ON THE EXISTENCE OF BOUNDED SOLUTIONS FOR A NONLINEAR
ELLIPTIC SYSTEM
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ABSTRACT. This work deals with the system (—A)"u = a(z)v?, (=A)"v = b(z)u? with
Dirichlet boundary condition in a domain 2 C IR", where 2 is a ball if n > 3 or a smooth
perturbation of a ball when n = 2.

We prove that, under appropriate conditions on the parameters (a, b, p, ¢, m,n), any non-
negative solution (u,v) of the system is bounded by a constant independent of (u,v). More-
over, we prove that the conditions are sharp in the sense that, up to some border case, the
relation on the parameters are also necessary.

The case m = 1 was considered by Souplet in [17]. Our paper generalize to m > 1 the
results of that paper.

1. INTRODUCTION

In this paper we consider the nonlinear problem

a(z)vP in Q
= b(x) ul in Q (1.1)

where 2 is the unit ball, namely, Q@ = B = {# € R" : |z| < 1} when n > 3, and B or
some perturbations of B for the case n = 2 (see [7] for details of this perturbation), % is
the normal derivative, p, ¢ > 0, pg > 1, and a, b are nonnegative bounded functions. Let us
remark that the restriction on the domains is due to the fact that we will use that the Green
function of the corresponding linear problem is positive.

For the particular case m = 1, many authors have worked on the existence of different
types of solutions, see for example [10], [12], [14], [15]. In all these papers, the exponents

o= 20t g g2 Hat D)
pg—1 pg—1
play an important role.

On the other hand, in recent years the weighted Lebesgue spaces LS(Q), where d is the
distance to the boundary of €2, have played an important role in the study of several questions
in the theory of nonlinear elliptic problems (see for example [1], [4], [16], [17], [18]).

A priori bounds for non-negative weak solutions of (1.1) with m = 1 in a C? bounded
domain 2 were obtained by P. Souplet in [17]. He proved that, if max{«a, 5} > n — 1, then

lull oo ()5 10l (@) < C, (1.2)

where the constant C' depends only on p, ¢, a, b, and €2. Moreover, he proved that the result is
sharp in the sense that, if max{a, 8} < n—1, then there exist nonnegative bounded functions
a and b for which non-negative unbounded solutions of (1.1) exist.

Supported by ANPCyT (PICT 01307), by Universidad de Buenos Aires (grant X070), by Universidad
Nacional de La Plata (grant X500), and by CONICET (PIP 11220090100625). The first author is a member
of CONICET, Argentina.

1



2

Our goal is to obtain similar results for non-negative weak solutions of (1.1) for general m.
With this purpose we will use the following generalization of the exponents « and £,

_ 2m(p + 1) and 5 — 2m(q—|—1)'
pg—1 pg—1
Let us mention that these exponents have appeared in different works (see for example [8],
[13], [19]) where the authors studied existence of positive solutions of (1.1) in Q@ = IR™.
An important part of the arguments used in [17] are some weighted a priori estimates for
the associated linear problem

—Au=f in
u=~0 on Of).

Then, in order to generalize the results of [17] for the case m > 2, we will need to extend
the weighted estimates to higher order linear problems. Non trivial technical modifications
are needed to prove those estimates. Moreover, since we need to use positivity of the Green
function, we have to restrict the domain 2 as mentioned above. Indeed, for m > 2 and
general regions the Green function is not necessarily positive.

2. WEIGHTED A PRIORI ESTIMATES FOR THE LINEAR PROBLEM

We will denote by d(z) the distance from x to the boundary of £ and we will work with
the Banach space L%, (2) where the norm is given by

1/p
g = ( | " o)

for 1 <p <ooand [|ulzs, @ = [[ullL=()-
In our arguments we will use some results given in [6] for the linear problem
(=A)"Mu=f inQ
(%)Ju:O ond2 0<j<m-—1.

We recall those results in the following lemma.

