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Abstract. We study the existence of atomic decompositions for tensor prod-

ucts of Banach spaces and spaces of homogeneous polynomials. If a Banach

space X admits an atomic decomposition of a certain kind, we show that the
symmetrized tensor product of the elements of the atomic decomposition pro-

vides an atomic decomposition for the symmetric tensor product
Nn
s,µX, for

any symmetric tensor norm µ. In addition, the reciprocal statement is inves-

tigated and analogous consequences for the full tensor product are obtained.
Finally we apply the previous results to establish the existence of monomial

atomic decompositions for certain ideals of polynomials on X.

Introduction

Function theory on infinite dimensional spaces comprises, among many other
topics, the study of multilinear functions, polynomials and holomorphic functions
defined on a Banach space. The linear structure and properties of the underlying
Banach space reflect into the structure and properties of different type of functions
defined on it. For example, for Banach spaces X and Y with shrinking bases, the
space of bilinear forms B(X × Y ) has a monomial basis if and only if every linear
operator form X to Y ′ is compact, see [28].

Many authors have studied the existence of bases in tensors products of Banach
spaces and in spaces of homogeneous polynomials [1, 6, 12, 14, 15, 23, 27]. For
a Banach space X with a Schauder basis, a natural question is if the monomials
associated to the basis form a basis for the space of polynomials on X. This
would result in a good approximation of polynomials and analytic functions by
combinations of coordinate functionals. Also, it was shown that the existence of
such a basis is closely related to the reflexivity of some spaces of polynomials and
analytic functions [1, 14].

In this article, we face the analogous question regarding atomic decompositions
instead of bases. Atomic decompositions were introduced by Gröchening [22] as
a possible extension of the concept of Hilbert frames to the Banach space frame-
work. Atomic decompositions are present in any separable space with the bounded
approximation property. Moreover, a complemented subspace of a Banach space
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with basis has always a natural atomic decomposition, easily obtained in terms of
the basis of the superspace. Note that even when this subspace may have a basis,
there is not a systematic way to find it. This makes atomic decompositions a less
restrictive structure than bases.

In this setting, one of our main questions is the following: if a Banach space X
has an atomic decomposition and Q(X) is some space of polynomials on X, are
the corresponding monomials an atomic decomposition for Q(X)? More precisely,
given an atomic decomposition ((x′i), (xi)) of X and any continuous n-homogeneous
polynomial P on X, the series expansion

P (x) = P̌ (x, · · · , x) =
∑
α1

· · ·
∑
αn

P̌ (xα1 , . . . , xαn) x′α1
(x) · · ·x′αn(x)

is pointwise convergent (here, P̌ denotes the symmetric n-linear form associated to
P ). The question is then to find conditions under which the monomials (x′α1

· · ·x′αn),
together with the n-tuples (xα1 , . . . , xαn), form an atomic decomposition for differ-
ent spaces of polynomials. For the particular case when the atomic decomposition
is a Schauder basis, we recover some of the results in [1, 6, 12, 14, 15, 23, 27].

It is worthwhile to note that homogeneous polynomials of degree 1 on a Banach
space X are exactly the linear forms on X, that is the dual space X ′. Also, many
classes of polynomials on X are related to different symmetric tensor norms on⊗n

s X
′. Therefore, to study the existence of atomic decompositions for spaces of

polynomials, a natural approach is to investigate such structures on
⊗n

s,µX
′ for

symmetric tensor norms µ. This fact suggests that a good start is to study when
an atomic decomposition for X ensures the existence of an atomic decomposition
for

⊗n
s,µX. This question is discussed in Section 2. Also, the results on tensor

products are combined with the duality theory for atomic decompositions presented
in [9] to obtain atomic decompositions for

⊗n
s,µX

′ built from those on X.
The correspondence between symmetric tensor norms on

⊗n
s X

′ and ideals of n-
homogeneous polynomials on X allows us to tackle, in Section 3, our main question:
in which cases do monomials provide an atomic decomposition for spaces of polyno-
mials? Finally, as applications, we relate the Asplund property with the existence
of monomial atomic decompositions for integral polynomials. We characterize the
reflexivity of the space of polynomials in terms of the existence of monomial atomic
decompositions.

For further information on atomic decompositions see, for example, [10, 11, 22]
and the references therein. We refer to [24] for Banach space theory, [13, 19, 20, 27]
for notation and properties of tensor products and [16, 25] for polynomials on
Banach spaces.

1. Definitions and basic results on atomic decompositions and duality

The definitions and results given in this section are mainly taken from [9]. Since
these results will be used throughout the present article we include them here for
the reader’s convenience.

By a Banach sequence space we understand a Banach space of scalar sequences
for which the coordinate functionals are continuous. We say that the space is a
Schauder sequence space if, in addition, the unit vectors {ei} given by (ei)j = δi,j
form a basis for it. In this case, a sequence a = (ai) can be written as a =

∑
i aiei.
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Definition 1. Let X be a Banach space and Z be a Banach sequence space. Let
(x′i) and (xi) be sequences in X ′ and X respectively. We say that ((x′i), (xi)) is an
atomic decomposition of X with respect to Z if for all x ∈ X:

(a) (〈x′i, x〉) ∈ Z,
(b) A‖x‖ ≤ ‖(〈x′i, x〉)‖Z ≤ B‖x‖, with A and B positive constants,
(c) x =

∑
i〈x′i, x〉xi.

We will often refer to property (c) in the above definition as the reconstruction
formula associated to the atomic decomposition.

Pelczyński [26] showed that a separable Banach space admits an atomic decom-
position if an only if it has the bounded approximation property. In this case, if
((x′i), (xi)) is an atomic decomposition of X with respect to some Banach sequence
space Z, it is always possible to find a Schauder sequence space Xd and an operator
S : Xd → X such that Sei = xi and ((x′i), (xi)) is also an atomic decomposition
of X with respect to Xd [26, 10]. Then, in the sequel we will consider atomic
decompositions of the form ((x′i), (Sei)) associated to a Schauder sequence space
Xd.

If ((x′i), (Sei)) is an atomic decomposition of X with respect to Xd, the natural
inclusion J : X → Xd is given by

(1) J(x) = (〈x′i, x〉) =
∑
i

〈x′i, x〉ei.

If (e′i) is the dual basic sequence of (ei) then, x′i = J ′e′i. Since SJ = IX , X is
isomorphic to a complemented subspace of Xd. On the other hand, if there exits
J : X → Xd and S : Xd → X continuous operators so that SJ = IX and (e′i) is the
dual basic sequence of (ei), then the pair ((J ′e′i), (Sei)) is an atomic decomposition
for X with respect to Xd.

