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Abstract

Decomposable mappings from the space of symmetric k-fold tensors over E,⊗
s,k E, to the space of k-fold tensors over F ,

⊗
s,k F , are those linear operators

which map nonzero decomposable elements to nonzero decomposable elements. We
prove that any decomposable mapping is induced by an injective linear operator
between the spaces on which the tensors are defined. Moreover, if the decompos-
able mapping belongs to a given operator ideal, then so does its inducing operator.
This result allows us to classify injective linear operators between spaces of homoge-
neous approximable and between spaces of nuclear polynomials which map rank-1
polynomials to rank-1 polynomials.

1 Introduction

Given Banach spaces E and F there are, in general, far too many linear mappings from

E into F to allow a systematic classification. Extra conditions either on the spaces or

the mappings can sometimes make our task realisable. Symmetric tensor products and

spaces of homogeneous polynomials are places where this additional structure is available.

Indeed, in [4] we were able to classify all linear mappings of the spaces of symmetric injec-

tive tensors which map the set of powers to itself. This in turn allowed us to characterise

the isometries of various spaces of homogeneous polynomials. Decomposable mappings

are similar to power preserving mappings and in this paper we shall look for a character-

isation of decomposable mappings analogous to that obtained in [4] for power preserving

mappings. This will allow us to describe mappings between spaces of homogeneous poly-

nomials which preserve rank-1 polynomials.

The main result of this paper is the characterisation of decomposable mappings be-

tween spaces of symmetric tensor products. The approach we shall take is based on that of

Cummings [8] in his description of decomposable mappings between spaces of symmetric

tensor products over finite dimensional vector spaces. However, the infinite dimensional
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setting requires a more general approach and some of Cummings definitions must be

altered to suit this more general situation.

In section 2 we present the results closely related with the finite dimensional case,

where there is no need to consider any particular tensor norm. In the final three sections we

will examine decomposable mappings which belong to a given operator ideal. To facilitate

this, in Section 3 we will examine families of symmetric tensor norms of different degrees on

infinite dimensional spaces defined in such a way that we have natural complementations

of the space of symmetric tensors of a fixed degree in spaces of symmetric tensors of higher

degrees.

In Section 4 and 5 we characterise the decomposable mappings between symmetric

tensor spaces of the same and different degrees, respectively. We prove that any decom-

posable linear operator T from a symmetric k-fold tensor product over a Banach space

E into a symmetric l-fold tensor product over a Banach space F , with k ≤ l, considered

with suitable symmetric tensor norms, is a power of an injective operator A from E into

F , multiplied by a fixed l − k decomposable tensor. Moreover, if T belongs to any given

ideal of operators, then also does A.

Because of the one-to-one correspondence between symmetric injective tensor prod-

ucts and approximable polynomials and the one-to-one correspondence between spaces of

symmetric projective tensor products and nuclear polynomials, for spaces whose dual has

the approximation property, we will be also able to describe rank-1 preserving mappings

between spaces of approximable polynomials and rank-1 preserving mappings between

spaces of nuclear polynomials. Results of this type are discussed in Section 6.

Given a Banach space E we can form the space
⊗

k E of all k-fold tensors in E. We

consider the subspace,
⊗

s,kE, of
⊗

kE consisting of all tensors of the form
∑n

i=1 λixi ⊗
· · · ⊗ xi, where λi = ±1. Such k-fold tensors are said to be symmetric. There are two

natural symmetric norms defined on the, in general, uncompleted space
⊗

s,kE, the least

or injective and the greatest or projective symmetric tensor norms.

Given a k-fold symmetric tensor
∑n

i=1 λixi ⊗ · · · ⊗ xi on E we define its symmetric

injective or εs,k norm by

sup
φ∈BE′

∣∣∣∣∣
n∑
i=1

λiφ(xi)
k

∣∣∣∣∣ .
We denote the completion of

⊗
s,kE with respect to this norm by

⊗̂
s,k,εs,k

E.

The symmetric projective or πs,k norm is defined as follows. Suppose that θ belongs to⊗
s,kE, θ =

∑
λixi⊗· · ·⊗xi. We would like to define the norm of θ to be

∑
‖xi‖k. Unfor-

tunately tensors in
⊗

kE do not have unique representation as a sum of basic symmetric

tensors. Therefore the projective norm of θ is defined to be the infimum of
∑
‖xi‖k over

all possible representations of θ as sums of basic symmetric tensors. We use
⊗̂

s,k,πs,k
E to

denote the completion of
⊗

s,k,πs,k
E with respect to this norm.
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When the underlying space is a dual space both of these spaces of symmetric tensor

products have representations as spaces of homogeneous polynomials. A function P : E →
K (K = R,C) is said to be a (continuous) k-homogeneous polynomial if there exists a

unique symmetric (continuous) k-linear map LP : E × · · · × E︸ ︷︷ ︸
k−times

→ K such that P (x) =

LP (x, . . . , x) for all x ∈ E. Continuous k-homogeneous polynomials are bounded on the

unit ball and we denote by P(kE) the Banach space of all continuous k-homogeneous

polynomials on E endowed with the norm: P → ‖P‖ := sup‖x‖≤1 |P (x)|.
A k-homogeneous polynomial P in P(kE) is said to be of finite type if there is {φj}nj=1

in E ′ such that P (x) =
∑n

j=1±φj(x)k for all x in E. Polynomials in the closure of the finite

type k-homogeneous polynomials in P(kE) are called the approximable polynomials. We

use Pf (kE) to denote the space of all finite type k-homogeneous polynomials and PA(kE)

to denote the space of all k-homogeneous approximable polynomials. The mapping φk 7−→
φ⊗ · · ·⊗φ induces an isometric isomorphism between the spaces PA(kE) and

⊗̂
s,k,εs,k

E ′.

In relation with the projective norm, the space of nuclear polynomials comes into play.

We say that a k-homogeneous polynomial P on a Banach space E is nuclear if there is a

bounded sequence (φj)
∞
j=1 ⊂ E ′ and a sequence (λj)

∞
j=1 in `1 such that

P (x) =
∞∑
j=1

λjφj(x)k

for every x in E. The space of all k-homogeneous nuclear polynomials on E is denoted

by PN(kE) and becomes a Banach space when the norm of P , ‖P‖N , is given as the

infimum of
∑∞

j=1 |λj| ‖φj‖k taken over all representations of P of the form described above.

When E ′ has the approximation property (PN(kE), ‖ · ‖N) is isometrically isomorphic to⊗̂
s,k,πk

E ′ under the map induced by φk 7−→ φ⊗ · · · ⊗ φ.

A k-homogeneous polynomial P is said to be a rank-1 polynomial if it has the form

P = φ1φ2 · · ·φk for φ1, φ2, . . . , φk in E ′.

We refer the reader to [11] for further information on homogeneous polynomials and

symmetric tensor products and to [17, 18] for an overview of decomposable mappings on

finite dimensional vector spaces.

2 Decomposable mappings and adjacent subspaces

The space of k-fold symmetric tensors,
⊗

s,k E, is a complemented subspace of the space

of full k-fold tensors,
⊗

k E, with projection given by

x1 ⊗ · · · ⊗ xk 7−→
1

k!

∑
σ∈Sk

xσ(1) ⊗ · · · ⊗ xσ(k),

where Sk is the symmetric group on {1, . . . , k}. Symmetric tensors in
⊗

s,k E of the form∑
σ∈Sn

xσ(1)⊗ · · · ⊗ xσ(k) are called decomposable elements. For simplicity of notation we

use x1 ∨ · · · ∨ xk instead of 1
k!

