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Abstract. We investigate uniform algebras of bounded analytic functions on the
unit ball of a complex Banach space. We prove several cluster value theorems,
relating cluster sets of a function to its range on the fibers of the spectrum of the
algebra. These lead to weak versions of the corona theorem for `2 and for c0. In
the case of the open unit ball of c0, we solve the corona problem whenever all but
one of the functions comprising the corona data are uniformly approximable by
polynomials in functions in c∗0.

1. Introduction

S. Kakutani [Ka] was perhaps the first to investigate systematically the algebra

H∞(D) of bounded analytic functions on the open unit disk D in the complex plane

from the point of view of Banach algebras. The cluster set Cl(f, z0) of f ∈ H∞(D)

at a boundary point z0 of D is the set of accumulation points of values f(z) as z ∈ D
tends to z0. In a collaborative work (of Singer, Wermer, Kakutani, Buck, Royden,

Gleason, Arens, and Hoffman), I. J. Schark [Sc] proved that Cl(f, z0) coincides with

the range of the Gelfand transform f̂ of f on the fiber of the spectrum of H∞(D)

over z0. For expositions of the circle of ideas related to the cluster value theorem,

see [Ho, Chapter 10] and [Ga2].

An analogous cluster value theorem holds for H∞(D) for an arbitrary planar

domain D [Ga3], and it also holds for polydomains [Ga4] and for smooth strictly

pseudoconvex domains [McD] in Cn. The spectrum of H∞(B), for B the unit ball

of a complex Banach space, was first investigated in [ACG], where it is shown that,

even over interior points, fibers are usually highly nontrivial. J. Farmer [Fa] studied

the boundary behavior of bounded analytic functions at boundary points of the unit

ball of a uniformly convex Banach space, showing that if a function f has a limit at

a boundary point w, then f̂ is constant on the fiber over w.
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Our goal is to prove several cluster value theorems for algebras of bounded analytic

functions on the open unit ball B of a complex Banach space X. The cluster sets

we treat are defined using weak topologies (and not the norm topology on B). In

Section 2 we define the algebras of interest and we gather some background material,

some of which has been around for some time. In Section 3 we obtain a cluster value

theorem at 0 ∈ B for the algebra Au(B) of uniformly continuous analytic functions

on B. In Section 4 we treat this algebra in the special case that B is the open

unit ball of Hilbert space, and we obtain a cluster value theorem at all points of

the closed unit ball B̄. In Section 5 we study the algebra H∞(B) of all bounded

analytic functions on B, where B is the open unit ball of the Banach space c0 of

null sequences, and we obtain a cluster value theorem at all points of the closed unit

ball B̄∗∗ of the bidual `∞ of c0.

For background on Banach spaces, see [Di]. For background on analytic functions

on Banach spaces, see [Mu], [Din] or [Ga5]. For background on uniform algebras,

see [Ga1].

2. Background and generalities

Let B be the open unit ball of a complex Banach space X, and let H∞(B) be the

uniform algebra of bounded analytic functions on B. We denote by B̄∗∗ the closed

unit ball of the bidual X∗∗ of X.

The cluster set ClB(f, x) of f ∈ H∞(B) at x ∈ B̄∗∗ is the set of all limits of values

of f along nets in B converging weak-star to x. Thus ClB(f, x) is the intersection of

the closures of f(U ∩B), where U ranges over any basis for the weak-star neighbor-

hoods of x. Choosing a basis of convex sets, we see that ClB(f, x) is an intersection

of a decreasing net of compact connected sets. Thus we have the following.

Lemma 2.1. Let f ∈ H∞(B). Each cluster set ClB(f, x), x ∈ B̄∗∗, is a compact

connected set. Further, if x ∈ B, then f(x) ∈ ClB(f, x).

Example. If X is an infinite-dimensional Hilbert space, there is a two-homogeneous

function f , analytic on the open unit ball BX of X, such that |f | ≤ 1 and ClB(f, 0)

coincides with the closed unit disk D.