In order to obtain an atomic decomposition for X ′ in terms of a given atomic
decomposition of X, the notion of shrinking and strongly shrinking atomic decom-
positions were introduced in [9].

In what follows X will be a Banach space, Xd a Schauder sequence space and
S : Xd → X a continuous operator such that ((x′i), (Sei)) is an atomic decomposi-
tion of X with respect to Xd. We shall denote by (Xd)′ the usual dual space of Xd.
Since (Xd)′ is not necessarily a Schauder sequence space, we will also consider X ′d
the closed subspace spanned by (e′i) in (Xd)′.

The definition of a shrinking atomic decomposition requires the following oper-
ators: TN : X → X, N ∈ N, given by TN (x) =

∑
i≥N 〈x′i, x〉Sei. It can be seen

that (TN ) is a uniformly bounded sequence. Now we are in conditions to state the
following:

Definition 2. The atomic decomposition ((x′i), (Sei)) is said to be shrinking if for
all x′ ∈ X ′

‖x′ ◦ TN‖ −→ 0.

Theorem 3. The pair ((Sei), (x′i)) is an atomic decomposition for X ′ with respect
to (Xd)′ if and only if ((x′i), (Sei)) is shrinking.

Note that in the theorem above we obtain an atomic decomposition for X ′ with
respect to (Xd)′, which might not be a Schauder sequence space. A subtle mod-
ification to the definition of shrinking atomic decomposition allows us to replace
(Xd)′ by X ′d.
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Fixed N , consider the mapping SN : Xd → X given by SN (a) =
∑
i≥N aixi.

Again, (SN ) is a uniformly bounded sequence. Now we have:

Definition 4. The atomic decomposition ((x′i), (Sei)) is said to be strongly shrink-
ing if for all x′ ∈ X ′

‖x′ ◦ SN‖ −→ 0.

Theorem 5. The pair ((Sei), (x′i)) is an atomic decomposition for X ′ with respect
to X ′d if and only if (x′i, (Sei)) is strongly shrinking.

It is clear that any strongly shrinking atomic decomposition is shrinking. The
converse is not true, as an example in [9] shows.

2. Atomic decomposition of symmetric tensor products

Given a Banach space X, we denote by
⊗n

X the n-fold tensor product of X.
The subspace of

⊗n
X consisting of all tensors of the form

∑l
j=1 λjxj ⊗ · · · ⊗ xj ,

where xj ∈ X and λj = ±1, is called the symmetric n-fold tensor product of
X and is denoted by

⊗n
sX. Fixed x1, . . . , xn, we denote by x1 ⊗s · · · ⊗s xn the

symmetrization of x1 ⊗ · · · ⊗ xn, that is

x1 ⊗s · · · ⊗s xn =
1
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n),

where Sn is the symmetric group on {1, . . . , n}. As a consequence of the polarization
formula, x1 ⊗s · · · ⊗s xn is a symmetric tensor (see [19, Section 1.5]).

Given a Banach space Y and a continuous operator T : X → Y , the symmetric
n-tensor power of T is an operator from

⊗n
sX to

⊗n
sY defined by(⊗n

s T
)

(x⊗s · · · ⊗s x) = Tx⊗s · · · ⊗s Tx

on the elementary tensors and extended by linearity.
Given x′1, . . . , x

′
n ∈ X ′, the so called trace duality between the full tensor prod-

ucts
⊗n

X ′ and
⊗n

X identifies the tensor x′1⊗· · ·⊗x′n with the linear functional
defined on

⊗n
X by

〈x′1 ⊗ · · · ⊗ x′n, x1 ⊗ · · · ⊗ xn〉 = 〈x′1, x1〉 · · · 〈x′n, xn〉.

for all x1, . . . , xn ∈ X, and extended by linearity. For the symmetric tensor product,
x′1 ⊗s · · · ⊗s x′n corresponds to a linear functional on

⊗n
s X which applied on an

elementary tensor x⊗s · · · ⊗s x takes the value

〈x′1 ⊗s · · · ⊗s x′n, x⊗s · · · ⊗s x〉 = 〈x′1, x〉 · · · 〈x′n, x〉.

A symmetric n-tensor norm µ assigns to each normed space X a norm on
⊗n

s X
satisfying

(a) The tensor ⊗n1 ∈ (
⊗n

s K, µ) has unit norm, where K denotes the real or
complex field.

(b) The metric mapping property: for all continuous linear mappings T : E →
F , we have:

‖
⊗n

s T : (
⊗n

s X,µ)→ (
⊗n

s Y, µ)‖ = ‖T‖n.
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We denote the completion of (
⊗n

s X,µ) with respect to this norm by
⊗n

µ,sX.
Note that extending the definition of the n-tensor power of T from (

⊗n
s X,µ) to⊗n

µ,sX by density we have
⊗n

s T :
⊗n

µ,sX →
⊗n

µ,s Y a continuous linear operator
of the same norm.

As well as for the full tensor product, for the symmetric n-tensor fold there is
a least symmetric n-tensor norm, called the symmetric injective norm, noted by
ε and a greatest symmetric n-tensor norm, called the symmetric projective norm,
noted by π.

Given an n-fold symmetric tensor z ∈
⊗n

s X the symmetric injective norm is
defined by

ε(z) = sup
x′∈BX′

∣∣∣∣∣
k∑
i=1

λi〈x′, xi〉n
∣∣∣∣∣ ,

where
∑k
i=1 λixi ⊗ xi ⊗ · · · ⊗ xi is any fixed representation of z.

On the other hand

π(z) = inf

{
k∑
i=1

‖xi‖n
}

is the symmetric projective norm, where the infimum is taken over all the repre-
sentations of z of the form

∑k
i=1 λixi ⊗ xi ⊗ . . .⊗ xi.

In his Ph D. Thesis [27], Ryan states without a proof that the n-fold symmetric
tensor product of a Banach space X has a Schauder basis whenever X does. An
implicit proof is given by Dimant and Dineen for complex Banach spaces with
shrinking basis in [14] (see also [12]). Later, in [23], Grecu and Ryan provide a
constructive proof for real or complex Banach spaces. To be more precise, if (ei)
is a Schauder basis for X and µ is a symmetric n-tensor norm, then the sequence
(eα)α∈J is a Schauder basis for

⊗n
µ,sX, where eα = eα1 ⊗s · · · ⊗s eαn and J =

{α ∈ Nn : α1 ≥ α2 ≥ · · · ≥ αn} is the set of decreasing n-multi-indices with the
square ordering in which the role of rows and columns is reversed. From now on
we use this result without further mention.