∑
σ∈Sk

xσ(1) ⊗ · · · ⊗ xσ(k) and xk to denote x ∨ x ∨ · · · ∨ x.
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A decomposable element x1 ∨ · · · ∨ xk is zero if and only if xi = 0 for at least one

i = 1, . . . , k. Moreover,

x1 ∨ · · · ∨ xk = y1 ∨ · · · ∨ yk 6= 0 ⇔ yi = λixσ(i), for i = 1, . . . , k (1)

for some σ ∈ Sk and scalars λ1, . . . , λk so that λ1λ2 · · ·λk = 1.

A linear mapping, T , between spaces of symmetric tensors over E and F which contain⊗
s,k E and

⊗
s,k F respectively is said to be power-preserver if given any x in E there

exists y in F so that T (xk) = ±yk, while T is said to be decomposable if T maps decompos-

able elements to decomposable elements and kerT∩{x1∨· · ·∨xk : x1, . . . , xk ∈ E} = {0}.
We note that if T is injective and maps decomposable elements to decomposable elements

then T is decomposable.

Since decomposable mappings preserve both the decomposable and the linear structure

of spaces of symmetric tensors, they will also preserve subspaces of the space of k-fold

symmetric tensors where all elements are decomposable tensors. Such subspaces are called

decomposable subspaces and their study will provide us with a method of classifying

decomposable mappings. The simplest way of constructing a decomposable subspace of⊗
s,k E is to take a subspace S of E and vectors x1, . . . , xk−1 in E and to set

M = x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ S = {x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ s : s ∈ S}.

We call 〈x1〉, . . . , 〈xk−1〉 the factors of M and say that M is directed by S. Note that the

dimension of M is equal to that of S. We shall call such decomposable subspaces type-1

subspaces. We note that our definition of a type-1 subspace is more general than that

given by Cummings in [7] where E is finite dimensional and type-1 subspaces are always

directed by E.

When E is a real Banach space, type-1 subspaces are the only decomposable subspaces

which arise. For complex Banach spaces however we have a second family of decomposable

subspaces. Suppose x and y are two linearly independent vectors in E. Let 〈x, y〉 denote

the two dimensional subspace of E spanned by x and y. For 1 ≤ r ≤ k and x1, . . . , xk−r

in E consider the subset x1 ∨ · · · ∨ xk−r ∨ 〈x, y〉r consisting of all decomposable elements

of the form x1 ∨ · · · ∨ xk−r ∨ z1 ∨ · · · ∨ zr with z1, . . . , zr in 〈x, y〉. Each element of the set

x1 ∨ · · · ∨ xk−r ∨ 〈x, y〉r can be written in the form

x1 ∨ · · · ∨ xk−r ∨ (γ0x
r + γ1x

r−1 ∨ y + · · ·+ γr−1x ∨ yr−1 + γry
r).

This means that x1 ∨ · · · ∨ xk−r ∨ 〈x, y〉r can be identified with a subset of Pr(α), the

vector space of all polynomials of degree at most r over the complex numbers, under the

mapping

x1 ∨ · · · ∨ xk−r ∨ (γ0x
r + γ1x

r−1 ∨ y + · · ·+ γry
r) 7−→ γ0 + γ1α + · · ·+ γrα

r.
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Because each polynomial over C can be written as a product of linear factors it follows

from [7, Proposition 10] that this mapping is surjective. This means that for complex

Banach spaces x1 ∨ · · · ∨ xk−r ∨ 〈x, y〉r will also be a decomposable subspace. Such

subspaces are called type-r subspaces. Type-r subspaces have dimension r + 1.

There is no unique representation of a type-1 subspace. The following lemma will

therefore be of use to us when we want to compare such subspaces.

Lemma 1 Fix k ≥ 2 a positive integer and let S, S̃ be subspaces of E such that

x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ S = y1 ∨ y2 ∨ · · · ∨ yk−1 ∨ S̃.

Then S = S̃ and 〈x1 ∨ x2 ∨ · · · ∨ xk−1〉 = 〈y1 ∨ y2 ∨ · · · ∨ yk−1〉 in
⊗

s,k−1E.

Proof: Take t ∈ S̃ so that t 6∈ [x1] ∪ · · · ∪ [xk−1], then there exists s ∈ S so that

x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ s = y1 ∨ y2 ∨ · · · ∨ yk−1 ∨ t.

By our choice of t, it follows that t = λs for some λ ∈ K and therefore, S̃ ⊂ S. Also we

have that yj = λjxσ(j), for j = 1, . . . , k − 1. By symmetry we have that S ⊂ S̃ and the

lemma is proved. �

We now show that type-1 and type-r subspaces are the only decomposable subspaces.

Theorem 2 Let k be a positive integer and E be a Banach space of dimension strictly

greater than k + 1. Then every decomposable subspace of
⊗

s,k E of dimension strictly

greater than k + 1 is a type-1 subspace.

Proof: Let V be a decomposable subspace of
⊗

s,k E with dim(V ) > k + 1. Choose

{z1, . . . , zk+2} a linearly independent set in V and set Z = span{z1, . . . , zk+2}. For each

i, write zi as zi = xi1 ∨ · · · ∨ xik and consider the finite dimensional subspace of E,

given by X = 〈xij : 1 ≤ i ≤ k + 2, 1 ≤ j ≤ k〉. It is clear that Z ⊂
⊗

s,kX. It

follows from [7, Theorem] that Z must be a type-1 subspace or a type-r subspace with

r ≤ k. Since type-r subspaces have dimension r + 1, Z is a type-1 subspace. Write Z as

Z = x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ S for some finite dimensional subspace S of E. If Z̃ is any

other finite dimensional subspace of V with dim(Z̃) > k+ 1 it follows from Lemma 1 that

Z + Z̃ can be written as x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ S̃ for S̃ a finite dimensional subspace of E.

Hence Z̃ = x1 ∨ x2 ∨ · · · ∨ xk−1 ∨W and we see that V is a type-1 subspace. �

The hypothesis on the dimension can be slighted improved in the case where the

decomposable subspace is the image under a decomposable mapping of a type-1 subspace.

The proof of the following can be deduced from that of [19, Theorem 3].

Corollary 3 Let k be a positive integer and E and F be Banach spaces of dimension at

least k + 1. Let T :
⊗

s,k E →
⊗

s,k F be a decomposable mapping. Then T maps any

type-1 subspace of dimension greater than or equal to k + 1 onto a type-1 subspace.
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Decomposable mappings from
⊗

s,k E into
⊗

s,k F which map type-1 subspaces to

type-1 subspaces are called type-1 mappings. Of course, for real Banach spaces every

decomposable mapping is a type-1 mapping however in the complex case there may be

decomposable mappings which are not type-1. For example, given any complex Banach

space E of dimension strictly greater than 2, consider the projection from
⊗

s,k E onto a

type-k subspace. This is a decomposable mapping which is not type-1.

Suppose T is a type-1 mapping of
⊗

s,k E into
⊗

s,k F . Let M = x1 ∨ · · · ∨ xk−1 ∨ S.

Choose y1, . . . , yk−1 in F and a subspace S̃ of F so that T (M) = y1∨ · · · ∨ yk−1∨ S̃. Then

T induces a linear mapping A of S into S̃ by As = t where

T (x1 ∨ · · · ∨ xk−1 ∨ s) = y1 ∨ · · · ∨ yk−1 ∨ t.

Following [8] we call A an associate mapping. The associate mapping A depends on the

choice of M and y1, . . . , yk−1, however, it follows as in [8, Proposition 2] that any two

associate mappings with respect to the same type-1 subspace are multiples of each other.

To characterise decomposable mappings we generalise the concept of adjacent type-1

subspaces of [8] to our setting.

Definition 4 Let k be a positive integer and E be a Banach space. We say that two

elements of
⊗

s,k E are adjacent if they share precisely k−1 factors (counting multiplicity).