Indeed, let {λn} be any sequence of complex numbers of absolute value at most

1, such that the λn’s accumulate on the entire closed unit disk as n → ∞. Define
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f(x) =
∑
λn(xn)2, where the xn’s are the coordinates of x with respect to some

orthonormal subset {en} of X. Since the en’s converge weakly to 0 as n→∞, and

f(en) = λn, the cluster set of f at 0 is the closed unit disk.

Let A(B) denote the algebra of uniform limits on B of polynomials in the functions

in X∗. Polynomials in functions in X∗ extend to be weak-star continuous on the

closed unit ball B̄∗∗ of the bidual X∗∗ of X, as do their uniform limits. We will

view A(B) as a uniform algebra of continuous functions on B̄∗∗, with the weak-star

topology. The functions in A(B) are analytic on B, and A(B) is a closed subalgebra

of H∞(B).

It is easy to check that each nonzero complex-valued homomorphism of A(B) is

the evaluation homomorphism at some point of B̄∗∗. In other words, the spectrum

MA(B) of A(B) coincides with B̄∗∗.

Let H be an algebra of bounded analytic functions on B containing A(B) and

closed under the norm of uniform convergence on B. We are interested specifically

in two such algebras, the algebra H∞(B) of all bounded analytic functions on B,

and the algebra Au(B) of analytic functions on B that are uniformly continuous

with respect to the norm.

We denote by MH the spectrum of H. The Gelfand theory allows us to regard H

as a uniform algebra of functions on MH . We will denote the Gelfand extension of

a function f ∈ H to MH by f̂ , and view B as a subset of MH .

The inclusion A(B) ↪→ H induces a natural projection π of MH onto MA(B) = B̄∗∗,

so that π(ϕ) is simply the restriction of ϕ to A(B). We define the fiber of MH over

x ∈ B̄∗∗ to be Mx = π−1(x).

A cluster value theorem at x ∈ B̄∗∗ is a theorem that asserts that

(2.1) ClB(f, x) = f̂(Mx), f ∈ H.

One inclusion for this identity is trivial.

Lemma 2.2. If f ∈ H and x ∈ B̄∗∗, then ClB(f, x) ⊆ f̂(Mx).

Proof. If x ∈ B̄∗∗ and λ ∈ ClB(f, x), there is a net {xα} in B converging weak-star

to x such that f(xα)→ λ. Passing to a subnet, we can assume that xα → ϕ in MH .

Then f̂(ϕ) = λ. Since ĝ(ϕ) = lim g(xα) = g(x) for all g ∈ A(B), π(ϕ) = x. Thus

ϕ ∈Mx. Hence λ ∈ f̂(Mx). �
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We mention in passing that if the cluster value theorem holds at x ∈ B̄∗∗, then

the fiber Mx is connected. This follows from the Shilov idempotent theorem [Ga1,

p. 88] and the connectedness of cluster sets. (See [Ho, p.188].)

A corona theorem is a theorem that asserts that B is dense in MH . This occurs

if and only if whenever f1, . . . , fn ∈ H satisfy |f1| + · · · + |fn| ≥ ε > 0 on B, there

exist g1, . . . , gn ∈ H such that f1g1 + · · · + fngn = 1. If the corona theorem holds,

then evidently the cluster value theorem holds at all points x ∈ B̄∗∗. The following

lemma shows how a cluster value theorem may be viewed in some sense as a weak

corona theorem. This lemma will be used in Sections 4 and 5.

Lemma 2.3. The cluster value theorem (2.1) holds at every x ∈ B̄∗∗ if and only if

whenever f1, . . . , fn−1 ∈ A(B) and fn ∈ H satisfy |f1| + · · · + |fn| ≥ ε > 0 on B,

there exist g1, . . . , gn ∈ H such that f1g1 + · · ·+ fngn = 1.

Proof. Suppose the cluster value theorem holds. Let the fj’s satisfy the conditions

in the lemma. Suppose the f̂j’s have a common zero on MH . Since MH is fibered

over B̄∗∗ = MA(B), there is some x ∈ B̄∗∗ such that the f̂j’s have a common zero

on Mx. Then f1(x) = · · · = fn−1(x) = 0, and 0 ∈ f̂n(Mx). By the cluster value

theorem, 0 is a cluster value of fn at x, which contradicts |f1| + · · · + |fn| ≥ ε > 0

on B. We conclude that the f̂j’s have no common zeros on MH . Thus they belong

to no common maximal ideal, and we can solve
∑
fjgj = 1.

