces S and \widetilde{S} of E which have dimension strictly greater than $k+1$ with $S \subset \widetilde{S}$. Suppose

$$
w_{\widetilde{S}}=\tilde{w}_{1} \vee \tilde{w}_{2} \vee \cdots \vee \tilde{w}_{l-k}
$$

Choose x_{1}, \ldots, x_{k} in S so that none of $A_{S} x_{j}, j=1, \ldots, k$, lie in $\left\langle\tilde{w}_{1}\right\rangle \cup\left\langle\tilde{w}_{2}\right\rangle \cup \cdots \cup\left\langle\tilde{w}_{l-k}\right\rangle$. Since

$$
w_{S} \vee A_{S} x_{1} \vee A_{S} x_{2} \vee \cdots \vee A_{S} x_{k}=w_{\tilde{S}} \vee A_{\widetilde{S}} x_{1} \vee A_{\widetilde{S}} x_{2} \vee \cdots \vee A_{\widetilde{S}} x_{k}
$$

we see that each $A_{S} x_{j}$ is a factor of $w_{\tilde{S}} \vee A_{\widetilde{S}} x_{1} \vee A_{\widetilde{S}} x_{2} \vee \cdots \vee A_{\widetilde{S}} x_{k}$. However, by our choice of $x_{j}, A_{S} x_{j}$ cannot be a factor of $w_{\widetilde{S}}$ and hence must be a multiple of one of the $A_{\tilde{S}} x_{i}$'s. It follows from (1) that w_{S} is a scalar multiple of $w_{\tilde{S}}$.

Let $w=w_{S}$ where S is any finite dimensional subspace of E of dimension at least $k+1$. Then for each x in E we have $T\left(x^{k}\right)=w \vee y^{k}$ for some y in F. Choose y_{o} in F such that $T\left(x_{o}^{k}\right)=w \vee y_{o}^{k}$. Another application of [4, Lemma 4] tells us that our choice of A_{S} can be made in such a way that in addition to

$$
\left.T\right|_{S}\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)=w \vee A_{S} x_{1} \vee A_{S} x_{2} \vee \cdots \vee A_{S} x_{k}
$$

for all $x_{1}, x_{2} \ldots, x_{k}$ in S we have $A_{S}\left(x_{o}\right)=y_{o}$ and therefore each A_{S} is uniquely determined. As in Theorem 12 we construct a continuous injective linear operator $A: E \rightarrow F$ with $\left.A\right|_{S}=A_{S}$ for every finite dimensional subspace S of E. An argument similar to that given in Theorem 12 shows that

$$
T\left(x_{1} \vee x_{2} \vee \cdots \vee x_{k}\right)=w \vee A x_{1} \vee A x_{2} \vee \cdots \vee A x_{k}
$$

for all x_{1}, \ldots, x_{k} in E.
If T belongs to $\mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, l, \beta_{l}} F\right)$ then it follows from the discussion at the end of Section 3 that A^{k} will belong to $\mathcal{A}\left(\widehat{\bigotimes}_{s, k, \alpha_{k}} E ; \widehat{\bigotimes}_{s, k, \beta_{k}} F\right)$. It now follows from Proposition 11 that A belongs to $\mathcal{A}(E ; F)$.

In particular the above result is true for mappings from spaces of injective tensor products into spaces of injective tensor products, for mappings from spaces of projective tensor products into spaces of projective tensor products and when we consider mappings from the space of symmetric projective tensors into the space of symmetric injective tensors.

6 Rank-1 preserving mappings between spaces of homogeneous polynomials

Given a Banach space E we use J_{E} to denote the canonical embedding of E into its bidual $E^{\prime \prime}$. As we have mentioned above, there is no Hahn-Banach Theorem for homogeneous polynomials of degree 2 or greater. However, Aron and Berner [1] and Davie and Gamelin [9] show that for every $P \in \mathcal{P}\left({ }^{k} E\right)$ there is a norm-preserving extension of P to $\bar{P} \in$ $\mathcal{P}\left({ }^{k} E^{\prime \prime}\right)$ such that $\bar{P} \circ J_{E}(x)=P(x)$ for all $x \in E$.