(2.1)

Definition 2.1. Let f € L%, (). A weak solution of (2.1) is a function u € L'(Q) such that

AUPAW@zéfw

for all p € C*™(Q) with (%)J w=00n0020<j<m-1

We can see that the weak solution of this problem exists and is unique, in analogous way
than Lemma 1 in [1]. Furthermore, by using the density of L?(2) in L}..(€), the solution is
given by the representation formula

/ Gm(z,y) f(y)dy

where G, (z,y) is the Green function of (
By a weak solution (u,v) of (1.1) we understand a weak solution defined in the same
manner of (2.1) assuming that v” and u? belong to L. ().

In what follows the letter C' will denote a generic constant, not necessarily the same at
each occurrence, whose dependence are made explicit when necessary.

Lemma 2.2. Let u € C*™(Q) and f € C(Q) satisfy (2.1).
e If 2m > n, then there exists C > 0 such that for all 6 € [0, 1]

lud ™™ ooy < O [Lf 07| 1



3
o Let 1 <p<qg<oo. If % - é < min{22,1}, then taking o € (1% - %,min{%”, 1}] there
exists C' > 0 such that for all 6 € [0,1]
[ d™™ 40| Loy < O || f d™ 070 .
Proof: See Proposition 4.2 in [6]. O

Let us remark that these results, and consequently our proposition below, are valid in
more general domains than those considered here. Indeed, the hypotheses used are that € is
a bounded domain with C%"** boundary for n = 2 and C*™*+2 boundary for n > 3.

Then we have the following a priori estimates for solutions of problem (2.1).

Proposition 2.3. Let 1 <p < q<oo. Let f € LY. (Q) and let u be a weak solution of (2.1).
We have

(1) if n < m, then u € L>®(2) and there exists C' > 0 such that
[ull e @) < C NIy, @

(2) if% — % < na_mm, then u € L%, (Q) and there exists C > 0 such that

lullzs,, @ < ClIflle, @)

Proof: From Lemma 2.2 we have that, for 2m > n and 6 € [0, 1],

lwd ™™ oy < CILF ™| aqy. (2.2)
Then taking 6 = 1 and using that —m +n < 0 and d(z) < diam(2) we obtain
[ull ooy < Cllud™ || Loy < CIIf d™| 110
and so (1) is proved.
On the other hand, using again Lemma 2.2, we have that, if there exists a € (% —
%,min{l, Zmy] and 6 € [0, 1] such that

{ —-m+Ona="2

m—(1—-0)na="2 (2.3)

we obtain
lullLe, @) < Cll e,
11 . 2
for > — & < min{1, Z¢}.
Solving system (2.3) we obtain
1 1I.m 1 1 1
a=02+-—--)— and f=(-+1)(2— -+ )"
q pn q P q
We are going to show that o and 6 satisfy the required conditions if QmT*” < ]lj — é n%rmm.
Since 1 < p we have 6 € [0,1]. On the other hand, from the definition of «, it is easy to see
that the condition * — 1 < o is equivalent to £ — 1 < 2™ which is one of our hypothesis.
p q P q n+m
Finally we have to see that o < min{1, 277”} Since p < g we have a < 27’” Therefore, it
only remains to consider the case 277” > 1. But a <1 is equivalent to MT*” <1_

= p
the proposition is proved under this restriction.

Suppose now that % — % < QmT_” In this case, for 2m > n, using again the first part of

Lemma 2.2, for all § € [0, 1] we have
[ d™™ ) oo () < C || f A" 1.

Moreover, if § < ™ + ™, it follows that

nq

é and so

Cmid
s, @) < llud ™| oo ().



Analogously, if 1 — 7 + nﬂp <40,

1F d™ =™ Ly < Cllflle,, -

Therefore, if we can choose 6 satisfying 1 — Tt < f < ™ 4+ we have
D nq n

lulls,, @) < Cllfllze,, )
but, such a 6 exists because % — % < QmT_" and the proposition is proved. O

Remark 2.4. The condition in (2) is almost optimal, i.e., if% — % > n2+mm then the a priori
estimate does not hold in general. We postpone the proof of this observation to the end of the

paper because we will use the same technique as in the proof of our second main theorem.

In the proof of the following proposition we will denote with Ay ;,, the first eigenvalue of the
operator (—A)™ and with ¢y, > 0 a corresponding eigenfunction normalized by [ ¢1.m = 1.
We will use that there exist two positive constants c¢; and ¢y such that, in €,

c1d™ < ¢1m < cad™, (2.4)
see [5].