In particular, for Xd a Schauder sequence space, the sequence (eα)α∈J = (eα1⊗s
· · · ⊗s eαn)α∈J is a basis for the n-fold symmetric tensor product

⊗n
µ,sXd. This

means that
⊗n

µ,sXd can be considered as a sequence space, identifying the elements
in
⊗n

µ,sXd with their coefficients in the basis (eα)α∈J = (eα1⊗s · · ·⊗s eαn)α∈J . In
order to describe ((eα)′)α∈J the dual basic sequence of the basis (eα)α∈J we need
to introduce some notation.

For any n-multi-index α, we denote by Inv(α) the number of permutations in
Sn for which α is invariant, that is Inv(α) = ]{σ ∈ Sn : ασ(i) = αi, ∀i = 1, . . . , n}.
Also, Perm(α) denotes the number of the different multi-indexes obtained by per-
mutations of α. Then, the relation Perm(α)Inv(α) = n! holds.

Now, if ((eα)′)α∈J is the dual basic sequence of (eα)α∈J , then 〈e′α, eβ〉 = δα,β ,
for any pair of decreasing n-multi-indices α and β. Note that for full tensors,
〈e′ξ1 ⊗ · · · ⊗ e

′
ξn
, eχ1 ⊗ · · · ⊗ eχn〉 = 〈e′ξ1 , eχ1〉 . . . 〈e′ξn , eχn〉. For decreasing α and β,
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we then have 〈e′α1
⊗s · · · ⊗s e′αn , eβ1 ⊗s · · · ⊗s eβn〉 = 0 whenever β 6= α. Otherwise,

〈e′α1
⊗s · · · ⊗s e′αn , eα1 ⊗s · · · ⊗s eαn〉 =

1
n!

∑
σ∈Sn

〈e′ασ(1)
, eα1〉 . . . 〈e′ασ(n)

, eαn〉

=
Inv(α)
n!

.

Therefore, for any α ∈ J we have

(eα)′ = Perm(α)e′α1
⊗s · · · ⊗s e′αn .

Let X be a Banach space, Xd be a Schauder sequence space and µ be a symmet-
ric n-tensor norm. Suppose there exists a continuous linear operator S : Xd → X
and a sequence (x′i) ⊂ X ′ such that ((x′i), (Sei)) is an atomic decomposition for X
with respect to Xd. If J : X → Xd is the natural inclusion defined in equation (1),
both n-tensor power operators

⊗n
s J :

⊗n
µ,sX →

⊗n
µ,sXd and

⊗n
s S :

⊗n
µ,sXd →⊗n

µ,sX are continuous with norms ‖J‖n and ‖S‖n respectively. Moreover, we

have
(⊗n

s S
)
◦
(⊗n

s J
)

=
⊗n

s SJ =
⊗n

s IX = INn
µ,sX

and since
⊗n

µ,sXd can be

thought of as a sequence space, we have that
((

(
⊗n

s J)′(eα)′
)
α∈J ,

(
(
⊗n

s S)(eα)
)
α∈J

)
is an atomic decomposition for

⊗n
µ,sX with respect to

⊗n
µ,sXd, see Section 1. Fur-

thermore, since (
⊗n

s J)′ =
⊗n

s J
′ and J ′(e′i) = x′i the atomic decomposition has

the form (
Perm(α)(x′α1

⊗s · · · ⊗s x′αn)α∈J , (Seα1 ⊗s · · · ⊗s Seαn)α∈J
)
.

We have shown one of the implications of the following:

Theorem 6. Let X be a Banach space, Xd be a Schauder sequence space and let
µ be a symmetric n-tensor norm. Take S : Xd → X a continuous operator and
(x′i) ⊂ X ′ a sequence.

If ((x′i), (Sei)) is an atomic decomposition for X with respect to Xd then

(2)
(
Perm(α)(x′α1

⊗s · · · ⊗s x′αn)α∈J , (Seα1 ⊗s · · · ⊗s Seαn)α∈J
)

is an atomic decomposition for
⊗n

µ,sX with respect to
⊗n

µ,sXd.
Conversely, if

⊗n
µ,sX admits an atomic decomposition with respect to

⊗n
µ,sXd

as in (2) then, for some n-th root of unity θ, ((θx′i), (Sei)) is an atomic decompo-
sition for X with respect to Xd.

Proof. We have to prove the second statement. The first step will be to show that
the operator J : X → Xd given by (〈x′i, x〉)i is well defined and continuous.

Since µ is a symmetric n-tensor norm, we can consider the continuous natural
mapping ⊗n

µ,sXd ↪→
⊗n

ε,sXd ↪→ L
(⊗n−1

π,s (Xd)′, Xd

)
.

For each element of the basis eα we write ẽα for its identification as an operator
in L

(⊗n−1
π,s (Xd)′, Xd

)
. The application ẽα is given by

ẽα(a′ ⊗s · · · ⊗s a′︸ ︷︷ ︸
n−1

) =
1
n

n∑
j=1

(∏
i 6=j

〈a′, eαi〉
)
eαj .
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In particular, fixed k ∈ N, ẽα(e′k ⊗s · · · ⊗s e′k) = 1
n

∑n
j=1

(∏
i 6=j δαi,k

)
eαj = 0

unless α is a permutation of (k, k, . . . , k, l), for some l ∈ N. In this case, ẽα(e′k) =
1
nel.

Now, fix x ∈ X and take J̃ :
⊗n

µ,sX →
⊗n

µ,sXd the canonical inclusion associ-
ated to the atomic decomposition,

J̃(x⊗s · · · ⊗s x) =
∑
α∈J

Perm(α)〈x′α1
⊗s · · · ⊗s x′αn , x⊗s · · · ⊗s x〉eα

=
∑
α∈J

Perm(α)〈x′α1
, x〉 . . . 〈x′αn , x〉eα.

This series is norm convergent. Since the order in J fills blocks, taking a subse-
quence of the partial sums we can write

J̃(x⊗s · · · ⊗s x) = lim
N→∞

∑
α∈J
α1≤N

Perm(α)〈x′α1
, x〉 . . . 〈x′αn , x〉eα,

with strong convergence in
⊗n

µ,sXd. Using the identification described above we
have, ( ∑

α∈J
α1≤N

Perm(α) 〈x′α1
, x〉 . . . 〈x′αnx〉ẽα

)
(e′k)

=
N∑
l=1

Perm(k, k, . . . , k, l)〈x′k, x〉 . . . 〈x′k, x〉〈x′l, x〉
1
n
el

= 〈x′k, x〉n−1
N∑
l=1

〈x′l, x〉el,

and this series is norm convergent in Xd. Since J̃ is injective, there exits k ∈ N such
that x′k(x) 6= 0. Then,

∑∞
l=1〈x′l, x〉el converges in Xd and J(x) =

∑∞
l=1〈x′l, x〉el is

well defined. An application of the Banach-Steinhaus theorem shows that J : X →
Xd is a continuous operator.