That is, they can be written in the form x1 ∨ · · · ∨ xk−1 ∨ z1 and x1 ∨ · · · ∨ xk−1 ∨ z2, with

z1, z2 linearly independent. We say that two type-1 subspaces M and N of
⊗

s,k E are

adjacent if they are directed by the same subspace and share exactly k−2 factors (counting

multiplicity). This means they can be written in the form M = x1∨· · ·∨xk−2∨z1∨S and

N = x1 ∨ · · · ∨ xk−2 ∨ z2 ∨ S, for some S subspace of E with z1, z2 linearly independent.

When k = 2 we say that any two type-1 subspaces directed by the same subspace are

adjacent.

When M and N are adjacent type-1 subspaces we write M f N . Any two type-1

subspaces of
⊗

s,k E which are directed by the same subspace of E can be ‘linked’ to each

other through a chain of at most k − 1 pairwise adjacent subspaces.

Decomposable mappings and adjacency can also be defined for the space of full k-fold

tensors (see [20]). Westwick, [20] shows that decomposable mappings between spaces of

k-fold tensors map adjacent decomposable elements to adjacent decomposable elements.

When E has dimension at least k+1 this result is also true for spaces of symmetric k-fold

tensors. The proof, as we shall see, is completely different.

Proposition 5 Let k be a positive integer and E and F be Banach spaces of dimension

at least k + 1 and let T :
⊗

s,k E →
⊗

s,k F be a decomposable mapping. Then T maps

adjacent decomposable elements to edjacent decomposable elements.
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Proof: Consider v = x1∨· · ·∨xk−2∨xk−1∨ z1 and v̄ = x1∨· · ·∨xk−2∨xk−1∨ z2 any two

adjacent elements in
⊗

s,k E. Take M = x1 ∨ · · · ∨ xk−2 ∨ xk−1 ∨ S where S is a subspace

of E containing z1, z2 with dim(S) ≥ k + 1. As v, v̄ ∈ M we know that T (v) and T (v̄)

belong to T (M) which, by Corollary 3, is a type-1 subspace. Therefore T (v) and T (v̄)

are adjacent. �

The following proposition gives a necessary and sufficient condition for two type-1

subspaces directed by the same subspace to be adjacent. The proof is very similar to that

given in [8, Proposition 4]. Since the definition for adjacent type-1 subspaces in [8] and

ours is slightly different, we include a proof for the sake of completeness.

Proposition 6 Let k be a positive integer and E be a Banach space. Let M and N be

a pair of type-1 subspaces of
⊗

s,k E directed by the same subspace. If dim(M ∩ N) = 1

then M f N . Conversely, with the additional assumption that N and M are directed by

E then M fN implies that dim(M ∩N) = 1.

Proof: Suppose that M = x1∨· · ·∨xk−1∨S, N = y1∨· · ·∨yk−1∨S and dim(M∩N) = 1.

Then M ∩N 6= 0. Take s, t ∈ S so that x1∨ · · ·∨xk−1∨ s = y1∨ · · ·∨yk−1∨ t. If 〈s〉 = 〈t〉
then, xi = λiyσ(i) for i = 1, . . . , k − 1, which means that M = N . Otherwise, we may

assume without loss of generality that 〈x1〉 = 〈t〉 and 〈s〉 = 〈y1〉. Then yi = λixσ(i) for

i = 2, . . . , k − 1 and we get M fN .

Conversely, suppose that M and N are both directed by E and that M f N . Then

M = x1 ∨ · · · ∨ xk−2 ∨ z1 ∨ E and N = x1 ∨ · · · ∨ xk−2 ∨ z2 ∨ E, with z1, z2 linearly

independent. We proceed as in [8, Proposition 4]. It follows that M ∩ N 6= 0. Consider

s, t in E with

x1 ∨ · · · ∨ xk−2 ∨ z1 ∨ s = x1 ∨ · · · ∨ xk−2 ∨ z2 ∨ t. (2)

For each j = 1, . . . , k − 1 and x ∈ E let gj(x) : Ej →
⊗

s,j+1E be the symmetric

multilinear mapping defined by

(u1, . . . , uj) 7−→ x ∨ u1 ∨ · · · ∨ uj.

The function gj(x) induces a map hj(x) :
⊗

s,j E →
⊗

s,j+1E. If x is nonzero then each

hj(x) is injective and so is the composition

h = hk−1(x1) ◦ · · · ◦ hk−i(xi) ◦ · · · ◦ h2(xk−2).

We can write (2) as h(z1∨s) = h(z2∨ t) and so z1∨s = z2∨ t. Since z1 and z2 are linearly

independent, z1 must be a multiple of t. Thus

M ∩N = 〈x1 ∨ · · · ∨ xk−2 ∨ z1 ∨ z2〉.

�
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Proposition 7 Let k be a positive integer, S a finite dimensional space of dimension at

least k + 1 and F a Banach space. Let T :
⊗

s,k S →
⊗

s,k F be a type-1 mapping. Let

M,N be adjacent type-1 subspaces directed by S. Then T (M) and T (N) are also adjacent.

Proof: Let us write M as M = x1∨· · ·∨xk−2∨z1∨S and N as N = x1∨· · ·∨xk−2∨z2∨S for

linearly independent z1, z2 in S. Then there are injective linear operators A and B from S

into F , such that A(S) directs T (M) and B(S) directs T (N). Since M fN Proposition 6

implies that dim(M ∩N) = 1 and therefore T (M)∩T (N) 6= 0. We claim that T (M) and

T (N) share at least k − 2 factors. To see this let T (M) = y1 ∨ · · · ∨ yk−2 ∨ yk−1 ∨ A(S)

and T (N) = ỹ1 ∨ · · · ∨ ỹk−2 ∨ ỹk−1 ∨B(S) and take u 6= 0, u ∈ T (M) ∩ T (N). As

u = y1 ∨ · · · ∨ yk−2 ∨ yk−1 ∨ y = ỹ1 ∨ · · · ∨ ỹk−2 ∨ ỹk−1 ∨ ỹ

our assertion follows. We can now write T (M) = y1 ∨ · · · ∨ yk−2 ∨w1 ∨A(S) and T (N) =

y1 ∨ · · · ∨ yk−2 ∨ w2 ∨ B(S), for some w1, w2 ∈ F . If we show that A(S) = B(S) then,

provided T (M) and T (N) are distinct, Proposition 6 will ensure that T (M)f T (N). Let

p = dim(S). If A(S) ⊂ B(S) then they are equal. Suppose that there is s1 in S so that

As1 6∈ B(S). Complete {s1} to form a basis, {s1, s2, . . . , sp}, for E. Now consider the

adjacent pairs vi = x1 ∨ · · · ∨ xk−2 ∨ z1 ∨ si and v̄i = x1 ∨ · · · ∨ xk−2 ∨ z2 ∨ si, i = 1, . . . , p.

By definition, type-1 mappings are decomposable then, by Proposition 5, vi and v̄i have

adjacent images T (vi) = y1∨· · ·∨yk−2∨w1∨Asi and T (v̄i) = y1∨· · ·∨yk−2∨w2∨Bsi, for

all i = 1, . . . , p. Since As1 6∈ B(S), 〈As1〉 = 〈w2〉. The injectivity of A now implies that no

other Asi is a multiple of w2, i.e. Asi ∈ B(S), for all i = 2, . . . , p. Also 〈A(s1+s2)〉 = 〈w2〉
would imply 〈As2〉 = 〈w2〉 which is impossible. Thus A(s1 + s2) belongs to B(S) and

therefore so does As1. From this contradiction we get A(S) ⊂ B(S). So we have just

proved that T (M) and T (N) are directed by the same subspace. The proof given in [8,

Proposition 5] assures that T (M) and T (N) are distinct and therefore they are adjacent.

