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Resumen

El objetivo de la tesis es analizar diferentes problemas relacionados con
estructuras delgadas y su discretización por elementos finitos. Estudiamos
tres problemas, que son:

• Computación de los modos de vibrar de una barra curva de Timo-
shenko de geometrı́a arbitraria;

• Aproximación de los modos de vibrar de una placa laminada mode-
lada por ecuaciones de Reissner-Mindlin;

• Un método de elementos finitos para placas rigidizadas conformada
por una placa de Reissner- Mindlin y una Barra de Timoshenko.

En el primer problema, probamos estimaciones del error de orden óptimo
para los desplazamientos, rotaciones y esfuerzos de corte y un doble or-
den de convergencia para las frecuencias de vibración, todas esas estima-
ciones independientes del espesor de la barra. Presentamos experimentos
numéricos que confirman los resultados teóricos y el carácter libre de blo-
queo del método.

En el segundo problema, estudiamos la convergencia del método pro-
puesto. Probamos una adecuada estimación a-priori del problema fuente
asociado y obtenemos óptimos órdenes de convergencia de las estimaciones
del error para los desplazamientos en el plano y transversales en norma L2

y H1 y doble orden de convergencia para las frecuencias de vibración. To-
das esas estimaciones son otra vez independientes del espesor de la placa.
testeos numéricos confirman que el método presentado es libre de bloqueo.

En el último trabajo, probamos que el problema que resulta está bien
puesto y estudiamos el caso en que el rigidizador es concéntrico con re-
specto a la placa. El problema se descompone en dos problemas como
ocurre para las placas estándar. El problema rigidizado en el plano resulta
en un análisis tı́pico y no depende del espesor de la placa. El problema de
flexión rigidizado es mucho más desafiante. Mostramos que la solución está
acotada por arriba y por abajo independientemente del espesor. Óptimas
estimaciones del error se prueban para los desplazamientos, rotaciones y
esfuerzos de corte tanto para la placa como para el rigidizador. Finalmente
experimentos numéricos muestran el carácter libre de bloqueo del método.
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Abstract

The aim of this thesis is to analyze different problems involving thin
structures and their discretization by finite element methods. We study three
problems, namely:

• The computation of the vibration modes of a Timoshenko curved rod
with arbitrary geometry;

• The approximation of the vibration modes of a laminated plate mod-
eled by Reissner-Mindlin equations;

• A finite element method for stiffened plates composed by a Reissner-
Mindlin plate and a Timoshenko rod.

In the first problem, we prove optimal order error estimates for displace-
ments, rotations and shear stresses and a double order of convergence for the
vibration frequencies, all of these estimates independent of the thickness of
the rod. We present numerical experiments that confirm the theoretical re-
sults and the free-locking character of the method.

In the second problem, we study the convergence of the proposed
method. We prove an adequate a-priori estimate for the associated load
problem and obtain optimal order error estimates for the in-plane and trans-
verse displacements and the rotations in L2 and H1 norms and double order
of convergence for the vibration frequencies. All of these estimates are again
independent of the thickness of the plate. Numerical tests which confirm that
the method is locking-free are presented.

In the last work, we prove that the resulting problem is well posed and
study the case in that the stiffener is located concentrically with respect
to the plate. The problem is decoupled into two problems as for standard
Reissner-Mindlin plates. The stiffened in-plane problem results in a stan-
dard analysis and not depending on the plate thickness. The stiffened bend-
ing problem is more challenging. We show that the solution is bounded
above and below independently on the plate thickness. Optimal error esti-
mates are proved for displacements, rotations and shear stresses for the plate
and the stiffener. Finally numerical experiments demonstrate the locking-
free character of the method.
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Introducción

0.1 Introducción

0.1.1 Motivación

El estudio de las estructuras delgadas ha tomado una gran importancia en los últimos
decenios tanto en la ingenierı́a civil como en el análisis numérico de ecuaciones diferen-
ciales parciales. La búsqueda de elementos estructurales más eficientes desde el punto de
vista económico, del peso y de las propiedades mecánicas ha introducido la necesidad
de realizar modelaciones especiales consistentes en sistemas estructurales acoplados, el
uso de geometrı́as complejas o el uso de materiales cuyas propiedades mecánicas varı́an
tanto en su composición como en su distribución espacial. Ejemplos de estas situaciones
se presentan en cascos de barcos, submarinos, aviones y naves espaciales; también están
presentes en losas de puentes, pisos y estructuras de techumbres por nombrar a algunas.

Para la resolución de este tipo de situaciones el enfoque inicial ha sido el uso de
herramientas analı́ticas para obtener soluciones cerradas o vı́a series infinitas, que sólo
pueden obtenerse en casos sencillos y limitados (ver por ejemplo ([47]) para el caso de
placas). Posteriormente los métodos numéricos, en particular el método de los elementos
finitos, se han convertido en una herramienta poderosa debido a su versatilidad, eficiencia
y robustez en los resultados.

Para abordar un problema de estructuras delgadas existen por lo menos dos grandes
teorı́as. La primera es solamente para estructuras muy delgadas y que en placas y cáscaras
se denomina teorı́a de Kirchhoff-Love y en vigas, arcos y barras se denomina teorı́a de
vigas de Navier-Bernoulli. El segundo enfoque es una teorı́a para estructuras moderada-
mente gruesas que en placas se denomina teorı́a de Reissner-Mindlin y en vigas, teorı́a de
Timoshenko. En este trabajo seguimos este segundo enfoque. La ventaja de esta perspec-
tiva es que permite estudiar tanto estructuras delgadas como estructuras gruesas.

La utilización de modelos más enriquecidos como la teorı́a de Reissner-Mindlin (Ti-
moshenko) trae aparejado serios desafı́os que han concentrado por mucho tiempo el in-
terés tanto de ingenieros civiles como de matemáticos especialistas en el análisis numérico
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ii Introducción

de ecuaciones diferenciales parciales.

El fenómeno más interesante es justamente el “locking” o bloqueo. Éste consiste en
que si se utilizan elementos finitos estándar entonces se produce una sobrerigidización del
término de corte (generalmente) y a medida que se considera la estructura cada vez más
y más delgada este efecto se acentúa, disminuyendo artificialmente los desplazamientos
hasta hacerse nulos (la estructura se bloquea). Luego para obtener resultados aceptables
es necesario hacer una discretización prohibitivamente fina para evitarla. En el análisis
numérico se observa que las estimaciones del error a priori para estos métodos dependen
del espesor de la estructura que degenera cuando este parámetro se hace cada vez más
pequeño.

La solución a este problema pasa por utilizar elementos finitos especiales que aseguren
un buen comportamiento matemático independientemente del espesor de la estructura.

El primer artı́culo que propuso una solución matemática a esta implementación fue
Arnold [1] para el problema de una viga de Timoshenko usando una formulación varia-
cional mixta y demostrando que ésta es equivalente a una integración reducida del término
de corte en la formulación primal. Posteriormente algunos modelos de arco fueron desa-
rrollados por Kikuchi [33], Loula et al. [36] y Reddy & Volphi [42] resultados que fueron
generalizados y extendidos por Arunakirinathar & Reddy [3] para barras de Timoshenko
de geometrı́a arbitraria. Una formulación alternativa a este modelo fue presentada poste-
riormente por Chapelle [14] a través de un esquema no conforme.

Otro problema de interés es el problema de vibraciones libres de una viga, arco o barra.
Solamente hay referencias en revistas de ingenierı́a, sobre la implementación numérica y
modelación [37, 31].

El análisis matemático de problemas de vibraciones hace uso de la teorı́a de operado-
res compactos que son presentados con suficiente detalle en [6]. Este problema ha sido
abordado en placas homogéneas de Reissner-Mindlin como se puede observar en [20, 21]
para diferentes elementos finitos.

0.1.2 Vibraciones en barras de Timoshenko

En el Capı́tulo 2 se aborda el problema de vibraciones libres de una barra de geo-
metrı́a arbitraria de Timoshenko. Para esto seguimos el planteamiento establecido por
Arunakirinathar & Reddy [3] para el problema de cargas, pero usamos hipótesis un poco
más generales al no considerar que la base de Frenet elegida que sigue la lı́nea de los
centroides de la sección transversal sea un conjunto de ejes principales; además se permite
que los coeficientes geométricos y mecánicos varı́en suavemente a lo largo de la barra. Se
tiene una barra de geometrı́a arbitraria cuyas secciones transversales están descritas por
medio de una parametrización suficientemente suave en su longitud de arco s ∈ I := [0,L]
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donde L es la longitud de la curva. A través de su parametrización se define una base de
Frenet consistentes en t, n y b que son el vector tangencial, normal y binormal de la curva.
Estos vectores cambian punto a punto y forman una base ortogonal de R3 en cada punto.
Llamamos S a la sección transversal de la barra y por (η,ξ ) las coordenadas en el sistema
n−b que contiene a S. Las hipótesis de Reissner-Mindlin aplicadas en este caso particular
se traducen en que:

• El vector normal a la sección transversal en un punto puede ser no necesariamente
paralelo al vector tangencial definido por la lı́nea de controides después de la defor-
mación.

• Los puntos contenidos en el plano n−b de una sección transversal de la barra tienen
el mismo desplazamiento en ese plano despues de la deformación.

Definimos como u := (u,v,w) el vector de desplazamientos de la lı́nea media (curva
paramétrica) en términos de la base de Frenet y θ := (θ ,ϕ,ψ) el respectivo vector de
rotaciones de la lı́nea media. los vectores u y θ son funciones de s. De aquı́ en adelante
por sencillez de notación se omitirá esta dependencia, al igual que para los vectores de la
base de Frenet. Para la formulación del problema variacional que describe una barra de
Timoshenko en vibración libre es necesario considerar los desplazamientos admisibles,
relacionar estos desplazamientos con la deformación y usar ecuaciones constitutivas que
se apliquen al modelo considerado. En ese sentido, los desplazamientos admisibles de la
barra quedan representados por:

U = u+θ × (0,η,ξ ) .

En particular, el vector de desplazamientos queda

U =

⎛⎝ u−ηψ +ξ ϕ
v−ξ θ
w+ηθ

⎞⎠ ,

la diferencial del vector de desplazamientos queda

DU =

⎛⎝ u′+ξ ϕ ′ −ηψ ′ −ψ ϕ
v′ −ξ ϕ 0 −θ
w′+ηθ θ 0

⎞⎠
y el tensor de deformaciones

ε (U) =
1
2

(
DU +DUT)

=

⎛⎝ u′+ξ ϕ ′ −ηψ ′ 1
2 (v

′ −ξ ϕ −ψ) 1
2 (w

′+ηθ ′+ϕ)
1
2 (v

′ −ξ ϕ ′ −ψ) 0 0
1
2 (w

′+ηθ ′+ϕ) 0 0

⎞⎠ . (1)
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Usamos las ecuaciones constitutivas de la elasticidad 3D para un material elástico lineal
caracterizado por las propiedades

λ =
Eν

(1+ν)(1−2ν)
y μ =

E
2(1+ν)

=
G
2
.

Donde E es el módulo de Young, ν es el coeficiente de Poisson y G es el módulo de corte.
Usando los supuestos de una barra en flexión, es decir tomando σnn = σnb = σbb = 0 se
introducen las relaciones:

σnn = 0 = (λ +2μ)εnn+λ (εtt + εbb) ,

σbb = 0 = (λ +2μ)εbb+λ (εtt + εnn) ,

σnb = 0 = Gεnb,

obteniéndose una ley constitutiva simplificada:

σtt = Eεtt , σtn = Gεtn y σtb = Gεtb. (2)

Usando la simetrı́a del tensor de esfuerzos se obtiene que σtn = σnt , σtb = σbt y σnb =

σbn = 0. Consideramos sólo la respuesta estacionaria asociada al problema de vibraciones
que tiene la forma:

U = Ũeiωt .

Recordamos que la ecuación que rige el comportamiento de un sólido deformable está
dada por

−divσ (U) = ρÜ ,

donde

σ =

⎡⎣ σtt σtn σtb

σtn 0 0
σtb 0 0

⎤⎦ ,

lo que conduce al problema

−divσ
(
Ũ
)
= ρω2Ũ .

El problema que se aborda es el problema de Dirichlet homogéneo, es decir u y θ se
anulan en los extremos de la barra. Por simplicidad en la notación omitiremos el tilde que
explicita la amplitud de la solución. Multiplicando con funciones test V que satisfagan
las condiciones de contorno, integrando en el volumen e integrando por partes en el lado
izquierdo se tiene ∫ L

0

∫
A

σ (U) : ε (V ) = ω2
∫ L

0

∫
A

ρU ·V .
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De este modo, se puede escribir la energı́a de deformación de una barra de geometrı́a
arbitraria en forma simplificada:

1
2

∫ L

0

∫
A

σ : ε =
1
2

∫ L

0

∫
A

(
E
(
u′ (s)+ξ ϕ (s)−ηψ ′ (s)

)2

+ μ
(
v′ −ξ ϕ −ψ

)2
+μ

(
w′+ηθ ′+ϕ

)2
)
.

Integrando en la sección se tiene la energı́a, expresada en la forma

1
2

∫ L

0

∫
S

σ : ε =
1
2

∫ L

0

⎧⎪⎨⎪⎩
⎛⎝ u′

v′ −ψ
w′+ϕ

⎞⎠T ⎛⎝ EA 0 0
0 GA 0
0 0 GA

⎞⎠⎛⎝ u′

v′ −ψ
w′+ϕ

⎞⎠

+

⎛⎝ θ ′

ϕ ′

ψ ′

⎞⎠T ⎛⎝ GJ 0 0
0 EIξξ −EIηξ
0 −EIηξ EIηη

⎞⎠⎛⎝ θ ′

ϕ ′

ψ ′

⎞⎠
⎫⎪⎬⎪⎭ .

Definiendo

D :=

⎛⎝ EA 0 0
0 k1GA 0
0 0 k2GA

⎞⎠ , E :=

⎛⎝ GJ 0 0
0 EIηη −EIηξ
0 −EIηξ EIξξ

⎞⎠ ,

J :=

⎛⎝ J 0 0
0 Iηη −Iηξ
0 −Iηξ Iξξ

⎞⎠ ,

la energı́a de deformación de la barra queda:

1
2

∫ L

0

∫
S

σ : ε =
1
2

∫ L

0

(
u′ −θ × t

)T
D
(
u′ −θ × t

)
+θ ′T

E θ ′,

donde las constantes k1 y k2 en D se llaman factores de corrección de corte. El uso de
estos factores no es completamente satisfactorio desde el punto de vista matemático, pero
es considerado apropiado desde el punto de vista de la ingenierı́a. De las ecuaciones (1) y
(2) observamos que σtn es constante en η , σtb es constante en ξ y σnb = 0. Sin embargo
dichas tensiones en realidad son parabólicas con la condición que en las caras exteriores
vale cero y tiene un valor máximo en el centroide de la sección ([45]). De allı́ que sea
necesario introducir estos factores de corrección que dependen también de las condiciones
de borde del problema.

Finalmente, el problema de vibraciones libres de la barra empotrada queda: Hallar
(u,θ) ∈ H1

0 (I)
3 ×H1

0 (I)
3 no nulos y ω > 0 tales que∫ L

0

(
u′ −θ × t

)T
D
(
v′ −φ × t

)
+θ ′T

E φ ′ = ω2
∫ L

0
ρ
(
Au · v+θ T

Jφ
)

∀(v,φ) ∈ H1
0 (I)

3 ×H1
0 (I)

3 .
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Después de escalar el problema, definir el operador resolvente y el operador resol-
vente del problema lı́mite, se demuestra convergencia del operador resolvente al problema
lı́mite y por lo tanto convergencia espectral al espectro del problema lı́mite. En el estudio
del problema discreto se utilizan para las variables principales polinomiales de grado r a
trozos y continuas y en el corte (multiplicadores de Lagrange) polinomiales discontinuas
de grado r−1. Se propone una demostración alternativa a la inf-sup propuesta en [1]. Se
demuestra convergencia de orden r al espectro en norma H1 y de orden (r+1) en norma
L2 asociado a autovalores simples. Por último se demuestra doble orden de convergencia
para las frecuencias de vibración.

El estudio del problema de vibraciones de una barra de geometrı́a arbitraria de Timo-
shenko dio origen a la publicación:

• Erwin Hernandez, Enrique Otárola, Rodolfo Rodrı́guez, Frank Sanhueza: Approx-
imation of the vibration modes of a Timoshenko curved rod of arbitrary geometry.
IMA Journal of Numerical Analysis, vol 29 pp. 86-108, (2009).

0.1.3 Vibraciones en placas laminadas

El estudio de placas de Reissner-Mindlin por Métodos de Elementos Finitos concentró
la atención de gran parte de la comunidad matemática, produciendo en la década de los 90
una gran cantidad de artı́culos en los que se tratan diversas formas de resolver el problema
de locking. En el libro de Brezzi & Fortin [10], se presenta en forma general la temática
de las placas de Reissner-Mindlin, el estudio de la existencia y unicidad de la solución,
algunos resultados de regularidad de la solución y algunos métodos de elementos fini-
tos satisfactorios con estimaciones del error, resultados que son complementados en los
artı́culos de Brezzi & Fortin [10] y Arnold & Falk [2].

Se han desarrollado múltiples familias de elementos finitos que resuelvan apropiada-
mente el problema de bloqueo en placas homogéneas de Reissner-Mindlin ([10, 2, 9]
entre otros). Entre los estudios desarrollados se destaca el artı́culo de Durán & Liberman
[22] que presenta una manera de estudiar en forma sistemática diferentes métodos de ele-
mentos finitos encontrando estimaciones del error satisfactorias. Además se desarrolla un
elemento finito de bajo orden denominado posteriormente como DL3.

El problema de la placa laminada fue estudiado fundamentalmente por la comunidad
de Ingenierı́a [39, 43]. Sin embargo Aurichio et al. [4], estudiaron el problema de flexión
de una placa sometida a cargas transversales siguiendo el análisis realizado por Durán
et al ([22]) para placas homogéneas. Utilizando este último artı́culo y ([4]) se estudia
el problema de vibraciones de una placa laminada utilizando una teorı́a de primer orden
denominada First Shear Deformation Theory (FSDT,[5]).
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La formulación del problema variacional sigue un camino similar al de las barras de
geometrı́a arbitraria. Se considera una placa elástica de espesor t con la configuración de
referencia Ω× (− t

2 ,
t
2

)
, donde Ω ⊂ R2 es un dominio poligonal convexo. Por sencillez

asumiremos que la placa está hecha de dos materiales diferentes ocupando cada uno de
ellos los subdominios Ω× (− t

2 ,0
)

y Ω× (
0, t

2

)
. Se definen ciertos desplazamientos fun-

damentales que describirán el movimiento de la placa. Llamaremos (u∗,w∗) los desplaza-
mientos de la superficie media con u∗ = (u∗1,u

∗
2) los desplazamientos en el plano de la

placa y w∗ el desplazamiento transversal, ambos en cada punto (x1,x2) del plano medio
de la placa. Se definen también β ∗ = (β ∗

1 ,β
∗
2 ) las rotaciones de las fibras inicialmente or-

togonales a la superficie media de la placa. Se utilizan las hipótesis de Reissner-Mindlin
que vinculan los desplazamientos con las rotaciones proponiendo los siguientes desplaza-
mientos admisibles:

U∗ =
(

u∗ −β ∗x3

w∗

)
La diferencial queda

DU∗ =
(

Du∗ − x3∇β ∗ −β ∗

∇w∗ 0

)
y el tensor de deformación

ε(U) =

(
ε (u∗)− x3ε (β ∗) 1

2 (∇w∗ −β ∗)
1
2 (∇w∗ −β ∗)T 0

)
.

Dado que la placa laminada está formada por dos materiales diferentes, tendrá distintas
propiedades elásticas en cada lámina, lo que se traduce en ecuaciones constitutivas para
cada zona. para las deformaciones en el plano, la ley constitutiva es

σ (ζ ) = λi (trε (ζ )) I+2μiε (ζ )

con λi =
Eiνi

(1+νi)(1−2νi)
, μi =

Ei

2(1+νi)
, i = 1,2.

donde Ei y νi son los módulos de Young y de Poisson en cada lámina de la placa.
Para las deformaciones por flexión utilizando las hipótesis de tensión plana en cada

lámina de la placa, es decir σzz = σzx = σzy = 0, se tiene una modificación sólo de λi para
adaptarla al modelo de tensión plana:

λ̃i =
Eνi

1−ν2
i

.

Consideramos nuevamente sólo la respuesta estacionaria asociada al problema de vibra-
ciones que tiene la forma,

U = Ũeiωt .
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Recordamos que la ecuación que rige el comportamiento de un sólido deformable está
dada por:

−divσ (U) = ρÜ ,

que conduce al problema
−divσ

(
Ũ
)
= ρω2Ũ .

Por simplicidad en la notación omitiremos el tilde que explicita la amplitud de los de-
splazamientos. La energı́a de deformación de la placa laminada queda

1
2

∫ t
2

− t
2

∫
Ω

σ (U) : ε (U) =
1
2

(
t (A ε (u∗) ,ε (u∗))+2t2 (Bε (u∗) ,ε (β ∗))

+t3 (Dε (β ∗) ,ε (β ∗))+ tκ (β ∗ −∇w∗,β ∗ −∇w∗)
)
,

donde hemos integrado en el espesor t, utilizado las leyes constitutivas asociadas a cada
lámina de la placa y la siguiente definición de los tensores de cuarto orden A , B y D :

A (τ) :=
1
2
(C1 +C2)τ, B (τ) :=

1
8
(C1 −C2)τ, D (τ) :=

1
24

(C1 +C2)τ,

con C1 y C2 operadores de elasticidad lineal en cada medio:

Ci := λi tr(τ) I+2μiτ, i = 1,2.

Finalmente κ := k (μ1 +μ2)/2 es el módulo de corte de la placa laminada, siendo k el
factor de corrección de corte que se toma como 5/6 para una placa empotrada.

La energı́a de vibración de la parte estacionaria queda

ω2

2

∫ t
2

− t
2

∫
Ω

ρU ·U =
ω2

2

{ t
2
(ρ1 +ρ2)(u

∗,u∗)+
t
2
(ρ1 +ρ2)(w

∗,w∗)

+
t3

24
(ρ1 +ρ2)(β ∗,β ∗)+

t2

4
(ρ1 −ρ2)(β ∗,u∗)

}
Finalmente el problema variacional queda:
Hallar ω > 0 y (u∗,β ∗,w∗) ∈V no trivial, tales que

t (A ε(u∗),ε(v))+ t2 [(Bε(u∗),ε(η))+(Bε(β ∗),ε(v))]
+ t3 (Dε(β ∗),ε(η))+ tκ (β ∗ −∇w∗,η −∇z)

= ω2
{

t
2
(ρ1 +ρ2)(u

∗,v)+
t3

24
(ρ1 +ρ2)(β ∗,η)

+
t
2
(ρ1 +ρ2)(w

∗,z)+
t2

8
(ρ1 −ρ2) [(β ∗,v)+(u∗,η)]

}
∀(v,η,z) ∈V,
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donde
V := H1

0 (Ω)2×H1
0 (Ω)2 ×H1

0 (Ω).

En el Capı́tulo 2 se estudia el problema de vibraciones libres de una placa laminada
usando la teorı́a de operadores compactos descrita en ([6]). Después de escalar adecuada-
mente el problema de vibraciones libres, se definen los operadores resolventes del proble-
ma de placas laminadas ası́ como su respectivo problema lı́mite. Se demuestra convergen-
cia hacia el operador resolvente del problema lı́mite cuando el espesor de la placa tiende a
cero. En la definición del problema discreto se utiliza el elemento finito DL3 [22] para las
variables de la placa y para los desplazamientos en el plano se utilizan elementos linea-
les a trozos y continuos. Se prueba orden de convergencia lineal para las autofunciones
en norma H1 y cuadrático en norma L2, ası́ como doble orden de convergencia para las
frecuencias de vibración. Todos estos resultados dan origen al artı́culo:

• Approximation of the vibration modes of a Reissner-Mindlin laminated Plate (En-
viado)

0.1.4 Problema de placas rigidizadas de Reissner-Mindlin

Otro problema de mucho interés en la ingenierı́a se refiere a las placas rigidizadas. Una
placa rigidizada es una placa acoplada con una barra que generalmente tiene propiedades
mecánicas mucho más resistentes aumentando su capacidad resistente a flexión, o bien,
evitando el pandeo de una placa cuando está sometida a carga en su propio plano. Se han
aplicado diferentes ideas para modelar placas rigidizadas desde el punto de vista de la
ingeniera civil. A pesar de que se pueden distinguir varios tipos, los agrupamos en dos
categorı́as.

El primero consiste en utilizar un modelos aproximados de una estructura tı́picamente
con una topologı́a diferente pero que dentro de criterios ingenieriles puede considerarse
una aproximación simplificada del problema. Por ejemplo, modelar la placa rigidizada
como una placa ortotrópica o alternativamente, como un envigado en donde las propieda-
des equivalentes de las vigas son consideradas a partir de un ancho efectivo de la placa.
Otra posibilidad es agrupar la masa de los rigidizadores desplazándola a los bordes de los
elementos de la placa. Claramente la debilidad de estos enfoques es que hay un error en
la modelación que es difı́cil de evaluar (ver [28] para un breve recuento de estos modelos
y las referencias de ese artı́culo).

Un segundo enfoque consiste en modelar la placa rigidizada por medio de elementos
de placas y los rigidizadores por elementos de vigas. En este caso hay dos posibilidades,
usar una malla arbitraria de manera que en general habrá elementos atravesados por trozos
de rigidizador o usar una malla en la que los rigidizadores coinciden con los lados de los
elementos. En nuestro análisis consideramos sólo la segunda posibilidad.
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Muchos artı́culos han abordado el problema de las placas rigidizadas desde el punto
de vista de la ingenierı́a. En [40] se estudia el problema de la placa rigidizada para pla-
cas y vigas esbeltas. Se escribe la energı́a de la placa, la energı́a de la viga y se in-
troducen multiplicadores de Lagrange que vincula los desplazamientos de la placa y el
rigidizador. En [17] se estudia el problema de cargas de la placa rigidizada usando la
teorı́a de Reissner Mindlin utilizando varias formulaciones, entre ellas se muestra una for-
mulación ortotrópica. En [38] se ha estudiado también el problema de vibraciones de una
placa rigidizada de acuerdo a la teorı́a de Reissner-Mindlin para rigidizadores excéntricos,
es decir tales que no necesariamente la lı́nea media del rigidizador coincida con la super-
ficie media de la placa. En [28] se presenta también el problema de vibraciones libres de
una placa rigidizada excéntrica, pero utiliza el elemento MITC9 lo que permite evitar el
“locking” en la placa rigidizada.

Desde el punto de vista matemático el único artı́culo sobre placas rigidizadas es [19]
donde se estudia una placa esbelta usando la técnica de descomposición de dominios. En
ese artı́culo se estudia una placa con el rigidizador puesto simétricamente con respecto a
la lı́nea media de la placa. En el Capı́tulo 3 de esta tesis se presenta la formulación del
problema y las condiciones de compatibilidad geométrica entre la placa y el rigidizador.
Se estudia la existencia y unicidad, la estabilidad de la solución y su discretización.