Straightforward calculations show that J̃ =
⊗n

s J . Since S̃ is given by
⊗n

s S,
we obtain

⊗n
s SJ = INn

µ,sX
, that is, SJx⊗s · · ·⊗s SJx = x⊗s · · ·⊗s x. Therefore,

it is easy to see that SJx = θ(x)x for some n-th root θ(x) of 1. We claim that θ(x)
is independent of x. Indeed, let θ0 be a primitive n-th root of the unit and define
Aj = {x ∈ X : ‖x‖ = 1, SJx = θj0x}. The (path) connected set {x ∈ X : ‖x‖ = 1}
is the union of the closed sets Aj , j = 1, . . . , n, so Aj is empty for all but one j,
say j0. Thus, setting θ = θj00 , we have SJ(x) = θx for all x on the unit sphere of
X and the claim is proved.

Changing J by θ−1J if necessary we have SJ = IX and the result follows. � �

The n-th root of the unit θ is unavoidable in the previous theorem (unless, of
course, we deal with real Banach spaces and n is odd). Indeed, suppose ((x′i), (Sei))
is an atomic decomposition and θ 6= 1 is an n-th root of 1. If y′i = θx′i, ((y′i), (Sei))
is not an atomic decomposition for X (the pair does not satisfy the reconstruction
formula). However,(

Perm(α)(y′α1
⊗s · · · ⊗s y′αn)α∈J , (Seα1 ⊗s · · · ⊗s Seαn)α∈J

)
is an atomic decomposition for

⊗n
µ,sX with respect to

⊗n
µ,sXd.
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The proof of the previous theorem can be adapted to show the converse of the
result by Grecu - Ryan [23] and Dimant - Dineen [14]. We have not found this
converse in literature, so we state the following:

Theorem 7. Let X be a Banach space and (xi) be a sequence in X. Then, the
following statements are equivalent

(i) (xi) is a basis for X.
(ii) (xα1 ⊗s · · · ⊗s xαn)α∈J is a basis for

⊗n
µ,sX.

If the conditions hold and (x′i) is the dual basic sequence of the basis (xi), then
dual basic sequence of (xα1 ⊗s · · · ⊗s xαn)α∈J is Perm(α)(x′α1

⊗s · · · ⊗s x′αn)α∈J .

The existence of a basis for the full tensor product of a Banach space is due to
Gelbaum and Gil de Lamadrid in [21], and is previous to the result for symmetric
tensor products. Arguing as in the proof of Theorem 6, we obtain the following
result for atomic decompositions and full tensor products. In this case the set Nn
may be considered either with the square ordering or with the order given in [23].

Theorem 8. Let X1, . . . , Xn be Banach spaces, X1,d, . . . , Xn,d be sequence spaces
and µ be a n-tensor norm. For each j = 1, . . . , n, take Sj : Xj,d → Xj a con-
tinuous operator and a sequence (x′j,i) ⊂ X ′j. Then, ((x′j,i), (Sej,i)) is an atomic
decomposition for Xj with respect to Xj,d for each j = 1, . . . , n if and only if(

(x′1,α1
⊗· · ·⊗x′n,αn)α∈Nn , (Se1,α1⊗· · ·⊗Sen,αn)α∈Nn

)
is an atomic decomposition

for
n⊗

µ,j=1

Xj with respect to
n⊗

µ,j=1

Xj,d.

As in the case for symmetric tensor products, a simple modification of the above
gives the converse of Gelbaum and Gil de Lamadrid’s result for the Schauder basis
case [21].

Now we combine the previous results with those of Section 1 to investigate the
existence of atomic decompositions on tensor products of dual Banach spaces. This
will be used in next section, in the setting of spaces of polynomials.

Corollary 9. Let X be a Banach space and Xd be a sequence space. Let S : Xd → X
be a continuous operator and (x′i) ⊂ X ′ be a sequence such that ((x′i), (Sei)) is an
atomic decomposition for X with respect to Xd. Then, for any symmetric n-tensor
norm µ, the following are equivalent:

(i) the atomic decomposition (x′i, (Sei)) is strongly shrinking,
(ii) the pair ((Sei), (x′i)) is an atomic decomposition for X ′ with respect to X ′d,

(iii) the pair
((
Seα1 ⊗s · · · ⊗s Seαn

)
α∈J ,Perm(α)(x′α1

⊗s · · · ⊗s x′αn)α∈J
)

is an

atomic decomposition for
⊗n

µ,sX
′ with respect to

⊗n
µ,sX

′
d.

Proof. (i) ⇔ (ii) is Theorem 5. (ii) ⇒ (iii) follows from Theorem 6. Now, if
(iii) holds, by Theorem 6 we know that ((θSei), (x′i)) is an atomic for X ′ with
respect to X ′d, with θ some n-th root of the unit. Since ((x′i), (Sei)) is an atomic
decomposition, we must have θ = 1. � �

The analogous equivalence remains true if in statement (i) we have that (x′i, (Sei))
is a shrinking atomic decomposition and X ′d is replaced by (Xd)′ in (ii) and (iii).
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However, since
⊗n

µ,s(Xd)′ is not necessarily a Schauder sequence space, the situ-
ation here is more complicated and we cannot combine previous results as in the
corollary above to obtain these new equivalences. Indeed, for one of the implica-
tions we had to adapt the ideas from [23, Section 3] and we follow their notation.
Also, we need the next lemma, the proof of which was kindly provided to us by
Santiago Muro:

Lemma 10. Let (zk)k ⊂ X, z ∈ X and let µ be a tensor norm. If ⊗nzk converges
to ⊗nz in

⊗n
µ,sX, then zk accumulates on Az := {θjz : j = 0, . . . , n− 1}, where θ

is any primitive n-th root of 1.
If we also have that (zk) converges to z in some (Hausdorff) locally convex topol-

ogy, then (zk) converges to z in norm.