�

Following the proof of [8, Theorem 1] we obtain:

Theorem 8 Let k be a positive integer, S a finite dimensional space of dimension at

least k + 1 and F a Banach space. Let T :
⊗

s,k S →
⊗

s,k F be a type-1 mapping. Then

the associated mappings to any type-1 subspace of
⊗

s,k S, directed by S, form a one

dimensional space of L(S;F ).

Note that for a type-1 mapping any associated mapping to a type-1 subspace must be

injective.

Theorem 9 Let k be a positive integer, S be a finite dimensional space of dimension at

least k + 1 and F be a Banach space. Let T :
⊗

s,k S →
⊗

s,k F be a type-1 mapping.
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Then there exists an injective operator A ∈ L(S;F ) such that for any x = x1 ∨ · · · ∨ xk
in
⊗

s,k S,

T (x) = ±Ax1 ∨ · · · ∨ Axk.

Proof: First we show that there exists an injective operator A ∈ L(S;F ) so that given

x = x1 ∨ · · · ∨ xk nonzero, there exists λx ∈ K such that

T (x) = λxAx1 ∨ · · · ∨ Axk. (3)

For each i = 1, . . . , k, consider the type-1 subspaces of dimension at least k + 1

Vi = x1 ∨ · · · ∨ x̂i ∨ · · · ∨ xk ∨ S,

where x̂i means that the i-th factor is omitted. Then 〈x〉 =
⋂k
i=1 Vi and by Theorem 8,

the mappings associated to T respect to any of these type-1 subspaces are all multiples of

an operator in L(S;F ). Let us fix one of these associated mappings and call it A. Since

T (x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ s) = y1 ∨ y2 ∨ · · · ∨ yk−1 ∨ As

we know that 〈Axi〉 is a factor of T (x), for each i = 1, . . . , k. If x has k distinct factors

then (3) holds.

Next, suppose that for m < k, 〈x1〉, . . . , 〈xm〉 are all the distinct factors in x, each 〈xi〉
with multiplicity pi, i = 1, . . . ,m. Then x = x1 ∨ · · · ∨ x1 ∨ · · · ∨ xm ∨ · · · ∨ xm and for

at least one i0, pi0 ≥ 2. Choose 〈xm+1〉, . . . , 〈xk−1〉 so that together with 〈x1〉, . . . , 〈xm〉
we have k − 1 distinct factors. Without loss of generality we may assume that x1 has

multiplicity p1 ≥ 2. Take the adjacent type-1 subspaces, M and N , the first one has all

its factors distinct and the second has precisely one of its factors 〈x1〉 repeating twice

M = x1 ∨ · · · ∨ xk−2 ∨ xk−1 ∨ S,
N = x1 ∨ · · · ∨ xk−2 ∨ x1 ∨ S.

As M fN , by Proposition 7 we have that T (M)f T (N). Then, as

T (x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ s) = y1 ∨ y2 ∨ · · · ∨ yk−1 ∨ As,

Theorem 8 implies that 〈Axj〉, for j = 1, . . . ,m, are distinct factors of T (M) and T (N)

and

T (M) = Ax1 ∨ · · · ∨ Axm ∨ qm+1 ∨ · · · ∨ qk−2 ∨ z ∨ A(S), (4)

T (N) = Ax1 ∨ · · · ∨ Axm ∨ qm+1 ∨ · · · ∨ qk−2 ∨ w ∨ A(S). (5)

Since v = x1 ∨ · · · ∨ xk−2 ∨ xk−1 ∨ x1 ∈ M ∩ N , taking s = x1, s = xk−1 respectively

and comparing (4) and (5), we have that

T (v) =Ax1 ∨ · · · ∨ Axm ∨ qm+1 ∨ · · · ∨ qk−2 ∨ z ∨ Ax1

=Ax1 ∨ · · · ∨ Axm ∨ qm+1 ∨ · · · ∨ qk−2 ∨ w ∨ Axk−1.

9



It follows from (1) that the factors in both expressions are equal (counting multiplic-

ity). By the choice of xm+1, . . . , xk−1, 〈Ax1〉 6= 〈Axk−1〉 whence 〈Ax1〉 must be 〈w〉 or one

of the factors 〈qi〉, for i = m + 1, . . . , k − 2. We may assume without loss of generality

that qm+1 = λ1Ax1. Then by the symmetry of symmetric tensor products we can write,

using the expression for T (N),

T (x1∨ · · · ∨xk−2∨x1∨S) = λ1Ax1∨Ax1∨ · · · ∨Axm∨ qm+2∨ · · · ∨ qk−2∨w∨A(S). (6)

If p1 ≥ 3 take the pair of adjacent type-1 subspaces M = x1 ∨ x1 ∨ · · · ∨ xk−2 ∨ S and

N = x1 ∨ x1 ∨ · · · ∨ xk−3 ∨ x1 ∨ S. The first is the former N for which (6) holds. In the

second 〈x1〉 appears 3 times. Reasoning as above we now obtain that 〈Ax1〉 is a factor of

T (N) with multiplicity at least 3. Repeating this construction p1 − 1 times we get that

Ax1 is a factor of T (x1 ∨ · · · ∨ x1 ∨ · · · ∨ xm ∨ · · · ∨ xm) with multiplicity p1. Completing

this procedure with all the xi
′s such that pi ≥ 2 we obtain a chain of pairs of type-1

subspaces, the last of which is

x1 ∨ · · · ∨ x1 ∨ · · · ∨ xm ∨ · · · ∨ xm ∨ S

where xi appears pi-times except for the last one which appears pm− 1 times. (Of course

this could be zero.) We also have that

T (x1∨· · ·∨x1∨· · ·∨xm∨· · ·∨xm∨S) = λxAx1∨· · ·∨Ax1∨· · ·∨Axm∨· · ·∨Axm∨A(S)

and taking s = xm we get (3).

The last expression above also shows that the value of λx is independent of s in S.

For decomposables x and y in
⊗

s,k S which are not in the same type-1 subspace consider

type-1 subspaces Mx and My containing x and y and a chain of pairs of adjacent type-1

subspaces from Mx to My. Since the intersection of any two consecutive subspaces is non

empty we have that λx = λMx = λMy = λy. Then T (x) = λAx1∨· · ·∨Axk or equivalently

if Ã = λ
1
kA, T (x) = ±Ãx1 ∨ · · · ∨ Ãxk which completes the proof of the theorem. �

Note that the sign ± in the statement of Theorem 9 may be avoided if the spaces are

complex or if they are real and k is odd.

3 Families of complemented symmetric seminorms

The purpose of this section is to describe a method of obtaining families of seminorms on

spaces of symmetric tensors, (αk)k such that for each k and l with k < l and each Banach

space E we have ‘natural’ identifications of
⊗

s,k,αk
E with a complemented subspace of⊗

s,l,αl
E. These families will prove useful in the next section when we study decomposable

mapping between Banach spaces. Recall that εk and πk denote, respectively, the injective

and symmetric projective tensor norms on
⊗

kE while εs,k and πs,k denote, respectively,

10



the symmetric injective and symmetric projective tensor norms on
⊗

s,kE. It is worthwhile

to note that although the restriction of πk to the symmetric k-tensors, usually denoted

by πk|s, does not coincide with πs,k, both are equivalent norms on
⊗

s,k E. The same

holds for εk|s, the restriction of εk to the symmetric k-tensors and the symmetric injective

tensor norm εs,k.

In what follows, we will work with the following definition.

Definition 10 Let E be a Banach space. A family of complemented symmetric semi-

norms on E is a function α which assigns to each k in N a norm αk on
⊗

s,kE such

that

(i) for each positive integer k, αk is a reasonable symmetric norm on
⊗

s,kE in the

sense that εs,k ≤ αk ≤ πs,k,

(ii) for any pair of positive integers k and l there are constants Ck,l and Dk,l such that

αk+l(θ ∨ ξ) ≤ Ck,lαk(θ)αl(ξ) ≤ Dk,lαk+l(θ ∨ ξ)

for all θ in
⊗

s,kE and ξ in
⊗

s,lE.