Para el análisis numérico nos restringimos a analizar el caso en que el rigidizador es
simétrico con respecto al plano medio de la placa. En este caso los problemas de las de-
formaciones de la placa rigidizada en el plano y de flexión se desacoplan completamente.

Como resultado de esta investigación se tiene el siguiente artı́culo:

• A finite element method for Reissner-Mindlin stiffened plates (en preparación).



Chapter 1

Approximation of the vibration modes
of a Timoshenko curved rod of
arbitrary geometry

The aim of this chapter is to analyze a mixed finite element method for computing
the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order
error estimates are proved for displacements, rotations and shear stresses of the vibra-
tion modes, as well as a double order of convergence for the vibration frequencies. These
estimates are essentially independent of the thickness of the rod, which leads to the con-
clusion that the method is locking free. Numerical tests are reported in order to assess the
performance of the method.

1.1 Introduction

It is very well known that standard finite elements applied to models of thin structures,
like beams, rods, plates and shells, are subject to the so-called locking phenomenon. This
means that they produce very unsatisfactory results when the thickness is small with re-
spect to the other dimensions of the structure (see for instance [7]). From the point of view
of the numerical analysis, this phenomenon usually reveals itself in that the a priori error
estimates for these methods depend on the thickness of the structure in such a way that
they degenerate when this parameter becomes small. To avoid locking, special methods
based on reduced integration or mixed formulations have been devised and are typically
used (see, for instance, [10]).

Very likely, the first mathematical piece of work dealing with numerical locking and
how to avoid it is the paper by [1], where a thorough analysis for the Timoshenko beam
bending model is developed. In that paper, it is proved that locking arises because of the

1
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shear terms and a locking-free method based on a mixed formulation is introduced and
analyzed. It is also shown that this mixed method is equivalent to use a reduced-order
scheme for the integration of the shear terms in the primal formulation.

Subsequently, several methods to avoid locking on different models of circular arches
were developed by [33], [36] and [42]. The analysis of the latter was extended by [3] to
Timoshenko rods of rather arbitrary geometry. An alternative approach to deal with this
same kind of rods was developed and analyzed by [14], where a numerical method based
on standard beam finite elements was used.

All the above references deal only with load problems. The literature devoted to the
dynamic analysis of rods is less rich. There exist a few papers introducing finite element
methods and assessing their performance by means of numerical experiments (see [31, 35]
and references therein). Papers dealing with the numerical analysis of the eigenvalue prob-
lems arising from the computation of the vibration modes for thin structures are much less
frequent; among them we mention [20, 21], where MITC methods for computing bend-
ing vibration modes of plates were analyzed. One reason for this is that the extension
of mathematical results from load to vibration problems is not quite straightforward for
mixed methods. [12, 13] showed that eigenvalue problems for mixed formulations show
peculiar features that make them substantially different from the same methods applied to
the corresponding source problems. In particular, they showed that the standard inf-sup
and ellipticity in the kernel conditions, which ensure convergence for the mixed formu-
lation of source problems, are not enough to attain the same goal in the corresponding
eigenvalue problem.

In this paper we analyze a mixed finite element method to compute the vibration
modes of an elastic curved rod. For the stiffness terms, we follow the approach proposed
by [3] for the load problem. We settle the corresponding spectral problem by including
the mass terms arising from displacement and rotational inertia in the model, as proposed
in [31]. Our assumptions on the rods are slightly weaker than those in these references.
On the one hand we do not assume that the Frenet basis associated with the line of cross-
section centroids is a set of principal axes. On the other hand, we allow for non-constant
geometric and physical coefficients varying smoothly along the rod. We prove that the re-
sulting method yields optimal order approximation of displacements, rotations and shear
stresses of the vibration modes, as well as a double order of convergence for the vibra-
tion frequencies. Under mild assumptions, we also prove that the error estimates do not
degenerate as the thickness becomes small, which allows us to conclude that the method
is locking free.

The outline of the paper is as follows. In Sect. 1.2, we recall the basic geometric and
physical assumptions to settle the vibration problem for a Timoshenko rod of arbitrary
geometry. The resulting spectral problem is shown to be well posed. Its eigenvalues and
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eigenfunctions are proved to converge to the corresponding ones of the limit problem as
the thickness of the rod goes to zero, which corresponds to a Bernoulli-like rod model. A
finite element discretization with piecewise polynomials of arbitrary degree is introduced
and analyzed in Sect. 1.3. Optimal orders of convergence are proved for the eigenfunctions
and the corresponding shear stresses. Finally a double order of convergence is proved for
the eigenvalues and, whence, for the vibration frequencies. All these error estimates are
proved to be independent of the thickness of the rod, which allows us to conclude that
the method is locking-free. In Sect. 1.4, we report several numerical tests, which allow
assessing the performance of the lowest-degree method. The experiments include different
geometries and even boundary conditions not covered by the theoretical analysis. All the
tests show optimal orders of convergence for all the variables. They also show that the
method is thoroughly locking-free.

1.2 The vibration problem for an elastic rod of arbitrary
geometry

A curved rod in undeformed reference state is described by means of a smooth three-
dimensional curve, the line of centroids, which passes through the centroids of cross-
sections of the rod. These cross-sections are initially plane and normal to the line of
centroids. The curve is parametrized by its arc length s ∈ I := [0,L], L being the total
length of the curve.

We recall some basic concepts and definitions; for further details see [3], for instance.
We use standard notation for Sobolev spaces and norms.

The basis in which the equations are formulated is the Frenet basis consisting of t, n
and b, which are the tangential, normal and binormal vectors of the curve, respectively.
These vectors change smoothly from point to point and form an orthogonal basis of R3 at
each point.

Let S denote a cross-section of the rod. We denote by (η,ζ ) the coordinates in the
coordinate system {n,b} of the plane containing S (see Fig. 1.1).

The geometric properties of the cross-section are determined by the following param-
eters (recall that the first moments of area,

∫
S η dη dζ and

∫
S ζ dη dζ , vanish, because the

center of coordinates is the centroid of S):

• area of S: A :=
∫

S dη dζ ;

• second moments of area with respect to the axis n, In :=
∫

S ζ 2 dη dζ , and b, Ib :=∫
S η2 dη dζ ;

• polar moment of area: J :=
∫

S

(
η2 +ζ 2

)
dη dζ = In+ Ib;

• Inb :=
∫

S ηζ dη dζ .
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η

ζ ηn+ζb

t

b

n

S

Figure 1.1: Cross-section. Coordinate system.

These parameters are not necessarily constant, but they are assumed to vary smoothly
along the rod. For a non-degenerate rod, A is bounded above and below far from zero.
Consequently, the same happens for the area moments, In, Ib and J.

Remark 1.2.1 For any planar set S, there exists an orthogonal coordinate system, named
the set of principal axes, such that Inb vanishes when computed in these coordinates. For
particularly symmetric geometries of S, for instance when the cross-section of the rod is a
circle or a square, Inb vanishes in any orthogonal coordinate system. However, in general,
there is no reason for n and b to be principal axes, so that Inb does not necessarily vanish.
In any case, it is straightforward to prove that the matrix(

In −Inb

−Inb Ib

)
is always positive definite.

Vector fields defined on the line of centroids will be always written in the Frenet basis:

v = v1t + v2n+ v3b, with v1,v2,v3 : I −→ R.

We emphasize that v1, v2 and v3 are not the components of v in a fixed basis of R3, but in
the Frenet basis {t,n,b}, which changes from point to point of the curve.

Since t, n and b are smooth functions of the arc-length parameter s, we have that

v′ = v′1t + v′2n+ v′3b+ v1t′+ v2n′+ v3b′.

If we denote

v̇ := v′1t + v′2n+ v′3b, (1.1)
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then, by using the Frenet-Serret formulas (see, for instance, [3]), there holds

v′ = v̇+Γtv, with Γ(s) :=

⎛⎝ 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

⎞⎠ ,

where κ and τ are the curvature and the torsion of the rod, which are smooth functions
of s, too. Therefore, v = v1t + v2n+ v3b ∈ H1(I)3 if and only if vi ∈ L2(I) and v̇i ∈ L2(I),
i = 1,2,3.

Since we will confine our attention to elastic rods clamped at both ends, we proceed
as in [3] and consider

V :=
{

v ∈ L2(I)3 : v̇ ∈ L2(I)3 and v(0) = v(L) = 0
}
,

endowed with its natural norm

‖v‖1 :=

[∫ L

0

(
|v|2 + |v̇|2

)
ds

]1/2

;

namely, V is the space of vector fields defined on the line of centroids such that their
components in the Frenet basis are in H1

0(I).
We will systematically use in what follows the total derivative v ′ = v̇+Γtv. Since t, n

and b are assumed to be smooth functions, ‖v′‖0 is a norm on V equivalent to ‖·‖1 (see [3,
Theorem 3.1]). This is the reason why we denote ‖·‖1 the norm of V . However, the total
derivative v′ should be distinguished from the vector v̇ of derivatives of the components
of v in the Frenet basis, as defined by (1.1).

The kinematic hypotheses of Timoshenko are used for the problem formulation. The
deformation of the rod is described by the displacement of the line of centroids, u ∈ R3,
and the rotation of the cross-sections, θ ∈ R3. The physical properties of the rod are
determined by the elastic and the shear moduli E and G, respectively, the shear correcting
factors k1 and k2, and the volumetric density ρ , all of them strictly positive coefficients.
These coefficients are not necessarily constant; they are allowed to vary along the rod, but
they are also assumed to be smooth functions of the arc-length s.

We consider the problem of computing the free vibration modes of an elastic rod
clamped at both ends. The variational formulation of this problem consists in finding
non-trivial (u,θ) ∈ W := V ×V and ω > 0 such that∫ L

0
Eθ ′ ·ψ ′ ds+

∫ L

0
D
(
u′ −θ × t

) · (v′ −ψ × t
)

ds

= ω2
(∫ L

0
ρAu · vds+

∫ L

0
ρJθ ·ψ ds

)
∀(v,ψ) ∈ W (1.2)
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where ω is the vibration frequency and u and θ are the amplitudes of the displacements
and the rotations, respectively (see [31]). The coefficients D, E and J are 3×3 matrices,
which in the Frenet basis are written as follows:

D :=

⎛⎝EA 0 0
0 k1GA 0
0 0 k2GA

⎞⎠ , E :=

⎛⎝GJ 0 0
0 EIn −EInb

0 −EInb EIb

⎞⎠ ,

J :=

⎛⎝J 0 0
0 In −Inb

0 −Inb Ib

⎞⎠ .

In [31], as in most references ([3, 14], for instance), the Frenet basis is assumed to be a
set of principal axes, so that Inb = 0 and the three matrices above are diagonal. We do not
make this assumption in this paper.

Remark 1.2.2 The vibration problem above can be formally obtained from the three-
dimensional linear elasticity equations as follows: According to the Timoshenko hypothe-
ses, the admissible displacements at each point ηn+ζb ∈ S (see Fig. 1.1) are of the form
u+θ × (ηn+ζb), with u, θ , n and b being functions of the arc-length coordinate s. Test
and trial displacements of this form are taken in the variational formulation of the linear
elasticity equations for the vibration problem of the three-dimensional rod. By integrating
over the cross-sections and multiplying the shear terms by correcting factors k1 and k2,
one arrives at problem (1.2).

It is well known that standard finite element methods applied to equations like (1.2)
are subject to numerical locking: they lead to unacceptably poor results for very thin struc-
tures, unless the mesh-size is excessively small. This phenomenon is due to the different
scales with respect to the thickness of the rod of the two terms on the left-hand side of this
equation. An adequate framework for the mathematical analysis of locking is obtained by
rescaling the equations in order to obtain a family of problems with a well-posed limit as
the thickness becomes infinitely small.

With this purpose, we introduce the following non-dimensional parameter, character-
istic of the thickness of the rod:

d2 :=
1
L

∫ L

0

J
AL2 ds.

By defining

λ :=
ω2ρ
d2 , D̂ :=

1
d2D, Ê :=

1
d4E, Ĵ :=

1
d4J and Â :=

A
d2 ,
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problem (1.2) can be equivalently written as follows: Find non-trivial (u,θ) ∈ W and
λ ∈ R such that∫ L

0
Êθ ′ ·ψ ′ ds+

1
d2

∫ L

0
D̂
(
u′ −θ × t

) · (v′ −ψ × t
)

ds

= λ
(∫ L

0
Âu · vds+d2

∫ L

0
Ĵθ ·ψ ds

)
∀(v,ψ) ∈ W . (1.3)

The values of interest of d are obviously bounded above, so we restrict our attention
to d ∈ (0,dmax]. The coefficients of the matrices D̂, Ê and Ĵ, as well as Â, are assumed to
be functions of s which do not vary with d. This corresponds to considering a family of
problems where the size of the cross-sections are uniformly scaled by d at all point of the
line of centroids, while their shapes as well as the geometry of the curve and the material
properties remain fixed.

Remark 1.2.3 Matrices D̂, Ê and Ĵ are positive definite for all s ∈ I, the last two because
of Remark 1.2.1. Moreover, since all the coefficients are continuous functions of s, the
eigenvalues of each of these matrices are uniformly bounded below away from zero for
all s ∈ I.

Remark 1.2.4 The eigenvalues λ of problem (1.3) are strictly positive, because of the
symmetry and the positiveness of the bilinear forms on its left and right-hand sides. The
positiveness of the latter is a straightforward consequence of Remark 1.2.3, whereas that
of the former follows from the ellipticity of this bilinear form in W . This can be proved by
using Remark 1.2.3 again and proceeding as in the proof of Lemma 3.4 (a) from [3], where
the same result appears for particular constant coefficients (see also [14, Proposition 1]).

We introduce the scaled shear stress γ := 1
d2 D̂(u′ −θ × t) to rewrite problem (1.3) as

follows:(
Êθ ′,ψ ′

)
+
(
γ,v′ −ψ × t

)
= λ

[(
Âu,v

)
+d2

(
Ĵθ ,ψ

)]
∀(v,ψ) ∈ W , (1.4)

γ =
1
d2 D̂

(
u′ −θ × t

)
. (1.5)

where (·, ·) denotes the L2(I)3 inner product.
To analyze this problem, we introduce the operator

T : L2(I)3 ×L2(I)3 −→ L2(I)3 ×L2(I)3,

defined by T ( f ,φ) := (u,θ), where (u,θ) ∈ W is the solution of the associated load
problem:(

Êθ ′,ψ ′
)
+
(
γ,v′ −ψ × t

)
=
(

Â f ,v
)
+d2

(
Ĵφ ,ψ

)
∀(v,ψ) ∈ W , (1.6)

γ =
1
d2 D̂

(
u′ −θ × t

)
. (1.7)
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Taking into account that (1.7) can be equivalently written as follows:(
u′ −θ × t,q

)−d2
(
D̂
−1γ ,q

)
= 0 ∀q ∈ Q := L2(I)3,

we note that the load problem falls in the framework of the mixed formulations considered
in [10]. In this reference, the results from [1] are extended to cover this kind of problems.
In particular, according to [10, Theorem II.1.2], to prove the well posedness it is enough
to verify the classical properties of mixed problems:

i) ellipticity in the kernel: ∃α > 0 such that(
Êψ ′,ψ ′

)
≥ α

(
‖v‖2

1 +‖ψ‖2
1

)
∀(v,ψ) ∈ W 0,

where W 0 := {(v,ψ) ∈ W : v′ −ψ × t = 0 in I} ;

ii) inf-sup condition: ∃β > 0 such that

sup
(0,0) �=(v,ψ)∈W

(q,v′ −ψ × t)
‖v‖1 +‖ψ‖1

≥ β ‖q‖0 ∀q ∈ Q.

Property (i) has been proved in [3, Lemma 3.6] for Ê being the identity matrix. The
extension to Ê positive definite uniformly in s is quite straightforward. Property (ii) has
been proved in [3, Lemma 3.7]. An alternative simpler proof of an equivalent inf-sup
condition appears in [14, Proposition 2].

Therefore, according to [10, Theorem II.1.2], problem (1.6)–(1.7) has a unique solu-
tion (u,θ ,γ) ∈ W ×Q and this solution satisfies

‖u‖1 +‖θ‖1 +‖γ‖0 ≤C
(‖ f‖0 +d2 ‖φ‖0

)
. (1.8)

Here and thereafter, C denotes a strictly positive constant, not necessarily the same at each
occurrence, but always independent of d and of the mesh-size h, which will be introduced
in the next section.

Because of the estimate above and the compact embedding H1(I) ↪→ L2(I), the oper-
ator T is compact. Moreover, by substituting (1.7) into (1.6), from the symmetry of the
resulting bilinear forms, it is immediate to show that T is self-adjoint with respect to the
‘weighted’ L2(I)3 ×L2(I)3 inner product in the right-hand side of (1.6). Therefore, apart
of μ = 0, the spectrum of T consists of a sequence of finite-multiplicity real eigenvalues
converging to zero, all with ascent 1.

Note that λ is a non-zero eigenvalue of problem (1.3) if and only if μ := 1/λ is a
non-zero eigenvalue of T , with the same multiplicity and corresponding eigenfunctions.
Recall that these eigenvalues are strictly positive (cf. Remark 1.2.4).
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Next, we define T0 by means of the limit problem of (1.6)–(1.7) as d → 0:

T0 : L2(I)3 ×L2(I)3 −→ L2(I)3 ×L2(I)3,

where T0 ( f ,φ) := (u0,θ 0) ∈ W is such that there exists γ0 ∈ Q satisfying:(
Êθ ′

0,ψ
′
)
+
(
γ0,v

′ −ψ × t
)
=
(

Â f ,v
)

∀(v,ψ) ∈ W , (1.9)

u′0 −θ 0 × t = 0. (1.10)

The above mentioned existence and uniqueness results covers this problem as well.
Our next goal is to prove that T converges to T0 as d goes to zero. With this purpose,

we will use the following a priori estimates for the solutions of problems (1.6)–(1.7)
and (1.9)–(1.10), whose proof is based on the same arguments as those used to prove
Proposition 3 in [14]: if f ,φ ∈ Hk−2(I)3, k ≥ 2, then

‖u‖k +‖θ‖k +‖γ‖k−1 ≤C
(‖ f ‖k−2 +d2 ‖φ‖k−2

)
, (1.11)

‖u0‖k +‖θ 0‖k +‖γ0‖k−1 ≤C‖ f‖k−2 . (1.12)

In the following lemma and thereafter, ‖·‖1 denotes the natural product norm in W =

V ×V .

Lemma 1.2.1 There exists a constant C > 0, independent of d, such that

‖(T −T0)( f ,φ)‖1 ≤Cd (‖ f‖0 +d ‖φ‖0) ∀ f ,φ ∈ L2(I)3.

Proof. Given f ,φ ∈ L2(I)3, let (u,θ) := T ( f ,φ) and (u0,θ 0) := T0 ( f ,φ). Subtracting
(1.9) from (1.6) and (1.10) from (1.7), we have(

Ê
(
θ ′ −θ ′

0

)
,ψ ′

)
+
(
γ − γ0,v

′ −ψ × t
)
= d2

(
Ĵφ ,ψ

)
∀(v,ψ) ∈ W , (1.13)

γ =
1
d2 D̂

(
u′ −u′0 − (θ −θ 0)× t

)
. (1.14)

Taking ψ = θ −θ 0 and v = u−u0, we obtain(
Ê
(
θ ′ −θ ′

0

)
,θ ′ −θ ′

0

)
= d2

(
Ĵφ ,(θ −θ 0)

)
−d2 (γ − γ0,γ) .

Using the ellipticity of the bilinear form on the left-hand side, Cauchy-Schwartz inequal-
ity, (1.11) and (1.12), we have

‖θ −θ 0‖2
1 ≤Cd2‖φ‖0 ‖θ −θ 0‖0 +Cd2 (‖γ‖0 +‖γ0‖0

)‖γ‖0

≤Cd2‖φ‖0 ‖θ −θ 0‖0 +Cd2 (‖ f‖0 +d2 ‖φ‖0

)‖ f‖0 ,
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whence

‖θ −θ 0‖1 ≤Cd (‖ f ‖0 +d ‖φ‖0) . (1.15)

On the other hand, observe that from (1.14),

u′ −u′0 = d2
D̂
−1γ +(θ −θ 0)× t.

Hence, using (1.8) and Poincaré inequality, we obtain

‖u−u0‖1 ≤Cd2 (‖ f‖0 +d ‖φ‖0)+‖θ −θ 0‖0 ,

which together with (1.15) allow us to end the proof. �

As a consequence of this lemma, T converges in norm to T0 as d goes to zero. There-
fore, standard properties of separation of isolated parts of the spectrum (see for instance
[32]) yield the following result:

Lemma 1.2.2 Let μ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any disc in
the complex plane centered at μ0 and containing no other element of the spectrum of T0.
Then, for d small enough, D contains exactly m eigenvalues of T (repeated according to
their respective multiplicities). Consequently, each eigenvalue μ0 > 0 of T0 is a limit of
eigenvalues μ of T , as d goes to zero.

Moreover, for any compact subset K of the complex plane not intersecting the spec-
trum of T0, there exists dK > 0 such that for all d < dK, K does not intersect the spectrum
of T , either.

1.3 Finite elements discretization

Two different finite element discretizations of the load problem for Timoshenko curved
rods have been analyzed in [3] and [14]. The two methods differ in the variables being dis-
cretized: the components of vector fields v in the Frenet basis, v1, v2 and v3, are discretized
by piecewise polynomial continuous functions in the former, whereas the discretized vari-
able is the vector field v = v1t + v2n+ v3b in the latter. We follow the approach from [3].

Consider a family {Th} of partitions of the interval I:

Th : 0 = s0 < s1 < · · ·< sn = L,

with mesh-size

h := max
j=1,...,n

(
s j − s j−1

)
.
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We define the following finite element subspaces of V and Q, respectively:

V h :=
{

v ∈ V : vi|[s j−1,s j] ∈ Pr, j = 1, . . . ,n, i = 1,2,3
}
,

Qh :=
{

q ∈ Q : qi|[s j−1,s j] ∈ Pr−1, j = 1, . . . ,n, i = 1,2,3
}
,

where vi, i = 1,2,3, are the components of v in the Frenet basis, Pk are the spaces of
polynomials of degree lower than or equal to k, and r ≥ 1.

Let W h := V h ×V h. The following is the discrete vibration problem in mixed form:
Find non-trivial (uh,θh,γh) ∈ W h×Qh and λh ∈ R such that:(

Êθ ′
h,ψ

′
h

)
+
(
γh,v

′
h−ψh× t

)
= λh

[(
Âuh,vh

)
+d2

(
Ĵθh,ψh

)]
∀(vh,ψh) ∈ W h,

(1.16)(
u′h−θ h× t,qh

)−d2
(
D̂
−1γh,qh

)
= 0 ∀qh ∈ Qh. (1.17)

In the same manner as in the continuous case, we introduce the operator

Th : L2(I)3 ×L2(I)3 −→ L2(I)3 ×L2(I)3,

defined by Th ( f ,φ) := (uh,θh), where (uh,θh,γh) ∈W h×Qh is the solution of the asso-
ciated discrete load problem:(

Êθ ′
h,ψ

′
h

)
+
(
γh,v

′
h −θh × t

)
=
(

Â f ,vh

)
+d2

(
Ĵφ ,ψh

)
∀(vh,ψh) ∈ W h,

(1.18)(
u′h −θh × t,qh

)−d2
(
D̂
−1γh,qh

)
= 0 ∀qh ∈ Qh. (1.19)

This problem falls in the framework of the discrete mixed formulations considered in
[10, Section II.2.4]. In order to apply the results from this reference, we have to verify the
following classical properties, for h small enough:

i) ellipticity in the discrete kernel: ∃α∗ > 0, independent of h, such that(
Êψ ′

h,ψ
′
h

)
≥ α∗

(
‖vh‖2

1 +‖ψh‖2
1

)
∀(vh,ψh) ∈ W 0h, (1.20)

where W 0h :=
{
(vh,ψh) ∈ W h :

(
qh,v

′
h−ψh× t

)
= 0 ∀qh ∈ Qh

}
;

ii) discrete inf-sup condition: ∃β∗ > 0, independent of h, such that

sup
(0,0) �=(vh,ψh)∈W h

(
qh,v

′
h −ψh× t

)
‖vh‖1 +‖ψh‖1

≥ β∗ ‖qh‖0 ∀qh ∈ Qh.
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Property (i) has been proved in [3, Lemma 4.2] for Ê being the identity matrix and
h > 0 sufficiently small. The extension to Ê positive definite uniformly in s is quite
straightforward. Property (ii) has been also proved in [3, Lemma 4.3] by means of a labo-
rious constructive procedure, which is not fully detailed in this reference. In what follows
we provide an alternative simpler proof based on the arguments used by [14, Lemma 3,
Step (ii)] for the discrete inf-sup condition arising from another discretization.

With this purpose we will use the following lemma, which holds true as far as the rod
is not a simple straight beam and whose proof can be found in [14, Lemma 1]:

Lemma 1.3.1 If t(s) is not a constant vector for all s ∈ I, then there exists a linear map-
ping

φ : R3 −→ C 1(I,R3)

x 
−→ φ x

such that, for any x ∈ R3:

φ x(0) = φ x(L) = 0, (1.21)∫ L

0
φ x(s)× t(s)ds = x, (1.22)

‖φ x‖C 1(I,R3) ≤C |x| . (1.23)

Note that the tangent vector t is constant throughout the length of the rod if and only if
the rod is actually a straight beam. The finite element scheme is perfectly well fitted in this
case too (see the numerical results reported in Sect. 1.4.1 below). However, in such a case,
the inf-sup condition in the following lemma must be proved by adapting the arguments
used in [1, p. 414]), where a similar condition has been proved in a two-dimensional
simpler framework. For a curved rod there holds the following result:

Lemma 1.3.2 For h small enough, there exists β∗ > 0, independent of h, such that

sup
(0,0) �=(vh,ψh)∈W h

(
qh,v

′
h −ψh× t

)
‖vh‖1 +‖ψh‖1

≥ β∗ ‖qh‖0 ∀qh ∈ Qh.

Proof. Given qh ∈Qh, let v∈H1(I)3 be the solution of the following initial value problem:{
v′ ≡ v̇+Γtv = qh in I,
v(0) = 0.

Since v(0) = 0, Poincaré inequality leads to ‖v‖0 ≤C‖v′‖0. Hence,

‖v‖1 =
(
‖v‖2

0 +‖v̇‖2
0

)1/2 ≤C‖qh‖0 . (1.24)
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Let v̂ := v̂1t+ v̂2n+ v̂3b, with

v̂i(s) :=
∫ s

0
Πv′i(σ)dσ , 0 ≤ s ≤ L, i = 1,2,3,

where vi are the components of v in the Frenet basis and Π is the L2(I)-orthogonal pro-
jection onto

Qh :=
{

q ∈ L2(I) : q|[s j−1,s j] ∈ Pr−1, j = 1, . . . ,n
}
.