Proof. Note that for z = 0 the result is immediate. If z 6= 0, the sequence (zk)k is
bounded and bounded below. Suppose the result does not hold. We may assume
that d(zk, Az) > ε for some ε > 0. Again, passing to a subsequence if necessary,
we obtain d(zk, [z]) > δ for some positive δ. Indeed, if there exist scalars λk such
that ‖zk − λkz‖ → 0, for any x′ ∈ X we have |〈x′, zk〉n − λnk 〈x′, z〉n| → 0. Since
⊗nzk converges to ⊗nz in

⊗n
µ,sX, we also have |〈x′, zk〉n − 〈x′, z〉n| → 0. Then,

|λk| → 1 and the sequence accumulates in Az. Clearly, we may also assume that
d(z, [zk]) > δ for all k.

For each k, let γk be the linear functional on [zk, z] verifying γk(zk) = γk(z−zk) =
‖z− zk‖. From the lower bound of the distances above, it is easy to check that the
norms of the γk’s are uniformly bounded. By the Hahn-Banach extension theorem,
we can consider γk defined on X.

Since ⊗nzk converges to ⊗nz in
⊗n

µ,sX, we have

sup
x′∈BX′

|〈x′, zk〉n − 〈x′, z〉n| → 0.

Therefore, limk |γk(zk)n − γk(z)n| = 0. But, on the other hand, it is not hard to
see that |γk(zk)n − γk(z)n| ≥ ‖zk − z‖n > δn, obtaining a contradiction. � �

Theorem 11. Let X be a Banach space and Xd be a sequence space. Let S : Xd →
X be a continuous operator and (x′i) ⊂ X ′ be a sequence such that ((x′i), (Sei)) is an
atomic decomposition for X with respect to Xd. Then, for any symmetric n-tensor
norm µ, the following are equivalent:

(i) the atomic decomposition (x′i, (Sei)) is shrinking,
(ii) the pair ((Sei), (x′i)) is an atomic decomposition for X ′ with respect to

(Xd)′,
(iii) the pair

((
Seα1 ⊗s · · · ⊗s Seαn

)
α∈J ,Perm(α)(x′α1

⊗s · · · ⊗s x′αn)α∈J
)

is an

atomic decomposition for
⊗n

µ,sX
′ with respect to

⊗n
µ,s(Xd)′.

Proof. The equivalence between (i) and (ii) is theorem 3. Suppose (ii) holds. Note
that, to establish (iii), the reconstruction formula is the non direct part of the proof
of the statement (properties (a) and (b) of the definition follow as in the comments
before Theorem 6).

First, we show the reconstruction formula for the full tensor product. Follow-
ing [23, Section 3], for β ∈ J we consider the finite rank operator Pnβ :

⊗n
µX

′ →
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µX

′ given on the elementary tensors by

(3) Pnβ (y′1 ⊗ · · · ⊗ y′n) =
∑
α∈J
α≤β

〈y′1 ⊗ · · · ⊗ y′n, Seα1 ⊗ · · · ⊗ Seαn〉 x′α1
⊗ · · · ⊗ x′αn ,

and extended by linearity and density. We must show that Pnβ (z) converges to z

for all z ∈
⊗n

µX
′.

For j ∈ N we denote by x′j⊗Sej : X ′ → X ′ the operator defined as x′j⊗Sej(x′) =
〈x′, Sej〉x′j . Note that P 1

m =
∑m
j=1 x

′
j⊗Sej and since ((x′i), (Sei)) is shrinking, by

Theorem 3, P 1
m is pointwise convergent to the identity. Thus, by the Banach-

Steinhaus theorem, (P 1
m) is uniformly bounded: say ‖P 1

m‖ ≤ K1, for all m ∈ N.
Moreover, fixed n ∈ N, (Pnβ )β∈J is uniformly bounded. To see this, consider µ′

the symmetric tensor norm associated to the inclusion
⊗n

µ′ X ↪→
(⊗n

µX
′)′, that

is µ′(z) = sup
‖w‖µ≤1

〈w, z〉 where the supremum in taken over w ∈
⊗n

µX
′. In an

analogous way to (Pnβ )β∈J we may define Qnβ :
⊗n

µ′ X →
⊗n

µ′ X. By Theorem 8,(
(x′α1

⊗ · · · ⊗ x′αn)α∈J , (Seα1 ⊗ · · · ⊗ Seαn)α∈J
)

is an atomic decomposition for⊗n
µX with respect to

⊗n
µXd which implies that Qnβ converges to the identity on

each z ∈
⊗n

µ′ X. Therefore, Qnβ is uniformly bounded: say ‖Qnβ‖ ≤ Kn.
Then, we have

|〈Pnβ w, z〉| = |〈w,Qnβz〉| ≤ Kn‖w‖µ‖z‖µ′

and (‖Pnβ ‖)β∈J is also bounded by Kn.
To see that Pnβ (z) converges to z for all z ∈

⊗n
µX

′, it is enough to consider
elementary tensors y′1⊗· · ·⊗ y′n, by the uniform bound on the norms of the projec-
tions Pβ . Now, equality (3) together with another application of Theorem 8, imply
that Pnβ (y′1 ⊗ · · · ⊗ y′n) converges weakly to y′1 ⊗ · · · ⊗ y′n. So we must show that
Pnβ (y′1 ⊗ · · · ⊗ y′n) is a Cauchy sequence to obtain the desired result.

We will present the case n = 2. The general case follows by induction. The
induction step in [23] can be adapted to our setting in the same way as the case
n = 2, so we omit it. It is worth mentioning that the symmetry of the tensor norm
µ plays its role in this induction step.

Take an elementary tensor x′ ⊗ y′ ∈ X ′ ⊗µ X ′ and β = (β1, β2) ∈ J .
If β = (m,m) then,

P 2
(m,m)(x

′ ⊗ y′) =
∑

1≤i,j≤m

〈x′, Sei〉〈y′, Sej〉 x′i ⊗ x′j = P 1
m(x′)⊗ P 1

m(y′).

Then, by Theorem 3, P 2
(m,m) converges pointwise to the identity. Hence, P 2

(m,m)(x
′⊗

y′) is a Cauchy sequence.
Now, take m ∈ N so that m+ 1 = max{β1, β2}. Then, (m,m) < β in the order

given in [23]. In order to compare P 2
β (x′ ⊗ y′) with P 2

(m,m)(x
′ ⊗ y′), suppose first

that β = (k,m+ 1). In this case,

P 2
β − P 2

(m,m) = P 1
k ⊗ (x′m+1⊗Sem+1) + (x′m+1⊗Sem+1)⊗ P 1

k−1.