By a family of complemented symmetric seminorms we shall understand a function α

which assigns to each Banach space E a family of complemented symmetric seminorms

on E.

Condition (ii) tells us that for any fixed non-zero θ in
⊗

s,lE the mapping ξ 7−→ θ ∨ ξ
is an isomorphism of

⊗
s,k,αk

E onto the subspace {θ∨ξ : ξ ∈
⊗

s,kE} of
⊗

s,k+lE with the

topology induced from
⊗

s,k+l,αk+l
E. We denote the completion of

⊗
s,k,αk

E with respect

to the norm αk by
⊗̂

s,k,αk
E.

Let us give some examples of families of complemented symmetric seminorms. One of

the methods at our disposal is via the concepts of tensor norms of order k and s-tensor

norm of order k introduced by Floret in [12].

According to Floret, [12], a tensor norm of order k is an assignment to each k-tuple

(E1, . . . , Ek) of normed spaces a norm β(E1, E2, . . . , Ek) on E1 ⊗ E2 ⊗ · · · ⊗ Ek (denoted

by
⊗k

β,j=1Ej) such that

(i) εk ≤ β ≤ πk,

(ii) Given continuous linear mappings Aj : Ej → Fj, j = 1, . . . , k,

‖
⊗k

j=1Aj :
⊗k

β,j=1Ej →
⊗k

β,j=1 Fj‖ = ‖A1‖ . . . ‖Ak‖.

In an analogous way, in [12] an s-tensor norm of order k is defined as an assignment

to each normed space E a norm α on
⊗

s,k E (denoted
⊗

s,k,αE) such that

11



(i) εs,k ≤ α ≤ πs,k,

(ii) for all continuous linear mappings A : E → F we have

‖
⊗

s,k,αA :
⊗

s,k,αE →
⊗

s,k,α F‖ = ‖A‖k.

Properties (ii) in the defintion of a tensor norm of order k and an s-norm of order k

are known as the metric mapping property. By restriction, each tensor norm of order k

to the space of symmetric tensors defines an s-tensor norm of order k. Floret, [12, Norm

Extension Theorem] shows that the converse is also true in that given any s-tensor norm,

α, of order k there is a tensor norm of the same order, β, such that for every Banach

space E the norm α on
⊗

s,k,αE is the restriction of β to
⊗

s,k E.

Let β = (βk)k be a family of tensor norms with βk of order k. We shall say that β is an

associative family of tensor norms if for every pair of positive integers k and l and for every

k+ l-tuple of normed spaces E1, . . . , Ek, Ek+1, . . . , Ek+l we have that βk+l(E1, . . . , Ek+l) is

isomorphic to β2(
⊗k

βk,i=1Ei,
⊗l

βl,j=1Ek+j). It can be shown that if (βk)k is an associative

family of tensor norms then their restriction to the spaces of symmetric tensor products

is a family of complemented symmetric seminorms.

It is readily checked that both the families of injective and projective tensor norms are

associative families of tensor norms. Therefore, εk|s and πk|s, the respective restriction to

the symmetric k-tensors, are families of complemented symmetric seminorms and so are

both εs = (εs,k)k and πs = (πs,k)k by the equivalence mentioned above.

Let us give another example of families of complemented symmetric seminorms, which

are related to the class of extendible polynomials. There is, in general, no Hahn-Banach

Theorem for k-homogeneous polynomials. However, Kirwan and Ryan, [15], examine

which k-homogeneous polynomials on a Banach space E have continuous extensions to ev-

ery superspace. These polynomials are called extendible. Every algebraic k-homogeneous

polynomial on a Banach space E determines a unique linear map from
⊗

s,k E into K

and the extendible polynomials are those polynomials whose linearization are continuous

with respect to a specific norm on
⊗

s,k E, which we now proceed to describe.

First, fix a Banach space F containing E and an injective continuous operator i : E →
F . Let ik =

⊗
s,k i. Then, ik is a continuous injection of

⊗
s,k E into

⊗
s,k F . The ηF

norm on
⊗

s,k E, defined by Carando in [5] is given by ηFs,k(z) = πs,k(i
k(z)). Here, by πs,k

we mean the symmetric projective norm on
⊗

s,k F . The dual of
⊗

s,k,ηF
E is the space

of all k-homogeneous polynomials on E which have a continuous extension to F . Once a

k-homogeneous polynomial on E can be extended to `∞(BE′) it can be extened to every

superspace of E and we simply denote η`∞(BE′ )
by η, see [5].

Let Ck,l and Dk,l denote the smallest constants such that

πs,k(θ)πs,l(ξ) ≤ Ck,lπs,k+l(θ ∨ ξ)
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and

πs,k+l(θ ∨ ξ) ≤ Dk,lπs,k(θ)πs,l(ξ)

for all θ in
⊗

s,k E, all ξ in
⊗

s,lE and all Banach spaces E. Suppose we are given θ in⊗
s,k E and ξ in

⊗
s,lE. Then, clearly we have that ik(θ) ∨ il(ξ) = ik+l(θ ∨ ξ). Thus we

have that

ηFs,k(θ)η
F
s,l(ξ) =πs,k(i

k(θ))πs,l(i
l(ξ))

≤Ck,lπs,k+l(ik(θ) ∨ il(ξ))

=Ck,lπs,k+l(i
k+l(θ ∨ ξ))

=Ck,lη
F
s,k+l(θ ∨ ξ).

Similarly we get that

ηFs,k+l(θ ∨ ξ) ≤ Dk,lη
F
s,k(θ)η

F
s,l(ξ)

for all θ in
⊗

s,k E and all ξ in
⊗

s,lE. In particular, when we take F = `∞(BE′)

we get constants Ck,l and Dk,l such that ηs,k(θ)ηs,l(ξ) ≤ Ck,lηs,k+l(θ ∨ ξ) and ηs,k+l(θ ∨
ξ) ≤ Dk,lηs,k(θ)ηs,l(ξ) for all θ in

⊗
s,k E and all ξ in

⊗
s,lE. Therefore η is a family of

complemented seminorms. In addition, given a Banach space F , for each Banach space E

which is a subspace of F , ηF will be a family of complemented seminorms on E. We note

that since ηF is not an s-norm of order k, the fact that it is a family of complemented

seminorms on a given Banach space E must be established with a different method to

that used for εs and πs above.

Let E and F be Banach spaces and A : E → F be a linear operator. Given a positive

k we use Ak to denote the linear operator from
⊗

s,k E into
⊗

s,k F defined by

Ak(x1 ∨ x2 ∨ · · · ∨ xk) = ±Ax1 ∨ Ax2 ∨ · · · ∨ Axk

for all x1, . . . , xk in E and extended by linearity to
⊗

s,k E. Let αk be a symmetric tensor

norm of order k. Since αk satisfies the metric mapping property, Ak is continuous. An

operator ideal A is said to be α-tensorstable for the tensor norm α if A ∈ A(E1;F1),

B ∈ A(E2;F2) implies that A ⊗ B ∈ A(E1

⊗
αE2;F1

⊗
α F2). See [10, Section 34] for a

discussion of tensorstable ideals. The following proposition investigates the converse of

this result for families of complemented symmetric seminorms.

Proposition 11 Let E and F be Banach spaces and α and β be families of complemented

symmetric seminorms on E and F respectively. Let A : E → F be a continuous linear

operator and A be an operator ideal. If Ak ∈ A(
⊗̂

s,k,αk
E;
⊗̂

s,k,βk
F ) then A ∈ A(E;F ).

Proof: We adapt some ideas from [3]. Fix e in E and choose φ in F ′ with φ(Ae) = 1.