Clearly v̂′i = Πv′i and v̂i(0) = 0, so that, from Poincaré inequality, the boundedness of Π
and (1.24),

‖v̂‖1 ≤C

(
3

∑
i=1

∥∥Πv′i
∥∥2

0

)1/2

≤C

(
3

∑
i=1

∥∥v′i
∥∥2

0

)1/2

≤C‖qh‖0 . (1.25)

Now, for all points s j of the partition Th, there holds

v̂i(s j)− vi(s j) =

∫ s j

0

[
Πv′i(σ)− v′i(σ)

]
dσ = 0,

because the characteristic function of the interval [0,s j] belongs to Qh. Therefore, from
Cauchy-Schwartz inequality, we have for all s ∈ [s j,s j+1],

|v̂i(s)− vi(s)|2 =
∣∣∣∣∫ s

s j

[
Πv′i(σ)− v′i(σ)

]
dσ

∣∣∣∣2 ≤ ∣∣s− s j
∣∣∫ s j+1

s j

∣∣Πv′i(σ)− v′i(σ)
∣∣2 dσ .

By integrating on [s j,s j+1] and summing up for j = 0, . . . ,n−1, we obtain

‖v̂i − vi‖2
0 ≤

h2

2

∥∥Πv′i − v′i
∥∥2

0 ≤ h2
∥∥v′i

∥∥2
0 ,

which together with (1.24) yield

‖v̂− v‖0 ≤ h‖v̇‖0 ≤Ch‖qh‖0 . (1.26)

On the other hand, since v̂′i = Πv′i and the components of qh belong to Qh, according
to the definition (1.1) of v̇ and ˙̂v, there holds(

qh,
˙̂v
)
= (qh, v̇) =

(
qh,v

′)−(
qh,Γ

tv
)
,

which together with the definition of v lead to(
qh, v̂

′)= (
qh,

˙̂v
)
+
(
qh,Γ

tv̂
)
=
(
qh,v

′)+(
qh,Γ

t (v̂− v)
)
= ‖qh‖2

0 +
(
qh,Γ

t (v̂− v)
)
.
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Thus, from (1.26), we obtain (
qh, v̂

′)≥ (1−Ch)‖qh‖2
0 . (1.27)

According to its definition, v̂i are piecewise Pr continuous functions vanishing at
s = 0. However, in general, v̂(L) �= 0, so that v̂ /∈ V h. Because of this, we resort to
Lemma 1.3.1.

Let x :=−v̂(L) and φ x be as in Lemma 1.3.1. From (1.23) and (1.25), there holds

‖φ x‖1 ≤C‖φ x‖C 1(I,R3) ≤C |x| ≤C‖v̂‖1 ≤C‖qh‖0 .

Let
w(s) :=

∫ s

0
φ x(σ)× t(σ)dσ , 0 ≤ s ≤ L.

Clearly, w(0) = 0 and w′ = φ x × t. Hence, from Poincaré inequality,

‖w‖1 ≤C
∥∥w′∥∥

0 ≤C‖φ x‖0 ≤C‖qh‖0 .

Let φ I
x and wI be the vector fields whose components in the Frenet basis are the La-

grange interpolants of degree r of the respective components of φ x and w in the same
basis. Standard properties of the one-dimensional Lagrange interpolant yield∥∥φ I

x

∥∥
1 ≤C‖φ x‖1 ≤C‖qh‖0 and

∥∥wI
∥∥

1 ≤C‖w‖1 ≤C‖qh‖0 , (1.28)

as well as∥∥φ x −φ I
x

∥∥
0 ≤Ch

∥∥φ̇ x

∥∥
0 ≤Ch‖qh‖0 ,∥∥∥(wI −w

)′∥∥∥
0
≤ ∥∥(wI −w

)
˙
∥∥

0 +
∥∥Γt (wI −w

)∥∥
0 ≤Ch(‖ẅ‖0 +‖ẇ‖0)≤Ch‖qh‖0 ,

the latter because ẅ = (w′ −Γtw)˙= (φ x × t)˙− (Γtw)˙ and, consequently, we have that
‖ẅ‖0 ≤C

(‖φ x‖1 +‖w‖1

)
. Therefore,∣∣∣(qh,

(
wI)′ −φ I

x × t
)∣∣∣= ∣∣∣(qh,

(
wI −w

)′)
+
(
qh,

(
φ x −φ I

x

)× t
)∣∣∣≤Ch‖qh‖2

0 . (1.29)

Finally, let vh := v̂+wI and ψh := φ I
x. Because of (1.21) and (1.22), both belong to

W h. From (1.25) and (1.28), there holds

‖vh‖1 +‖ψh‖1 ≤C‖qh‖0 ,

whereas from (1.27) and (1.29),(
qh,v

′
h −ψh × t

)≥ (1−Ch)‖qh‖2
0 .

The last two inequalities allow us to conclude the lemma. �

Now we are in a position to prove that Th is well defined and converges to T as h → 0:
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Theorem 1.3.1 For sufficiently small h > 0, problem (1.18)–(1.19) has a unique solution
(uh,θh,γh) ∈ W h×Qh. This solution satisfies

‖uh‖1 +‖θ h‖1 +‖γh‖0 ≤C
(‖ f‖0 +d2‖φ‖0

)
, (1.30)

where C > 0 is independent of h and d.
Let (u,θ ,γ) ∈ W ×Q be the solution of problem (1.6)–(1.7). If f ,φ ∈ Hk−1 (I)3, 1 ≤

k ≤ r, then

‖u−uh‖1 +‖θ −θ h‖1 +‖γ − γh‖0 ≤Chk (‖ f‖k−1 +d2 ‖φ‖k−1

)
, (1.31)

‖u−uh‖0 +‖θ −θ h‖0 ≤Chk+1 (‖ f ‖k−1 +d2 ‖φ‖k−1

)
, (1.32)

with C > 0 independent of h and d.

Proof. By virtue of (1.20) and Lemma 1.3.2, the well posedness of problem (1.18)–(1.19)
as well as the error estimate (1.31) are consequences of Proposition II.2.11 from [10]. On
the other hand, (1.32) is obtained by adapting to our case the duality argument used to
prove Theorem 2 from [14]. �

By adding (1.18) and (1.19), from the symmetry of the resulting bilinear forms, it is
immediate to show that Th is self-adjoint with respect to the ‘weighted’ L2(I)3 ×L2(I)3

inner product in the right-hand side of (1.18). Therefore, apart of μh = 0, the spectrum of
Th consists of a finite number of finite-multiplicity real eigenvalues with ascent 1.

Once more the spectrum of the operator Th is related with the eigenvalues of the spec-
tral problem (1.16)–(1.17): λh is a non-zero eigenvalue of this problem if and only if
μh := 1/λh is a non-zero eigenvalue of Th, with the same multiplicity and corresponding
eigenfunctions. These eigenvalues are strictly positive. Indeed, by taking vh = uh, ψh = θh

and qh = γh in problem (1.16)–(1.17), by subtracting the second equation from the first
one, we have

λh =

(
Êθ ′

h,θ
′
h

)
+d2

(
D̂−1γh,γh

)
(

Âuh,uh

)
+d2

(
Ĵθh,θh

) ≥ 0.

Moreover, the eigenvalues cannot vanish. In fact, according to the expression above, since
Ê and D̂ are positive definite (see Remark 1.2.3), λh = 0 would imply γh = 0. Then, (1.17)
would imply that (uh,θh) ∈ W 0h and, hence, uh and θ h would vanish too because of
(1.20).

Our aim is to use the spectral theory for compact operators (see [6], for instance)
to prove convergence of the eigenvalues and eigenfunctions of Th towards those of T .
However, some further considerations will be needed to show that the error estimates do
not deteriorate as d becomes small. With this purpose, we will use the following result:

‖(T −Th)( f ,φ)‖1 ≤Ch
(‖ f ‖0 +d2 ‖φ‖0

)
, (1.33)
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which follows from (1.31) with k = 1. As a consequence of this estimate, Th converges
in norm to T as h goes to zero. Hence, standard results of spectral approximation (see
for instance [32]) show that if μ is an eigenvalue of T with multiplicity m, then exactly
m eigenvalues μ(1)

h , . . . ,μ(m)
h of Th (repeated according to their respective multiplicities)

converge to μ .
The estimate above can be improved when the source term is an eigenfunction (u,θ)

of T . Indeed, in such a case, the same arguments used to prove (1.11) allow us to show
that, for all k ≥ 2 and d sufficiently small, there holds

‖u‖k +‖θ‖k +‖γ‖k−1 ≤C
(‖u‖0 +d2 ‖θ‖0

)
, (1.34)

with C depending on k and on the eigenvalue of T associated with (u,θ). Note that in
principle the constant C should depend also on d, because the eigenvalue does it. However,
according to Lemma 1.2.2, for d sufficiently small we can choose C independent of d.
Hence, from (1.31)–(1.32) with k = r, we obtain:

‖(T −Th)(u,θ)‖1 ≤Chr ‖(u,θ)‖1 , (1.35)

‖(T −Th)(u,θ)‖0 ≤Chr+1‖(u,θ)‖0 . (1.36)

Here and thereafter, ‖·‖0 denotes the standard product norm in L2(I)3 ×L2(I)3.

We remind the definition of the gap or symmetric distance δ̂k between closed sub-
spaces Y and Z of W in norm ‖·‖k, k = 0,1:

δ̂k(Y ,Z ) := max{δk(Y ,Z ),δk(Z ,Y )} ,
with

δk(Y ,Z ) := sup
(v,ψ)∈Y

‖(v,ψ)‖k=1

[
inf

(v̂,ψ̂)∈Z
‖(v− v̂,ψ − ψ̂)‖k

]
.

For the sake of simplicity we state our results for eigenvalues of T converging to a
simple eigenvalue of T0 as d → 0 (at the end of this section we will discuss this assump-
tion). The following theorem yields d-independent error estimates for the approximate
eigenvalues and eigenfunctions.

Theorem 1.3.2 Let μ be an eigenvalue of T converging to a simple eigenvalue μ0 of T0

as d tends to zero, Let μh be the eigenvalue of Th that converges to μ as h tends to zero.
Let E and E h be the corresponding eigenspaces. Then, for d and h small enough,

δ̂1(E ,E h)≤Chr, (1.37)

δ̂0(E ,E h)≤Chr+1, (1.38)

|μ −μh| ≤Chr, (1.39)

with C > 0 independent of d and h.
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Proof. The estimates are direct consequences of (1.35)–(1.36) and Theorems 7.1 and 7.2
from [6], in all cases with C depending on the constants in (1.35)–(1.36) and on the inverse
of the distance from μ to the rest of the spectrum of T . Now, using Lemma 1.2.2, we have
that for d small enough this distance is bounded below in terms of the distance from μ0 to
the rest of the spectrum of T0, which obviously depends neither on d nor on h. This allows
us to conclude the proof. �

This theorem yields optimal order error estimates for the approximate eigenfunctions
in norms ‖·‖1 and ‖·‖0. In fact, the theorem implies that the eigenfunctions (u,θ) of T
and (uh,θh) of Th, corresponding to the eigenvalues μ and μh, respectively, can be chosen
normalized in ‖·‖k, k = 0,1, and so that:

‖u−uh‖1 +‖θ −θ h‖1 ≤Chr (k = 1), (1.40)

‖u−uh‖0 +‖θ −θ h‖0 ≤Chr+1 (k = 0), (1.41)

which are the optimal orders for the finite elements used. Instead, the order of the er-
ror estimate (1.39) is not optimal. To improve this result, we will have to study first the
convergence of the shear stresses of the vibration modes:

Lemma 1.3.3 Let μ and μh be as in Theorem 1.3.2. Let (u,θ ,γ) be a solution of prob-
lem (1.4)–(1.5) with λ = 1

μ , and (uh,θh,γh) a solution of problem (1.16)–(1.17) with

λh =
1
μh

, such that ‖(u,θ)‖1 = ‖(uh,θh)‖1 = 1 and (1.40) holds true. Then, for d and h
small enough,

‖γ − γh‖0 ≤Chr,

with C > 0 independent of d and h.

Proof. From (1.16) and (1.4) we have ∀(vh,ψh) ∈ W h,(
γ − γh,v

′
h−ψh× t

)
= λ

[(
Â(u−uh) ,vh

)
+d2

(
Ĵ(θ −θh) ,ψh

)]
+(λ −λh)

[(
Âuh,vh

)
+d2

(
Ĵθh,ψh

)]
−
(
Ê
(
θ ′ −θ ′

h

)
,ψ ′

h

)
≤Chr (‖vh‖1 +‖ψh‖1

)
,

where we have used (1.39) and (1.40) for the last inequality. Note that the constant C
depends on the eigenvalue λ , but not on d or h, for d small enough (Lemma 1.2.2). Using
this estimate, we have ∀γ̂ ∈ Qh and ∀(vh,ψh) ∈ W h,(

γ̂ − γh,v
′
h−ψh× t

)≤ (
γ̂ − γ ,v′h−ψh× t

)
+Chr (‖vh‖1 +‖ψh‖1

)
.

Therefore, from Lemma 1.3.2, we have ∀γ̂ ∈ Qh

β∗ ‖γ̂ − γh‖0 ≤ sup
(0,0) �=(vh,ψh)∈W h

(
γ̂ − γh,v

′
h−ψh× t

)
‖vh‖1 +‖ψh‖1

≤C (‖γ̂ − γ‖0 +hr) .
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Hence, by choosing γ̂ as the L2(I)3-projection of γ onto Qh, the theorem follows from the
triangular inequality, standard error estimates of the projection, and (1.34). �

Now we are in a position to prove an optimal order of convergence for the approxi-
mate eigenvalues by adapting to our problem a standard argument for variationally posed
eigenvalue problems (see [6, Lemma 9.1], for instance).

Theorem 1.3.3 Let λ = 1
μ and λh =

1
μh

, with μ and μh as in Theorem 1.3.2. Then, for d
and h small enough,

|λ −λh| ≤Ch2r, (1.42)

with C > 0 independent of d and h.

Proof. Let Ad and Bd denote the symmetric and continuous bilinear forms defined in
W ×Q by:

Ad ((u,θ ,γ) ,(v,ψ ,q)) :=
(
Êθ ′,ψ ′

)
+
(
γ,v′ −ψ × t

)
+
(
u′ −θ × t,q

)−d2
(
D̂
−1γ,q

)
,

Bd ((u,θ ,γ) ,(v,ψ ,q)) :=
(

Âu,v
)
+d2

(
Ĵθ ,ψ

)
.

Using this notation, problems (1.4)–(1.5) and (1.16)–(1.17) are respectively written as
follows:

Ad ((u,θ ,γ) ,(v,ψ,q)) = λBd ((u,θ ,γ) ,(v,ψ,q)) ∀(v,ψ) ∈ W ∀q ∈ Q;

Ad ((uh,θh,γh) ,(vh,ψh,qh)) = λhBd ((uh,θh,γh) ,(vh,ψh,qh))

∀(vh,ψh) ∈ W h ∀qh ∈ Qh.

Consider eigenfunctions satisfying ‖(u,θ)‖1 = ‖(uh,θh)‖1 = 1 and (1.40).
From the symmetry of the bilinear forms, straightforward computations lead to

(λ −λh)Bd ((uh,θh,γh) ,(uh,θh,γh))

=λBd ((u−uh,θ −θ h,γ − γh) ,(u−uh,θ −θ h,γ − γh))

−Ad ((u−uh,θ −θ h,γ − γh) ,(u−uh,θ −θ h,γ − γh)) .

By using (1.30) with f = λhuh and φ = λhθh, we have that

Bd ((uh,θh,γh) ,(uh,θh,γh))≥C
(
‖uh‖2

0 +d2‖θ h‖2
0

)
≥ C

λ 2
h

(
‖uh‖2

1 +‖θh‖2
1

)
=

C

λ 2
h

.

Hence, from the continuity of the bilinear forms, we obtain

|λ −λh| ≤C
(‖u−uh‖1 +‖θ −θ h‖1 +‖γ − γh‖0

)2
,
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with C depending on λ and λh, but neither on d nor on h, for d and h sufficiently small
(Lemma 1.2.2 and (1.39)). Thus, (1.40) and Lemma 1.3.3 allow us to conclude the proof.
�

The last three theorems have been settled for eigenvalues of T converging to simple
eigenvalues of T0 as d → 0. A multiple eigenvalue of T0 usually arises because of symme-
tries in the geometry of the rod; in such a case, the eigenvalue of T converging to it has
the same multiplicity. The proofs of these theorems extend trivially to cover this case.

Instead, if T0 had a multiple eigenvalue not due to symmetry reasons, it could split into
different eigenvalues of T . In this case, the proofs of the theorems above do not provide
estimates independent of the thickness. In fact, the constants therein might in principle
blow up as the distance between the eigenvalues becomes smaller.

However, by combining Lemma 1.2.1 and (1.33) we have that

‖(Th −T0)( f ,φ)‖1 ≤C (d+h)
(‖ f‖0 +d2 ‖φ‖0

) ∀ f ,φ ∈ L2(I)3.

This estimate can be used to prove spectral convergence as d and h both converge to
zero. In fact, if μ0 is an eigenvalue of T0 with multiplicity m, then there exist exactly
m eigenvalues μ(1)

h , . . . ,μ(m)
h of Th (repeated according to their respective multiplicities)

converging to μ0 as d and h go to zero (see again [32]). Let E 0 be the eigenspace of T0

corresponding to μ0 and E h be the direct sum of the eigenspaces of Th corresponding to
μ(1)

h , . . . ,μ(m)
h . Then, by proceeding as in the proof of Theorem 1.3.2, we obtain

δ̂1 (E 0,E h)≤C (d+hr) ,

δ̂0 (E 0,E h)≤C
(
d+hr+1) .

Moreover, the arguments in the proofs of Lemma 1.3.3 and Theorem 1.3.3 can be easily
adapted to take into account some additional O(d2) terms, leading to similar results. In

particular, the following estimate holds true for λ0 =
1
μ0

and λ ( j)
h = 1

μ( j)
h

:

∣∣∣λ0 −λ ( j)
h

∣∣∣≤C
(
d2 +h2r) , j = 1, . . . ,m.

1.4 Numerical results

We report in this section the results of some numerical tests computed with a MAT-
LAB code implementing the finite element method described above. We have used the
lowest possible order: r = 1; namely, piecewise linear continuous elements for the dis-
placements uh and the rotations θ h, and piecewise constant discontinuous elements for
the shear stresses γh.
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We have computed the vibration modes with lowest frequencies ω h :=
√

λh for straight,
circular and helical rods, with different sections, thickness and boundary conditions. To
help identifying the different modes, we report two-dimensional plots of the computed
components of displacements and rotations in the Frenet basis, as well as the three-
dimensional deformed rods. For the latter, we have used MODULEF to create an auxiliary
hexahedral mesh of the actual three-dimensional rod and the displacements at each node
of this auxiliary mesh have been computed from uh and θ h as described in Remark 1.2.2.
The resulting deformed rods have been plotted with MODULEF, too.

In all cases we have computed the lowest vibration frequencies ωh
1 < ωh

2 < ωh
3 < · · ·

by using uniform meshes of N elements, with different values of N. Also in all cases, we
have used the following physical parameters, which correspond to steel:

• elastic moduli: E = 2.1×106 kgf/cm2 (1kgf = 980kgcm/s2);

• Poisson coefficient: ν = 0.3 (G = E/[2(1+ν)]);
• density: ρ = 7.85×10−3 kg/cm3;

• correction factors: k1 = k2 = 1.

1.4.1 Test 1: a straight beam

The aim of this first test is to validate the computer code by solving a problem with
known analytical solution. With this purpose, we have computed the vibration modes of
a beam (i.e., a straight rod, which corresponds to κ = τ = 0). We have taken the beam
clamped at both ends, with a total length L = 120 cm, and a square cross section of side-
length b = 20 cm. Therefore, the non-dimensional thickness parameter is in this case d =

0.068. Figure 1.2 shows the undeformed beam.

Figure 1.2: Undeformed straight beam.

To estimate the order of convergence of the method, we have compared the computed
vibration frequencies with the closed form solution given in [29] for the flexural modes.
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The analytical solution of the torsional and axial modes have been obtained by means of
straightforward algebraic manipulations.

Table 1.1 shows the lowest vibration frequencies computed on successively refined
meshes. It also includes the computed orders of convergence and the corresponding ex-
act vibration frequencies ωex. Finally “d” and “s” point out if the vibration frequencies
correspond to double or simple eigenvalues, respectively.

Table 1.1: Angular vibration frequencies of a straight beam

Mode N = 16 N = 32 N = 64 N = 128 order ωex d/s

ωh
1 4034.05 4005.16 3997.99 3996.20 2.00 3995.61 d

ωh
2 8326.58 8316.57 8314.06 8313.44 2.00 8313.22 s

ωh
3 9818.49 9656.86 9617.04 9607.11 2.01 9603.80 d

ωh
4 13426.22 13410.07 13406.03 13405.03 2.00 13404.69 s

ωh
5 17101.68 16639.02 16525.57 16497.37 2.01 16487.94 d

ωh
6 16733.53 16653.17 16633.13 16628.13 2.00 16626.47 s

Figures 1.3–1.5 show the lowest-frequency vibration modes. Those corresponding to
the frequencies ω1 and ω3 are flexural modes, whereas that corresponding to the frequency
ω2 is torsional. For each mode, the figures show the components in the Frenet basis of the
displacements, u, and the rotations, θ , as well as the deformed beam.

0 20 40 60 80 100 120
−0.5

0

0.5

1 u
1

u
2

u
3

0 20 40 60 80 100 120
−0.04

−0.02

0

0.02

0.04 θ
1

θ
2

θ
3

Figure 1.3: Straight beam. Vibration mode of frequency ω1. Displacements and rotations
(left). Deformed beam (right).
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Figure 1.4: Straight beam. Vibration mode of frequency ω2. Displacements and rotations
(left). Deformed beam (right).
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Figure 1.5: Straight beam. Vibration mode of frequency ω3. Displacements and rotations
(left). Deformed beam (right).

As indicated in Table 1.1, ω1 and ω3 correspond to double-multiplicity eigenvalues.
The planar vibration modes shown in Figs. 1.3 and 1.5 only involve deformations in the
plane spanned by t and n. The eigenspaces of each of these eigenvalues also contain other
planar vibration modes involving deformations in the plane spanned by t and b. They
are not shown because they are exactly the same as those in Figs. 1.3 and 1.5 rotated 90
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degrees with respect to the axis t.

1.4.2 Test 2: a helical rod

The aim of this test is to apply the finite element method to a more general curved
non-planar rod with non-vanishing curvature and torsion. We have considered a helix with
eight turns, clamped at both ends. The equation of the helix centroids line parametrized
by its arc-length is as follows:

r (s) =
(

Acos
s
n
,Asin

s
n
,C

s
n

)
, with n =

√
A2 +C2; (1.43)

the curvature is κ = A/n2, the torsion τ = C/n2, and the length of the eight-turns helix
is L = 8× 2πn. We have taken A = 100 cm, C = 25/π cm and a square of side-length
b = 20 cm as the cross section of the rod. Thus, the thickness parameter is in this case
d = 0.0016. Figure 1.6 shows the undeformed helix.

Figure 1.6: Undeformed helical rod.

Since no analytical solution is available for this rod, we have estimated the order of
convergence by means of a least squares fitting of the model

ωh
j ≈ ωex +Cht .

Table 1.2 shows the lowest vibration frequencies computed on successively refined meshes.
It also includes the computed orders of convergence t and the ‘exact’ vibration frequencies
ωex, obtained with this fitting.
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Table 1.2: Angular vibration frequencies of a helical rod

Mode N = 1024 N = 2048 N = 3072 N = 4096 order ωex

ωh
1 15.9146 15.9104 15.9096 15.9094 1.97 15.9090

ωh
2 18.2507 18.2497 18.2495 18.2494 1.94 18.2493

ωh
3 19.0345 18.9807 18.9707 18.9672 1.99 18.9626

ωh
4 19.2888 19.2359 19.2260 19.2226 1.99 19.2181

ωh
5 31.4845 31.4813 31.4807 31.4805 1.97 31.4802

ωh
6 35.5888 35.4752 35.4540 35.4466 1.99 35.4369

Figures 1.7–1.9 show the lowest-frequency vibration modes. The first one is a typical
spring mode, the second one is an extensional mode, and the third one is a kind of ‘phone
rope’ vibration mode.
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Figure 1.7: Helical rod. Vibration mode of frequency ω1. Displacements and rotations
(left). Deformed helix (right).
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Figure 1.8: Helical rod. Vibration mode of frequency ω2. Displacements and rotations
(left). Deformed helix (right).
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Figure 1.9: Helical rod. Vibration mode of frequency ω3. Displacements and rotations
(left). Deformed helix (right).

1.4.3 Test 3: a rod with principal axes not coinciding with the Frenet
basis

The aim of this test is to apply the finite element method to a rod in which the Frenet
basis is not a set of principal axes, so that the off-diagonal term of the inertia matrix Inb
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does not vanish (see Remark 1.2.1). With this purpose, we have considered a semicircular
rod clamped at both ends, with radius of the centroids line R= 50 cm (curvature: κ = 1/R;
torsion: τ = 0; length: L = πR). The cross section of the rod is the parallelogram S shown
in Fig. 1.10. In this case d = 0.025.

t n

S
−2.5π cm

5π cm
−5π cm

2.5π cm

b

Figure 1.10: Cross-section of the semicircular rod.

Figure 1.11 shows the undeformed rod, seen from two different observation points.

Figure 1.11: Undeformed semicircular rod seen from two observation points.

Table 1.3 shows the lowest vibration frequencies computed on successively refined
meshes. It also includes the computed orders of convergence and the ‘exact’ vibration
frequencies ωex, obtained again by a least squares fitting.

Figures 1.12 and 1.13 show the lowest-frequency vibration modes.



1.4 Numerical results 27

Table 1.3: Angular vibration frequencies of a semicircular rod

Mode N = 32 N = 64 N = 128 N = 256 order ωex

ωh
1 836.09 832.71 831.84 831.65 2.00 831.55

ωh
2 1446.95 1435.02 1432.05 1431.29 2.01 1431.07

ωh
3 3065.13 3024.53 3014.48 3011.97 2.01 3011.16

ωh
4 3186.88 3164.30 3158.70 3157.29 2.01 3156.85

ωh
5 5359.50 5252.03 5225.64 5219.10 2.02 5216.94

ωh
6 6072.41 6011.77 5996.62 5992.80 2.00 5991.55
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Figure 1.12: Semicircular rod. Vibration mode of frequency ω1. Displacements and rota-
tions (left). Deformed rod (right).
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Figure 1.13: Semicircular rod. Vibration mode of frequency ω2. Displacements and rota-
tions (left). Deformed rod (right).

1.4.4 Test 4: a free ring

The aim of this test is to assess the performance of the finite element method applied
to rods subject to boundary conditions different to those used to prove the theoretical
results of the previous sections. In particular, we consider a free ring, namely, a circular
rod whose centroids line is a whole circle subject to periodical boundary conditions.

The radius of the centroids line has been taken again R = 50 cm (curvature: κ = 1/R;
torsion: τ = 0; length: L = 2πR) and the cross section a square of side-length b = 5π cm.
Hence, d = 0.0204. Figure 1.14 shows the undeformed ring.

Figure 1.14: Undeformed ring.

In this case, 0 is an eigenvalue of the continuous and the discrete problems, both with
multiplicity 6. The corresponding eigenspace is in both cases the set of admissible rigid
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motions. Table 1.4 presents the lowest positive vibration frequencies computed on suc-
cessively refined meshes. The table also includes computed orders of convergence and
extrapolated ‘exact’ vibration frequencies ωex obtained by least squares fitting. Finally,
“d” and “s” point out if the vibration frequencies correspond to double or simple eigen-
values, respectively.