If β = (m+ 1, k) we have

P 2
β − P 2

(m,m) = P 1
k ⊗ (x′m+1⊗Sem+1) + (x′m+1⊗Sem+1)⊗ P 1

k .
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Note that as β increases, m goes to infinity. Then, in both cases we obtain

‖(P 2
β − P 2

(m,m))(x
′ ⊗ y′)‖

≤ C‖x′‖|〈y′, Sem+1〉|‖x′m+1‖+ C‖y′‖|〈x′, Sem+1〉|‖x′m+1‖,
which converges to zero. Finally, we need to estimate the difference between P 2

β (x′⊗
y′) and P 2

(m+1,m+1)(x
′⊗y′). We write P 2

(m+1,m+1)−P
2
β = (P 2

(m+1,m+1)−P
2
(m,m))+

(P 2
(m,m)−P

2
β ) which, using estimations as above, goes to zero on each x′⊗ y′ when

m goes to infinity.
Now, let α, β ∈ J and suppose α < β. To show that (P 2

β−P 2
α)(x′⊗y′) converges

to zero, take k and m in N so that m+ 1 = max{β1, β2} and k+ 1 = max{α1, α2}.
It is enough to consider the case k < m. Then, writing P 2

β −P 2
α = (P 2

β −P 2
(m,m)) +

(P 2
(m,m) − P

2
(k+1,k+1)) + (P 2

(k+1,k+1) − P
2
α), we get the desired result.

For the symmetric tensor product, the operators Πβ :
⊗n

µ,sX
′ →

⊗n
µ,sX

′

should be considered instead of Pβ , where Πβ(y′1 ⊗s · · · ⊗s y′n) is computed as∑
α∈J
α≤β

Perm(α)〈y′1 ⊗s · · · ⊗s y′n, Seα1 ⊗s · · · ⊗s Seαn〉 x′α1
⊗s · · · ⊗s x′αn .

Now, (iii) follows from the fact that Pβ coincides with Πβ on symmetric tensors.
Finally, we have to show the implication (iii)⇒(ii). Consider the canonical op-

erators J : X → Xd and S : Xd → X associated to the atomic decomposition of
X with respect to Xd. Their adjoints S′ : X ′ → (Xd)′ and J ′ : (Xd)′ → X ′ satisfy
J ′ ◦ S′ = IX′ . Since (Xd)′ is not necessarily a Schauder sequence space, we cannot
conclude (ii) straightforwardly. We need to show that the reconstruction formula
holds, i.e., that for any x′ ∈ X ′ we have

x′ =
∞∑
k=1

〈x′, Sek〉x′k.

Since ((x′i), (Sei)) is an atomic decomposition for X, it is easy to show that the
equality holds pointwise, that is,

∑N
k=1〈x′, Sek〉x′k converges to x′ in the weak-

star topology. On the other hand, from the atomic decomposition for the tensor
product, we have that the sequence

N∑
k=1

〈x′, Sek〉x′k ⊗ · · · ⊗
N∑
k=1

〈x′, Sek〉x′k

converges to x′ ⊗ · · · ⊗ x′ in
⊗n

µ,sX
′. The reconstruction formula is then a conse-

quence of Lemma 10. � �

Note that in the proof we have also shown the analogous result for full tensor
products.

3. Atomic decompositions and spaces of polynomials

Tensor products are closely related with multilinear forms and symmetric tensor
products with homogeneous polynomials. When endowed with different topologies,
the spaces of symmetric tensors correspond with different classes of homogeneous
polynomials. Before going on, we recall some notation and definitions.
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Let X be Banach spaces and denote K the real or complex scalar field. A
function P : X → K is said to be a (continuous) n-homogeneous scalar-valued
polynomial if there exists a (continuous) n-linear map P̌ : X × · · · ×X︸ ︷︷ ︸

n−times

→ K such

that P (x) = P̌ (x, . . . , x) for all x ∈ X. Continuous n-homogeneous polynomi-
als are bounded on the unit ball. We denote by P(nX) the Banach space of all
continuous n-homogeneous polynomials on X endowed with the supremum norm
‖P‖ := sup‖x‖≤1 |P (x)|. Since we only consider continuous scalar-valued polyno-
mials, we will usually omit the adjectives continuous and scalar-valued.

Definition 12. A pair (Q, ‖.‖Q) is a Banach ideal of n-homogeneous polynomials
if for any Banach spaces X and Y we have

(a) Q(X) = Q ∩ P(nX) is a linear subspace of P(nX) and ‖ · ‖Q(X) is a norm
on Q(X) that makes it a Banach space.

(b) If T ∈ L(X;Y ) and P ∈ Q(Y ); then P ◦ T ∈ Q(X) and ‖P ◦ T‖Q ≤
‖P‖Q‖T‖n.

(c) ⊗n1 = [K 3 z  zn ∈ K] ∈ Q and ‖ ⊗n 1: K→ K‖Q = 1.

We present some of the usual ideals of polynomials. An n-homogeneous poly-
nomial P ∈ P(nX) is said to be of finite type if there are x′1, . . . , x

′
k in X ′ and

scalars λ1, . . . , λk such that P (x) =
∑k
j=1 λj〈x′j , x〉n for all x in X. Polynomials in

the closure of the finite type n-homogeneous polynomials are called approximable.
We use Pf (nX) to denote the space of finite type n-homogeneous polynomials and
PA(nX) to denote the space of all n-homogeneous approximable polynomials.

A polynomial P ∈ P(nX) is said to be nuclear if it can be written as P (x) =∑∞
j=1 λj〈x′j , x〉n, where (λj) is a bounded sequence of scalars and (x′j) ⊂ X ′ verifies∑∞
j=1 ‖x′j‖n < ∞. The space of nuclear n-homogeneous polynomials on X will be

denoted by PN (nX). It is a Banach space when considered with the norm

‖P‖N = inf


∞∑
j=1

|λj |‖x′j‖n


where the infimum is taken over all representations of P as above.
A polynomial P on X is said to be integral if there is a regular Borel measure Γ

on (BX′ , σ(X ′, X)) such that

(4) P (x) =
∫
BX′

〈x′, x〉n dΓ(x′)

for every x in X. We write PI(nX) for the space of all n-homogeneous integral
polynomials on X. The integral norm of an integral polynomial P , ‖P‖I , is defined
as the infimum of ‖Γ‖ taken over all regular Borel measures which satisfy (4). It is
shown in [17] that the dual of

⊗n
ε,sX is isometrically isomorphic to (PI(nX), ‖ . ‖I).