Given Banach spaces E and F and an isomorphism $s: E^{\prime} \rightarrow F^{\prime}$ it is shown in [16] that the mapping \bar{s} defined by $\bar{s}(P)=\bar{P} \circ s^{\prime} \circ J_{F}$ induces an isomorphism of $\mathcal{P}_{A}\left({ }^{k} E\right)$ onto $\mathcal{P}_{A}\left({ }^{k} F\right)$ and of $\mathcal{P}_{N}\left({ }^{k} E\right)$ onto $\mathcal{P}_{N}\left({ }^{k} F\right)$. We will see that mappings of this form are precisely those operators between spaces of approximable and nuclear homogeneous polynomials which preserve rank-1 polynomials.

Aron and Schottenloher, [2], show that given any non zero linear functional ϕ on a Banach space E and any positive integer k the mapping $r: P \longmapsto \phi P$ is an injective linear mapping of $\mathcal{P}\left({ }^{k} E\right)$ into $\mathcal{P}\left({ }^{k+1} E\right)$. Moreover, when both spaces are given the compact open topology of uniform convergence on compact subspace of E, this mapping identifies $\mathcal{P}\left({ }^{k} E\right)$ with a complemented subspace of $\mathcal{P}\left({ }^{k+1} E\right)$. The mapping r maps rank- 1 polynomials to rank-1 polynomials. The following results show that for the subspaces of approximable and nuclear polynomials a composition of the types of mappings obtained in [2] and in [16] give all linear mappings which map rank-1 polynomials to rank-1 polynomials. To obtain these results we use the one-to-one correspondence between spaces of injective symmetric tensor products, $\widehat{\bigotimes}_{s, k, \epsilon_{s, k}} E^{\prime}$, and approximable polynomials, $\mathcal{P}_{A}\left({ }^{k} E\right)$, and the one-to-one correspondence between spaces of projective symmetric tensor products, $\widehat{\bigotimes}_{s, k, \pi_{s, k}} E^{\prime}$, and nuclear polynomials, $\mathcal{P}_{N}\left({ }^{k} E\right)$, for spaces whose dual have the approximation property together with Theorems 12 and 15.

Theorem 16 Let E and F be Banach spaces of dimension at least $k+1$. Let $k \leq l$ and $T: \mathcal{P}_{A}\left({ }^{k} E\right) \rightarrow \mathcal{P}_{A}\left({ }^{l} F\right)$ be an injective linear operator which maps rank-1 polynomials to
rank-1 polynomials. Then there are $\psi_{1}, \ldots, \psi_{l-k}$ in F^{\prime} and a continuous injective linear operator $s: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)=\psi_{1} \cdots \psi_{l-k} \bar{P} \circ s^{\prime} \circ J_{F}
$$

for all $P \in \mathcal{P}_{A}\left({ }^{k} E\right)$. Moreover, given any operator ideal \mathcal{A}, if $T \in \mathcal{A}\left(\mathcal{P}_{A}\left({ }^{k} E\right) ; \mathcal{P}_{A}\left({ }^{l} F\right)\right)$ then $s \in \mathcal{A}\left(E^{\prime} ; F^{\prime}\right)$.

From Theorem 15 we obtain the following result.

Theorem 17 Let E and F be Banach spaces of dimension at least $k+1$ whose duals have the approximation property. Let $k \leq l$ and $T: \mathcal{P}_{N}\left({ }^{k} E\right) \rightarrow \mathcal{P}_{N}\left({ }^{l} F\right)$ be an injective linear operator which maps rank-1 polynomials to rank-1 polynomials. Then there are $\psi_{1}, \ldots, \psi_{l-k}$ in F^{\prime} and a continuous injective linear operator $s: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)=\psi_{1} \cdots \psi_{l-k} \bar{P} \circ s^{\prime} \circ J_{F}
$$

for all $P \in \mathcal{P}_{N}\left({ }^{k} E\right)$. Moreover, given any operator ideal \mathcal{A}, if $T \in \mathcal{A}\left(\mathcal{P}_{N}\left({ }^{k} E\right) ; \mathcal{P}_{N}\left({ }^{l} F\right)\right)$ then $s \in \mathcal{A}\left(E^{\prime} ; F^{\prime}\right)$.

Theorem 18 Let E and F be Banach spaces of dimension at least $k+1$ such that E^{\prime} has the approximation property. Let $k \leq l$ and $T: \mathcal{P}_{N}\left({ }^{k} E\right) \rightarrow \mathcal{P}_{A}\left({ }^{l} F\right)$ be an injective linear operator which maps rank-1 polynomials to rank-1 polynomials. Then there are $\psi_{1}, \ldots, \psi_{l-k}$ in F^{\prime} and a continuous injective linear operator $s: E^{\prime} \rightarrow F^{\prime}$ such that

$$
T(P)=\psi_{1} \cdots \psi_{l-k} \bar{P} \circ s^{\prime} \circ J_{F}
$$

for all $P \in \mathcal{P}_{N}\left({ }^{k} E\right)$. Moreover, given any operator ideal \mathcal{A}, if $T \in \mathcal{A}\left(\mathcal{P}_{A}\left({ }^{k} E\right) ; \mathcal{P}_{N}\left({ }^{l} F\right)\right)$ then $s \in \mathcal{A}\left(E^{\prime} ; F^{\prime}\right)$.