Proposition 2.5. If u is a weak solution of (2.1) with f € L%, () and f > 0 then there
exists C' > 0 such that

(1) If n<m and 1 <k < o0,

lullzs,, @) < Cllully,, ).
(2) Ifn>m and 1 < k < 242

lullzs,, @ < Cllullzy,, ).

Proof: By the definition of weak solution, we have that

s, = [ famde<C [ formdo
:C’/u(—A)mgbLmdm:C)\Lm/u¢17mdaz
Q Q

SC/]u|dmdx§C'||uHL1 .
Q an

Then, (1) follows directly from (1) in the previous proposition and (2) follows taking p = 1
in (2) of the same proposition. O

3. MAIN RESULTS

We consider problem (1.1) and define the exponents
2 1 2 1
o= et g g 2mlet D
pq—1 pq—1
Then, the natural extension of the results in [17] is given by the following
Theorem 3.1. If
max(a, f) > n —m, (3.1)
then, any non-negative weak solution of (1.1) satisfies
llull oo (s [Vl () < C (3.2)
where C' is a positive constant which depends only on a, b, p, q, m, and §2.

We also prove, in the following theorem, that condition (3.1) is almost optimal. We cannot
say optimal because we do not know what happens in the case max(«, 5) = n — m.



Theorem 3.2. If

max(a, 5) < n—m, (3.3)
then, there exist nonnegative bounded functions a and b, such that (1.1) have some non-
negative weak solution (u,v), with u and v unbounded functions.

Remark 3.1. The analogues of Theorems 3.1 and 3.2 are also true for the problem
{ (—A)"u = a(x)uP  inQ

(%)]uzo ond 0<j<m-—1.
. og e + Jr .
In this case the condition 3.1 and 3.3 are replaced by p < 7== and p > == respectively.

For the case m = 1 this exponent appears first in [2].

Once we have the results of the previous section, the proofs follow the lines of the case
m = 1 proved in [17]. A key point in the arguments given in that paper are the estimates

[wonn, [ean<e s

A straightforward extension of the arguments given in [18], to prove these estimates in the
case m = 1, is not possible. Indeed, the proof given in that paper is based on Lemma 3.2
of [3] which uses the maximum principle in subsets of 2. An analogous maximum principle
is not valid in the case m > 2. We give first a different proof of an analogous lemma using
pointwise estimates for the Green function G, of problem (2.1) given below, and conclude
the proof of (3.4) using that new result.

Recall that we have taken €2 such that the Green function is positive there, i.e., we assume
that @ = B ={x € R" : |z| < 1} when n > 3, and Q2 = B or some perturbations of B for
the case n = 2 (see [7] for details of this perturbation). We have: for 2m < n,

Go) > Cla =y min f1, AT (35)
|z —y|*™
for 2m = n,
Gm(z,y) > C log <1 + W) > C log <2 + ) ) min {1, W} , (3.6)
|z —y[>™ |z =yl |z —y[>m
and for 2m > n,
n/2 n/2

Gn(,y) > € ()™ d(y)"™ "/ min {1, Ao } - (3.7

The proofs of these estimates can be found in [7] for the case of m = n = 2 and in [11] for
the rest of the cases.

Lemma 3.3. Assume h >0, h € L}, (Q) and v a weak solution of

(=A)"Mv=h inQ (3.8)
(a%)jv:o ond 0<j<m-—1. '
Then there exists C > 0, depending only on Q and m, such that for all x € Q)
v(x) /
>C | hd™. 3.9
@ = Jo 39

Proof: By the representation formula

o(z) = /Q G2, ) h(y) dy

it is enough to prove that
Gm(z,y) = Cd(x)™ d(y)™.
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Consider, for example, the case 2m < n and suppose that % > 1. Then, it follows
from (3.5), that
Gm(w,y) > Clo —y[" " > d(z)™ " 2d(y)™ " > Cd(z)™d(y)™

where in the last step we have used that €2 is bounded. On the other hand, if the minimum

on the right hand side of (3.5) is attained in % we have

Gm(z,y) 2 Clz —y["d(x)™d(y)™ > Cd(z)™d(y)™

The proofs for the cases 2m = n and 2m > n are analogous, using now (3.6) and (3.7)
respectively. O