Given a Banach ideal of n-homogeneous polynomials Q, the minimal ideal Qmin

is defined as the composition ideal

Qmin = Q ◦ F ,
where F is the ideal of all operators which are approximable by finite rank operators.
In other words, P belongs toQmin if there exists a factorization P = QT with T ∈ F
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and Q ∈ Q. Also,
‖P‖Qmin = inf {‖Q‖Q‖T‖n} ,

where the infimum is taken over all such factorizations P = QT .
A Banach ideal Q is said to be minimal if Q = Qmin.

Let Q be a Banach ideal of n-homogeneous polynomials and M a finite dimen-
sional space. We define in

⊗n
s M the symmetric tensor norm µQ associated to Q

by ⊗n
s,µQ

M
1=
(
Q(M ′), ‖ · ‖Q

)
.

For an arbitrary normed spaceX, FIN(X) denotes the class of all finite dimensional
subspaces of X. Then we define

µQ(z,
⊗n

s X) := inf
{
µQ(z,

⊗n
s M) / z ∈

⊗n
s M, M ∈ FIN(X)

}
.

Let X be a Banach space and Xd a Schauder sequence space. Suppose there
exists a continuous operator S : Xd → X and a sequence (x′i) ⊂ X ′ such that
((x′i), (Sei)) is an atomic decomposition for X with respect to Xd .

If ((x′i), (Sei)) is shrinking, Theorem 11 states that(
(Seα1 ⊗s · · · ⊗s Seαn)α∈J , (Perm(α) x′α1

⊗s · · · ⊗s x′αn)α∈J
)

is an atomic decomposition for
⊗n

µQ,s
X ′ with respect to

⊗n
µQ,s

(Xd)′. On the other
hand, since X ′ admits an atomic decomposition, it has the bounded approximation
property. We have the following isometric isomorphism [20, Corollary 5.2]:

(5) Qmin(X) 1=
⊗n

s,µQ
X ′.

Therefore, we have shown that

(6)
(

(Seα1 ⊗s · · · ⊗s Seαn)α∈J , (Perm(α) x′α1
⊗s · · · ⊗s x′αn)α∈J

)
is an atomic decomposition for Qmin(X) with respect to the Banach sequence space⊗n

µQ,s
(Xd)′.

Observe that when ((x′i), (Sei)) is strongly shrinking, by Corollary 9, the atomic
decomposition (6) is in fact associated to the Schauder sequence space

⊗n
µQ,s

X ′d.

To simplify the statement of the results just obtained, we will introduce the con-
cept of monomial atomic decomposition, which generalizes the concept of monomial
basis.

Whenever ((x′i), (xi)) is an atomic decomposition of X, each x ∈ X can be
written as x =

∑
i〈x′i, x〉xi. Therefore, if P ∈ P(nX) we always have the pointwise

series expansion

P (x) = P̌ (x, . . . , x)

=
∑
α1

· · ·
∑
αn

P̌ (xα1 , . . . , xαn) 〈x′α1
, x〉 · · · 〈x′αn , x〉

=
∑
α∈J

Perm(α) P̌ (xα1 , . . . , xαn) 〈x′α1
, x〉 · · · 〈x′αn , x〉.



14 DANIEL CARANDO AND SILVIA LASSALLE

Now, take P ∈ Qmin(X) and let P̌ : X × · · · ×X → K be the symmetric n-linear
form associated to P . If we set xi = S(ei), we have shown that P can be written
as:

P =
∑
α∈J

Perm(α) P̌ (xα1 , . . . , xαn) x′α1
· · ·x′αn ,

and this series expansion converges in ‖ · ‖Qmin .
Therefore, the atomic decomposition for Qmin(X) gives a monomial expansion

for polynomials with respect to the atomic decomposition of X. This motivates the
following definition:

Definition 13. Let ((x′i), (xi)) be any atomic decomposition of X with respect
to Xd. We say that Q(X) has a monomial atomic decomposition with respect to
((x′i), (xi)) if(

(xα1 ⊗s · · · ⊗s xαn)α∈J , (Perm(α) x′α1
⊗s · · · ⊗s x′αn)α∈J

)
is an atomic decomposition for Q(X) with respect to the Banach sequence space⊗n

µQ,s
(Xd)′.

Whenever the sequence space
⊗n

µQ,s
(Xd)′ can be replaced by

⊗n
µQ,s

X ′d, we say
that the monomial atomic decomposition is sharp.

Now we are ready to state the following:

Proposition 14. Suppose there exists a continuous operator S : Xd → X and a
sequence (x′i) ⊂ X ′ such that ((x′i), (Sei)) is an atomic decomposition for X with
respect to Xd. Then, ((x′i), (Sei)) is (strongly) shrinking if and only if Qmin(X)
has a (sharp) monomial decomposition with respect to ((x′i), (Sei)).

Proof. By the discussion preceding Definition 13 it only remains to prove one im-
plication. Suppose Qmin(X) admits a (sharp) monomial decomposition of the form
(6). In particular, it has the bounded approximation property. As we will see in
Lemma 15, X ′ is isomorphic to a complemented subspace of any ideal of polynomials
on X and, in particular, of Qmin(X). Then, X ′ inherits the bounded approximation
property and therefore (5) holds. This means that (6) is an atomic decomposition
for

⊗n
s,µQ

X ′ with respect to
⊗n

µQ,s
X ′d. By Corollary Theorem 11(Theorem 9),

the atomic decomposition ((x′i), (Sei)) is (strongly) shrinking. � �

The following lemma should be compared to [4, Proposition 5.3] and [5]:

Lemma 15. Let (Q, ‖.‖Q) be a Banach ideal of n-homogeneous polynomials. Then,
if X is Banach space, X ′ is isomorphic to a complemented subspace of Q(X).

Proof. Fix x0 ∈ X a unit vector and x′0 ∈ X ′ a norm one functional so that
〈x′0, x0〉 = 1. Now, consider the mapping ι : X ′ → Q(X), defined by (ιx′)(x) =
〈x′0, x〉n−1〈x′, x〉, for all x ∈ X and every x′ ∈ X ′. By [8, Corollary 8.a.], we have
‖ι(x′)‖Q ≤ e‖x′‖. On the other hand, take q : Q(X) → X ′ the operator given by
q(P )(x) = nP̌ (x, x0, . . . , x0)− (n− 1)P (x0)〈x′0, x〉, for all x ∈ X. By [8, Corollary
8.b.], ‖q(P )‖ ≤ ne‖P‖+ (n− 1)‖P‖ ≤ (ne+ n− 1)‖P‖Q. As in [8, Lemma 4], we
get for every x′ ∈ X ′ and all x ∈ X

q ◦ ι(x′)(x) = q(〈x′0, ·〉n−1〈x′, ·〉)(x) = 〈x′, x〉.
Then, ι is an isomorphism onto its image and ι◦q is a projection onto ι(X ′). � �
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Remark 16. Note that Proposition 14 shows the existence of monomial decompo-
sitions for Qmin(X). A natural question is whether it is possible to obtain monomial
decompositions for arbitrary ideals of polynomials. To answer this question sup-
pose that Q(X) admits a monomial decomposition. Let us show that in this case
Q(X) must coincide with Qmin(X).