For the converse, suppose the cluster value theorem fails at x ∈ B̄∗∗. Choose

g ∈ H such that ĝ has a zero on Mx but 0 /∈ ClB(g, x). Then there is a weak-star

open set U in X∗∗ containing x such |g| ≥ ε > 0 on U ∩B. Choose n and functions

Lj ∈ X∗, 1 ≤ j < n, such that the functions fj = Lj − Lj(x) satisfy
∑
|fj| ≥ ε on

B\U . Then with fn = g we have |f1|+ · · ·+ |fn| ≥ ε on B. However, f̂j = 0 on Mx

for 1 ≤ j ≤ n − 1, so f̂1, . . . , f̂n have a common zero on Mx, and we cannot solve∑
fjgj = 1. �

Recall that a point x ∈ B̄∗∗ is a peak point for A(B) if there is g ∈ A(B) such

that g(x) = 1, and |g(y)| < 1 for y ∈ B̄∗∗, y 6= x. The function g is said to peak at

x. (See [Ga1].)

Lemma 2.4. Let x ∈ B̄, and suppose g is a function in A(B) such that g(x) = 1,

while |g| is bounded by a constant strictly less than 1 on any subset of B at a positive

distance from x. Then g peaks at x. Further, if f ∈ H is such that f(y) → λ

whenever y ∈ B tends to x in norm, then f̂ = λ on Mx.
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Proof. Since |g| ≤ 1 on B, also |g| ≤ 1 on B̄∗∗. Suppose y ∈ B̄∗∗ is such that

|g(y)| = 1. If {yα} is a net in B converging weak-star to y, then |g(yα)| → 1. From

the hypothesis on g, we conclude that yα → x in norm. Consequently y = x, and g

peaks at x.

Adding a constant to f , if necessary, we may suppose that f(y) tends to 0 as

y ∈ B tends to x in norm. Then gnf → 0 uniformly on B as n→∞. Thus ĝnf̂ → 0

uniformly on MH . Since ĝ = 1 on Mx, this can occur only when f̂ = 0 on Mx. �

Corollary 2.5. Suppose x ∈ B̄ is a peak point for A(B). If for each f ∈ H, f(y)

has a limit whenever y ∈ B tends to x in norm, then the fiber Mx reduces to one

point, Mx = {x}.

Proof. Every function in Ĥ is constant on Mx. �

3. The algebra Au(B)

Recall that Au(B) denotes the algebra of bounded analytic functions on B that

are uniformly continuous with respect to the norm of X. The functions in A(B)

are norm uniformly continuous on the closed unit ball B̄ of X. The example of the

2-homogeneous polynomial given in the preceding section shows that functions in

Au(B) are not necessarily weak-star continuous on B̄.

Anm-homogeneous polynomial onX is the restriction to the diagonal of a bounded

m-linear functional. A polynomial onX is a finite linear combination ofm-homogeneous

polynomials for m ≥ 0. Any polynomial on X is uniformly continuous on B, and

the algebra Au(B) coincides with the uniform limits on B̄ of the polynomials. (See

[Ga4].)

Our goal in this section is to prove the following theorem.

Theorem 3.1. If X is a Banach space with a shrinking 1-unconditional basis, then

the cluster value theorem holds for Au(B) at x = 0,

ClB(f, 0) = f̂(M0), f ∈ Au(B).

We begin with some lemmas on polynomials.

Suppose Y is a subspace of X of codimension 1. Let L be a continuous linear

functional whose kernel is Y , and let e ∈ X satisfy L(e) = 1. Then P (x) = x−L(x)e

defines a projection P of X onto Y parallel to e.



6 ARON, CARANDO, GAMELIN, LASSALLE, AND MAESTRE

Lemma 3.2. If f is a polynomial of degree n on X, then f can be expressed as

f(x) = f(P (x)) + L(x)g(x), where g is a polynomial of degree n− 1 on X.