Proof of (3.4): For (u,v) non-negative weak solution of (1.1), taking f = avP, it fol-
lows from (2.4) and Lemma 3.3 that v > C(fQ aqubLm) ¢1.m and, for f = bul, v >

¢ (fQ buq¢1,m) ®1,m- Then

P
p+1
Lavonnzc( [ aotit) ([ oaor)
ap
2o fpoont) () (o)
And by the same way

fprenz (fo2) ([o12) ()"

Since pg > 1, if we show that there exists a constant C' > 0 such that

/ agit) > C and / bpit > C, (3.10)

we have

/ avp¢1,m < (C and / buq¢1,m <C. (311)
Q Q

Taking ¢1 ,, as a test function in the problem (1.1), we have that (3.4) follows from (3.11).
To prove (3.10), let € > 0,

/aJan/ a’fti>ep+1/ a
Q {d)l m>5} {¢1,m26}
o ([ (/
{¢1, m<5}
z@“(/a—nwmwmm<éo,
Q

and taking e small enough, we have (3.10). O
Proof of Theorem 3.1:
Step 1: Initialization.

From (2.4) and (3.4) it follows immediately that
fulgy, = [wdm<C [ uorn<cC
o Ja Q

and

ol = [vam <€ [vorn<c,



and therefore, for n < m,
lull Lo (@), [[0]lLoc@) < C
is an immediate consequence of (1) in Proposition 2.3.
On the other hand, if n > m, it follows from Proposition 2.5, that

leulgs,, + llellzs,, < Ck) (3.12)

forl1 <k< %

Without loss of generality, we may assume that ¢ > p and § > n — m ( the case ¢ < p is
reduced to this case by interchanging u and v).

Then (p—1)(g+1) <pg—1< M and follow that (p — 1) <
there exists some k such that

ie. p<"+m So,

nm’

k>p and k2n+m—6, (3.13)
n—m
with € to be chosen below, for which (3.12) holds.
Step 2: Bootstrap on the first equation of (1.1).
Let k1 € (k, oo] such that
1 p 2m
— > = . 3.14
kk  k n+m ( )
Then, using Proposition 2.3 we have
ful sy, < =)l gy < C el o = C i, (315)

which is finite because 1 < k < "+m

Observe that, if k > (273(;72’;;1 we can take k1 > (n+m)q satisfying (3.14).

Step 3: Bootstrap on the second equation of (1.1).

Assume
ki > q (3.16)
and let kg € (k1, oo] be such that
1 q 2m
ko " k1 n+m

(3.17)

From Proposition 2.3 we have

[Vl o, < CN=A)™ 0 iy 0 < Cllulll rysa = Cllulls,
dm dam dam dam
which is finite by step 2.
Step 4: Conclusion.

We can choose p € (0,1) such that (3.12) is true with k/p (see Remark below) whith k

e N
satisfying (3.13) and k < %
Iterating the procedure we can reach, after a finite number of steps, some value k£ > (2’;;"(;”’}1")1

(n+m)q > (n+m)p

Then, it follows from the comment at the end of step 2 that there exists k1 >
such that ”“HLkl <C.
dm

Taking now ki = ki, we can take ky = oo in step 3 to conclude that [|v]|fe) < C.
Analogously, by step 2 we obtain ||ul|peq) < C. O



Remark 3.4. Fulfilment of the bootstrap conditions.

We can see that conditions (3.14), (3.16), (3.17) and min{k;, ko} > % for p € (0,1), to be
chosen below, are equivalent to

A::%— 2m <1<min{p 1} (3.18)

n+m ki k' q
and 5 )
q m P
— — — < = 3.19
ki n+m < ko < k ( )
Observe now that, if
(n+m)pg
k< ——2= 3.20
~ 2m(g+1) (3:20)

we have A > 0. Therefore (3.18) can be solved for k1 € [1,400) and with 1711 arbitrarily closed
to A whenever

p—p 2m
L 3.21
k n+m ( )
and 5 )
D m
= — -. 3.22
kK n+m < q ( )
But, (3.21) holds if p satisfies
n—m
<p<l1 3.23
ntm? SPS5 (3.23)
and such a p exists because p < Zf—z
2m (q+1) p(n—m)  2m