First note that Q(X) has the bounded approximation property and so does
X ′, since it is complemented in Q(X) by Lemma 15. As a consequence of the
Factorization Lemma [20, Section 3.5], it can be seen that for X ′ with the bounded
approximation property, the norms ‖ · ‖Qmin and ‖ · ‖Q are equivalent on Qmin(X).
Now, all polynomials in the monomial decomposition for Q(X) are of finite type, so
they all belong to Qmin(X). By the equivalence of norms, the closure of the span
of the monomials must be Q(X) and, at the same time, be contained in Qmin(X).
Therefore, Q(X) = Qmin(X).

As a consequence of Proposition 14 we have:

Corollary 17. Let ((x′i), (Sei)) be an atomic decomposition for X with respect to
Xd. The following are equivalent:

(a) Q(X) = Qmin(X) and ((x′i), (Sei)) is (strongly) shrinking;
(b) Q(X) has a (sharp) monomial decomposition with respect to ((x′i), (Sei)).

Proof. It is clear that (a) implies (b). Conversely, if Q(X) admits a sharp monomial
decomposition with respect to ((x′i), (Sei)), arguing as in the proofs of Theorem 6
and Corollary 9 we can see that ((x′i), (Sei)) is strongly shrinking. By Remark 16,
Q(X) = Qmin(X). � �

It is clear that Proposition 14 and Corollary 17 have their analogous for mul-
tilinear forms. The existence of monomial bases for spaces of polynomials and
multilinear forms was studied in Dimant-Dineen [14] and Dimant-Zalduendo [15],
where similar results to the “only if” part of Proposition 14 and Corollary 17 are
obtained. The converse for Schauder basis can be proved as above.

Now we apply the previous results to the polynomial ideals presented above.
To this end, suppose we have a continuous operator S : Xd → X and a sequence
(x′i) ⊂ X ′ such that ((x′i), (Sei)) is an atomic decomposition for X with respect
to Xd. All the examples below have their analogous in terms of strongly shrinking
atomic decompositions and sharp monomial decompositions. We chose to state
them in their simpler form.

Recall that the Banach ideal of approximable polynomials PA(nX) is minimal
and is associated to the symmetric injective n-tensor norm ε. Therefore, the
polynomial ideal PA(nX) has a monomial atomic decomposition with respect to
((x′i), (Sei)) if and only if ((x′i), (Sei)) is shrinking.

Moreover, if ((x′i), (Sei)) is shrinking, X ′ has the bounded approximation prop-
erty, so every polynomial that is weakly continuous on bounded sets must be approx-
imable [3]. Also, X ′ is separable and then X does not contain an isomorphic copy
of `1. This means that weakly sequentially continuous polynomials are weakly con-
tinuous on bounded sets [2]. Therefore, the space Pwsc(nX) of weakly sequentially
continuous polynomials coincide with PA(nX). Therefore, we have that Pwsc(nX)
has a monomial atomic decomposition with respect to ((x′i), (Sei)) (see [14] for a
similar result in the Schauder basis setting).
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Regarding nuclear polynomials, PN (nX) is a minimal polynomial ideal asso-
ciated to the symmetric projective n-tensor norm π. Then, ((x′i), (Sei)) gives an
monomial atomic decomposition for PN (nX) if and only if ((x′i), (Sei)) is shrinking.

If ((x′i), (Sei)) is shrinking, the Banach space X has a separable dual and, in
consequence, X is an Asplund space. In this case, the spaces of nuclear and inte-
gral polynomials on X coincide isometrically (see [1, 6, 7]), whence PI(nX) has a
monomial atomic decomposition. On the other hand, if PI(nX) admits a mono-
mial decomposition with respect to ((x′i), (Sei)), by Corollary 17 ((x′i), (Sei)) is
shrinking and PI(nX) = PN (nX). Also, X is Asplund.

We resume the previous discussions in the following statement:

Remark 18. Let ((x′i), (Sei)) be an atomic decomposition for X with respect to
Xd. The following are equivalent:

(a) ((x′i), (Sei)) is (strongly) shrinking;
(b) Pwsc(nX) has a (sharp) monomial decomposition with respect to ((x′i), (Sei)).
(c) PI(nX) has a (sharp) monomial decomposition with respect to ((x′i), (Sei)).

In addition, if the conditions hold, X is an Asplund space.

Now we turn our attention to the reflexivity of the space of polynomials. This
should be compared with the results in [1] and [14]. For a reflexive space X with the
approximation property, the reflexivity of P(nX) is equivalent to every polynomial
P ∈ P(nX) being approximable, that is, to P(nX) = PA(nX) (see [1, 27]). The
characterization of reflexivity in terms of monomial bases relies in a result analogous
to Corollary 17 and the following fact: a basis for a reflexive Banach space is always
shrinking (which for Schauder basis, is equivalent to being strongly shrinking). In
[9], an example of an atomic decomposition for a reflexive Banach space that is not
strongly shrinking is presented. We do not know if an atomic decomposition of a
reflexive Banach space is always shrinking. However, this is the case if the canonical
basis (ei) of Xd is unconditional, see [9]. Whenever (ei) is an unconditional basis,
we say that ((x′i), (Sei)) is an unconditional atomic decomposition. Note that we
always have Pmin(nX) = PA(nX), then Corollary 17 gives:

Theorem 19. Let X be a Banach space with an unconditional atomic decomposi-
tion ((x′i), (Sei)). The following statements are equivalent:

(a) P(nX) is reflexive
(b) X is reflexive and P(nX) admits a monomial decomposition with respect to

((x′i), (Sei)).

If we drop off the unconditionality assumption, we obtain a similar characteriza-
tion for the reflexivity of P(nX) imposing the atomic decomposition to be shrinking
or strongly shrinking.

Theorem 20. Let X be a Banach space with an atomic decomposition ((x′i), (Sei)).
The following statements are equivalent:

(a) P(nX) is reflexive and ((x′i), (Sei)) is (strongly) shrinking
(b) X is reflexive and P(nX) admits a (sharp) monomial decomposition with

respect to ((x′i), (Sei)).
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