Table 1.4: Angular vibration frequencies of a free ring

Mode N = 64 N = 128 N = 256 N = 512 order ωex d/s

ωh
1 2310.12 2294.90 2291.12 2290.15 2.00 2289.83 d

ωh
2 2371.63 2358.77 2355.54 2354.73 2.00 2354.48 d

ωh
3 6255.36 6195.63 6180.79 6177.06 2.01 6175.84 d

ωh
4 6345.58 6288.95 6274.89 6271.38 2.01 6270.23 d

ωh
5 7241.09 7241.09 7241.09 7241.09 — 7241.09 s

ωh
6 9532.42 9531.20 9530.89 9530.79 2.00 9530.79 d

ωh
7 10240.41 10240.41 10240.41 10240.41 — 10240.41 s

ωh
8 11305.06 11147.82 11108.91 11099.20 2.01 11095.98 d

It can be seen from Table 1.4 that the computed fifth and seventh vibration frequencies
coincide for all meshes. The fifth one corresponds to a purely torsional mode: a constant
rotation with respect to the tangential vector. For this mode, θ1 is constant and θ2, θ3 and
all the components of u vanish (see Fig. 1.17 below). On the other hand, the seventh mode
corresponds to a constant radial expansion of the whole ring, for which u2 is constant and
u1, u3 and θ vanish. In both cases, the vibration modes can be exactly represented in the
finite element space for any mesh. This is the reason why the computed results are exact,
even for the coarser meshes.

Figures 1.15–1.17 show some of the vibration modes.
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Figure 1.15: Free ring. Vibration mode of frequency ω1. Displacements and rotations
(left). Deformed rod (right).
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Figure 1.16: Free ring. Vibration mode of frequency ω2. Displacements and rotations
(left). Deformed rod (right).
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Figure 1.17: Free ring. Vibration mode of frequency ω5. Displacements and rotations
(left). Deformed rod (right).

1.4.5 Test 5: assessing the locking-free property of the method

The aim of this final test is to assess the performance of the finite element method
as the non-dimensional thickness parameter d approaches 0. With this purpose, we have
computed the lowest-frequency vibration modes for several rods, all with identical geo-
metrical parameters, except for d which takes different values approaching 0.

We have considered again a helix clamped at both ends. The centroids line is given
by 1.43, now with A = 100 cm and C = 100 cm (curvature: κ = A/n2; torsion: τ =C/n2).
The length of the helix has been taken L = πn, which corresponds to half a turn. The
section is a square of side-length chosen so that the parameter d varies from 10−1 to
10−4. Figure 1.18 shows the undeformed helix for d = 0.02.

Tables 1.5 and 1.6 show the lowest computed rescaled eigenvalues λ ( j)
h :=

(
ωh

j

)2
ρ/d2

( j = 1 and 2, respectively) for different values of d and successively refined meshes. Ac-
cording to Lemma 1.2.2 and Theorem 1.3.3, as d and h go to zero, λ ( j)

h should converge to
the corresponding rescaled eigenvalues of the limit problem. This can be clearly observed
in both tables. The tables also includes the computed orders of convergence t and the
‘exact’ rescaled eigenvalue λex obtained by means of a least squares fitting of the model

λ ( j)
h ≈ λex +Cht .

We also include in these tables the fitted value of the constant C, in order to show that
it does not deteriorate as the thickness parameter becomes small (indeed, clearly C also
converges as d goes to 0). This confirms that the method is locking-free.
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Figure 1.18: Undeformed helical rod.

Table 1.5: Lowest rescaled eigenvalue λ (1)
h ×10−6 for helical rods of different thickness

d N = 32 N = 64 N = 96 N = 128 order λex ×10−6 C

10−1 1.2706 1.2618 1.2602 1.2596 2.00 1.2589 60.76
10−2 2.0568 2.0374 2.0339 2.0326 2.01 2.0310 130.34
10−3 2.0702 2.0506 2.0470 2.0457 2.01 2.0442 131.32
10−4 2.0704 2.0508 2.0472 2.0459 2.01 2.0443 131.32

Table 1.6: Second lowest rescaled eigenvalue λ (2)
h × 10−6 for helical rods of different

thickness

d N = 32 N = 64 N = 96 N = 128 order λex ×10−6 C

10−1 3.5180 3.4862 3.4803 3.4783 2.00 3.4756 219.5
10−2 13.8379 13.5438 13.4900 13.4712 2.02 13.4475 1920.8
10−3 14.1715 13.8673 13.8116 13.7922 2.02 13.7677 1987.4
10−4 14.1749 13.8706 13.8149 13.7954 2.02 13.7709 1988.4

1.5 Conclusions

We have analyzed the problem of computing the vibration modes and frequencies
of a Timoshenko rod of arbitrary geometry. With this purpose, we have considered a
finite element mixed method of arbitrary order based on that proposed by Arunakirinathar
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and Reddy for the corresponding load problem. The geometrical assumptions for our
analysis are slightly more general; in particular, we have not assumed that the Frenet
basis determined by the centroids line of the rod is a set of principal axes.

We have proved optimal order of convergence for displacements, rotations and shear
stresses of the eigenfunctions, as well as a double-order for the vibration frequencies.
We have also proved that the method is locking-free; namely, the convergence does not
deteriorate as the thickness of the rod becomes small

We have implemented the lowest-order method and reported several numerical exper-
iments, which allow us to assess the performance and robustness of this approach. In all
cases the theoretically predicted optimal order of convergence (O(h2) for the vibration
frequencies) has been attained. This happens even in cases of boundary conditions not
covered by the theoretical analysis. Moreover the experiments show that the method is
thoroughly locking-free.





Chapter 2

Computation of the vibration modes of
a Reissner-Mindlin laminated plate

This paper deals with the finite element approximation of the vibration modes of a
laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for
the bending terms and standard piecewise linear continuous elements for the in-plane dis-
placements. An a priori estimate of the regularity of the solution, independent of the plate
thickness, is proved for the corresponding load problem. This allows using the abstract
approximation theory for spectral problems to study the convergence of the proposed fi-
nite element method. Thus, optimal order error estimates including a double order for
the vibration frequencies are obtained under appropriate assumptions. These estimates
are independent of the plate thickness, which leads to the conclusion that the method is
locking-free. Numerical tests are reported to assess the performance of the method.

2.1 Introduction

The laminated plates are widely used in engineering practice, for instance in auto-
mobile, space, and civil applications. The main motivation for this interest is related to
the improved ratio between performances and weight of this kind of plates with respect
to homogeneous ones. Several different models of these plates have been proposed. The
simplest one is the Classical Laminated Plate Theory (CLPT) [39], which is based on the
Kirchhoff hypotheses. However, other models arising from the Reissner-Mindlin assump-
tions are often preferred; they are called First-order Shear-Deformation Theory (FSDT)
[5].

Locking is a very well known phenomenon in the numerical computation of plate
problems. It consists in that very unsatisfactory results are obtained when the thickness
is small with respect to the other dimensions of the structure. From the point of view of

35
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the numerical analysis, locking reveals itself in that the a priori estimates depend on the
thickness of the structure in such a way that they degenerate when this parameter becomes
small. Several methods based on reduced integration or mixed formulations have been
devised to avoid locking in the load plate problem (see [10], for instance). Some of them
have been analyzed for the plate vibration problem, as well. For instance, the DL3 and the
MITC elements (which were introduced for load problems in [22] and [9], respectively)
have been analyzed for vibration problems in [20] and [21], respectively.

Locking-free methods for load problems of laminated plates with several layers all of
the same thickness have been analyzed in [4] in a general context. In the present paper
we address the corresponding vibration problem. For simplicity, we present the analy-
sis in the case of only two layers. We use the DL3 elements introduced in [22] for the
bending terms and standard triangular finite elements for the in-plane displacements. The
analysis is made in the framework of the abstract spectral approximation theory for com-
pact operators as stated, for instance, in [6, Section 7]. The goal is to prove optimal order
convergence in L2 and H1 norms for the eigenfunctions and a double order for the eigen-
values. Moreover, to ensure that the method is locking-free, it has to be proved that the
error estimates do not deteriorate as the plate thickness becomes small.

The present analysis is based on the results for load problems for laminated plates
from [4] and for the vibration problem for homogeneous plates from [20]. The main
difficulty is the need for additional regularity of the solution of the load problem for a
Reissner-Mindlin laminated plate. This is the reason why we had to prove new a priori
estimates for this problem, with constants independent of the plate thickness. This result
is interesting by itself, since the error of any numerical method for laminated plates will
rely on such an estimate. To the best of the authors knowledge, the obtained estimate had
not been proved before. Moreover, the proof of the analogous estimate known for classical
Reissner-Mindlin plates (see [2]) does not extend directly to this case. In fact, to extend
it, we had to resort to more recent regularity results for formally positive elliptic systems
from [34].

The outline of the paper is as follows. In Section 2.2, we present the mathematical
setting of the vibration problem for a laminated plate. The resulting spectral problem is
shown to be well posed. The eigenvalues and eigenfunctions are shown to converge to
the corresponding ones of the limit problem as the thickness of the laminated plate goes
to zero, which corresponds to a Kirchhoff laminated plate. The finite element discretiza-
tion is introduced in Section 2.3 and optimal orders of convergence are proved. These
estimates are proved to be independent of the plate thickness and this allows us to con-
clude that the method is locking-free. In Section 2.4, we report several numerical tests
confirming the theoretical results and showing the good performance of the method. The
experiments include some cases not covered by the theoretical analysis, where optimal
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orders of convergence are also attained. Finally, we prove in an Appendix a thickness-
independent a priori estimate for the regularity of the solution of the corresponding load
problem.

Throughout the paper, we will use standard notation for Sobolev and Lebesgue spaces.
Moreover, ‖·‖0 will denote the standard norm of L2(Ω) (or L2(Ω)n, as corresponds). Anal-
ogously, ‖·‖k will denote the norm of Hk(Ω) (or Hk(Ω)n). Finally, C will denote a generic
constant, not necessarily the same at each occurrence, but always independent of the plate
thickness t, the particular functions involved, and, in Section 2.3, also independent of the
mesh-size.

2.2 Reissner-Mindlin laminated plate equations

Consider an elastic plate of thickness t with reference configuration Ω× (− t
2 ,

t
2

)
,

where Ω⊂R2 is a convex polygonal domain. The plate is made of two different materials,
one occupying the subdomain Ω× (− t

2 ,0
)

and the other one Ω× (
0, t

2

)
.

According to the Reissner-Mindlin model, the plate deformation is described by means
of the in-plane and transverse displacements, u∗ = (u∗1,u

∗
2) and w∗, respectively, and the

rotations β ∗ = (β ∗
1 ,β

∗
2 ) of its mid-surface Ω. For the forthcoming analysis, we assume

that the plate is clamped on its whole boundary ∂Ω.
The vibration problem for such a plate can be formally obtained from the three-

dimensional linear elasticity equations as follows: According to the Reissner-Mindlin
hypotheses, the admissible displacements at each point are given by

(u∗(x)− x3β ∗(x),w∗(x)), x := (x1,x2) ∈ Ω, x3 ∈
(− t

2 ,
t
2

)
.

Test and trial displacements of this form are taken in the variational formulation of the
linear elasticity equations for the vibration problem of the three-dimensional plate. By
integrating over the thickness and multiplying the shear term by a correcting factor, one
arrives at the following problem (see [44]):

Find ω > 0 and non trivial (u∗,β ∗,w∗) ∈V satisfying

t (A ε(u∗),ε(v))+ t2 [(Bε(u∗),ε(η))+(Bε(β ∗),ε(v))]
+ t3 (Dε(β ∗),ε(η))+ tκ (β ∗ −∇w∗,η −∇z)

= ω2
{

t
2
(ρ1 +ρ2)(u

∗,v)+
t3

24
(ρ1 +ρ2)(β ∗,η)

+
t
2
(ρ1 +ρ2)(w

∗,z)+
t2

8
(ρ1 −ρ2) [(β ∗,v)+(u∗,η)]

}
∀(v,η,z) ∈V,

where
V := H1

0 (Ω)2×H1
0 (Ω)2 ×H1

0 (Ω).
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In the equation above ω is the angular vibration frequency, (·, ·) denotes the standard
L2(Ω) inner product of scalar, vector or tensor fields, as corresponds, and ε is the linear
strain tensor defined by εi j(v) := 1

2

(
∂vi/∂x j +∂v j/∂xi

)
, i, j = 1,2. Moreover, A , B, and

D are fourth order tensors defined by

A (τ) :=
1
2
(C1 +C2)τ, B (τ) :=

1
8
(C1 −C2)τ, and D (τ) :=

1
24

(C1 +C2)τ,

where C1 and C2 are the linear elasticity operators on each medium,

Ciτ := λi tr(τ) I+2μiτ, i = 1,2,

with plane stress Lamé coefficients λi :=Eiνi/
(
1−ν2

i

)
and μi :=Ei/ [2(1+νi)], Ei being

the Young modulus and νi the Poisson ratio of each material. Finally κ := k(μ1+μ2)/2 is
the shear modulus of the laminated plate, with k a correction factor usually taken as 5/6,
and ρi is the density of each material.

We rescale the problem using new variables

u := u∗/t, β := β ∗, w =: w∗, and λt :=
ρ1 +ρ2

2
ω2

t2 .

The reason for this is that the rescaled variables attain finite non-zero limits as t goes to
zero, as will be shown below (cf. Lemma 2.2.2). We also introduce the scaled shear stress

γ :=
κ
t2 (β −∇w)

and the bilinear forms

a((u,β ),(v,η)) := (A ε(u),ε(v))+(Bε(u),ε(η))+(Bε(v),ε(β ))+(Dε(β ),ε(η))

and

bt((u,β ,w),(v,η,z)) := (w,z)+ t2 (u,v)+
t2

12
(β ,η)+

ρ1 −ρ2

4(ρ1 +ρ2)
t2 [(β ,v)+(u,η)] .

Thus, the plate vibration problem can be rewritten as follows:
Find λt > 0 and non trivial (u,β ,w) ∈V such that⎧⎨⎩ a((u,β ),(v,η))+(γ,η −∇z) = λtbt((u,β ,w),(v,η,z)) ∀(v,η,z) ∈V,

γ =
κ
t2 (β −∇w) .

(2.1)

All the eigenvalues λt of this problem are strictly positive, because of the symmetry
of both bilinear forms, the ellipticity of a, which has been proved in [4, Proposition 2.1],
and the positiveness of bt , which can be proved by straightforward computations.
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To analyze the approximation of this eigenvalue problem, we introduce the operator

Tt : H −→ H,

where
H := L2(Ω)2×L2(Ω)2×L2(Ω),

defined for ( f ,m,g) ∈ H by Tt( f ,m,g) := (u,β ,w), with (u,β ,w) ∈V being the solution
to ⎧⎨⎩ a((u,β ),(v,η))+(γ,η −∇z) = bt(( f ,m,g),(v,η,z)) ∀(v,η,z) ∈V,

γ =
κ
t2 (β −∇w) .

(2.2)

This is the load problem for the Reissner-Mindlin laminated clamped plate. It is a well
posed problem; in fact, the existence and uniqueness of the solution for all t > 0 follows
from [4, Proposition 2.1].

Because of the symmetry of the bilinear forms a and bt , the operator Tt is self-adjoint
in H endowed with the inner-product bt(·, ·). The norm induced by this inner product is
equivalent to the weighted L2 norm

|(v,η,z)|2t := t2‖v‖2
0 + t2‖η‖2

0 +‖z‖2
0 , (v,η,z) ∈ H,

with equivalence constants independent of t. On the other hand, because of the compact
embedding H1

0 (Ω) ↪→ L2(Ω), Tt is a compact operator. Then, apart from 0, its spectrum
consists of a sequence of finite multiplicity real eigenvalues converging to zero. Note that
λt is an eigenvalue of Problem (2.1) if and only if μt := 1/λt is an eigenvalue of Tt , with
the same multiplicity and corresponding eigenfunctions.

The solution of the load problem (2.2) satisfies the following additional regularity
result, which is systematically used in the proofs that follow: u,β ∈ H 2(Ω)2, w ∈ H2(Ω),
γ ∈ H1(Ω)2, and there exists a constant C > 0, independent of t and ( f ,m,g), such that

‖u‖2 +‖β‖2 +‖w‖2 +‖γ‖0 + t ‖γ‖1 ≤C
(
t2‖ f‖0 + t2‖m‖0 +‖g‖0

)
. (2.3)

The proof of this a priori estimate is far from being straightforward. In fact, although
it is proved by extending similar arguments used for classical homogeneous plates in
[2, Theorem 7.1], it needs of some preliminary results. Thus, for the sake of clarity, we
postpone this analysis to the Appendix. In particular, the estimate (2.3) is a consequence
of Theorem 2.6.1 from this Appendix (cf. Corollary 2.6.2).

On the other hand, as a consequence of [15, Theorem 1], it can be shown as in [4,
Proposition 2.2] that, when t → 0, the solution (u,β ,w) to (2.2) converges to (u0,∇w0,w0),
where (u0,w0) ∈ H1

0 (Ω)2×H2
0 (Ω) satisfies

a((u0,∇w0),(v,∇z)) = (g,z) ∀(v,z) ∈ H1
0 (Ω)2×H2

0 (Ω).
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This limit problem is well posed and corresponds to the bending of a clamped Kirchhoff-
type laminated plate subjected to a (rescaled) transverse load g. The arguments from [10,
Section VII.3.1] can be easily adapted to prove that the limit problem above is equivalent
to finding (u0,β0,w0) ∈V such that there exists γ0 ∈ H0(rot,Ω)′ satisfying⎧⎨⎩

a((u0,β0),(v,η))+ 〈γ0,η −∇z〉= b0 (( f ,m,g),(v,η,z))≡ (g,z)
∀(v,η,z) ∈V,

β0 −∇w0 = 0,
(2.4)

where 〈·, ·〉 stands for the duality pairing in

H0(rot,Ω) :=
{

ψ ∈ L2(Ω)2 : rotψ ∈ L2(Ω) and ψ · τ = 0 on ∂Ω
}
,

with rotψ := ∂1ψ2 −∂2ψ1 and τ being a unit vector tangent to ∂Ω. Moreover, the argu-
ments from [10] can also be adapted to prove that this is a well posed mixed problem.
Thus, we are allowed to introduce the operator

T0 : H −→ H,

defined for ( f ,m,g)∈H by T0( f ,m,g) := (u0,β0,w0), with (u0,β0,w0) being the solution
to problem (2.4).

An a priori estimate similar to (2.3) holds for the limit problem (2.4), as well; namely,
u0,β0 ∈ H2(Ω)2, w0 ∈ H2(Ω), γ0 ∈ L2(Ω)2, and

‖u0‖2 +‖β0‖2 +‖w0‖2 +‖γ0‖0 ≤C‖g‖0 . (2.5)

The proof of this estimate is a consequence of Lemma 2.6.2 from the Appendix (cf. Corol-
lary 2.6.1).

Now, we may proceed as in [20] to prove an estimate for the convergence of the
solution to (2.2) to that to (2.4) as t goes to zero. In fact we have the following result.

Lemma 2.2.1 There exists a constant C > 0, independent of t, such that

‖(Tt −T0)( f ,m,g)‖1 ≤Ct |( f ,m,g)|t ∀( f ,m,g) ∈ H.

Proof. Repeating the arguments of the proof of Lemma 2.6.3 from the Appendix we arrive
at

‖u−u0‖1 +‖β −β0‖1 ≤Ct ‖( f ,m,g)‖0

(cf. (2.19)). Next, subtracting the second equation in (2.4) from that in (2.2), we have

γ =
κ
t2 (β −β0 −∇(w−w0)) .
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Hence, the estimate above and (2.3) yield

‖w−w0‖1 ≤
t2

κ
‖γ‖0 +‖β −β0‖0 ≤Ct |( f ,m,g)|bt

.

Thus, we conclude the proof. �

As a consequence of this lemma, the operator Tt |V converges in norm to T0|V . Then,
standard properties of separation of isolated parts of the spectrum (see for instance [32])
yield the following result.

Lemma 2.2.2 Let μ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any disc in
the complex plane centered at μ0 and containing no other element of the spectrum of T0.
Then, for t small enough, D contains exactly m eigenvalues of Tt (repeated according to
their respective multiplicities). Consequently, each eigenvalue μ0 > 0 of T0 is a limit of
eigenvalues μt of Tt , as t goes to zero.

2.3 Finite-element discretization

We restrict our analysis to the DL3 elements introduced in [22], although other fi-
nite elements can be analyzed in this same framework. We consider a regular family of
triangulations {Th}; as usual, h denotes the mesh-size.

To discretize the rotations, we use standard piecewise linear functions augmented in
such a way that they have quadratic tangential components on the boundary of each ele-
ment. More precisely, for each T ∈ Th, let αT

i , i = 1,2,3, be its barycentric coordinates
and τT

i a unit vector tangent to the edge αT
i = 0. Consider the edge-bubble vector fields

ϕT
i := αT

j αT
k τT

i , i, j,k = 1,2,3, all different. The finite element space for the rotations is
defined by

Xh :=
{

ηh ∈ H1
0 (Ω)2 : ηh|T ∈ P2

1 ⊕〈ϕT
1 ,ϕ

T
2 ,ϕ

T
3 〉 ∀T ∈ Th

}
.

We use standard piecewise linear elements for the displacements; namely,

Wh := {zh ∈ H1
0 (Ω) : zh|T ∈ P1, ∀T ∈ Th}

for the transverse displacements and

Uh :=W 2
h

for the in-plane displacements. Thus, the finite element discretization of the space V is
defined by

Vh :=Uh×Xh×Wh.
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For the numerical method, we also need the so called reduction operator

R : H1(Ω)2∩H0(rot,Ω)−→ Γh,

where Γh is the lowest-order rotated Raviart-Thomas space (see [41])

Γh :=
{

ψh ∈ H0(rot,Ω) : ψh|T ∈ P2
0 ⊕ (−x2,x1)P0 ∀T ∈ Th

}
.

This reduction operator is uniquely determined by∫
�
Rψ · τ� =

∫
�
ψ · τ�, ψ ∈ H1(Ω)2∩H0(rot,Ω),

for every edge � of the triangulation (τ� being a unit tangent vector along �).
Now we are in a position to write the finite element approximation of the plate vibra-

tion problem (2.1):
Find λth > 0 and non trivial (uh,βh,wh) ∈Vh such that⎧⎪⎪⎨⎪⎪⎩

a((uh,βh),(vh,ηh))+(γh,Rηh−∇vh)

= λthbt((uh,βh,wh),(vh,ηh,zh)) ∀(vh,ηh,zh) ∈Vh,

γh =
κ
t2 (Rβh−∇wh) .

(2.1)

Notice that the method is non conforming since consistency terms arise because of the
reduction operator.

As in the continuous case, we introduce the operator

Tth : H −→ H,

defined for ( f ,m,g)∈H by Tth( f ,m,g) :=(uh,βh,wh), with (uh,βh,wh)∈Vh being the so-
lution to the corresponding finite element discretization of the load problem (2.2), namely,⎧⎪⎪⎨⎪⎪⎩

a((uh,βh),(vh,ηh))+(γh,Rηh−∇zh) = bt(( f ,m,g),(vh,ηh,zh))

∀(vh,ηh,zh) ∈Vh,

γh =
κ
t2 (Rβh−∇wh).

The existence and uniqueness of the solution to this problem follows easily from the
ellipticity of a. Once more λth is an eigenvalue of problem (2.1) if and only if μth :=
1/λth is a strictly positive eigenvalue of Tth with the same multiplicity and corresponding
eigenfunctions.

For t > 0 fixed, the spectral approximation theory for compact operators (cf. [6]) can
be readily applied to prove convergence of the eigenpairs of Tth to those of Tt . However,
further considerations are needed to show that the error estimates do not deteriorate as t
becomes small. With this goal, we will make use of the following result, which will lead
to optimal error estimates in the H1 norm for displacements and rotations.
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Lemma 2.3.1 There exists a constant C, independent of t and h, such that

‖(Tt −Tth)( f ,m,g)‖1 ≤Ch |( f ,m,g)|t ∀( f ,m,g) ∈ H.

Proof. Let ( f ,m,g) ∈ H, (u,β ,w) := Tt( f ,m,g), and (uh,βh,wh) := Tth( f ,m,g). The ar-
guments given in the proof of [4, Proposition 3.2] for pure transverse loads (i.e., f = 0
and m = 0) extend easily to our case yielding

‖u−uh‖1 +‖β −βh‖1 +‖w−wh‖1 + t ‖γ − γh‖0

≤Ch(‖u‖2 +‖β‖2 +‖γ‖0 + t ‖γ‖1) .

Thus, the lemma follows from this inequality and (2.3). �

As a consequence of this lemma, Tth|V converges in norm to Tt |V . In fact, for any fixed
t ∈ (0, tmax), we have |·|t ≤ tmax‖·‖1 and hence the lemma yields

‖(Tt −Tth)( f ,m,g)‖1 ≤Ch‖( f ,m,g)‖1 ∀( f ,m,g) ∈V. (2.2)

Consequently, if μt is an eigenvalue of Tt with multiplicity m, then exactly m eigenvalues
of Tth (repeated according to their respective multiplicities) converge to μt as h goes to
zero (see [32]). The following theorem shows that, under mild assumptions, optimal t-
independent error estimates in the H1 norm are valid for the eigenfunctions.

Theorem 2.3.1 Let μt be an eigenvalue of Tt converging to a simple eigenvalue μ0 of
T0, as t goes to zero. Let μth be the eigenvalue of Tth that converges to μt as h goes
to zero. Let (u,β ,w) and (uh,βh,wh) be the corresponding eigenfunctions conveniently
normalized. Then, for t and h small enough,

‖(u,β ,w)− (uh,βh,wh)‖1 ≤Ch,

with a constant C independent of t and h.

Proof. The inequality of the theorem is a direct consequence of the estimate (2.2) and [6,
Theorem 7.1], with a constant C depending on the constant in (2.2) (which is independent
of t) and on the inverse of the distance of μt to the rest of the spectrum of Tt . Now,
according to Lemma 2.2.2, for t small enough, this distance can be bounded below in
terms of the distance of μ0 to the rest of the spectrum of T0, which obviously does not
depend on t. Thus, we conclude the proof. �

The following lemma is the basic tool to prove a double order of convergence for the
eigenvalues.
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Lemma 2.3.2 There exists a constant C, independent of t and h, such that

‖(Tt −Tth)( f ,m,g)‖0 ≤Ch2 |( f ,m,g)|t ∀( f ,m,g) ∈ H.

Proof. We do not include it, since it is a straightforward modification of the proof of [20,
Lemma 3.4]. �

Theorem 2.3.2 Let μt and μth be as in Theorem 2.3.1. Then, for t and h small enough,

|μt −μth| ≤Ch2,

with a constant C independent of t and h.