Proof. We may assume that f is n-homogeneous. Then f is the restriction to the

diagonal of a symmetric n-linear form F on X, that is, f(x) = F (x, . . . , x). Setting

y = P (x) and t = L(x), we have f(x) = F (y + te, . . . , y + te) = F (y, . . . , y) +

tnF (y, . . . , y, e) + t2[n(n − 1)/2]F (y, . . . , y, e, e) + · · · + tnF (e, . . . , e). We define a

function g on X by g(x) = g(y+te) = nF (y, . . . , y, e)+[n(n−1)/2]F (y, . . . , y, te, e)+

· · ·+F (te, . . . , te, e). Then f(x) = f(P (x))+L(x)g(x). Since y and t depend linearly

and boundedly on x, g is a polynomial on X, and g has degree n− 1. �

Lemma 3.3. Let P be a projection onto a closed subspace Y of X of finite codi-

mension. Then any polynomial f of degree n on X can be expressed in the form

f(x) = f(P (x)) +L1(x)g1(x) + · · ·+Lm(x)gm(x), where the gj’s are polynomials of

degree n− 1 on X, and the Lj’s are continuous linear functionals on X.

Proof. This follows from repeated application of the preceding lemma. �

Lemma 3.4. Let P be a norm-one projection of X onto a closed subspace Y of X

of finite codimension. If ϕ ∈M0, then f̂(ϕ) = f̂ ◦ P (ϕ) for all f ∈ Au(B).

Proof. Since ϕ ∈M0, L̂(ϕ) = L(0) = 0 for all L ∈ X∗. In view of the decomposition

of the preceding lemma and the multiplicativity and linearity of ϕ, we then obtain

f̂(ϕ) = f̂ ◦ P (ϕ) for all polynomials f . Since P is a norm-one projection, the

equality persists for the uniform limits of polynomials on B̄, that is, for all functions

in Au(B). �

Lemma 3.5. Suppose each weak neighborhood of 0 in B contains the unit ball a

subspace of finite codimension with a norm-one projection. Then the cluster value

theorem holds for Au(B) at x = 0.

Proof. Suppose that 0 /∈ ClB(f, 0). We must show that 0 /∈ f̂(M0). Since 0 /∈
ClB(f, 0), there is δ > 0 and a weak neighborhood U of 0 in X such that |f | ≥ δ

on U ∩ B. By hypothesis there is a norm-one projection P of X onto a closed

subspace Y of X of finite codimension such that Y ⊂ U . Then |f ◦ P | ≥ δ on

X ∩ B, and consequently f ◦ P is invertible in Au(B). Hence f̂ ◦ P 6= 0 on the

spectrum of Au(B). From the preceding lemma, we then obtain, f̂ 6= 0 on M0, that

is, 0 /∈ f̂(M0). �
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Proof of Theorem 3.1. Let {en} be a shrinking 1-unconditional basis for X. Then

for each n, the operator Pn : x =
∑
akek →

∑
k≥n akek is a norm-one projection.

The sets Uε,m = {a =
∑
akek ∈ B : |ak| < ε, 1 ≤ k ≤ m} form a basis of weak

neighborhoods of 0 in B, each weak neighborhood of 0 contains the unit ball of

Pn(X) for some large n, and the preceding lemma applies. �

Theorem 3.1 applies in particular to Hilbert space. The proof works in somewhat

more generality. For instance it applies to spaces with a shrinking 1-unconditional

finite dimensional decomposition. For example, a c0 or `p-sum (1 < p <∞) of finite

dimensional spaces En whose Gordon-Lewis constants (see Chapter 17 of [DJT]) go

to ∞ with n has such a decomposition but cannot have an unconditional basis. We

do not know whether the theorem holds for all Banach spaces.

4. The cluster value theorem for Hilbert space

In this section, we take X to be a Hilbert space, and H to be the algebra Au(B).

Since X is reflexive, the spectrum of A(B) is the closed unit ball B̄ of X, with the

weak topology. The spectrum of Au(B) is fibered over B̄. Our goal in this section

is to prove the following theorem.