Given a positive integer m we define jm :
⊗

s,mE →
⊗

s,m+1E by

jm(xm) =
m+1∑
i=1

(
m+ 1

i

)
(−1)i+1φ(Ax)i−1 e ∨ · · · ∨ e︸ ︷︷ ︸

i times

∨x ∨ · · · ∨ x︸ ︷︷ ︸
m-i+1 times
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on the elementary tensors and extended by linearity to
⊗

s,mE. It is easily checked that

jm satisfies

φ(Ax)jm(xm) = xm+1 − (x− φ(Ax)e)m+1.

We also define pm :
⊗

s,m+1F →
⊗

s,mF on the elementary tensors by

pm
(
ym+1

)
= φ(y)ym

and extended by linearity to
⊗

s,m+1 F .

We claim that for each integer m we have

pm ◦ Am+1 ◦ jm = Am.

To see this consider φ(Ax)xm in
⊗

s,mE. Then

pm ◦ Am+1 ◦ jmφ(Ax)(xm) =pm ◦ Am+1(xm+1 − (x− φ(Ax)e)m+1)

=pm
(
(Ax)m+1 − (Ax− φ(Ax)Ae)m+1

)
=φ(Ax)(Ax)m − φ(Ax− φ(Ax)Ae)(Ax− φ(Ax)Ae)m

=φ(Ax)(Ax)m.

By [3, Lemma 2], it is possible to write each θ in
⊗

s,k E as θ =
∑l

r=1 λry
k
r with

φ(Ayr) 6= 0 it follows that

p1 · · · pk−1 ◦ Ak ◦ jk−1 · · · j2j1 = A.

As the mappings j1, . . . , jk−1 and the composition p1 · · · pk−1, induced by p1 · · · pk−1(x
k) =

φk(x)x, are continuous linear mappings and Ak is in A(
⊗̂

s,k,αk
E;
⊗̂

s,k,βk
F ) it follows that

A belongs to A(E;F ).

�

Before we finish this section we show that for any α a family of complemented sym-

metric seminorms on a Banach space E there is a ‘natural’ way in which the space of

symmetric k-fold tensors
⊗

s,k,αk
E can be identified with a complemented subspace of the

space of
⊗

s,k+1,αk+1
E. Fix a nonzero element e in E and choose φ in E ′ with φ(e) = 1.

Define Sk+1,e by

Sk+1,e := e ∨
⊗

s,kE =
{
e ∨ θ : θ ∈

⊗
s,kE

}
and endow Sk+1,e with the topology induced from

⊗
s,k+1,αk+1

E. The mapping ξ 7−→ e∨ ξ
is an isomorphism of

⊗
s,k,αk

E onto Sk+1,e. Let us see that Sk+1,e is a complemented

subspace of
⊗

s,k+1E. Define Πe :
⊗

s,k+1E →
⊗

s,k+1E by

Πe(x1∨x2 ∨ · · · ∨ xk+1) =

x1 ∨ x2 ∨ · · · ∨ xk+1 − (x1 − φ(x1)e) ∨ (x2 − φ(x2)e) ∨ · · · ∨ (xk+1 − φ(xk+1)e)
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on basic symmetric tensors and extend to
⊗

s,k+1E by linearity. To see that Πe is well-

defined suppose that θ =
∑m

i=1 λix
k+1
i =

∑n
j=1 δjy

k+1
j . Given any k + 1 homogeneous

polynomial P on E define another k + 1 homogeneous polynomial Q by

Q(x) = 〈P,Πe(x
k+1)〉 = P (x)− P (x− φ(x)e).

If LP is the symmetric k-linear form associated with P we have that

Q(x) =
k+1∑
i=1

(
k + 1

i

)
(−1)i+1φ(x)iLP (e, . . . , e,︸ ︷︷ ︸

i times

x, . . . , x︸ ︷︷ ︸
k-i+1 times

).

Then for each k + 1 homogeneous polynomial P on E we have

〈P,Πe

(
m∑
i=1

λix
k+1
i

)
〉 = 〈Q,

m∑
i=1

λix
k+1
i 〉 = 〈Q,

n∑
j=1

δjy
k+1
j 〉 = 〈P,Πe

(
n∑
j=1

δjy
k+1
j

)
〉

and therefore Πe(
∑m

i=1 λix
k+1
i ) = Πe(

∑n
j=1 δjy

k+1
j ).

Clearly Πe maps
⊗

s,k+1E into Sk+1,e. To see that Πe maps
⊗

s,k+1E onto Sk+1,e we

note that

Πe(e ∨ x2 ∨ · · · ∨ xk) =e ∨ x2 ∨ · · · ∨ xk − (e− e) ∨ (x2 − φ(x2)e) ∨ · · · ∨ (xk − φ(xk)e)

=e ∨ x2 ∨ · · · ∨ xk − 0

=e ∨ x2 ∨ · · · ∨ xk.

Since Πe(Πe(x1 ∨ x2 ∨ · · · ∨ xk)) = Πe(x1 ∨ x2 ∨ · · · ∨ xk) we see that Πe is a projection of⊗
s,k+1E onto Sk+1,e.

4 Decomposable mappings between symmetric ten-

sor spaces of the same degree

Our main result of this section is as follows.

Theorem 12 Let E and F be Banach spaces of dimension at least k+1, and let α and β

be families of complemented symmetric seminorms on E and F respectively. Suppose that

T :
⊗̂

s,k,αk
E →

⊗̂
s,k,βk

F is a decomposable linear operator. Then there is a continuous

injective linear operator A : E → F such that T = ±Ak. Moreover, given any operator

ideal A, if T ∈ A(
⊗̂

s,k,αk
E;
⊗̂

s,k,βk
F ) then A ∈ A(E;F ).

Proof: Fix xo in E. Let S be a finite dimensional subspace of E containing xo which has

dimension at least k + 1. Consider T |S :
⊗

s,k,αk
S →

⊗̂
s,k,βk

F . By Theorem 9 we know

that there is an injective linear operator AS : S → F such that

T |S(x1 ∨ x2 ∨ · · · ∨ xk) = ±ASx1 ∨ ASx2 ∨ · · · ∨ ASxk
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for all x1, x2, . . . , xk in S. This means that T is a power-preserver and since ‖AS(x)‖k =

βk(AS(x)k) = ‖T |S(xk)‖ we have ‖AS‖ ≤ ‖T |S‖1/k ≤ ‖T‖1/k. We note that the sign ± can

easily be shown to independent of the subspace S. Choose yo in F so that T (xko) = ±yko .

Using [4, Lemma 4] we may suppose that in addition to AS satisfying

T |S(x1 ∨ x2 ∨ · · · ∨ xk) = ±ASx1 ∨ ASx2 ∨ · · · ∨ ASxk

we have that AS(xo) = yo. These two conditions uniquely determine AS. For finite-

dimensional subspaces S and S̃ of E containing xo with S ⊂ S̃ we have that AS̃|S = AS.

Since E is the union of its finite dimensional subspaces and ‖AS‖ ≤ ‖T‖1/k we have that

if follows that A(x) = AS(x), where S is any finite dimensional subspace of E which

contains xo, defines an injective continuous linear mapping from E into F such that

T (x1 ∨ x2 ∨ · · · ∨ xk) = ±Ax1 ∨ Ax2 ∨ · · · ∨ Axk

for all x1, . . . , xk in E. Since T maps
⊗̂

s,k,αk
E into

⊗̂
s,k,βk

F it follows that A maps E

into F .