On the other hand, since 5 = g1 > = m, we have % > Then, since

k < 22 we can choose € such that (3.22) holds.

n+m

Let us now see that condition (3.19) can be fulfilled. Indeed, it is enough to see that all our
parameters can be chosen such that

n+m n+m’

q 2m p
- — —. 3.24
k1 n+m<k ( )

Taking k:% in (3.18) closed enough to A we have that (3.24) is equivalent to

p>1—mn, (3.25)
where n = n2—i—mm (g+1)k—(pg—1).
Indeed, if 1711 is closed to A =% — n%rmm, then - — na";;l is closed to 4P — % - na":n
Now, p < 1 is equivalent to
k>";m, (3.26)

but since B > n—m it is possible to take e small enough in (3.13) such that (3.26) is satisfied.
Finally we can take p € (0,1) closed enough to one such that que (3.23) and (3.25) hold.

4. EXISTENCE OF SINGULAR SOLUTIONS.

In order to prove Theorem 3.2 we follow the ideas of [17]. First we will construct a
function f € L},.(2) such that the corresponding weak solution of the linear problem (2.1)
is not bounded.

Recall that our domain 2 is a ball when n > 3, and smooth perturbations of a ball in the
case n = 2. In any case, given xg € 02, there exist r > 0 and a revolution cone »; with
vertex xg such that ¥ := X1 N Ba,(x0) C Q. Now, for 0 < oo < n —m we define

fx) = & — x|~ @My,

where Yy, denotes the characteristic function of ¥. Then, it is easy to see that f € L},.(Q).



Let u > 0 be the solution of (2.1) with f as right-hand side. Then, we have

u() = /Q G, ) [y — 20~ 2™ () dy.

Using this representation formula together with the estimates of the Green function (3.5),
(3.6) and (3.7) it is not difficult to see that, for x € Q,

u(z) > Clxr — x| *xu(x). (4.1)

Proof of Theorem 3.2: Recall that o = 27;((17’_ ng) and 3 = 2”;;'1:21), and we are assuming
0 < a,B <n—m. We define

o(x) = |z — x0|_(a+2m) xs(z) and Y(z)=|xr— x0|_(6+2m) xs(z).

Let u and v be non-negative and such that
(=A)"u = ¢ in Q
(=A)"v =19 in Q
(%)]u: (%)jvzo ondf2 0<j<m-—1.
Then, it follows from (4.1) that u ¢ L>®(Q), v ¢ L>°(Q),
v@) > (C e — w0l Pxs(@))” = Clw = mo| @+ xs(2) = C g(x)
and
w(@)? > (Cla — 20| “xx(2))? = C 'z — 20|12 x5 (z) = C ().

Therefore, defining a = ¢/vP and b = ¢/u? we have that a and b are nonnegative bounded
functions, and (u,v) solves

(=A)"u = a(z)vP and (—A)"v = b(x)ul.
O

We end the paper by proving the observation given in Remark 2.4 concerning the optimality
of condition (2) in Proposition 2.3.

Proposition 4.1. Assume 1 <p < q < o0 and % — 1> 2m Then there exists fe LZ,,L(Q)

q n—m

such that u ¢ LY, (Q), where u is the weak solution of (2.1).

Proof: Let 0 < a <n—m and we define, as above, f(z) = |z — zo|~(®t?™ x5 (x). Then
we have

”f”IEJZm(Q) = /z‘) ‘.Z' - Qfo‘f(aJer)P d(x)m dr < /2 ‘l’ _ xo‘*(aJer)erm dz,

and then, since p < 5:2%, felLt.(Q.

But, for x € ¥ there exists a positive constant C' such that d(x) > Clx — x|, and therefore,

it follows from (4.1) that for ¢ > 2™ 4 ¢ L% (Q). To conclude the proof we observe that,

(0%
: 1 1 2m o n+m n+m
since . — o > =, we can choose a € (0,n — m) such that g <a< s O

Finally let us mention that, to our knowledge, it is not known what happens in general in

the limit case % — é = n{—mm In the case p > m + 1 we have proved in [9] that
lull s, @) < CllfllLe,, -
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