Theorem 4.1. If X is a Hilbert space, then the cluster value theorem holds for

Au(B) at every x ∈ B̄,

ClB(f, x) = f̂(Mx), f ∈ Au(BX), x ∈ B̄.

Corollary 4.2. Let B be the open unit ball of a Hilbert space. If f1, . . . , fn−1 ∈ A(B)

and fn ∈ Au(B) satisfy |f1|+ · · ·+ |fn| ≥ ε > 0 on B, then there exist g1, . . . , gn ∈
Au(B) such that f1g1 + · · ·+ fngn = 1.

The case of finite-dimensional Hilbert space is trivial, since A(B) = Au(B). We

focus on an infinite-dimensional Hilbert space. The unit ball B of X has a transitive

group of automorphisms, and we use these to transfer the cluster value theorem at

0 to other points of B.

Lemma 4.3. An automorphism φ of the open unit ball B of Hilbert space X induces

an automorphism f → f ◦ φ of the uniform algebra A(B). Further, φ extends to a

homeomorphism of the spectrum of A(B), that is, to a homeomorphism of B̄ in the

weak topology.
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Proof. For fixed a ∈ B, the formula

βa(x) =
1

1 +
√

1− ||a||2

(
x− a

1− (x|a)
|a
)
a+

√
1− ||a||2 x− a

1− (x|a)
, x ∈ B,

defines an automorphism βa of B mapping a→ 0 and 0→ −a. Any automorphism

of B mapping a to 0 is the composition of βa and a unitary operator on X. (See

[Re, Proposition 1, p.132].)

By expanding 1/[1−(x|a)] as a geometric series
∑

(x|a)n and noting that the series

converges uniformly on B̄, we see that βa(x) = g(x)a + h(x)x, where the functions

g and h are in A(B). Let L ∈ A(B) be a linear functional, that is, L(x) = (x|z) for

some z ∈ X. Then (L ◦ βa)(x) = g(x)(a|z) + h(x)(x|z), so L ◦ βa ∈ A(B). Since

such functions L generate A(B), we see that the composition operator C : f →
f ◦ βa leaves A(B) invariant. Since the inverse of βa is β−a, which also leaves A(B)

invariant, C is an automorphism of A(B). Similarly, if U is a unitary operator on X,

the composition operator f → f ◦U is an automorphism of A(B), and in fact L ◦U
is linear whenever L is linear. We conclude that if φ is any automorphism of B, the

composition operator Cφ : f → f ◦ φ is an automorphism of A(B). The extension

of φ to B̄ is the restriction of the adjoint operator C∗φ to B̄, which is continuous with

respect to the weak topology. �

Lemma 4.4. An automorphism φ of the open unit ball B of Hilbert space X in-

duces an automorphism Cφ : f → f ◦ φ of the uniform algebra Au(B). Further, φ

extends to a homeomorphism φ̂ of the spectrum MAu(B), which maps the fiber Mx

homeomorphically onto the fiber Mφ(x).

Proof. From the explicit representation of the automorphisms of B, we see that

an automorphism φ of B extends to be Lipschitz continuous on B̄. Hence the

composition operator Cφ leaves Au(B) invariant, and in fact Cφ is an automorphism

of Au(B). It follows that the restriction φ̂ of the adjoint operator C∗φ of Cφ to

the spectrum MAu(B) of Au(B) is a homeomorphism. The induced map φ̂ is given

explicitly by

f̂(φ̂(ψ)) = f̂ ◦ φ(ψ), ψ ∈MAu(B), f ∈ Au(B).

Suppose x ∈ B̄ and ψ ∈Mx. If f ∈ A(B), then f̂(φ̂(ψ)) = (̂f ◦ φ)(ψ) = (f ◦φ)(x) =

f(φ(x)). Hence φ̂(ψ) ∈ Mφ(x). Since φ̂ maps the fiber Mx into Mφ(x), and φ̂ is a

homeomorphism of MAu(B), in fact φ̂ maps Mx homeomorphically onto Mφ(x). �
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Proof of Theorem 4.1. Let x ∈ B̄. If ||x|| = 1, then the function g(y) = [1+(y|x)]/2

peaks at x, and x is a peak point for A(B). By Corollary 2.5, the fiber Mx of the

spectrum of Au(B) over x consists of only one point, and the cluster value theorem

holds trivially for Au(B) at x.