If T is in A(
⊗̂

s,k,αk
E;
⊗̂

s,k,βk
F ) then it follows from Proposition 11 that A belongs

to A(E;F ). �

In the definition of a decomposable linear mapping T we require kerT ∩ {x1 ∨ · · · ∨
xk : x1, . . . , xk ∈ E} = {0}. To see that this condition is necessary let E be a Banach

space of dimension at least 2 and k ≥ 2 be a positive integer. Consider k nonzero

vectors z1, z2, . . . , zk in E with z1 and z2 linearly independent. Let T be the projection of⊗̂
s,k,πs,k

E onto the subspace spanned by z1 ∨ z2 ∨ · · · ∨ zk. Then T maps decomposable

elements of
⊗̂

s,k,πs,k
E to decomposable elements of

⊗̂
s,k,πs,k

E. Suppose that there is a

continuous linear mapping A : E → E such that

T (x1 ∨ x2 ∨ · · · ∨ xk) = ±Ax1 ∨ Ax2 ∨ · · · ∨ Axk

for all x1, . . . , xk in E. As the range of T has dimension 1, the range of A must also be one-

dimensional. However, if that is the case, the image of T has the form {λy∨· · ·∨y : λ ∈ K}
which is clearly not possible since z1, z2 were chosen to be linearly independent.

Taking α or β equal to ε or π in Theorem 12 we get that if E and F are Banach spaces of

dimension at least k+1 and T :
⊗̂

s,k,πs,k
E →

⊗̂
s,k,πs,k

F (resp. T :
⊗̂

s,k,εs,k
E →

⊗̂
s,k,εs,k

F ,

T :
⊗̂

s,k,πs,k
E →

⊗̂
s,k,εs,k

F ) is a continuous decomposable linear operator then there is

an injective operator A ∈ L(E;F ) such that

T (x1 ∨ x2 ∨ · · · ∨ xk) = ±Ax1 ∨ Ax2 ∨ · · · ∨ Axk

for all x1, . . . , xk in E. Moreover, given any operator ideal A, when T belongs to A then

A ∈ A(E;F ).
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The analogous result is also true when consider continuous linear operators from⊗̂
s,k,εs,k

E to
⊗̂

s,k,πs,k
F . It is still an open question if the set of all continuous linear

operators A : E → F , such that the mapping Ak, from
⊗̂

s,k,πs,k
E to

⊗̂
s,k,εs,k

F ,

x1 ∨ x2 ∨ · · · ∨ xk 7−→ Ax1 ∨ Ax2 ∨ · · · ∨ Axk

is well defined, is a subspace of L(E;F ), see [10, Section 24] and [14]. It is known that

all integral operators are ‘ε− π’-continuous, see [6], on the other hand John, [13], shows

that every ‘ε− π’-continuous operator of degree k is (k, k, k)-absolutely summing. These

two ideals provide an lower and upper bound for the set of ‘ε− π’-continuous operators.

5 Mappings between spaces of different degrees

In this section we consider decomposable mappings from the space
⊗̂

s,k,αk
E into the

space
⊗̂

s,l,βl
F where k ≤ l.

The following lemma is proved in much the same way as [19, Lemma 5].

Lemma 13 Let S be a finite dimensional space, F be a Banach space. Let k ≤ l, α be

a reasonable crossnorms norm of order l and let T :
⊗

s,kS →
⊗̂

s,l,αF be a decomposable

mapping. Then the images of all type-1 subspaces in
⊗

s,kS under T have l − k common

factors.

Proposition 14 Let S be a finite dimensional space of dimension at least k+1 and F be

a Banach space. Let k ≤ l, α be a family of complemented symmetric seminorms and let

T :
⊗

s,k S →
⊗̂

s,l,αl
F be a decomposable mapping. Then there is a decomposable tensor,

w, of length l− k, w = w1 ∨ · · · ∨wk−l, and an injective linear operator A ∈ L(S;F ) such

that for any x = x1 ∨ · · · ∨ xk in
⊗

s,k S,

T (x) = w ∨ Ak(x).

Proof: By Lemma 13 there is a decomposable tensor w of length l−k such that the image

of
⊗

s,kS under T is contained in w ∨
(⊗̂

s,k,αk
F
)

. Therefore T induces a decomposable

mapping T1 :
⊗

s,k S →
⊗̂

s,k,αk
F such that T (x) = w ∨ T1(x) for all x in

⊗
s,k S. By

Theorem 9, there exists a continuous injective linear operator A : S → F such that for all

x1, . . . , xk in S, T1(x1 ∨ · · · ∨ xk) = ±Ax1 ∨ · · · ∨ Axk. Replacing w by ±w if necessary,

this means that

T (x) = w ∨ Ax1 ∨ · · · ∨ Axk.

for x = x1 ∨ · · · ∨ xk in
⊗

s,k S. �

Note that using condition (ii) in the definition of a family of complemented symmetric

seminorms, we obtain that ‖A‖ ≤Mk,l‖T‖1/k is independent of the space S.
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Theorem 15 Let E and F be Banach spaces of dimension at least k + 1, let k ≤ l

and α and β be families of complemented seminorms on E and F respectively. Let

T :
⊗̂

s,k,αk
E →

⊗̂
s,l,βl

F be a decomposable linear operator. Then there is a decomposable

tensor w of length l − k
⊗

s,l−k F and an injective operator A ∈ L(E;F ) such that for

any x = x1 ∨ · · · ∨ xk in
⊗

s,k E

T (x) = w ∨ Ak(x).

Moreover, given any operator ideal A, if T ∈ A(
⊗̂

s,k,αk
E;
⊗̂

s,l,βl
F ), then A ∈ A(E;F ).

Proof: Fix xo in E. For each finite dimensional subspace S of E containing xo which

has dimension at least k + 1, Proposition 14 gives a decomposable tensor wS of length

l− k, an injective linear operator AS : S → F and a constant Mk,l independent of S with

‖AS‖ ≤Mk,l‖T |S‖1/k ≤Mk,l‖T‖1/k such that

T |S(x1 ∨ x2 ∨ · · · ∨ xk) = wS ∨ ASx1 ∨ ASx2 ∨ · · · ∨ ASxk

for all x1, . . . , xk in S.

Now consider two finite dimensional subspaces S and S̃ of E which have dimension

strictly greater than k + 1 with S ⊂ S̃. Suppose

weS = w̃1 ∨ w̃2 ∨ · · · ∨ w̃l−k.

Choose x1, . . . , xk in S so that none of ASxj, j = 1, . . . , k, lie in 〈w̃1〉∪ 〈w̃2〉∪ · · · ∪ 〈w̃l−k〉.
Since

wS ∨ ASx1 ∨ ASx2 ∨ · · · ∨ ASxk = weS ∨ AeSx1 ∨ AeSx2 ∨ · · · ∨ AeSxk
we see that each ASxj is a factor of weS ∨ AeSx1 ∨ AeSx2 ∨ · · · ∨ AeSxk. However, by our

choice of xj, ASxj cannot be a factor of weS and hence must be a multiple of one of the

AeSxi’s. It follows from (1) that wS is a scalar multiple of weS.

Let w = wS where S is any finite dimensional subspace of E of dimension at least

k + 1. Then for each x in E we have T (xk) = w ∨ yk for some y in F . Choose yo in F

such that T (xko) = w ∨ yko . Another application of [4, Lemma 4] tells us that our choice

of AS can be made in such a way that in addition to

T |S(x1 ∨ x2 ∨ · · · ∨ xk) = w ∨ ASx1 ∨ ASx2 ∨ · · · ∨ ASxk

for all x1, x2. . . . , xk in S we have AS(xo) = yo and therefore each AS is uniquely deter-

mined. As in Theorem 12 we construct a continuous injective linear operator A : E → F

with A|S = AS for every finite dimensional subspace S of E. An argument similar to that

given in Theorem 12 shows that

T (x1 ∨ x2 ∨ · · · ∨ xk) = w ∨ Ax1 ∨ Ax2 ∨ · · · ∨ Axk
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for all x1, . . . , xk in E.