Proof. Let (u,β ,w) be an eigenfunction corresponding to μt normalized in the norm in-
duced by bt . Applying [6, Theorem 7.3] and taking into account that T and Th are self-
adjoint with respect to bt , we have

|μt −μth| ≤C
[
bt((Tt −Tth)(u,β ,w),(u,β ,w))+ |(Tt −Tth)(u,β ,w)|2t

]
, (2.3)

with a constant C depending on the inverse of the distance of μt to the rest of the spectrum
of Tt . By repeating the arguments in the proof of Theorem 2.3.1 we observe that, for
t small enough, this constant can be chosen independent of t. Thus, since |·|t ≤ C‖·‖0,
using the estimate from Lemma 2.3.2 in (2.3), we conclude the proof. �

Another consequence of Lemma 2.3.2 is a double order of convergence for the eigen-
functions in the L2-norm.

Theorem 2.3.3 Let μt , μth, (u,β ,w) and (uh,βh,wh) be as in Theorem 2.3.1. Then, for t
and h small enough,

‖(u,β ,w)− (uh,βh,wh)‖0 ≤Ch2,

with a constant C independent of t and h.

Proof. Since |·|t ≤ C‖·‖0, the arguments in the proof of Theorem 2.3.1 can be repeated
using ‖·‖0 instead of ‖·‖1 and the estimate from Lemma 2.3.2 instead of (2.2). �

2.4 Numerical experiments

We report in this section some numerical results obtained with a code which imple-
ments the method analyzed above. The aim of this numerical experimentation is two-fold:
to confirm the theoretical results and to assess the performance of the method.
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2.4.1 Test 1: A simply supported rectangular plate with a known an-
alytical solution. Validation

The aim of this first test is to validate the computer code and to corroborate the error
estimates proved in the previous section. With this purpose, we applied the method to
a problem with a known analytical solution: a rectangular simple supported plate (see
[43, 44]). This test allowed us to calculate the error of the different quantities computed
with our code. Moreover, it shows that the method is able to deal with other kind of
boundary conditions, although the theoretical analysis has been made just for clamped
plates.

If the domain of the simply supported plate is the rectangle Ω := (0,a)× (0,b), then
the eigenfunctions are given by

u =

[
û1 cos kπx

a sin lπy
b

û2 sin kπx
a cos lπy

b

]
, w = ŵ sin kπx

a sin lπy
b , β =

[
β̂1 cos kπx

a sin lπy
b

β̂2 sin kπx
a cos lπy

b

]
, (2.1)

k, l ∈ N. The constants û1, û2, ŵ, β̂1, and β̂2, as well as the corresponding eigenvalues,
can be obtained as follows: For each pair (k, l)∈N2, the terms (2.1) must be plugged into
(2.1), written in strong form. This leads to a 5×5 generalized eigenvalue problem whose
eigenvectors are (û1, û2, ŵ, β̂1, β̂2)

t and whose eigenvalues are the ones we are looking for.
We applied the method to a plate of length a = 6m, width b = 4m, and thickness

t = 0.1m. We used the following physical parameters:

E1 = 1.440×1011 N/m2, ν1 = 0.35, ρ1 = 7700kg/m3,

E2 = 0.144×1011 N/m2, ν2 = 0.30, ρ2 = 770kg/m3.

Finally, we took κ = 5/6 as correction factor for this and all the other tests.
We used uniform meshes obtained by refining the coarse one shown in Figure 2.1.

The refinement parameter N is the number of layers of elements through the width of the
plate.

Table 2.1 shows the six lowest vibration frequencies computed with the method on
four successively refined meshes. The table also includes the corresponding exact values
obtained from the analytical solution and the computed order of convergence for each
one.

A quadratic order of convergence can be clearly observed for all the vibration frequen-
cies, which corresponds to an optimal double order according to the degree of the finite
elements used.

Figure 2.2 shows the error curves in L2 norm and H1 seminorm of the in-plane and
the transverse displacements, u and w, respectively, for the eigenfunction corresponding
to the lowest vibration frequency ω1.
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Figure 2.1: Rectangular plate. Finite element coarse mesh (N = 4).

Table 2.1: Test 1: Lowest vibration frequencies of a simply supported laminated rectan-
gular plate.

Mode N = 8 N = 16 N = 32 N = 64 Exact Order

ω1 84.605 83.368 83.066 82.992 82.967 2.02
ω2 166.169 161.063 159.829 159.527 159.427 2.03
ω3 272.770 259.194 255.911 255.102 254.834 2.02
ω4 308.314 291.870 287.894 286.918 286.595 2.02
ω5 361.027 338.177 332.772 331.458 331.026 2.04
ω6 514.209 471.247 461.043 458.564 457.749 2.04

A quadratic order in L2 and a linear order in H1 can be clearly observed for both
displacements. Once more, this corresponds to the optimal orders according to the degree
of the finite elements.

2.4.2 Test 2: A clamped rectangular plate. Testing the locking-free
character of the method

The main goal of this test is to confirm experimentally that the method is locking-free,
as was proved in the previous section. With this purpose, we chose a problem lying in the
theoretical framework: a plate clamped on its whole boundary.

We used a rectangular plate with the same dimensions and physical parameters as in
the previous test. We also used the same meshes.

First, we computed the lowest vibration frequencies of the plate on each mesh. Since
no analytical solution is available in this case, for each vibration mode, we extrapolated a
more accurate approximation of the frequency and estimated the order of convergence by



2.4 Numerical experiments 47

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF ELEMENTS

N
O

R
M

||u−u
h
||

0

|u−u
h
|
1

Order h

Order h2

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

NUMBER OF ELEMENTS

N
O

R
M

||w−w
h
||

0

|w−w
h
|
1

Order h

Order h2

Figure 2.2: Test 1: Error curves for in-plane displacements (left) and transverse displace-
ments (right); log-log plots of the corresponding norms versus the number of elements.

means of a least square fitting.
Table 2.2 shows the six lowest vibration frequencies computed on different meshes,

the estimated order of convergence and the extrapolated more accurate value of each
frequency.

Table 2.2: Test 2: Lowest vibration frequencies of a clamped laminated rectangular plate.

Mode N = 8 N = 16 N = 32 N = 64 Order Extrapolated

ω1 161.136 157.902 157.095 156.898 2.01 156.831
ω2 255.847 245.336 242.757 242.128 2.03 241.924
ω3 418.592 391.593 384.980 383.358 2.03 382.835
ω4 419.684 393.806 387.352 385.762 2.01 385.237
ω5 518.006 475.120 464.831 462.331 2.06 461.574
ω6 667.968 603.579 587.688 583.781 2.02 582.499

Once more, a double order of convergence can be readily observed for all the vibration
frequencies.

Next, we tested whether the method remains locking-free as the thickness becomes
small. For this test, we took clamped plates with the same physical parameters and di-
mensions as above, except for the thickness for which we used different values ranging
from t = 0.1m to 0.1mm.

To allow for comparison, we report normalized frequencies ω̂ :=ω/t. Table 2.3 shows
the computed lowest vibration frequency of clamped rectangular laminated plates with
decreasing values of the thickness. Once more, the table includes the estimated orders of
convergence and extrapolated frequencies. We also report on the last row the extrapolated
limit values corresponding to t = 0 (i.e., the Kirchhoff model).
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Table 2.3: Test 2: Normalized lowest frequency ω̂1 of clamped laminated rectangular
plates with varying thickness.

Thickness N = 8 N = 16 N = 24 N = 32 Order Extrapolated

t = 0.1m 1611.365 1579.017 1573.019 1570.948 2.00 1568.239
t = 0.01m 1616.810 1584.050 1577.875 1575.707 1.97 1572.859
t = 0.001m 1616.866 1584.103 1577.928 1575.759 1.97 1572.883
t = 0.0001m 1616.865 1584.103 1577.926 1575.762 1.97 1572.883

t = 0 (extr.) 1616.866 1584.103 1577.927 1575.761 1.97 1572.883

We observe that the method is perfectly locking-free, and that the quadratic order of
convergence is preserved even for extremely small values of the thickness.

2.4.3 Test 3: A clamped circular plate. Robustness of the plate model
and the finite element method

The aim of this test is to assess the efficiency of the Reissner-Mindlin laminated plate
model by comparing their results with those obtained from the 3D elasticity equations. In
particular, we are interested in exhibiting the robustness of the model, as well as that of the
proposed finite element method, when applied to laminates with very different physical
parameters. With this purpose, we applied the method to a problem whose corresponding
3D equations can be accurately solved. This is the reason why we chose a circular plate,
whose axisymmetric vibration modes can be efficiently computed from the corresponding
equations in cylindrical coordinates.

We used a clamped circular plate with diameter d = 2m and thickness t = 0.1m. First,
we took the same physical parameters as in the other experiments. We used quasiuniform
meshes as that shown in Figure 2.3. The refinement parameter N is in this case the number
of elements on each quarter of the circle.

On the other hand, by taking advantage of the cylindrical symmetry, the 3D problem
reduces to a two-dimensional one posed on a meridional section of the plate. Thus, we
also computed the axisymmetric vibration modes by means of another code based on a
standard finite element discretization of the 3D elasticity equations in cylindrical coordi-
nates. Also in this case we used successively refined meshes and obtained a very accurate
approximation of the vibrations frequencies by extrapolation.

We report in Table 2.4 the results for a couple of axisymmetric modes, which, for
this plate, correspond to the lowest and the sixth vibration frequencies. The table includes
again the extrapolated values of the frequencies and the estimated orders of convergence,
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Figure 2.3: Circular plate. Finite element mesh (N = 8).

as well. It also includes on the last column the values obtained with the axisymmetric 3D
code.

Table 2.4: Test 3: Lowest vibration frequencies of axisymmetric modes of a clamped
laminated circular plate; Young moduli ratio E1/E2 = 10.

Mode N = 4 N = 8 N = 16 N = 32 Order Extrapolated 3D

ω1 968.270 945.923 940.395 939.020 2.01 938.571 935.748
ω6 3908.732 3628.509 3559.984 3543.051 2.03 3537.664 3489.815

It can be seen from this table that the disparity between both extrapolated values is
very small indeed, which is merely a confirmation of the accuracy of the Reissner-Mindlin
laminated plate model.

Next, we tested the robustness of the model applied to laminates with physical param-
eters of very different scales. With this aim, we computed the vibration modes of a plate
identical to the previous one, except for the fact that the Young modulus of the second
material is now E2 = 0.144×108 N/m2. Therefore, the ratio between the Young moduli
of each material is 104.

We report in Table 2.5 the results for this plate analogous to those of the previous
table.

Once more, an excellent agreement between both models can be clearly observed,
despite the disparity of the Young modulus of each material. Other non reported tests
demonstrate the robustness of the method for the Reissner-Mindlin laminated plate model
with respect to the remaining physical parameters.

Finally, Figures 2.4 and 2.5 show the transverse displacement fields computed with
the Reissner-Mindlin plate model for the two vibration modes reported in Table 2.5. The
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Table 2.5: Test 3: Lowest vibration frequencies of axisymmetric modes of a clamped
laminated circular plate; Young moduli ratio E1/E2 = 104.

Mode N = 4 N = 8 N = 16 N = 32 Order Extrapolated 3D

ω1 671.490 650.794 645.813 644.582 2.05 644.206 645.057
ω2 2810.616 2540.776 2478.636 2463.491 2.11 2459.352 2425.412

figures also show the corresponding meridional plate sections of each mode computed
with the axisymmetric 3D code.

Figure 2.4: Test 3: Lowest axisymmetric vibration mode ω1 of a clamped laminated cir-
cular plate with Young moduli ratio E1/E2 = 104; transverse displacement field (left) and
meridional cross section (right).

2.5 Conclusions

We analyzed the problem of computing the vibration modes of a clamped laminated
plate modeled by Reissner-Mindlin equations. We considered a finite-element method
based on DL3 elements for the bending terms and standard triangular piecewise linear
elements for the in-plane displacements. We proved optimal order of convergence in H 1

and L2 for displacements and rotations, as well as a double order for the eigenvalues. We
also proved that the error estimates do not deteriorate as the thickness becomes small,
which imply that the method is locking-free. The keypoint of the proof is an a priori
estimate for the regularity of the solution of the corresponding load problem.

We reported numerical experiments confirming the theoretical results. Moreover, these
experiments show the robustness with respect to the physical parameters of both, the
Reissner-Mindlin laminated plate model and the proposed method. Finally, the experi-
ments also show that the method works for more general boundary conditions.
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Figure 2.5: Test 3: Second lowest axisymmetric vibration mode ω6 of a clamped laminated
circular plate with Young moduli ratio E1/E2 = 104; transverse displacement field (left)
and meridional cross section (right).

2.6 Appendix

In this Appendix we will obtain an a priori estimate for the solution of the load prob-
lem (2.2) similar to the one valid for classical homogeneous Reissner-Mindlin plates.
With this purpose, first we prove the following auxiliary result.

Lemma 2.6.1 Let Ω be a convex polygonal domain in the plane. Given F,G ∈ L2(Ω)2,
let (u,β ) ∈ H1

0 (Ω)2×H1
0 (Ω)2 be the unique solution of

a((u,β ),(v,η)) = (F,v)+(G,η) ∀(v,η) ∈ H1
0 (Ω)2×H1

0 (Ω)2. (2.1)

Then, (u,β ) ∈ H2(Ω)2×H2(Ω)2 and

‖u‖2 +‖β‖2 ≤C (‖F‖0 +‖G‖0) ,

with a constant C independent of F ad G.

Proof. We will resort to additional regularity results from [34, Section 8.6] regarding
Dirichlet problems for elliptic systems. In this reference it is proved that the strip of the
complex plane |Reλ | ≤ 1 is free of eigenvalues of the Mellin symbol, which implies H 2

regularity for L2 right hand sides, provided the elliptic system (2.1) is formally positive.
Let us recall that formally positiveness means in our case that if the bilinear form of

the elliptic system is written as follows,

a((u,β ),(v,η)) =
2

∑
i, j=1

Ai j ∂iU ∂ jV , (2.2)

with

U :=

[
u
β

]
: Ω −→ R

4, V :=

[
v
η

]
: Ω −→ R

4,
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and Ai j ∈ R4×4, then

A :=

[
A11 A12

A21 A12

]
∈ R

8×8

is a symmetric positive definite matrix.

In our case

a((u,β ),(v,η)) = λ̄1 (trε(u), trε(v))+2μ̄1 (ε(u),ε(v)) (2.3)

+ λ̄2 (trε(u), trε(η))+2μ̄2 (ε(u),ε(η))
+ λ̄2 (trε(v), trε(β ))+2μ̄2 (ε(v),ε(β ))
+ λ̄3 (trε(β ), trε(η))+2μ̄3 (ε(β ),ε(η)) ,

with

λ̄1 =
λ1 +λ2

2
, λ̄2 =

λ1 −λ2

8
, λ̄3 =

λ1 +λ2

24
, (2.4)

μ̄1 =
μ1 +μ2

2
, μ̄2 =

μ1 −μ2

8
, μ̄3 =

μ1 +μ2

24
.

If (2.3) is directly written in the form (2.2), the resulting matrix A is not positive
definite. However, using the fact that∫

Ω
∂2u1 ∂1η2 =

∫
Ω

∂1u1 ∂2η2,

∫
Ω

∂1u2 ∂2η1 =

∫
Ω

∂2u2 ∂1η1,∫
Ω

∂2β1 ∂1v2 =

∫
Ω

∂1β1 ∂2v2, and
∫

Ω
∂1β2 ∂2v1 =

∫
Ω

∂2β2 ∂1v1

(which is proved by a double integration by parts), (2.3) can also be written in the form
(2.2) with

A11 =

⎡⎢⎢⎢⎣
λ̄1 +2μ̄1 0 λ̄2 +2μ̄2 0

0 μ̄1 0 μ̄2

λ̄2 +2μ̄2 0 λ̄3 +2μ̄3 0
0 μ̄2 0 μ̄3

⎤⎥⎥⎥⎦ , A22 =

⎡⎢⎢⎢⎣
μ̄1 0 μ̄2 0
0 λ̄1 +2μ̄1 0 λ̄2 +2μ̄2

μ̄2 0 μ̄3 0
0 λ̄2 +2μ̄2 0 λ̄3 +2μ̄3

⎤⎥⎥⎥⎦ ,

and

A12 = At
21 =

⎡⎢⎢⎢⎣
0 λ̄1 + μ̄1 0 λ̄2 + μ̄2

0 0 0 0
0 λ̄2 + μ̄2 0 λ̄3 + μ̄3

0 0 0 0

⎤⎥⎥⎥⎦ .
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There only remains to prove that A is positive definite. With this purpose, we write
A = B1 +B2 with

B1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ̄1 0 2μ̄2 0 0 μ̄1 0 μ̄2

0 μ̄1 0 μ̄2 0 0 0 0
2μ̄2 0 2μ̄3 0 0 μ̄2 0 μ̄3

0 μ̄2 0 μ̄3 0 0 0 0
0 0 0 0 μ̄1 0 μ̄2 0
μ̄1 0 μ̄2 0 0 2μ̄1 0 2μ̄2

0 0 0 0 μ̄2 0 μ̄3 0
μ̄2 0 μ̄3 0 0 2μ̄2 0 2μ̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

B2 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ̄1 0 λ̄2 0 0 λ̄1 0 λ̄2

0 0 0 0 0 0 0 0
λ̄2 0 λ̄3 0 0 λ̄2 0 λ̄3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
λ̄1 0 λ̄2 0 0 λ̄1 0 λ̄2

0 0 0 0 0 0 0 0
λ̄2 0 λ̄3 0 0 λ̄2 0 λ̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We observe that B1 is positive definite. In fact, reordering rows and columns of B1, we
obtain the block diagonal matrix

B̂1 :=

[
C1 O
O C2

]
,

with

C1 :=

[
2D1 D1

D1 2D1

]
, C2 :=

[
D1 O
O D1

]
, and D1 :=

[
μ̄1 μ̄2

μ̄2 μ̄3

]
.

Using (2.4), it is simple to show that μ̄1μ̄3− μ̄2
2 > 0. Hence, D1 is positive definite. There-

fore, elementary computations show that C1, C2, and consequently B̂1 and B1, are positive
definite, too.

On the other hand, B2 is positive semi-definite. In fact, reordering rows and columns
of B2, we obtain

B̂2 =

[
C3 O
O O

]
, with C3 :=

[
D2 D2

D2 D2

]
and D2 :=

[
λ̄1 λ̄2

λ̄2 λ̄3

]
.
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The matrix D2 is positive definite because, using again (2.4), we have λ̄1λ̄3 − λ̄ 2
2 > 0.

Therefore, C3 and consequently B̂2 and B2 are positive semi-definite, too. Thus, A =

B1 +B2 is positive definite and we conclude the proof. �

Now we are in a position to prove that the solutions of the load problems for laminated
and classical homogeneous Reissner-Mindlin clamped plates have the same regularity.
With this aim, we adapt the arguments from the proof of [2, Theorem 7.1].

For any t > 0 and ( f ,m,g) ∈ H, let (u,β ,w) ∈V and γ ∈ L2(Ω) be the solution to⎧⎨⎩ a((u,β ),(v,η))+(γ,η −∇z) = ( f ,v)+(m,η)+(g,z) ∀(v,η,z) ∈V,

γ =
κ
t2 (β −∇w) .

(2.5)

Consider the Helmholtz decomposition of the shear term γ ∈ H0(rot,Ω):

γ = ∇r+ curl p. (2.6)

with r ∈ H1
0 (Ω) and p ∈ H1(Ω)/R. Using this decomposition in (2.5), this problem turns

out equivalent to finding r,w ∈ H1
0 (Ω), u,β ∈ H1

0 (Ω)2, and p ∈ H1(Ω)/R such that

− (∇r,∇z) = (g,z) ∀z ∈ H1
0 (Ω), (2.7)

a((u,β ),(v,η))+(curl p,η) = ( f ,v)+(m,η)− (∇r,η) (2.8)
∀(v,η) ∈ H1

0 (Ω)2×H1
0 (Ω)2,

(β ,curlq)− t2

κ
(curl p,curlq) = 0 ∀q ∈ H1(Ω)/R, (2.9)

(∇w,∇s) = (β ,∇s)− t2

κ
(∇r,∇s) ∀s ∈ H1

0 (Ω). (2.10)

This is a well posed problem. In fact, first, r is the unique solution to the Dirichlet prob-
lem (2.7). Then, subtracting (2.9) from (2.8), since t > 0, existence and uniqueness of
(u,β ) and p follows from Lax-Milgram lemma. Finally, w is the solution to the well
posed problem (2.10).

For t = 0, equations (2.7)–(2.10) also make sense, but the terms (curl p,η) from (2.8)
and (β ,curlq) from (2.9) must be understood weakly. Thus, in this case, we are led to
finding r0,w0 ∈ H1

0 (Ω), u0,β0 ∈ H1
0 (Ω)2, and p0 ∈ L2(Ω)/R such that

− (∇r0,∇z) = (g,z) ∀z ∈ H1
0 (Ω), (2.11)

a((u0,β0),(v,η))+(p0, rotη) = ( f ,v)+(m,η)− (∇r0,η) (2.12)
∀(v,η) ∈ H1

0 (Ω)2 ×H1
0 (Ω)2,

(rotβ0,q) = 0 ∀q ∈ L2(Ω)/R. (2.13)

(∇w0,∇s) = (β0,∇s) ∀s ∈ H1
0 (Ω). (2.14)
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This is a well posed problem, too. In fact, equations (2.11) and (2.7) are the same, so
that r0 = r, as well. Existence and uniqueness of (u0,β0) and p0 follows from the fact
that (2.12)–(2.13) is a well posed mixed problem (a is elliptic in the whole space and
the inf-sup condition is essentially the same as that of the Stokes problem). Finally w0 is
the solution of the Dirichlet problem (2.14). Moreover the following additional regularity
holds.

Lemma 2.6.2 Let (r0,u0,β0, p0,w0) be the solution to problem (2.11)–(2.14). Then, we
have that r0,w0 ∈ H2(Ω), u0,β0 ∈ H2(Ω)2, p0 ∈ H1(Ω), and

‖r0‖2 +‖u0‖2 +‖β0‖2 +‖p0‖1 +‖w0‖2 ≤C‖( f ,m,g)‖0 , (2.15)

with a constant C independent of f , m, and g.

Proof. The standard a priori estimate for the Poisson equation on a convex domain, im-
plies that r0 ∈ H2(Ω) and

‖r0‖2 ≤C‖g‖0 . (2.16)

Next, we write (2.12)–(2.13) in the distributional sense:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−μ̄1Δu0 −

(
λ̄1 + μ̄1

)
∇(divu0)− μ̄2Δβ0 −

(
λ̄2 + μ̄2

)
∇(divβ0) = f ,

−μ̄2Δu0 −
(
λ̄2 + μ̄2

)
∇(divu0)− μ̄3Δβ0 −

(
λ̄3 + μ̄3

)
∇(divβ0)

+ curl p0 = m−∇r0,
rotβ0 = 0,

with Dirichlet homogeneous boundary conditions for u0 and β0 and the coefficients λ̄i and
μ̄i, i = 1,2,3, as defined in (2.4).

The third equation above implies that β0 = ∇ϕ , with ϕ ∈ H1
0 (Ω) such that ∂ϕ

∂n = 0 on
∂Ω. Using this in the first and second equations, we obtain

−μ̄1Δu0 −
(
λ̄1 + μ̄1

)
∇(divu0)−

(
λ̄2 +2μ̄2

)
Δ(∇ϕ) = f , (2.17)

−μ̄2Δu0 −
(
λ̄2 + μ̄2

)
∇(divu0)−

(
λ̄3 +2μ̄3

)
Δ(∇ϕ) (2.18)

+curl p0 = m−∇r0,

with homogeneous boundary conditions u0 = 0, β0 = 0, ϕ = 0 and ∂ϕ
∂n = 0 on ∂Ω.

Taking divergence in the first two equations, we have

−(
λ̄1 +2μ̄1

)
div(Δu0)−

(
λ̄2 +2μ̄2

)
Δ2ϕ = div f ,

−(
λ̄2 +2μ̄2

)
div(Δu0)−

(
λ̄3 +2μ̄3

)
Δ2ϕ = divm−Δr0.
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Eliminating u0 we arrive at the following problem for ϕ:⎧⎨⎩ KΔ2ϕ =
(
λ̄2 +2μ̄2

)
div f − (

λ̄1 +2μ̄1
)
(divm−Δr0) ∈ H−1(Ω),

ϕ =
∂ϕ
∂n

= 0 on ∂Ω.

with K :=
(
2μ̄1 + λ̄1

)(
2μ̄3 + λ̄3

)− (
2μ̄2 + λ̄2

)2
, which can be shown to be strictly posi-

tive by using (2.4) and a little algebra. Therefore, from the standard a priori estimate for
the biharmonic equation in convex domains, we know that ϕ ∈ H 3(Ω) and

‖ϕ‖3 ≤C
(‖div f‖−1 +‖divm‖−1 +‖Δr0‖0

)≤C‖( f ,m,g)‖0 ,

where we have used (2.16) for the last inequality. Therefore β0 = ∇ϕ ∈ H2(Ω)2.
Next, using the last inequality in (2.17), we obtain from the usual a priori estimate for

the elasticity problem in a polygonal convex domain that u0 ∈ H2(Ω)2 and

‖u0‖2 ≤C‖( f ,m,g)‖0 .

Now, from this inequality and (2.18), we obtain that p0 ∈ H1(Ω) and the corresponding
estimate. Finally, the regularity of w0 follows again from the standard a priori estimate for
the Poisson equation on a convex domain applied to (2.14). Thus we conclude the proof.
�

Corollary 2.6.1 The solution of the limit problem (2.4) satisfies u0,β0 ∈ H2(Ω)2, w0 ∈
H2(Ω), γ0 ∈ L2(Ω)2, and the a priori estimate (2.5) holds true.

Proof. In this case, the Helmholtz decomposition (2.6) holds in a distributional sense (cf.
[10, Proposition 3.4]):

γ0 = ∇r0 + curl p0,

with r0 ∈ H1
0 (Ω) and p0 ∈ L2(Ω)/R. Then, problem (2.4) is equivalent to (2.11)–(2.14),

with f = m= 0. Hence, the additional regularity result follows from Lemma 2.6.2 and the
above equation. �

Now we are ready to prove the a priori estimate for the solution to problem (2.7)–
(2.10) and, consequently, to that of problem (2.5), which is the main goal of this Appendix.

Lemma 2.6.3 For any t > 0, let (r,u,β , p,w) be the solution to problem (2.7)–(2.10).
Then, r,w, p ∈ H2(Ω), u,β ∈ H2(Ω)2, and

‖r‖2 +‖u‖2 +‖β‖2 +‖p‖1 + t ‖p‖2 +‖w‖2 ≤C (‖ f‖0 +‖m‖0 +‖g‖0) ,

with a constant C independent of t, f , m, and g.
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Proof. Let (r0,u0,β0, p0,w0) be the solution to problem (2.11)–(2.14). Recall that r = r0,
so that we have already proved in Lemma 2.6.2 the estimate for r (cf. (2.16)).