Suppose on the other hand that x ∈ B. Let φ be an automorphism of B such that

φ(0) = x. If f ∈ Au(B), then clearly ClB(f, x) = ClB(Cφf, 0). By Theorem 3.1, this

coincides with Ĉφf(M0) = f̂(φ̂(M0)), which by the preceding lemma is f̂(Mx). �

5. The algebra H∞(B) on the unit ball of c0

In this section, we suppose X is the Banach space c0 of null sequences. In this

case, X∗∗ = `∞, and B∗∗ is the infinite unit polydisk. The algebra A(B) is generated

by the linear functionals x→
∑
ajxj, where a ∈ `1.

A theorem of Littlewood-Bogdanowicz-Pelczynski (see Proposition 1.59 of [Din],

or Section 3.4 of [Ga5]) asserts that a bounded m-homogeneous function on c0 can

be approximated uniformly on B by m-homogeneous polynomials of finite type. It

follows that the algebra Au(B) coincides with A(B), and the cluster value theorem

holds trivially for Au(B).

Our goal is to prove a cluster theorem for H∞(B). The following example shows

that cluster sets of functions in this algebra can be quite large.

Example. There are functions in H∞(B) whose cluster set at 0 contains a disk.

Indeed, take rn < 1 increasing rapidly to 1, and set f(x) =
∏

(rn−xn)/(1−rnxn),

which is a Blaschke-like product. Clearly ||f || ≤ 1. Fix µ, |µ| < 1, and choose λn

such that µ = (rn−λn)/(1− rnλn). Then |λn| < 1, λnen converges weakly to 0, and

f(λnen)→ µ
∏
rn.

Theorem 5.1. If X is the Banach space c0 of null sequences, then the cluster value

theorem holds for H∞(B) at every x ∈ B̄∗∗,

ClB(f, x) = f̂(Mx), f ∈ H∞(B), x ∈ B̄∗∗.

Corollary 5.2. Let B be the open unit ball of the Banach space c0 of null sequences.

If f1, . . . , fn−1 ∈ A(B) and fn ∈ H∞(B) satisfy |f1|+ · · ·+ |fn| ≥ ε > 0 on B, then

there exist g1, . . . , gn ∈ H∞(B) such that f1g1 + · · ·+ fngn = 1.
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The cluster theorem at points of B can be easily established by following the line of

proof of Theorem 4.1. However, this method does not carry over to arbitrary points

in B̄∗∗. To handle these points, we use a solution to the ∂̄-problem in one complex

variable, with control of the dependence of the solution upon analytic parameters.

The properties of the solution we will use are summarized in the following lemma.

(See Sections II.1 and VIII.10 of [Ga1], or [Ga2], for more details.) We use ∆(ζ0, δ)

to denote the open disk {|ζ − ζ0| < δ} in C.

Lemma 5.3. Let D be a bounded open subset of C, let ζ0 ∈ C, and let δ > 0. Given

f ∈ H∞(D ∩∆(ζ0, δ)), there are g ∈ H∞(D) and h ∈ H∞(D ∩∆(ζ0, δ)), given by

explicit formulas, such that h extends analytically to ∆(ζ0, δ/2), and

f(ζ) = g(ζ) + (ζ − ζ0)h(ζ), ζ ∈ D ∩∆(ζ0, δ).

The supremum norms of g on D and of h on D ∩ ∆(ζ0, δ) can be estimated in

terms of δ and the supremum norm of f on D. If f depends analytically on other

parameters, so do g and h.