If T belongs to A(
⊗̂

s,k,αk
E;
⊗̂

s,l,βl
F ) then it follows from the discussion at the end

of Section 3 that Ak will belong to A(
⊗̂

s,k,αk
E;
⊗̂

s,k,βk
F ). It now follows from Proposi-

tion 11 that A belongs to A(E;F ). �

In particular the above result is true for mappings from spaces of injective tensor

products into spaces of injective tensor products, for mappings from spaces of projective

tensor products into spaces of projective tensor products and when we consider mappings

from the space of symmetric projective tensors into the space of symmetric injective

tensors.

6 Rank-1 preserving mappings between spaces of

homogeneous polynomials

Given a Banach space E we use JE to denote the canonical embedding of E into its bidual

E ′′. As we have mentioned above, there is no Hahn-Banach Theorem for homogeneous

polynomials of degree 2 or greater. However, Aron and Berner [1] and Davie and Gamelin

[9] show that for every P ∈ P(kE) there is a norm-preserving extension of P to P ∈
P(kE ′′) such that P ◦ JE(x) = P (x) for all x ∈ E.

Given Banach spaces E and F and an isomorphism s : E ′ → F ′ it is shown in [16]

that the mapping s̄ defined by s̄(P ) = P ◦ s′ ◦JF induces an isomorphism of PA(kE) onto

PA(kF ) and of PN(kE) onto PN(kF ). We will see that mappings of this form are precisely

those operators between spaces of approximable and nuclear homogeneous polynomials

which preserve rank-1 polynomials.

Aron and Schottenloher, [2], show that given any non zero linear functional φ on a

Banach space E and any positive integer k the mapping r : P 7−→ φP is an injective linear

mapping of P(kE) into P(k+1E). Moreover, when both spaces are given the compact open

topology of uniform convergence on compact subspace of E, this mapping identifies P(kE)

with a complemented subspace of P(k+1E). The mapping r maps rank-1 polynomials to

rank-1 polynomials. The following results show that for the subspaces of approximable

and nuclear polynomials a composition of the types of mappings obtained in [2] and in [16]

give all linear mappings which map rank-1 polynomials to rank-1 polynomials. To obtain

these results we use the one-to-one correspondence between spaces of injective symmetric

tensor products,
⊗̂

s,k,εs,k
E ′, and approximable polynomials, PA(kE), and the one-to-one

correspondence between spaces of projective symmetric tensor products,
⊗̂

s,k,πs,k
E ′, and

nuclear polynomials, PN(kE), for spaces whose dual have the approximation property

together with Theorems 12 and 15.

Theorem 16 Let E and F be Banach spaces of dimension at least k + 1. Let k ≤ l and

T : PA(kE) → PA(lF ) be an injective linear operator which maps rank-1 polynomials to

19



rank-1 polynomials. Then there are ψ1, . . . , ψl−k in F ′ and a continuous injective linear

operator s : E ′ → F ′ such that

T (P ) = ψ1 · · ·ψl−kP ◦ s′ ◦ JF

for all P ∈ PA(kE). Moreover, given any operator ideal A, if T ∈ A(PA(kE);PA(lF ))

then s ∈ A(E ′;F ′).

From Theorem 15 we obtain the following result.

Theorem 17 Let E and F be Banach spaces of dimension at least k + 1 whose duals

have the approximation property. Let k ≤ l and T : PN(kE) → PN(lF ) be an injective

linear operator which maps rank-1 polynomials to rank-1 polynomials. Then there are

ψ1, . . . , ψl−k in F ′ and a continuous injective linear operator s : E ′ → F ′ such that

T (P ) = ψ1 · · ·ψl−kP ◦ s′ ◦ JF

for all P ∈ PN(kE). Moreover, given any operator ideal A, if T ∈ A(PN(kE);PN(lF ))

then s ∈ A(E ′;F ′).

Theorem 18 Let E and F be Banach spaces of dimension at least k + 1 such that E ′

has the approximation property. Let k ≤ l and T : PN(kE) → PA(lF ) be an injective

linear operator which maps rank-1 polynomials to rank-1 polynomials. Then there are

ψ1, . . . , ψl−k in F ′ and a continuous injective linear operator s : E ′ → F ′ such that

T (P ) = ψ1 · · ·ψl−kP ◦ s′ ◦ JF

for all P ∈ PN(kE). Moreover, given any operator ideal A, if T ∈ A(PA(kE);PN(lF ))

then s ∈ A(E ′;F ′).

Acknowledgements. The authors are grateful to Daniel Carando for posing a question

which led to the extension of some of the results to spaces of different degrees. The

authors also wish to thank the referee for his/her very useful comments and remarks.

The second author wishes to express her gratitude to the Department of Mathematics,

University College Dublin, for its hospitality during her visit of April–May 2005 when

this paper was initiated.

References

[1] Aron R.M. & Berner P., A Hahn-Banach extension theorem for analytic map-

pings, Bull. Math. Soc. France, 106 (1978), 3–24.

20



[2] Aron R.M. & Schottenloher M., Compact holomorphic mappings on Banach

spaces and the approximation property. J. of Funct. Anal., 21 (1) (1976), 7–30.

[3] Blasco F., Complementation in spaces of symmetric tensor products and polyno-

mials, Studia Math., 123, (2), (1997), 165–173.

[4] Boyd C. & Lassalle S., Isometries between spaces of homogeneous polynomials,

J. Functional Analysis, 224 (2) (2005), 281–295.

[5] Carando D., Extendible polynomials on Banach spaces, J. Math. Anal. Appl., 233

(1) (1999), 359–372.

[6] Cilia R. & Gutiérrez J.M., Polynomial characterization of Asplund spaces, Bull.

Belg. Math. Soc. Simon Stevin, 12 (3) (2005), 393–400.

[7] Cummings L., Decomposable symmetric tensors, Pacific J. Math., 1 35 (1970),

65–77.

[8] Cummings L., Transformations of symmetric tensors, Pacific J. Math., 3 42 (1972),

603–613.

[9] Davie A.M. & Gamelin T.W., A theorem on polynomial-star approximation,

Proc. Amer. Math. Soc., 106 (1989), 351–356.

[10] Defant A. & Floret K., Tensor norms and operator ideals, North-Holland Math-

ematical Studies, 176 North-Holland, (1993).

[11] Dineen S., Complex analysis on infinite dimensional spaces, Monographs in Math-

ematics, Springer-Verlag, (1999).

[12] Floret K., The extension theorem for norms on symmetric tensor products of

normed spaces, Recent progress in functional analysis (Valencia, 2000), 225–237,

North-Holland Math. Stud., 189, North-Holland, Amsterdam, 2001.

[13] John K., Tensor products and nuclearity, Banach space theory and its applications

(Bucharest, 1981), 124–129, Lecture Notes in Math., 991 Springer, Berlin, (1983).

[14] John, K., Tensor product of several spaces and nuclearity, Math. Ann., 269 (3)

(1984), 333–356.

[15] Kirwan P. & Ryan R.A., Extendibility of homogeneous polynomials on Banach

spaces, Proc. Amer. Math. Soc., 126, (4), (1998), 1023–1029.

[16] Lassalle S. & Zalduendo I., To what extent does the dual of a Banach space

determine the polynomials over E? Ark. Mat., 38 (2000), 343–354.

21



[17] Lim M-H., Linear transformations on symmetric classes of tensors II, Linear and

Multilinear Algebra, 26 (1990), 195–205.

[18] Lim M-H., Rank and tensor rank preservers, Linear and Multilinear Algebra, 33

(1992), 7–21.

[19] Lim M-H., Linear transformations on symmetric spaces II, Can. J. Math., 45 (2)

(1993), 357–368.

[20] Westwick R., Transformations on tensor spaces, Pacific J. Math., 23 (1967), 612–

620.

Christopher Boyd e-mail: Christopher.Boyd@ucd.ie

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

e-mail: Christopher.Boyd@ucd.ie
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