Now, since according to Lemma 2.6.2, p0 ∈ H1(Ω), from (2.8)–(2.9) and (2.12)–
(2.13), we obtain

a((u−u0,β −β0),(v,η))+(curl(p− p0) ,η)− (β −β0,curlq)

+
t2

κ
(curl(p− p0) ,curlq) =−t2

κ
(curl p0,curlq)

for all v,η ∈ H1
0 (Ω)2 and all q ∈ H1(Ω)/R. Testing this equation with v := u−u0, η :=

β −β0, and q =: p− p0 and using the ellipticity of a, we have

‖u−u0‖2
1 +‖β −β0‖2

1 + t2‖p− p0‖2
1 ≤Ct2‖p0‖1 ‖p− p0‖1

and, from this estimate and (2.15), we arrive at

‖u−u0‖1 +‖β −β0‖1 + t ‖p− p0‖1 ≤Ct ‖( f ,m,g)‖0 . (2.19)

Hence also
‖p‖1 ≤ ‖p− p0‖1 +‖p0‖1 ≤C‖( f ,m,g)‖0 . (2.20)

Next, we apply Lemma 2.6.1 to (2.8) with F := f and G := m−∇r− curl p, to show
that u,β ∈ H2(Ω)2 and

‖u‖2 +‖β‖2 ≤C‖( f ,m,g)‖0 ,

where we have used (2.16) and (2.20).
On the other hand, from (2.9) and (2.13), we have that

(curl p,curlq) =
κ
t2 (β −β0,curlq) = (rot(β −β0) ,q) ∀q ∈ H1(Ω).

Therefore, p is the solution of the Neumann problem⎧⎪⎨⎪⎩
Δp =

κ
t2 rot(β −β0) in Ω,

∂ p
∂n

= 0 on ∂Ω.

Hence, since Ω is convex we have

‖p‖2 ≤Ct−2‖β −β0‖1 ≤Ct−1‖( f ,m,g)‖0 ,

the last inequality because of (2.19).
Finally, (2.10) is a Poisson equation, for which there holds the a priori estimate

‖w‖2 ≤C
(‖β‖1 + t2‖r‖2

)≤C‖( f ,m,g)‖0 ,

where we have used (2.16) once more. Thus we end the proof. �

We conclude with the main result of this Appendix.
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Theorem 2.6.1 Let Ω be a convex polygonal domain in the plane. For any t > 0 and
( f ,m,g) ∈ H, let (u,β ,w) ∈ V and γ ∈ L2(Ω) be the solution to problem (2.5). Then,
u,β ∈ H2(Ω)2, w ∈ H2(Ω), γ ∈ H1(Ω)2, and there exists a constant C, independent of t
and ( f ,m,g), such that

‖u‖2 +‖β‖2 +‖w‖2 +‖γ‖0 + t ‖γ‖1 ≤C (‖ f‖0 +‖m‖0 +‖g‖0) .

Proof. This is an immediate consequence of Lemma 2.6.3 and the equivalence between
problems (2.5) and (2.7)–(2.10), through (2.6). �

Corollary 2.6.2 The solution of the load problem (2.2) satisfies u,β ∈ H 2(Ω)2, w ∈
H2(Ω), γ ∈ H1(Ω)2, and the a priori estimate (2.3) holds true.

Proof. It is a direct application of the previous theorem to the particular right hand side
of the first equation from (2.2). �



Chapter 3

A finite element method for a stiffened
plate problem

The aim of this paper is to analyze a low order mixed finite element method for a stiff-
ened plate modeled by the Reissner-Mindlin equations. The plate is modeled by Reissner
Mindlin equations and the stiffener by Timoshenko beams equations. The resulting prob-
lem is shown to be well posed. In the case of concentric stiffeners it decouples into two
problems, one for the in-plane plate deformation and the other for the bending of the
plate. The analysis and discretization of the first one is straightforward. The second one is
shown to attain a solution bounded above and below independently of the thickness of the
plate. A discretization based on DL3 finite elements combined with ad-hoc elements for
the stiffener is proposed. Optimal order error estimates are proved for displacements, rota-
tions and shear stresses for the plate and the stiffener. Numerical tests are reported in order
to assess the performance of the method. These numerical computations demonstrate that
the error estimates are independent of the thickness, providing a numerical evidence that
the method is locking free.

3.1 Introduction

A stiffened plates is a plate reinforced with ribs to increase it capacity to resist loads.
Such plates are applied usually in buildings, hulls of ships, aircraft and many other appli-
cations in the structural engineering.

Different models of stiffeners plates have been used. See for instance [28] for a dis-
cussion of several simple engineering models and further references.

A different approach has been proposed in [40]. It consists of coupling Kirchhoff-Love
equations for the plate with Navier-Bernoulli equations for the stiffener. The constraint
between both structures are imposed by means of Lagrange multipliers. A particular finite

59
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element method is proposed. Numerical experiments demonstrate the effectivity of this
approach although no analysis is given.

The same problem has been analyzed in [19] based in a model proposed in [30]. In this
case HCT C 1 elements are proposed for the plate combined with P2 −P3 elements for
the beam. A domain decomposition technique is proposed for the solution of the resulting
algebraic problem. An alternative modeling approach consist of using Reissner-Mindlin
equation for the plate and Timoshenko beam equations for the stiffener. This model has
been considered in [38], where an elementary finite element method is proposed. However
this method is shown to suffer from locking.

Locking consists in that very unsatisfactory results are obtained when the thickness
is small with respect to the other dimension of the structure. From the point of view of
the numerical analysis, locking reveals itself in that the a priori estimates depends on the
thickness of the structure in a such way that they degenerate when this parameter become
small.

Several finite element have been proposed to avoid locking in Reissner-Mindlin equa-
tions (See [11] for a review on this subject).

A typical locking-free finite element method MITC9 ([8]) is proposed in [28] to dis-
cretize the stiffened plate equations. These elements are combined with standard quadratic
element for the stiffener. Once more, only numerical evidence of the performance of the
method is reported.

In the present paper we use the same model , based on Reissner-Mindlin equations for
the plate and Timoshenko equations for the stiffener. We introduce the constraint between
both structures by means of Lagrange multipliers. We prove existence and uniqueness of
solution to the resulting problem.

The case that the mid-line of the stiffener lies on the mid-surface of the plate is known
as concentrically stiffened. In this case the problem decomposes into two simpler as it
happens for unstiffened plates: in-plane and bending plate problems. The analysis of the
former is quite simpler since it leads to equation independent of the plate thickness. This
is not the case for the stiffened plate bending problem.

In this case we consider a family of problems parameterized by the plate thickness t.
We show that the mechanical coefficients of the stiffener must be taken as proportional to
1/t to obtain a significant limit problem as t goes to zero. We show that the solution of the
stiffened plate bending problem is bounded above and below far from zero independent
of t. We also prove additional regularity of the solution although not independently of t.

For the discretization of the in-plane stiffened plate we use standard linear elements,
and the analysis is straightforward. For the stiffened plate bending problem we use a low
order plate finite element, DL3 ([22]), combined with P2−P1 element for the stiffener.
The choice of this hybrid element for the rod allow us to impose the constraints in an
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simpler way.
We prove optimal order error estimates depending on higher order norms of the solu-

tion. These higher order norms are the same that appear in the case of uncoupled plates
and rods. In such case they are bounded independently of t.

For the stiffened plate bending problem these higher norms have been proved to be
finite, but not bounded independently of t. Therefore, we have made a thorough numerical
experimentation to assess the locking-free character of the method.

The outline of the paper is as follows. In Section 3.2 we present the mathematical
setting of the load problem and prove existence and uniqueness. In Section 3.3 we analyze
for the concentrically stiffened plate, the stability results, the latter independent of the
plate thickness for the in-plane and bending plate problems. In section 3.4 we present
the finite element discretization, and the existence and uniqueness of the solution for the
in-plane and bending plate problems. In the section 3.5 we prove error estimates of the
numerical solution. In section 3.6 we report numerical results to assess the performance
of the proposed method. First to validate our codes, we have applied it to a vibration
problem which was also solved in [28]. Secondly we have applied our method to a couple
of problems whose limit behavior as the thickness becomes small is known. Finally we
apply the proposed method to a family of problems which allow us to demonstrate that it
is locking-free.

3.2 The Problem of the Stiffened Plate

We consider a plate entirely crossed by a rod which act as a stiffener. We restrict our
attention to plates with constant thickness and rods with uniform cross section. If the
mid-line of the rod lies on the mid surface of the plate we call it a concentrically stiffened
plate. Otherwise it is called an eccentrically stiffened plate (see Figure 3.1). Most of this

Figure 3.1: Transverse sections of concentrically (left) and eccentrically (right) stiffened
plates.

paper is devoted to concentrically stiffened plates except for the present section which is
valid for eccentrically stiffened plates too. We consider a coordinate system such that the
plate occupies the domain Ω× (−t/2, t/2), where t > 0 is the plate thickness. The two-
dimensional domain is the mid surface of the plate and is assumed polygonal. Moreover
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we assume that the coordinate system is such that the mid-line of the rod lies on the
plane y = 0. We denote Γ := {(x,y) ∈ Ω : y = 0} and r > 0 the distance between the rod
mid-line and the plate mid surface (r = 0 for concentrically stiffened plates). We denote
also

Ω1 := {(x,y) ∈ Ω : y > 0} , Ω2 := {(x,y) ∈ Ω : y < 0} . (3.1)

We illustrate these definitions in Figure 3.2. We restrict our analysis to the case of a plate
modeled by Reissner-Mindlin equations and completely clamped by its lateral boundary
∂Ω. We denote by u = (u1,u2), w and β = (β1,β2) the mid surface in-plane plate dis-

∂ Ω

y

x

Ω1

Ω2
Ω

Γ r

t

Figure 3.2: Geometry of stiffened plate

placements, transversal displacements and rotations, respectively. In its turn, also us, vs,
ws denote the stiffener displacements in each coordinate direction and, θ s

x , θ s
y and θ s

z the
stiffener rotations with respect to each axis.

To derive the equations of the stiffened plate we will obtain first an expression for
its total energy. With this aim, we add the corresponding energies of the plate and the
stiffener. However, for the latter, the shear and bending terms in the plane of the plate are
typically neglected. (see [28]). We consider a load acting on the plate, and denote by f its
in-plane component, and by g the transverse one. Therefore the total energy including the
works of the loads reads:

Et :=
t
2

a1 (u,u)+
t3

2
a2 (β ,β)+ t

∫
Ω

κμ (∇w−β )2 +

∫
Γ

EsA

(
dus

dx

)2

+
∫

Γ
κsμsA

(
dws

dx
+θ s

y

)2

+
∫

Γ
EsIyy

(
dθ s

y

dx

)2

+
∫

Γ
μsJ

(
dθ s

x

dx

)2

− t
∫

Ω
f ·u−

∫
Ω

gw.



3.2 The Problem of the Stiffened Plate 63

In the above equation

a1 (u,v) :=
∫

Ω

Eν
(1+ν)(1−2ν)

divu divv+
∫

Ω

E
1+ν

ε (u) : ε (v)

and

a2 (β ,η) :=
1

12

{∫
Ω

Eν
1−ν2 divβ divη +

∫
Ω

E
1+ν

ε (β ) : ε (η)

}
are the plane strain and plane stress bilinear forms, respectively. The operator ε (v) :=
1
2 (Dv+Dvt), the coefficients E and ν are the Young and Poisson moduli. Moreover μ :=

E
2(1+ν) is the shear modulus of the plate. In its turn, A is the area of the stiffener section,
Iyy and Izz are the second moments of area with respect to y- and z-axes, respectively,
J := Iyy + Izz, Es and νs the Young and Poisson moduli of the stiffener and μ s := Es

2(1+ν)
the shear modulus. Finally κ and κ s are the shear correction factors for the plate and the
rod, respectively . All the parameters are strictly positive constants. In the case of the
stiffener this corresponds to a rod of arbitrary section, the same for all (x,0) ∈ Γ. Notice
that, since the bending and shear energy of the stiffener have been neglected, the variables
vs and θz do not appear in the expression for the total energy.

The appropriate functional spaces for displacements and rotations are the following.
u,β ∈ H1

0 (Ω)2; w ∈ H1
0 (Ω); us,ws,θ s

x ,θ s
y ∈ H1

0 (Γ). For the loads we consider f ∈ L2 (Ω)2

and g ∈ L2 (Ω).

The stiffened plate problem is obtained by minimizing the total energy subject to the
following kinematic constraints:

u1 = us − rβ1, (3.2)

w = ws, (3.3)

β2 = θ s
x , (3.4)

β1 =−θ s
y . (3.5)

Let us recall that r in the first constraint denotes the transverse distance between the mid
surface of the plate the mid-line of the stiffener. The constraint (3.3) comes from the fact
that the plate end the rod are joint monolithically. Moreover the rotations of the plate and
the stiffener are the same in this model, which leads to (3.4) and (3.5). Finally (3.2) can be
easily deduced from the previous constraints. In fact, using the notation from Figure 3.3,
we have that

u1

r+ e
=

us

e
.

Therefore approximating −β1 by us

e , straightforward computations lead to (3.2). For the
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Plate

Stiffener

z

−β1 = θy

θy

−β1

r

e

us

u1 x

O

Figure 3.3: Geometric illustration of (3.6)

analysis, we introduce these constraints by means of Lagrange multipliers as follows:

∫
Γ

λ1 (u1 −us + rβ1) = 0, (3.6)∫
Γ

λ2 (w−ws) = 0, (3.7)∫
Γ

λ3 (β2 −θ s
x ) = 0, (3.8)∫

Γ
λ4

(
β1 +θ s

y

)
= 0. (3.9)

In the expressions above and throughout the paper, to simplify the notation, we write:

∫
Γ

λη := 〈λ ,η〉
H−1/2(Γ)×H1/2

00 (Γ)
,

where in this case H1/2
00 (Γ) :=

{
v|Γ : v ∈ H1

0 (Ω)
}

endowed with the intrinsic norm of

H1/2 (Γ) (see ([26]) and H−1/2 (Γ) := H1/2
00 (Γ)′, with L2 (Γ) as pivot space.

Therefore, by minimizing Et subject to the constraints (3.2)-(3.5), we arrive at the
following clamped stiffened plate problem:

Find (U ,λ ) ∈ H ×Q, such that

A (U ,V )+B (V ,λ ) = F (V ) ∀V ∈ H , (3.10)

B (U ,χ) = 0 ∀χ ∈ Q, (3.11)



3.2 The Problem of the Stiffened Plate 65

where

H := H1
0 (Ω)2×H1

0 (Ω)2×H1
0 (Ω)×H1

0 (Γ)
4 , Q := H−1/2 (Γ)4 ,

U :=
(
u,β ,w,us,ws,θ s

x ,θ
s
y

)
, V :=

(
v,η,z,zs,vs,ϕs

x ,ϕ
s
y

) ∈ H

λ := (λ1,λ2,λ3,λ4) , χ := (χ1,χ2,χ3,χ4) ∈ Q.

A (U ,V ) := ta1 (u,v)+ t3a2 (β ,η)+ t
∫

Ω
κμ (∇w−β ) · (∇z−η)

+

∫
Γ

EsA
dus

dx
dvs

dx
+κsμs

∫
Γ

A

(
dws

dx
+θ s

y

)(
dzs

dx
+ϕs

y

)
+

∫
Γ

EsIyy
dθ s

y

dx

dϕs
y

dx
+μs

∫
Γ

J
dθ s

x

dx
dϕs

x

dx
,

B (U ,λ) :=
∫

Γ
λ1 (u1 −us + rβ1)+

∫
Γ

λ2 (w−ws)+

∫
Γ

λ3 (β2 −θ s
x )

+

∫
Γ

λ4
(
β1 +θ s

y

)
,

F (V ) := t
∫

Ω
f · v+ t

∫
Ω

gz.

It is well known that the standard finite element methods applied to plates or rods
are subject to “numerical locking”. This means they lead to unacceptable poor results for
thin structures, unless the mesh size is excessively small. The standard methodology to
deal with locking-free methods is to consider a family of problems depending on a small
parameter: the plate thickness t. A method will be locking-free if the error estimates do
not deteriorate as the thickness becomes small. In our case, to avoid dealing with more
than one parameter, we restrict our attention to a stiffener such that

A = t2Ã, Iyy = t4Ĩyy and J = t4J̃, (3.12)

where Ã, Ĩyy and J̃ are constants. This corresponds to a rod section with width and height
proportional to t.

The stiffening effect of such a rod tends to disappear as t tends to zero. To avoid this
and obtaining a proper limit problem, we assume that the physical parameters of the rod
increase as t tends to zero. More precisely we assume that

Es =
Ẽs

t
, (3.13)

where Ẽs is a fixed constant. See [19] for a similar choice in the case of Kirchhoff stiffened
plates.

Scalings (3.12) and (3.13) ensure that if the loads are scaled as usual for plates, then
the solution of problem (3.10)-(3.11) attains a limit as t tends to zero and that, in the limit
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problem, the rod remains as a stiffener. This will be clearly seen in the numerical examples
of Section 3.6, where different scalings of the physical parameters are considered. It is
shown therein that (3.13) leads to a stiffened limit problem (Test 4) whereas other scalings
lead either to a vanishing or to a perfectly rigid stiffener (Section 3.6.2). Using these
scalings we write the bilinear form A as follows:

A (U ,V ) = ta1 (u,v)+ t3a2 (β ,η)+ t
∫

Ω
κμ (∇w−β ) · (∇z−η)

+ t
∫

Γ
ẼsÃ

dus

dx
dvs

dx
+ t

∫
Γ

κsμ̃sÃ

(
dws

dx
+θ s

y

)(
dzs

dx
+ϕs

y

)
+ t3

∫
Γ

ẼsĨyy
dθ s

y

dx

dϕs
y

dx
+ t3

∫
Γ

μ̃sJ̃
dθ s

x

dx
dϕs

x

dx
(3.14)

We are interested in showing the existence and uniqueness of the solution to the prob-
lem defined by (3.10) and (3.11). For this purpose we will show the ellipticity of A (·, ·)
in whole the space H and the inf-sup condition for B (·, ·) in the appropriates spaces.
The ellipticity of A (·, ·) will depend on t.

Throughout the paper, C will denote a strictly positive constant, not necessarily the
same at each occurrence, but always independent of t and the mesh-size h, which will be
introduced in the next section.

For the existence and uniqueness, we consider the continuous problem (3.10)-(3.11)
with 0< t ≤ 1 fixed. The bilinear form A (·, ·) is elliptic in H , with an ellipticity constant
depending of t:

A (V ,V )≥Ct3
{
‖η‖2

1,Ω +‖z‖2
1,Ω +

∥∥ϕs
y

∥∥2
1,Ω +‖zs‖2

1,Ω +‖ϕs
x‖2

1,Γ

}
+Ct

{
‖v‖2

1,Ω +‖vs‖2
1,Γ

}
.
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In fact, the inequality above follows from

ta1 (v,v)≥Ct ‖v‖2
1,Ω ∀v ∈ H1

0 (Ω)2, (3.15)

a2 (η,η)≥C‖η‖2
1,Ω ∀η ∈ H1

0 (Ω)2, (3.16)

t3a2 (η,η)+κμt
∫

Ω
κμ |∇z−η|2 ≥Ct3

{
‖η‖2

1,Ω +‖z‖2
1,Ω

}
∀η ∈ H1

0 (Ω)2,z ∈ H1
0 (Ω), (3.17)

t
∫

Γ
ẼsÃ

(
dvs

dx

)2

≥Ct ‖vs‖2
1,Γ ∀vs ∈ H1

0 (Γ) , (3.18)

t3
∫

Γ
μ̃sJ̃

(
dϕs

x

dx

)2

≥Ct3‖ϕs
x‖2

1,Γ ∀ϕs
x ∈ H1

0 (Γ) , (3.19)

t3
∫

Γ
ẼsĨyy

(
dϕs

y

dx

)2

+ t
∫

Γ
κsμ̃sÃ

∣∣∣∣dzs

dx
+ϕs

y

∣∣∣∣2 ≥Ct3
{
‖zs‖2

1,Γ +
∥∥ϕs

y

∥∥2
1,Γ

}
∀ϕs

y ,z
s ∈ H1

0 (Γ) . (3.20)

The inequalities (3.15) and (3.16) are consequences of Korn’s inequalities, whereas (3.17)
is a classical result, (see [10]). In its turn (3.18)-(3.20) follow from the scalings (3.12)-

(3.13), Poincaré inequality and a straightforward computation for
∫

Γ

∣∣∣dzs

dx +ϕs
y

∣∣∣2 (see [1]).

On the other hand, B (·, ·) satisfies an inf-sup condition: There exist C > 0, indepen-
dent of t, such that,

S := sup
0�=V∈H

B (V ,χ)
‖V‖H

≥C‖χ‖Q ∀χ ∈ Q.

To prove this, we consider separately each component of χ . For the first one, we take
v1 ∈ H1

0 (Ω) arbitrary and the remaining components of V ∗ set equal to zero to write

S ≥ sup
0�=v1∈H1

0 (Ω)

∫
Γ χ1v1

‖v1‖1,Ω
≥C1 sup

0�=ψ∈H1/2
00 (Γ)

∫
Γ χ1ψ

‖ψ‖1/2,Γ
=C‖χ1‖−1/2,Γ . (3.21)

For the second inequality, we have used the equivalence between the intrinsic norm of

H1/2
00 (Γ) and the norm inf

{
‖v‖1,Ω , v ∈ H1

0 (Ω) : v|Γ = ψ
}

(see [26]). The same argu-

ments allow us to prove that

S ≥C‖χ2‖−1/2,Γ and S ≥C‖χ3‖−1/2,Γ . (3.22)

Finally, taking η1 ∈ H1
0 (Ω) arbitrary and the remaining components of V set equal to zero

and using (3.21), we have

C‖χ4‖−1/2,Γ ≤ S+C′r‖χ1‖−1/2,Γ ≤
(

1+
C′

C
r

)
S,
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which, since r is bounded above, leads to

S ≥C′′ ‖χ4‖−1/2,Γ .

The inequality above together with (3.22) and (3.21) allow us to prove inf-sup condition
for B. This condition and the global ellipticity of A allow us to use the standard theory
for mixed problems (see [10]) to conclude the following theorem:

Theorem 3.2.1 For any t > 0 fixed, problem (3.10)-(3.11) has a unique solution (U ,λ )∈
H ×Q.

3.3 Concentrically stiffened plates

From now on, we restrict our attention to concentrically stiffened plates (i.e, r = 0, see
Figure 3.2). The reason for this is that, in this case, the plate problem decomposes into
two uncoupled ones: the in-plane and the bending stiffened plate problems, as it happens
for non stiffened plates.

In fact, the in-plane displacements of the model u and us relate with the remaining
variables only through equation (3.6) which is part of (3.11) and this happen only if r �= 0.
For r= 0 we are led to the following two uncoupled problems, the first one for the in-plane
terms and the second one for the bending terms.

Find (u,us) ∈ H1
0 (Ω)2×H1

0 (Γ) and λ1 ∈ H−1/2 (Γ), such that

ta1 (u,v)+ t
∫

Γ
ẼsÃ

dus

dx
dvs

dx
+
∫

Γ
λ1 (v1 − vs) = t

∫
Ω

f · v
∀ (v,vs) ∈ H1

0 (Ω)2×H1
0 (Γ) , (3.23)∫

Γ
χ1 (u1 −us) = 0 ∀χ1 ∈ H−1/2 (Γ) . (3.24)

Find
(
β ,w,ws,θ s

x ,θ s
y

) ∈ H1
0 (Ω)2 ×H1

0 (Ω)×H1
0 (Γ)

3 and (λ2,λ3,λ4) ∈ H−1/2 (Γ)3,
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such that

t3a2 (β ,η)+ t
∫

Ω
κμ (∇w−β ) · (∇z−η)+ t3

∫
Γ

ẼsĨyy
dθ s

y

dx

dϕs
y

dx

+ t3
∫

Γ
μ̃sJ̃

dθ s
x

dx
dϕs

x

dx
+ t

∫
Γ

κsμ̃sÃ

(
dws

dx
+θ s

y

)(
dzs

dx
+ϕs

y

)
+

∫
Γ

λ2 (z− zs)

+

∫
Γ

λ3 (η2 −ϕs
x)+

∫
Γ

λ4
(
η1 +ϕs

y

)
= t

∫
Ω

gz

∀ (η,z,zs,ϕs
x,ϕ

s
y

) ∈ H1
0 (Ω)2 ×H1

0 (Ω)×H1
0 (Γ)

3 , (3.25)∫
Γ

χ2 (w−ws)+

∫
Γ

χ3 (β2 −θ s
x )+

∫
Γ

χ4
(
β1 +θ s

y

)
= 0

∀(χ2,χ3,χ4) ∈ H−1/2 (Γ)3 . (3.26)

From now on, to simplify a bit the notation, we set all the constants in (3.14) equal to
one. Since these constants have been assumed to be independent of t, this does not affect
any subsequent asymptotic analysis. Moreover to obtain a family of problems uniformly
stable with respect to t, we consider a transverse load proportional to t 2, namely

g = g̃t2 (3.27)

with g̃ independent of t. Finally, it is also convenient for the analysis to rescale the La-
grange multipliers according to the scales of the different problems in which they appear:

λ1 = λ̃1t and λi = λ̃it
3, i = 2,3,4. (3.28)

In what follows we analyze the resulting rescaled problems.

3.3.1 Stiffened in-plane plate problem

Using the scaling (3.28) in (3.23)-(3.24) and setting all the constants equal to one we
obtain the following rescaled problem, in which we omit the tildes in λ̃1 to simplify the
notation.

Find (u,us) ∈ H1
0 (Ω)2×H1

0 (Γ) and λ1 ∈ H−1/2 (Γ), such that

a1 (u,v)+
∫

Γ

dus

dx
dvs

dx
+

∫
Γ

λ1 (v1 − vs) =

∫
Ω

f · v
∀ (v,vs) ∈ H1

0 (Ω)2 ×H1
0 (Γ) , (3.29)∫

Γ
χ1 (u1 −us) = 0 ∀χ1 ∈ H−1/2 (Γ) . (3.30)

This is a well posed problem completely independent of the thickness t. In fact, all the
bilinear forms in this problem are continuous and the following ellipticity result holds

a1 (v,v)+
∫

Γ

(
dvs

dx

)2

≥C
{
‖v‖2

1,Ω +‖vs‖2
1,Γ

}
∀(v,vs) ∈ H1

0 (Γ)×H1
0 (Ω)2. (3.31)
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Moreover, the arguments leading to (3.21) show that there exist C > 0, independent of t,
such that

sup
0�=(v,vs)∈H1

0 (Ω)2×H1
0 (Γ)

∫
Γ χ1 (v1 − vs)

‖v‖1,Ω +‖vs‖1,Γ
≥C‖χ1‖−1/2,Γ ∀χ1 ∈ H−1/2 (Γ) .

Thus, using Babuška-Brezzi theory (see [10]), we have the a-priori estimate

‖u‖1,Ω +‖us‖1,Γ +‖λ1‖−1/2,Γ ≤C‖ f‖0,Ω .