Acknowledgements. The authors are grateful to Daniel Carando for posing a question which led to the extension of some of the results to spaces of different degrees. The authors also wish to thank the referee for his/her very useful comments and remarks. The second author wishes to express her gratitude to the Department of Mathematics, University College Dublin, for its hospitality during her visit of April-May 2005 when this paper was initiated.

References

[1] Aron R.M. \& Berner P., A Hahn-Banach extension theorem for analytic mappings, Bull. Math. Soc. France, 106 (1978), 3-24.
[2] Aron R.M. \& Schottenloher M., Compact holomorphic mappings on Banach spaces and the approximation property. J. of Funct. Anal., 21 (1) (1976), 7-30.
[3] Blasco F., Complementation in spaces of symmetric tensor products and polynomials, Studia Math., 123, (2), (1997), 165-173.
[4] Boyd C. \& Lassalle S., Isometries between spaces of homogeneous polynomials, J. Functional Analysis, 224 (2) (2005), 281-295.
[5] Carando D., Extendible polynomials on Banach spaces, J. Math. Anal. Appl., 233 (1) (1999), 359-372.
[6] Cilia R. \& Gutiérrez J.M., Polynomial characterization of Asplund spaces, Bull. Belg. Math. Soc. Simon Stevin, 12 (3) (2005), 393-400.
[7] Cummings L., Decomposable symmetric tensors, Pacific J. Math., 135 (1970), 65-77.
[8] Cummings L., Transformations of symmetric tensors, Pacific J. Math., 342 (1972), 603-613.
[9] Davie A.M. \& Gamelin T.W., A theorem on polynomial-star approximation, Proc. Amer. Math. Soc., 106 (1989), 351-356.
[10] Defant A. \& Floret K., Tensor norms and operator ideals, North-Holland Mathematical Studies, 176 North-Holland, (1993).
[11] Dineen S., Complex analysis on infinite dimensional spaces, Monographs in Mathematics, Springer-Verlag, (1999).
[12] Floret K., The extension theorem for norms on symmetric tensor products of normed spaces, Recent progress in functional analysis (Valencia, 2000), 225-237, North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001.
[13] John K., Tensor products and nuclearity, Banach space theory and its applications (Bucharest, 1981), 124-129, Lecture Notes in Math., 991 Springer, Berlin, (1983).
[14] John, K., Tensor product of several spaces and nuclearity, Math. Ann., 269 (3) (1984), 333-356.
[15] Kirwan P. \& Ryan R.A., Extendibility of homogeneous polynomials on Banach spaces, Proc. Amer. Math. Soc., 126, (4), (1998), 1023-1029.
[16] Lassalle S. \& Zalduendo I., To what extent does the dual of a Banach space determine the polynomials over E? Ark. Mat., 38 (2000), 343-354.
[17] Lim M-H., Linear transformations on symmetric classes of tensors II, Linear and Multilinear Algebra, 26 (1990), 195-205.
[18] Lim M-H., Rank and tensor rank preservers, Linear and Multilinear Algebra, 33 (1992), 7-21.
[19] Lim M-H., Linear transformations on symmetric spaces II, Can. J. Math., 45 (2) (1993), 357-368.
[20] Westwick R., Transformations on tensor spaces, Pacific J. Math., 23 (1967), 612620.

Christopher Boyd e-mail: Christopher.Boyd@ucd.ie
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland. e-mail: Christopher.Boyd@ucd.ie

Departamento de Matemática, Pab. I - Cuidad Universitaria, (FCEN), Universidad de Buenos Aires, (1428) Buenos Aires, Argentina.
e-mail: slassall@dm.uba.ar

[^0]: *This project was supported in part by Enterprise Ireland, International Collaboration Grant - 2006 (IC/2006/31). The second author was also partially supported by PIP 5272, UBACyT X863 and PICT 05 17-33042.
 *2000 Mathematics Subject Classification: Primary 15A69; Secondary 15A72, 46G25.