Proof. Let u be a smooth function on C supported on a compact subset of ∆(ζ0, δ),

such that u = 1 in a neighborhood of the closure of ∆(ζ0, δ/2). Set f = 0 off D,

and let G be the solution of the ∂̄-equation ∂̄G = f∂̄u which vanishes at ∞. The

function G is given explicitly by

G(ζ) = f(ζ)u(ζ) +
1

π

∫∫
f(λ)

∂u

∂λ̄

1

λ− ζ
dξdη,

where λ = ξ + iη. Note that f −G is analytic on ∆(ζ0, δ/2). We define

g(ζ) = G(ζ)− (f −G)(ζ0), h(ζ) =
(f −G)(ζ)− (f −G)(ζ0)

ζ − ζ0
.

Then g and h have the desired properties. �

Proof of Theorem 5.1. Fix f ∈ H∞(B) and w = (w1, w2, . . .) ∈ B̄∗∗. Suppose

0 /∈ ClB(f, w). It will suffice to show that 0 /∈ f̂(Mw).

Since 0 is not a cluster value of f at w, there are c > 0, δ > 0, and N ≥ 1 such that

if z ∈ B satisfies |zj − wj| < d for 1 ≤ j ≤ N , then |f(z)| ≥ c. For 0 ≤ k ≤ N − 1,

define

Uk = {z ∈ B : |zj − wj| < d, k + 1 ≤ j ≤ N},

and set UN = B. Note that 1/f is bounded and analytic on U0.
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We claim that for each k, 1 ≤ k ≤ N , there are functions gk and hkj, 1 ≤ j ≤ k,

in H∞(Uk) that satisfy

(5.1) f(z)gk(z) = 1 + (z1 − w1)hk1(z) + · · ·+ (zk − wk)hkk(z), z ∈ Uk.

Once this claim is established, the proof is completed easily as follows. The functions

gN and hNj belong to H∞(B) and satisfy

fgN = 1 +
N∑
j=1

(zj − wj)hNj.

Since each ẑj − ŵj vanishes on Mw, we obtain f̂ ĝN = 1 on Mw, and consequently f̂

does not vanish on Mw, as required.

The claim is established by induction on k. The first step, the construction of

g1 and h11, is as follows. We regard 1/f(z1, z2, . . .) as a bounded analytic function

of z1 for |z1| < 1, |z1 − w1| < δ, with z2, z3, . . . as analytic parameters in the range

|zj| < 1, 2 ≤ j <∞ and |zj −wj| < δ, 2 ≤ j ≤ N . According to the lemma, we can

express
1

f(z)
= g(z) + (z1 − w1)h(z), z ∈ U0,

where g ∈ H∞(U1). If we set g1 = g and

h11(z) = [f(z)g(z)− 1]/(z1 − w1), z ∈ U1,

then (5.1) is valid for k = 1. Note that h11 = −hf on U0. Consequently h11 is

bounded and analytic on U0. The defining formula then shows that h11 is analytic

on all of U1, and since |z1 − w1| ≥ δ on U1\U0, h11 is bounded on U1.

Now suppose that 2 ≤ k ≤ N , and that there are functions gk−1 and hk−1,j

(1 ≤ j ≤ k − 1) that satisfy (5.1) and are appropriately analytic. We apply the

lemma to these as functions of zk, with the other variables regarded as analytic

parameters, to obtain decompositions

gk−1(z) = gk(z) + (zk − wk)Gk(z)

and

hk−1,j(z) = hk,j(z) + (zk − wk)Hk,j(z), 1 ≤ j ≤ k − 1,

where gk and the hkj’s are in H∞(Uk), and Gk and the Hkj’s are in H∞(Uk−1). From

the identity (5.1), with k replaced by k − 1, we obtain

fgk = 1 +
k−1∑
j=1

(zj − wj)hkj + (zk − wk)[−fGk +
k−1∑
j=1

(zj − wj)Hkj]
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on Uk−1. We define

hkk = [fgk − 1−
k−1∑
j=1

(zj − wj)hkj]/(zk − wk), z ∈ Uk.

Then (5.1) is valid. On Uk−1 we have

hkk = −fGk +
k−1∑
j=1

(zj − wj)Hkj,

so that hkk is bounded and analytic on Uk−1. Since |zk − wk| ≥ δ on Uk\Uk−1, we

see from the defining formula that hkk ∈ H∞(Uk). This establishes the induction

step, and the proof is complete. �
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