3.3.2 Stiffened bending plate problem

In this case we use the scalings (3.27) and (3.28) in (3.25)-(3.26). Thus if we denote

H := H1
0 (Ω)2×H1

0 (Ω)×H1
0 (Γ)

3 and Q := H−1/2 (Γ)3 ,

and we set all the constants equal to one again, then we arrive at the following rescaled
problem, in which we omit the tildes in λ̃i i = 2,3,4 and g̃

Find
(
β ,w,ws,θ s

x ,θ s
y

) ∈ H and (λ2,λ3,λ4) ∈ Q, such that

a2 (β ,η)+
1
t2

∫
Ω
(∇w−β ) · (∇z−η)+

∫
Γ

dθ s
x

dx
dϕs

x

dx
+
∫

Γ

dθ s
y

dx

dϕs
y

dx

+
1
t2

∫
Γ

(
dws

dx
+θ s

y

)(
dzs

dx
+ϕs

y

)
+
∫

Γ
λ2 (z− zs)+

∫
Γ

λ3 (η2 −ϕs
x)

+
∫

Γ
λ4

(
η1 +ϕs

y

)
=

∫
Ω

gz ∀ (η,z,zs,ϕs
x,ϕ

s
y

) ∈ H, (3.32)∫
Γ

χ2 (w−ws)+
∫

Γ
χ3 (β2 −θ s

x )+
∫

Γ
χ4

(
β1 +θ s

y

)
= 0 ∀ (χ2,χ3,χ4) ∈ Q. (3.33)

This problem has a unique solution. In fact, this is a consequence of Theorem 3.2.1 and the
equivalence of problems (3.10)-(3.11) and (3.29)-(3.33) in the case r = 0. Our next goal
is to prove that, for a non vanishing g, the solution of problem (3.32)-(3.33) is bounded
above and below far from zero uniformly with respect to t. More precisely, we will prove
that there exist strictly positive constants C1 and C2 such that the solution of this problem
satisfies

C1 ≤ ‖β‖1,Ω +‖w‖1,Ω +‖ws‖1,Γ +‖θ s
x‖1,Γ +

∥∥θ s
y

∥∥
1,Γ ≤C2, (3.34)

for all t ∈ (0,1].
With this aim we consider the space

W :=

{
(η ,z) ∈ H1

0 (Ω)2 ×H1
0 (Ω) :

dη1

dx
,
dη2

dx
,
dz
dx

∈ L2 (Γ)
}
,
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endowed with the norm

‖(η ,z)‖2
W := ‖η‖2

1,Ω +‖z‖2
1,Ω +‖η1‖2

1,Γ +‖η2‖2
1,Γ +‖z‖2

1,Γ , (η,z) ∈W .

Equation (3.33) is equivalent to.

ws = w, θ s
x = β2 and θ s

y =−β1 on Γ, (3.35)

which in its turn implies that (β ,w) ∈ W . Using this and testing (3.32) with functions
satisfying the same constraints we arrive at

a2 (β ,η)+
1
t2

∫
Ω
(∇w−β ) · (∇z−η)+

∫
Γ

∂β1

∂x
∂η1

∂x

+
∫

Γ

∂β2

∂x
∂η2

∂x
+

1
t2

∫
Γ

(
∂w
∂x

−β1

)(
∂ z
∂x

−η1

)
=

∫
Ω

gz ∀ (η ,z) ∈W . (3.36)

Testing the above problem with (η,z) = (β ,w) we obtain

a2 (β ,β )+
1
t2

∫
Ω
(∇w−β )2 +

∫
Γ

(
∂β1

∂x

)2

+

∫
Γ

(
∂β1

∂x

)2

+
1
t2

∫
Γ

(
∂w
∂x

−β1

)2

=
∫

Ω
gw. (3.37)

On the other hand from (3.17), we have that

‖β‖2
1,Ω +‖w‖2

1,Ω ≤C

{
1
t2 ‖∇w−β‖2

0,Ω +a2 (β ,β )
}
, (3.38)

whereas from (3.18) and (3.20), we have:

‖w‖2
1,Γ +‖β1‖2

1,Γ +‖β2‖2
1,Γ ≤C

{
1
t2

∥∥∥∥∂w
∂x

−β1

∥∥∥∥2

0,Γ
+

∫
Γ

(
∂β1

∂x

)2

+

∫
Γ

(
∂β2

∂x

)2
}
. (3.39)

Therefore, adding (3.38) and (3.39) and using (3.37), we obtain

‖β‖2
1,Ω +‖w‖2

1,Ω +‖w‖2
1,Γ +‖β1‖2

1,Γ +‖β2‖2
1,Γ ≤C

∫
Ω

gw,

from which it follows that

‖β‖1,Ω +‖w‖1,Ω +‖w‖1,Γ +‖β1‖1,Γ +‖β2‖1,Γ ≤C2. (3.40)
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To prove the other estimate in (3.34), we observe that the solution (β ,w) ∈W to problem
(3.36) is the minimum in W of the energy functional Et (η,z) defined by:

Et (η,z) :=
1
2

{
a2 (η,η)+

1
t2

∫
Ω
(∇z−η)2 +

∫
Γ

(
∂η1

∂x

)2

+
∫

Γ

(
∂η2

∂x

)2

+
1
t2

∫
Γ

(
∂ z
∂x

−η1

)2
}
−
∫

Ω
gz. (3.41)

Consider the following closed subspace of W :

W 0 := {(η ,z) ∈W : ∇z = η}=
{
(∇z,z) ,z ∈ H2

0 (Ω) :
∂ 2z

∂x∂y
,

∂ 2z
∂x2 ∈ L2 (Γ)

}
.

Notice that for (η ,z) ∈W 0, the associated energy reads

Et (η,z) :=
1
2

{
a2 (∇z,∇z)+

∫
Γ

(
∂ 2z
∂x2

)2

+

∫
Γ

(
∂ 2z

∂x∂y

)2
}
−
∫

Ω
gz. (3.42)

We note that
min
W

Et ≤ min
W 0

Et < 0.

In fact, the first inequality is clear, and for the second one, we observe that the minimum
of Et in W 0 is attained at (η,z) = (∇z0,z0) ∈W 0 with z0 satisfying

a2 (∇z0,∇z)+
∫

Γ

∂ 2z0

∂x2

∂ 2z
∂x2 +

∫
Γ

∂ 2z0

∂x∂y
∂ 2z

∂x∂y
=

∫
Ω

gz ∀(∇z,z) ∈W 0. (3.43)

The bilinear form on the left hand side is bounded and elliptic in W 0, the latter because
of (3.15). Hence, from the Lax-Milgram Theorem there exists a unique (∇z0,z0) ∈ W 0

solution of (3.43) and ‖(∇z0,z0)‖W ≤C‖g‖0,Ω. Therefore, for g �= 0, replacing (3.43) in
(3.42), we have

min
(η,z)∈W

Et (η ,z)≤ min
(η,z)∈W0

Et (η ,z)

=−1
2

{
a2 (∇z0,∇z0)+

∫
Γ

(
∂ 2z0

∂x2

)2

+

∫
Γ

(
∂ 2z0

∂x∂y

)2
}

=: −C0 < 0. (3.44)

Since minW Et (η,z) is attained in the solution (β ,w) of problem (3.36), we use this equa-
tion in (3.41) and (3.44) to write

a2 (β ,β)+
1
t2

∫
Ω
(∇w−β )2 +

∫
Γ

(
∂β1

∂x

)2

+
∫

Γ

(
∂β2

∂x

)2

+
1
t2

∫
Γ

(
∂w
∂x

−β1

)2

≥ 2C0. (3.45)
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On the other hand, testing (3.36) with (η,z) = (β ,w), we have

1
t2

∫
Ω
(∇w−β )2 +

1
t2

∫
Γ

(
∂w
∂x

−β1

)2

=
∫

Ω
gw−a2 (β ,β )−

∫
Γ

(
∂β1

∂x

)2

−
∫

Γ

(
∂β2

∂x

)2

≤
∫

Ω
gw ≤ ε

2
‖g‖2

0,Ω +
1

2ε
‖w‖2

0,Ω ∀ε > 0. (3.46)

Substituting (3.46) in (3.45) choosing an adequate value of ε and using the boundedness
of a2 (·, ·), we arrive at

‖β‖1,Ω +‖w‖1,Ω +‖w‖1,Γ +‖β1‖1,Γ +‖β2‖1,Γ ≥C1. (3.47)

Therefore, recalling (3.35), we obtain the following result as a consequence of (3.40) and
(3.47)

Proposition 1 Given a non vanishing g∈ L2 (Ω), let
(
β ,w,ws,θ s

x ,θ s
y

)∈H be the solution
of (3.32)-(3.33). There exists strictly positive constants C1, C2 independent of t ∈ (0,1]
such that

C1 ≤ ‖β‖1,Ω +‖w‖1,Ω +‖ws‖1,Γ +‖θ s
x‖1,Γ +

∥∥θ s
y

∥∥
1,Γ ≤C2.

In what follows we present some regularity results associated to the stiffened bending
plate problem. First,we define the shear terms in the plate and the stiffener as follows:

γ :=
1
t2 (∇w−β ) , (3.48)

α :=
1
t2

(
dws

dx
+θ s

y

)
. (3.49)

Proposition 2 The solution of (3.32)-(3.33) satisfies β |Ωi
∈ H2 (Ωi)

2, w|Ωi
∈ H2 (Ωi)

2,

i = 1,2 and θ s
x , θ s

y , ws ∈ H5/2 (Γ). Moreover, γ |Ωi
∈ H1 (Ωi)

2, i = 1,2 and α ∈ H3/2 (Γ).

Proof. Testing in (3.32) with ϕ s
x ∈ H1

0 (Γ) and setting to zero all the other test functions,
we have

−d2θ s
x

dx2 = λ3 ∈ H−1/2 (Γ) (3.50)

and hence θ s
x ∈ H3/2 (Γ). In a similar way, testing in (3.32) with zs �= 0 and ϕs

y �= 0,
respectively, we obtain that θ s

y ∈ H3/2 (Γ), α ∈ H1/2 (Γ) and, consequently, (3.49) yields
ws ∈ H3/2 (Γ). next we extend ws to the whole domain Ω in such a way that the extension
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belongs to H2 of each subdomain Ωi. More precisely, let w0 ∈H1
0 (Ω) be such that w0|Ωi

∈
H2 (Ωi), i = 1,2 (see [27, Theorem 1.5.2.8]) and

w0|Γ = ws. (3.51)

Analogously, let β 0 ∈ H1
0 (Ω)2: β 0|Ωi

∈ H2 (Ωi), i = 1,2, and

β 0|Γ =
(−θ s

y ,θ
s
x

)
. (3.52)

Let β̃ ∈ H1
0 (Ω)2 and w̃ ∈ H1

0 (Ω) be defined by

β = β̃ +β 0 and w = w̃+w0. (3.53)

Since β |Γ = β 0|Γ and w|Γ = w0|Γ, we have that β̃ |Ωi ∈ H1
0 (Ωi)

2 and w̃|Ωi ∈ H1
0 (Ωi),

i = 1,2. Our next goal is to show that (β̃ |Ωi, w̃|Ωi) is the solution of a plate problem
for which an additional regularity result holds. With this aim, we take η ∈ H 1

0 (Ωi)
2 and

z ∈ H1
0 (Ωi) and extend them by zero to Ω. These extensions that we also denote η and z

clearly satisfy η ∈ H1
0 (Ω)2 and z ∈ H1

0 (Ω). If we take such η and z with vanishing zs, ϕs
x

and ϕs
y in (3.32), we obtain that

ai
2 (β ,η)+

1
t2

∫
Ωi

(∇w−β ) · (∇z−η) =
∫

Ωi

gz ∀(η ,z) ∈ H1
0 (Ωi)

2 ×H1
0 (Ωi) ,

(3.54)

with

ai
2 (β ,η) :=

1
12

{∫
Ωi

Eν
1−ν2 divβ divη +

∫
Ωi

E
1+ν

ε (β ) : ε (η)

}
.

Therefore using (3.53) we have that β̃ |Ωi ∈ H1
0 (Ωi)

2 and w̃|Ωi ∈ H1
0 (Ωi) are the solution

of the following problem:

ai
2

(
β̃ ,η

)
+

1
t2

∫
Ωi

(
∇w̃− β̃

)
· (∇z−η)

=−ai
2 (β 0,η)−

1
t2

∫
Ωi

(∇w0 −β 0) · (∇z−η)+
∫

Ωi

gz

=

∫
Ωi

F ·η +

∫
Ωi

Gz ∀(η,z) ∈ H1
0 (Ωi)

2 ×H1
0 (Ωi) .

Notice that F ∈ L2 (Ω)2 and G ∈ L2 (Ω), because β 0|Ωi
∈ H2 (Ωi)

2 and w0|Ωi
∈ H2 (Ωi).

Hence, using the regularity results of ([2, Theorem 2.1]) we have that (β̃ , w̃)∈H2 (Ωi)
2×

H2 (Ωi), which using (3.53) yields the regularity for β .
The next step is to prove additional regularity for γ and α . With this aim, we observe

first that by using the definition of γ in (3.48) and the regularity of β and w we have that
γ|Ωi

∈ H1 (Ωi)
2, i = 1,2.
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On the other hand, testing problem (3.54) with z ∈ H 1
0 (Ωi) and η = 0, we obtain that

−divγ = g in Ωi.

Therefore, testing (3.32) with z∈ H1
0 (Ω) and all the other variables set to zero, integrating

by parts in each subdomain Ωi and using the equation above, we have that∫
Γ
[[γ ·n]] z+

∫
Γ

λ2z = 0

where [[·]] denotes the jump across Γ. Consequently, we obtain λ2 ∈ H1/2 (Γ) from the
regularity of γ . Therefore, testing (3.32) with zs ∈ H1

0 (Γ) and all the other variables set
to zero we have that α ′ = λ2 and hence α ∈ H3/2 (Γ). Moreover, testing (3.54) with
η ∈ H1

0 (Ωi)
2 and z = 0, we obtain

−div(σ (β )) = γ in Ωi,

where σ (β ) := 1
12

{
E

1+ν ε (β )+ E
1−ν2 divβ

}
is the plane strain stress tensor. On the other

hand, testing (3.32) with η ∈ H1
0 (Ω)2 and all the other test functions set to zero, integrat-

ing by parts in each subdomain Ωi and using the above equation we arrive at∫
Γ
[[σ (β )n]]Γ ·η +

∫
Γ

λ3η2 +λ4η1 = 0.

Consequently, since β |Ωi
∈ H2 (Ωi), i = 1,2, we obtain that λ3, λ4 ∈ H1/2 (Γ). Therefore,

from (3.50) and the analogous expression for θ s
y , we obtain that θ s

x and θ s
y are in H5/2 (Γ).

Finally from these regularity results, (3.49) and the additional regularity of α , we obtain
ws ∈ H5/2 (Γ) and conclude the proof. �

Remark 3.3.1 According to Proposition 2, the solution of problem (3.32)-(3.33) satis-
fies additional regularity. However, we have not proved that the corresponding norms are
bounded independently of t. Indeed, we have used that λ2, λ3 and λ4 belong to H−1/2 (Γ),
which is true but we do not have bounds of ‖λ2‖−1/2,Γ, ‖λ3‖−1/2,Γ and ‖λ4‖−1/2,Γ inde-
pendent of t. In spite of this, the numerical results in Section 3.6 seem to suggest that such
bounds should hold true.

3.4 The discrete problems

We consider separately the discretization of the stiffened in-plane and bending prob-
lems. Let {Th} be a regular family of triangulations consistent with Γ, in the sense that,
for all meshes, Γ is a union of edges of Th. Let T Γ

h be the partition induced by Th in Γ.
We assume that the family {Th} is such that

{
T Γ

h

}
is quasi uniform.
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3.4.1 Stiffened in-plane plate problem

We define:

Xh :=
{

zh ∈ H1
0 (Ω) : zh|T ∈ P1∀T ∈ Th

}
,

P0
1h :=

{
vh ∈ H1

0 (Γ) : vh|� ∈ P1 ∀� ∈ T Γ
h

}
.

The discrete analogue to problem (3.29)-(3.30) reads
Find

(
uh,us

h

) ∈ X2
h ×P1

0h and λ1h ∈ P1
0h such that

a1 (uh,vh)+

∫
Γ

dus
h

dx

dvs
h

dx
+

∫
Γ

λ1h (v1h − vs
h) =

∫
Ω

f · vh

∀ (vh,v
s
h) ∈ X2

h ×P0
1h, (3.55)∫

Γ
χ1h (u1h−us

h) = 0 ∀χ1h ∈ P0
1h. (3.56)

Since X2
h ⊂ H1

0 (Ω)2 and P0
1h ⊂ H1

0 (Γ), by virtue of (3.31) we only need to prove the
following inf-sup condition to be able to apply the classical Babuška-Brezzi theory:

sup
0�=(vh,vs

h)∈Xh×P0
1h

∫
Γ χh

(
v1h − vs

h

)
‖vh‖1,Ω +

∥∥vs
h

∥∥
1,Γ

≥C‖χh‖−1/2,Γ , ∀χh ∈ P0
1h.

To prove this, we will define a Fortin operator Π̄. In what follows we define several aux-
iliary operators that we will use to define Π̄.

First let π̂ : L2 (Γ)→ P1
0h be the L2-projection. Clearly we have that

‖π̂v‖0,Γ ≤C‖v‖0,Γ ∀v ∈ L2 (Γ) . (3.57)

Moreover, it is a classical result (see [25, Lemma 1.131]) that

‖v‖1,Γ ≤C‖v‖1,Γ ∀v ∈ H1
0 (Γ) , (3.58)

provided
{
T Γ

h

}
is a quasi-uniform family of meshes. Consequently, using interpolation

of Banach Spaces we arrive at

‖π̂v‖1/2,Γ ≤C‖v‖1/2,Γ . (3.59)

Next, let ISZ : H1
0 (Ω)→ Xh be a Scott-Zhang interpolation operator (see [46]) such that if

v ∈ H1
0 (Ω) satisfies v|Γ ∈ P0

1h, then (ISZv)|Γ = v|Γ.

On the other hand let E : H1/2
00 (Γ)→ H1

0 (Ω) be a continuous right-inverse of the trace
operator on Γ. Notice that

ISZ (Evh) = vh ∀vh ∈ P0
1h. (3.60)
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Now we are in the a position to define the Fortin operator

Π̄(v,vs) := ((ISZ (E (π̂ (v1|Γ))) , ISZv2) , π̂vs) .

As a consequence of (3.58), (3.59) and the boundedness of the operators E and ISZ we
have∥∥Π̄(v,vs)

∥∥
H1

0 (Ω)2×H1
0 (Γ)

≤C
{
‖v‖1,Ω +‖vs‖1,Γ

}
∀(v,vs) ∈ H1

0 (Ω)2×H1
0 (Γ) .

Moreover Π̄ satisfies the commuting diagram property. In fact, because of (3.60)∫
Γ
(v1 − ISZ (E (π̂ (v1|Γ))))χh = 0 ∀(v,vs) ∈ H1

0 (Ω)2×H1
0 (Γ) , χh ∈ P0

1h.

Therefore Π̄ satisfies the assumptions of the Fortin lemma ([25]). Consequently we have
that the Babuška-Brezzi theory (see for instance [10]) allows us to prove the next theorem.

Theorem 3.4.1 Problem (3.55)-(3.56) has a unique solution
(
uh,us

h

) ∈ X2
h ×P0

1h, λ1h ∈
P0

1h and there exists a positive constant C such that, if (u,us) is the solution to problem
(3.29)-(3.30), then

‖u−uh‖1,Ω +‖us −us
h‖1,Γ +‖λ1 −λ1h‖−1/2,Γ

≤C

{
inf

vh∈X2
h

‖u− vh‖1,Ω + inf
vs

h∈P0
1h

‖us − vs
h‖1,Γ + inf

χ1h∈P0
1h

‖λ1 −χ1h‖−1/2,Γ

}
.

The error estimate above depends as usual on some additional regularity of the solu-
tion to the continuous problem (3.29)-(3.30). In what follows we derive a simpler form of
this problem. By testing (3.29) with vs ∈ H1

0 (Γ) and setting the other variables to zero we
have

−d2us

dx2 = λ1 ∈ H−1/2 (Γ) (3.61)

and hence, us ∈ H3/2 (Γ). Moreover, from (3.30), u1 = us on Γ. On the other hand, using
different test functions in (3.29) it can be shown that

[[σ (u)n]]Γ =

[
λ1

0

]
(3.62)

where σ (u) := E
1+ν ε (u)+ Eν

(1+ν)(1−2ν) (divu) Ib is the plane stress tensor. Therefore, u ∈
H1

0 (Ω)2 is the solution to the following problem:

−div(σ (u)) = f ∈ L2 (Ωi) i = 1,2,

u1 = us ∈ H1/2
00 (Γ)∩H3/2 (Γ) ,[[

∂u2

∂n

]]
= 0 on Γ.

Moreover , λ1 =
E

2(1+ν)

[[
∂u1
∂y + ∂u2

∂x

]]
.
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3.4.2 The stiffened bending plate problem

To discretize this problem we consider the DL3 element introduced in [22]. For each
T ∈Th, let μ1, μ2, μ3 be its barycentric coordinates. We denote by τi a unit tangent vector
to the edge μi = 0 and define

p1 = μ2μ3τ1, p2 = μ1μ3τ2, p3 = μ1μ2τ3. (3.63)

Let

Y h :=
{

η ∈ H1
0 (Ω)2 : η |T ∈ P1 ⊕〈p1,p2,p3〉 ∀T ∈ Th

}
,

Wh :=
{

v ∈ H1
0 (Ω) : v|T ∈ P1 ∀T ∈ Th

}
,

P0
kh :=

{
ϕ ∈ H1

0 (Γ) : ϕ|� ∈ Pk ∀� ∈ T Γ
h

}
, k = 1,2,

Pd
0h :=

{
ϕ ∈ L2 (Γ) : ϕ|� ∈ P0 ∀� ∈ T Γ

h

}
,

Γh :=

{
ηh ∈ H0 (rot,Ω) : ηh|T ∈ P2

0 ⊕P0

( −x2

x1

)
∀T ∈ Th

}
,

the latter being the rotated Raviart-Tomas space (see [41]). Let Π be the rotated Raviart-
Thomas interpolant on this space (see [41] again). This operator is well defined in H 1 (Ω)2.
Moreover for η ∈ H1 (Ω)2 ∩H0 (rot,Ω), Πη ∈ Γh and there holds

‖η −Πη‖0,Ω ≤Ch‖η‖1,Ω , (3.64)

Let π : L2 (Γ)→ Pd
0h be the orthogonal projection onto Pd

0h. It is well known that

‖v−πv‖0,Γ ≤Ch‖v‖1,Γ ∀v ∈ H1 (Γ) . (3.65)

Let π̃ : L2 (Γ)→ P0
2h be the orthogonal projection onto P0

2h.
Finally, let

Hh :=Y h ×Wh×P0
1h ×P0

1h×P0
2h and Qh := P0

1h×P0
1h×P0

2h

The discrete problem is defined as follows:

Find
(

β h,wh,ws
h,θ

s
xh,θ

s
yh

)
∈ Hh and (λ2h,λ3h,λ4h) ∈ Qh such that

a2 (β h,ηh)+
1
t2

∫
Ω
(∇wh −Πβ h) · (∇zh−Πηh)+

∫
Γ

∂θ s
xh

∂x

∂ϕs
xh

∂x
+
∫

Γ

∂θ s
yh

∂x
,
∂ϕs

yh

∂x

+
1
t2

∫
Γ

(
∂ zs

h

∂x
+πθ s

yh

)(
∂ zs

h

∂x
+πϕs

yh

)
+

∫
Γ

λ2h (zh − zs
h)+

∫
Γ

λ3h (η2h −ϕs
xh)

+
∫

Γ
λ4h

(
η1h −ϕs

yh

)
=

∫
Ω

gzh ∀
(

ηh,zh,z
s,ϕs

xh,ϕ
s
yh

)
∈ Hh, (3.66)∫

Γ
χ2h (wh−ws

h)+
∫

Γ
χ3h (β2h −θ s

xh)+
∫

Γ
χ4h

(
β1h+θ s

yh

)
= 0

∀(χ2h,χ3h,χ4h) ∈ Qh. (3.67)
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The existence and uniqueness of the solution to(3.66)-(3.67) is obtained using the
Babuška-Brezzi theory. The ellipticity condition

a2 (ηh,ηh)+
1
t2

∫
Ω
|∇zh −Πηh|2 +

1
t2

∫
Γ

(
∂ zs

h

∂x
+πϕs

yh

)2

+

∫
Γ

∣∣∣∣∂ϕs
xh

∂x

∣∣∣∣2 +∫
Γ

∣∣∣∣∣∂ϕs
yh

∂x

∣∣∣∣∣
2

≥C

{
‖ηh‖2

1,Ω +‖zh‖2
1,Ω +‖zs

h‖2
1,Γ +‖ϕs

xh‖2
1,Γ +

∥∥∥ϕs
yh

∥∥∥2

1,Γ

}
∀
(

ηh,zh,z
s,ϕs

xh,ϕ
s
yh

)
∈ Hh,

is attained from the ellipticities of the discrete unstiffened plate problem (see for instance
[22]) and the discrete beam problem (see for instance [1]) and Poincaré inequality in
H1

0 (Γ).
On the other hand, it is simple to show that the discrete inf-sup condition holds true

(with a positive constant in principle depending of h) if and only if

sup
0�=

(
η ,zh,zs

h,ϕ
s
xh,ϕ

s
yh

)
∈Hh

∫
Γ

χ2h (zh− zs
h)+χ3h (η2h −ϕs

xh)+χ4h

(
η1h+ϕs

yh

)
> 0

∀(χ2h,χ3h,χ4h) ∈ Qh.

The latter can be proved to hold by taking χ2h = zh|Γ − zs
h, χ3h = η2h|Γ −ϕs

xh and χ4h =

η1h|Γ +ϕs
yh. Thus we arrive at the following lemma.

Lemma 3.4.1 Problem (3.66)-(3.67) has a unique solution.

3.5 Error estimate

Let us introduce the discrete shear terms approximating (3.48) and (3.49) as follows:

γh :=
1
t2 (∇wh −Πβ h) , (3.68)

αh :=
1
t2

(
∂ zs

h

∂x
+πθ s

yh

)
. (3.69)

The first step to obtain the estimates is to write an error error equation.

With this aim, we test the continuous problem (3.32)-(3.33) and the discrete problem
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(3.66)-(3.67) with
(

ηh,zh,zs
h,ϕ

s
xh,ϕ

s
yh

)
∈ Hh and obtain

a2 (β −β h,ηh)+
∫

Ω
(γ − γh) · (∇zh−Πηh)+

∫
Γ
(α −αh)

(
∂ zs

∂x
+πϕs

y

)
+
∫

Γ

(
∂θ s

y

∂x
− ∂θ s

yh

∂x

)
∂ϕs

y

∂x
+
∫

Γ

(
∂θ s

x

∂x
− ∂θ s

xh

∂x

)
∂ϕs

x

∂x
+
∫

Γ
(λ2 −λ2h)(z− zs)

+
∫

Γ
(λ3 −λ3h)(η2 −ϕs

x)+
∫

Γ
(λ4 −λ4h)

(
η1 −ϕs

y

)
=

∫
Ω

γ · (ηh−Πηh)+

∫
Γ

α
(

πϕs
yh −ϕs

yh

)
∀
(

ηh,zh,z
s
h,ϕ

s
xh,ϕ

s
yh

)
∈ Hh, (3.70)∫

Γ
χ2h (w−wh − (ws −ws

h))+

∫
Γ

χ3h (β2 −β2h − (θ s
x −θ s

xh))

+

∫
Γ

χ4h

(
β1 −β1h+θ s

y −θ s
yh

)
= 0 ∀(χ2h,χ3h,χ4h) ∈ Qh. (3.71)

The following lemma well be used to prove the error estimates.

Lemma 3.5.1 Given β̂ ∈ Y h, ŵ ∈Wh, let

γ̂ := t−2
(

∇ŵ−Πβ̂
)
∈ Γh,

θ̂ s
x := β̂2

∣∣∣
Γ
∈ P0

1h,

θ̂ s
y := −β̂1

∣∣∣
Γ
∈ P0

2h,

ŵs := ŵ|Γ ∈ P0
1h,

α̂ := t−2
(

dŵs

dx
+πθ̂ s

y

)
∈ Pdh

0 .

Then, we have∥∥∥β̂ −β h

∥∥∥
1,Ω

+ t ‖γ̂ − γh‖0,Ω + t ‖α̂ −αh‖0,Γ +
∥∥θ̂ s

x −θ s
xh

∥∥
1,Γ +

∥∥∥θ̂ s
y −θ s

yh

∥∥∥
1,Γ

≤C

{∥∥∥β̂ −β
∥∥∥

1,Ω
+ t ‖γ̂ − γ‖0,Ω + t ‖α̂ −α‖0,Γ +

∥∥θ̂ s
x −θ s

x

∥∥
1,Γ

+
∥∥θ̂ s

y −θ s
y

∥∥
1,Γ +h‖γ‖0,Ω +h‖α‖0,Γ

}
. (3.72)

Proof. Let R̂ : H−1/2 (Γ) → P0
1h and R̃ : H−1/2 (Γ) → P0

2h be the projectors respectively
defined for any λ ∈ H−1/2 (Γ) by∫

Γ

(
λ − R̂λ

)
χh = 0 ∀χh ∈ P0

1h,∫
Γ

(
λ − R̃λ

)
χh = 0 ∀χh ∈ P0

2h.
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Using this in the error equation (3.70) we have

a2

(
β̂ −β h,ηh

)
+

∫
Ω
(γ̂ − γh) · (∇zh−Πηh)+

∫
Γ
(α̂ −αh)

(
∂ zs

h

∂x
+πϕs

yh

)
+

∫
Γ

(
∂ θ̂ s

x

∂x
− ∂θ s

xh

∂x

)
∂ϕs

xh

∂x
+

∫
Γ

(
∂ θ̂ s

y

∂x
− ∂θ s

yh

∂x

)
∂ϕs

yh

∂x

=−
∫

Γ

(
R̂λ2 −λ2h

)
(zh − zs

h)−
∫

Γ

(
R̂λ3 −λ3h

)(
η1h −ϕs

yh

)
−
∫

Γ

(
R̃λ4 −λ4h

)
(η2h +ϕs

xh)+a2

(
β̂ −β ,ηh

)
+

∫
Ω
(γ̂ − γ) · (∇zh−Πηh)+

∫
Γ
(α̂ −α)

(
∂ zs

h

∂x
−πϕs

yh

)
+

∫
Γ

(
∂ θ̂ s

x

∂x
− dθ s

x

dx

)
∂ϕs

xh

∂x
+

∫
Γ

(
∂ θ̂ s

y

∂x
− dθ s

y

dx

)
∂ϕs

yh

∂x

+
∫

Ω
γ · (ηh −Πηh)+

∫
Γ

α
(

πϕs
yh−ϕs

yh

)
.

Now, take ηh := β̂ −β h, zh := ŵ−wh, zs := ŵs−ws
h, ϕs

xh := θ̂ s
x −θ s

xh and ϕs
yh := θ̂ s

y −θ s
yh

and use that ŵs = ŵ|Γ, θ̂ s
x = β̂1

∣∣∣
Γ
, θ̂ s

y =− β̂2

∣∣∣
Γ

and (3.71), to obtain∫
Γ

(
R̂λ2 −λ2h

)
(ŵ−wh − (ŵs −ws

h))+
∫

Γ

(
R̂λ3 −λ3h

)(
β̂1 −β1h −

(
θ̂ s

x −θ s
xh

))
+
∫

Γ

(
R̃λ4 −λ4h

)(
β̂2 −β2h + θ̂ s

y −θ s
yh

)
= 0.

Hence, using the ellipticity of a2 (cf. (3.16)), the definition of γ̂ and α̂ , (3.68), (3.69), and
a little of algebra we obtain∥∥∥β̂ −β h

∥∥∥2

1,Ω
+ t2‖γ̂ − γh‖2

0,Ω + t2‖α̂ −αh‖2
0,Γ +

∥∥∥θ̂ s
y −θ s

yh

∥∥∥2

1,Γ
+
∥∥θ̂ s

x −θ s
xh

∥∥2
1,Γ

≤C

{∥∥∥β̂ −β
∥∥∥2

1,Ω
+ t2‖γ̂ − γ‖2

0,Ω + t2‖α̂ −α‖2
0,Γ +C2

∥∥θ̂ s
y −θ s

y

∥∥2

1,Γ

+
∥∥θ̂ s

x −θ s
x

∥∥2
1,Γ

}
+‖γ‖0,Ω

∥∥∥(β̂ −β h

)
−Π

(
β̂ −β h

)∥∥∥
0,Ω

+‖α‖0,Γ

∥∥∥(θ̂ s
y −θ s

yh

)
−π

(
θ̂ s

y −θ s
yh

)∥∥∥
0,Γ

.

where we have used (3.64) and (3.65) to obtain the last two terms. Thus we conclude the
lemma. �

Next step consists in defining β̂ and ŵ so that appropriate error estimates hold for the
right hand side of (3.72). With this aim we will use the Lagrange interpolant IL of different
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functions β1, β2, w, θ s
x , etc. This interpolant is well defined because of the additional

regularity proved in Proposition 2. Moreover, for each edge � of the triangulation, let β�

be a unit tangent vector and b� the piecewise quadratic bubble associated to �, so that b�β�

is a tangential bubble as defined in (3.63).
To define β̂ we use the Lagrange interpolant of β enriched with quadratic tangential

bubbles so that, for all edges �, ∫
�
β̂ ·β� =

∫
�
β ·β�. (3.73)

Namely
β̂ := IL (β )+∑

�

c�b�β�, (3.74)

with

c� :=
6
|�|

∫
�
(β − ILβ ) ·β�. (3.75)

Based on results from [26], it was shown in [22] that∥∥∥β − β̂
∥∥∥

1,Ωi

≤Ch‖β‖2,Ωi
, i = 1,2. (3.76)

On the other hand, we use the plain Lagrange interpolant of w to define ŵ:

ŵ := ILw. (3.77)

Our next goal is to estimate ‖γ̂ − γ‖0,Ω. Notice that, in spite of the fact that γ /∈ H1 (Ω)2,

its rotated Raviart-Thomas interpolant is well defined because γ|Ωi
∈ H1 (Ωi)

2 and the
tangential components of γ|Ω1

and γ|Ω2
coincide on Γ (see [41]). Moreover, an error

estimate similar to (3.64) also holds in this case; namely,

‖γ −Πγ‖0,Ω ≤Ch
(
‖γ‖1,Ω1

+‖γ‖1,Ω2

)
. (3.78)

On the other hand another well known property of rotated Raviart-Tomas interpolant is
that Π(∇w) = ∇(ILw) := ∇ŵ (see [41] again). Therefore,

γ̂ :=
1
t2 (∇ŵ−Πβ ) =

1
t2 Π(∇w−β ) = Πγ. (3.79)

Next, for θ̂ s
x , since θ s

x = β2 (cf. 3.35), we have that

θ̂ s
x := β̂2

∣∣∣
Γ
= (ILβ2)|Γ = ILθ s

x

and, hence, ∥∥θ s
x − θ̂ s

x

∥∥
1,Γ ≤Ch‖θ s

x‖2,Γ . (3.80)
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Analogously, for θ̂ s
y we have

θ̂ s
y :=− β̂1

∣∣∣
Γ
=− (ILβ1)|Γ − ∑

�∈T Γ
h

c� b�. (3.81)

Since θ s
y = −β1|Γ (cf. (3.35)), there holds.

∥∥θ s
y − θ̂ s

y

∥∥
1,Γ ≤ ∥∥θ s

y − ILθ s
y

∥∥
1,Γ +

∥∥∥∥∥∥ ∑
l∈T Γ

h

cl bl

∥∥∥∥∥∥
1,Γ

. (3.82)

The first term on the right hand side above is bounded by the standard estimates for the
Lagrange interpolant. For the second one we write∥∥∥∥∥∥ ∑

�∈T Γ
h

c� b�

∥∥∥∥∥∥
2

1,Γ

= ∑
�∈T Γ

h

|c�|2 ‖b�‖2
1,�

Straightforward computations show that ‖b�‖2
1,� ≤ C

|�| . On the other hand, for the coeffi-
cients c� we use that β ·β� = β1 =−θ s

y on �. Consequently, ILβ ·β� =−ILθ s
y , and we have

from (3.75)

|c�|2 ≤ 36
|�|

∥∥θ s
y − ILθ s

y

∥∥2
0,�

≤C |�|3∥∥θ s
y

∥∥2
2,�

. (3.83)

Altogether, we obtain ∥∥θ s
y − θ̂ s

y

∥∥
1,Γ ≤Ch

∥∥θ s
y

∥∥
2,Γ . (3.84)

It remains to estimate the term ‖α̂ −α‖0,Γ in (3.72). With this aim we will show that
α̂ = πα . First , it is simple to show that

π
dws

dx
=

d
dx

(ILws) . (3.85)

Hence, from (3.35), (3.77) and the definition of ŵs from Lemma 3.5.1 we obtain

π
dws

dx
=

dŵs

dx
.

Secondly we will show that
πθ s

y = πθ̂ s
y . (3.86)

To prove this, it is enough to show that
∫
�θ s

y =
∫
� θ̂ s

y for all � ∈ T Γ
h , which follows from

(3.35), (3.73) and the definition of θ̂ s
y in Lemma 3.5.1:∫

�
θ s

y =−
∫
�
β1 =−

∫
�
β̂1 =

∫
�
θ̂ s

y .
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Therefore, (3.86) and (3.85) leads to

α̂ =
1
t2

(
dŵs

dx
+πθ̂ s

y

)
=

1
t2 π

(
dws

dx
+θ s

y

)
= πα. (3.87)

Consequently, from (3.65) we have

‖α̂ −α‖0,Γ ≤Ch‖α‖1,Γ . (3.88)

Now, we are in a position to prove the following theorem.

Theorem 3.5.1 Let
(
β ,w,ws,θ s

x ,θ s
y

)
and

(
β h,wh,ws

h,θ
s
xh,θ

s
yh

)
be the solutions of prob-

lems (3.32)-(3.33) and (3.66)-(3.67), respectively. Let γ , α , γh and αh be as defined in
(3.48), (3.49), (3.68) and (3.69), respectively. Then

‖β −β h‖1,Ω +‖θ s
x −θ s

xh‖1,Γ +
∥∥∥θ s

y −θ s
yh

∥∥∥
1,Γ

+ t ‖γ − γh‖0,Ω + t ‖α −αh‖0,Γ

≤Ch
{
‖β‖2,Ω1

+‖β‖2,Ω2
+ t ‖γ‖1,Ω1

+ t ‖γ‖1,Ω2
+‖γ‖0,Ω

+‖θ s
x‖2,Γ +

∥∥θ s
y

∥∥
2,Γ + t ‖α‖1,Γ +‖α‖0,Γ

}
. (3.89)

Proof. Let β̂ and ŵ be defined as in (3.74) and (3.73), respectively. Let γ̂ , θ̂ s
x , θ̂ s

y and α̂ as
in Lemma 3.5.1. Adding and subtracting these terms on the left hand side of (3.89), using
triangular inequality, Lemma 3.5.1 and estimates (3.76), (3.78), (3.80), (3.84) and (3.88),
we conclude the proof. �

Corollary 3.5.1 Under the same assumptions as in Theorem 3.5.1, there holds

‖w−wh‖1,Ω +‖ws −ws
h‖1,Γ

≤Ch
{
‖β‖2,Ω1

+‖β‖2,Ω2
+ t ‖γ‖1,Ω1

+ t ‖γ‖1,Ω2
+‖γ‖0,Ω

+‖θ s
x‖2,Γ +

∥∥θ s
y

∥∥
2,Γ + t ‖α‖1,Γ +‖α‖0,Γ

}
(3.90)

Proof. From (3.48) and (3.68), we have

∇w−∇wh = t2 (γ − γh)+β −Πβ h.

Hence,

|w−wh|1,Ω ≤ t2‖γ − γh‖0,Ω +‖β −Πβ‖0,Ω +‖Π(β −β h)‖0,Ω

≤ t2‖γ − γh‖0,Ω +‖β −Πβ‖0,Ω +C‖β −β h‖1,Ω , (3.91)
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The latter because of (3.64). Analogously, from (3.49) and (3.69), we have

dws

dx
− dws

h

dx
= t2 (α −αh)+θ s

y −πθ s
yh

and hence

|ws −ws
h|1,Γ ≤ t2‖α −αh‖0,Γ +

∥∥θ s
y −πθ s

y

∥∥
0,Γ +

∥∥∥π
(

θ s
y −θ s

yh

)∥∥∥
0,Γ

≤ t2‖α −αh‖0,Γ +
∥∥θ s

y −πθ s
y

∥∥
0,Γ +

∥∥∥θ s
y −θ s

yh

∥∥∥
0,Γ

Therefore the corollary follows from these estimates (3.64), (3.65) and Theorem 3.5.1. �

3.6 Numerical Experiments

In this section we report some numerical results obtained with a code which imple-
ments the method analyzed above. The aim of the numerical experimentation is to assess
the performance of the method. The error estimate from Theorem 3.5.1 involves higher
order norms of quantities which are known to be bounded (cf. Proposition 2). These bound
are independent of the thickness t for uncoupled plates ([2]) and rods ([3]). However anal-
ogous thickness independent bounds have not been proved for a stiffened plate. Therefore,
one of the goals of the reported numerical experimentation is to test whether the method
is actually locking-free.

To solve problem (3.66)-(3.67), first we eliminate the Lagrange multipliers and impose
the constraints directly by writing the variables corresponding to the stiffener in terms of
those of the plate. In fact, (3.67) implies that

ws
h = wh, θ s

xh = β2h, θ s
yh =−β1h on Γ.

Thus, problem (3.66)-(3.67) turns out to be equivalent to the following one, in which we
included again the physical constants that have been set to 1 for the analysis:

t3a2 (β h,ηh)+
∫

Ω
κμt (∇wh −Πβ h) · (∇zh −Πηh)+

∫
Γ

EsIyy
∂β1h

∂x
∂η1h

∂x

+
∫

Γ
κsμsA

(
∂ zh

∂x
−πβ1h

)(
∂ zh

∂x
−πη1h

)
+
∫

Γ
μsJ

∂β2h

∂x
∂η2h

∂x

= t
∫

Ω
gzh, ∀ (zh,ηh) ∈Wh×Y h. (3.92)

Let us remark that the stiffness matrix of the problem can be easily obtained by static
condensation from the separate corresponding stiffness matrices of the plate and the rod.
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Figure 3.4: Square plate. Finite element mesh (N = 4).

In all tests, we considered a square plate of side length 60 cm. The stiffener crosses the
plate joining the mid-points of two opposite edges.

We use uniform meshes obtained by refining the coarse one shown in Figure 3.4.
The parameter N represents the number of elements on each side of the plate. We took
κ = κs = 1 as correction factors in the plate and the stiffener, respectively, for all the tests.

3.6.1 Test 1: A free vibration problem for a clamped stiffened plate

Since no analytical solution for the load problem of the stiffened plate is available to
compare with, we used a vibration problem solved in [28] by means of MITC9 elements.

For the vibration problem, we have to consider the mass terms of the plate and the
stiffener instead of the load terms. Thus, the vibration problem consists in finding ωh > 0
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and (wh,β h) ∈Wh×Y h such that

t3a2 (β h,ηh)+

∫
Ω

κμt (∇wh −Πβ h) · (∇zh−Πηh)+

∫
Γ

EsIyy
∂β1h

∂x
∂η1h

∂x

+

∫
Γ

κsμsA

(
∂ zh

∂x
−πβ1h

)(
∂ zh

∂x
−πη1h

)
+

∫
Γ

μsJ
∂β2h

∂x
∂η2h

∂x

= ω2
h

(
t
∫

Ω
ρwhzh+

t3

12

∫
Ω

ρβ h ·ηh +

∫
Γ

ρsAwhzh +

∫
Γ

ρsIyyβ1hη1h

+
∫

Γ
ρsJβ2hη2h

)
∀ (zh,ηh) ∈Wh ×Y h, (3.93)

where ωh is the unknown vibration frequency and ρ and ρ s are the densities of the plate
and the stiffener, respectively. We applied the method to a square clamped stiffened plate
of side length 60 cm and thickness 1 mm. We used the same physical parameters as in
[28]:

E = Es = 68.85×109 Pa,
ν = νs = 0.34,
ρ = ρs = 2780 kg/m3,

A = 67 mm2,

Iyy = 2290 mm4,

J = 22.33 mm4.

Table 3.1 shows the six lowest vibration frequencies computed with the method on
four successively refined meshes. The table includes extrapolated frequencies and the
order of convergence in powers of h estimated by means of a least squares fitting. It also
includes the frequencies computed in [28] with MITC9 elements.

Table 3.1: Test 1: Lowest vibration frequencies of a square clamped stiffened plate.

Mode N = 16 N = 32 N = 48 N = 64 order extrapolated [28]

ω1 50.919 50.527 50.452 50.426 1.97 50.392 50.36
ω2 64.266 63.810 63.719 63.687 1.89 63.641 63.65
ω3 76.221 75.298 75.124 75.063 1.97 74.982 74.95
ω4 86.656 85.694 85.510 85.445 1.95 85.358 85.36
ω5 116.762 114.468 114.022 113.865 1.93 113.650 113.63
ω6 123.714 121.363 120.895 120.729 1.89 120.493 120.52

We observe a good agreement between the values computed with both methods. On
the other hand, a quadratic order of convergence can be clearly appreciated. Since typi-
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cally the order of convergence of the eigenvalues doubles that of the load problem, this
corresponds to O(h) for the latter, which is the optimal one for the elements we have used.

3.6.2 Test 2: Robustness with respect to the stiffener properties

The aim of this test is to assess the robustness of the method with respect to the
physical parameters of the stiffener.

We considered two asymptotics with respect to the thickness t. In the first one, the
stiffener rigidity increases a t becomes smaller. As discussed above, the proper scaling for
attaining a limit as t goes to zero is to take E s proportional to 1/t (cf. (3.13)). This is the
reason why we used Es := E/t2 for this experiment. Therefore, in the limit as t goes to
zero, this problem corresponds to that of a clamped plate also clamped along its mid-line
Γ.

The material and the stiffener cross-sectional properties were taken as follows:

A = t2,

Iyy = t4/12,
J = t4/6,
E = 68.85×109 Pa,
ν = νs = 0.34.

The load was taken as constant on the whole plate:

g = 106 N/m4 t2.

We took various values of the thickness ranging from 10 to 0.01 mm. We compared the
transverse displacement wh and the rotation β h computed with the present method with
those corresponding to the plate clamped along Γ, which were computed by DL3 elements
([22]). We denote the latter by wc

h and β c
h. We measure the deviation between both models

by means of the relative differences∣∣wh −wc
h

∣∣
1,Ω∣∣wc

h

∣∣
1,Ω

and
|β h−β c

h|1,Ω
|β c

h|1,Ω
computed on the mesh corresponding to N = 64. It can clearly seen that the relative dif-
ferences decreases linearly with the thickness t.

This experiment shows that the stiffened plate behaves as expected in this limit case.
As a second experiment we took E s = E and the same values as above for A, Iyy, J,

E and ν . In this case, as t becomes smaller, the effect of the stiffener tends to disappear.
In fact, A = t2 corresponds to a rod section with width and height proportional to t. In
the limit as t goes to zero this problem correspond to that of an unstiffened plate. Once
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Table 3.2: Test 2: Comparison of stiffened plates with an almost rigid and a perfectly rigid
stiffener.

Thickness (m)
|wh−wc

h|1,Ω
|wc

h|1,Ω
|β h−β c

h|1,Ω
|β c

h|1,Ω
10−2 2.6914×10−2 1.6122×10−2

10−3 2.8980×10−3 1.6167×10−3

10−4 2.9001×10−4 1.6178×10−4

10−5 2.9351×10−5 1.6279×10−5

more we took values of t ranging from 10 to 0.01mm and we compared the transverse
displacements and the rotations computed with the present method with those of the un-
stiffened plate computed by DL3 elements. We denote the latter by wf

h and β f
h. We report

in Table 3.3 the relative differences between both models computed again on the mesh
corresponding to N = 64.

Table 3.3: Test 2: Comparison of a stiffened plate with a very soft stiffener and plate
without a stiffener.

Thickness (m)
|wh−wf

h|1,Ω
|wf

h|1,Ω
|β h−β f

h|1,Ω
|β f

h|1,Ω
10−2 1.4452×10−2 1.5399×10−2

10−3 1.4624×10−3 1.5650×10−3

10−4 1.4643×10−4 1.5687×10−4

10−5 1.5688×10−5 1.6183×10−5

Once more, it can be clearly observed a linear decrease with respect to t. Therefore,
the behavior of this softly stiffened plates agrees with what expected, too.

On the other hand, Tables 3.2 and 3.3 show that the method is thoroughly robust with
respect to the physical parameters of the stiffener. Moreover, in both cases the results do
not deteriorate as t becomes smaller, which suggests that the method is locking free.

3.6.3 Test 3: Testing the locking-free character of the method

The main goal of this test is to confirm experimentally that the method is locking
free. In this case we took the scaling Es := E/t which allow us to achieve a well posed
limit problem. We computed a very accurate approximation of the solution with the mesh
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O 

X 

Y 

Z 

Figure 3.5: Test 4: Transverse displacement field computed with the method proposed
(N = 16)

corresponding to N = 64 and we took it an ‘exact’ solution. We denote by we the cor-
responding transversal displacement. We estimated the error of the numerical solutions
computed on coarse meshes (N = 8,12,16) by means of |we −wh|1,Ω.

We report in Table 3.4 the values of |we −wh|1,Ω for different meshes and decreasing
values of the thickness. We also include the orders of convergence estimated by means of
a least squares fitting and, in the last row, the extrapolated limit values corresponding to
t = 0.

Table 3.4: Test 3: Testing the locking-free character of the method, |we −wh|1,Ω ×108.

Thickness (m) N = 8 N = 12 N = 16 N = 20 order

10−2 0.48539537 0.32111497 0.26220361 0.17661659 1.05
10−3 0.48461630 0.32097671 0.26194608 0.17665166 1.05
10−4 0.48460920 0.32097551 0.26194343 0.17665175 1.05
10−5 0.48460877 0.32097521 0.26194321 0.17665155 1.05

t = 0 (extr.) 0.48460875 0.32097512 0.26194319 0.17665121 1.05

We observe that the method is perfectly locking-free and that an order of convergence
close to one is attained even for extremely small values of the thickness. Thus, this ex-
periment provides a solid numerical evidence of the locking-free character of the method.

Finally Figure 3.5 show the transverse displacement field of the stiffened plate model
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reported in Table 3.4 for t = 0.001m and N = 16. In this case the relation E s/E = 104.
The effect of the stiffener can be clearly appreciated in the Figure 3.5.

3.7 Conclusion

We analyzed the load problem of the clamped stiffened plate modeled by Reissner-
Mindlin equations. We restrict our analysis to the case of concentrically stiffened plates,
in which the mid-line of the stiffener lies on the mid-surface of the plate. In such a case,
the problem decouples into two well posed problems: a stiffened in-plate plate problem
and a stiffened bending plate problem.

We propose a finite element method based on a standard linear triangular elements
for the in-plane problem and DL3 elements for the bending problem. The analysis of the
former is straightforward, since it turns out a standard elliptic problem not depending on
the plate thickness.

The analysis of the bending problem is more involved. We proved optimal order error
estimates for all the quantities in terms of higher order norms of these quantities. We
have proved that this higher order norms are bounded, but we could not obtain bounds
independent of the plate thickness.

Because of this the main achievement of the numerical experimentation was to assess
the locking-free character of the method. The numerical tests also confirmed the optical
order of convergence and showed the robustness of the method with respect to the physical
parameters of the stiffener.





Chapter 4

Conclusiones y proyecciones

4.1 Conclusiones

• Se analizó el problema de vibraciones libres de una barra empotrada de Timoshenko
de geometrı́a arbitraria utilizando hipótesis un poco más generales que las del tra-
bajo de Arunakirinathar & Reddy (en el que se estudió el problema fuente) de-
mostrando un orden de convergencia óptimo para los desplazamientos, rotaciones
y esfuerzos de corte asociados a las autofunciones, además de un doble orden de
convergencia para las frecuencias de vibración. También se demostró que el método
respectivo es libre de bloqueo, es decir, la convergencia del método no se deteriora
cuando el espesor caracterı́stico de la barra se hace pequeño.

• Se estudió también el problema de vibraciones libres de una placa laminada empo-
trada modelada por las ecuaciones de Reissner-Mindlin. Se consideró un elemento
finito de placa DL3 para los términos asociados a la flexión y lineales a trozos y
continuos para los desplazamientos en el plano. Se demostró un orden de conver-
gencia óptimo en H1 y L2 para los desplazamientos y rotaciones y un doble orden
de convergencia para las frecuencias de vibración. Se demostró que el método es li-
bre de bloqueo y se presentaron resultados numéricos que confirman los resultados
teóricos, extendiendo la experimentación a condiciones de contorno más generales
con resultados satisfactorios.

• Se analizó el problema de cargas de una placa rigidizada modelada por las ecua-
ciones de Reissner-Mindlin. Restringiendo el análisis al caso de placas rigidizadas
concéntricas. Se muestra que en tal caso el problema se descompone en un proble-
ma rigidizado en el plano y un problema rigidizado de flexión. Se propuso utilizar
elementos lineales a trozos y continuos para el problema en el plano y elementos
de placa DL3 para el problema de la placa rigidizada. El análisis del primero es
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estándar e inclusive independiente del espesor. En el segundo se demostraron esti-
maciones del error óptimas para todas las cantidades en término de normas de orden
superior de esas cantidades, las cuales se demostró que son finitas, aunque no de
manera independiente del espesor. Se llevó a cabo una experimentación numérica
adecuada que permitió mostrar el carácter libre de bloqueo de este método de ele-
mentos finitos.

4.2 Proyecciones

• En el Capı́tulo 3 queda abierto el estudio de la regularidad del problema de flexión
de placas rigidizadas con regularidad independiente del espesor de la placa.

• Estudiar el problema de placas laminadas rigidizadas combinando los elementos de
los Capı́tulos 2 y 3.

• Estudiar el problema de placas rigidizadas con rigidizadores excéntricos.

• En el Capı́tulo 3, Estudiar el uso de mallas de elementos finitos que no respeten la
dirección del rigidizador.
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RODRÍGUEZ, R. Error estimates for low-order isoparametric quadrilateral finite
elements for plates, SIAM J. Numer. Anal., 41 (2003), pp. 1751–1772.
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