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Abstract. Let Ω be a bounded domain in R
n with ∂Ω ∈ C2 and let u be a

solution of the classical Poisson problem in Ω; i.e.,


−∆u = f in Ω

u = 0 on ∂Ω

where f ∈ L
p
ω(Ω) and ω is a weight in Ap.

The main goal of this paper is to prove the following a priori estimate

‖u‖
W

2,p
ω (Ω)

≤ C ‖f‖L
p
ω(Ω),

and to give some applications for weights given by powers of the distance to
the boundary.

1. Introduction

We will use the standard notation for Sobolev spaces and for derivatives,

namely, if α is a multi-index, α = (α1, α2, . . . , αn) ∈ ZZn
+ we denote |α| =

∑n
j=1 αj ,

Dα = ∂α1
x1

...∂αn
xn

and

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀|α| ≤ k}.

Let Γ be the standard fundamental solution of the Laplacian operator, namely,

Γ(x) =

{ 1
2π log |x|−1 n = 2

1
n(n−2) wn

|x|2−n n ≥ 3

with wn the area of the unit sphere in R
n.

Given a function f ∈ C∞
0 (Rn) it is a classic result that the potential u given by

u(x) =

∫
Γ(x − y)f(y) dy
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2 RICARDO G. DURÁN, MARCELA SANMARTINO, AND MARISA TOSCHI

is a solution of −∆u = f in R
n and satisfies the estimate

(1.1) ‖u‖W 2,p(Rn) ≤ C‖f‖Lp(Rn)

for 1 < p < ∞. Indeed, this estimate is a consequence of the Calderón-Zygmund

theory of singular integrals (see for example [11]).

Since the work by Muckenhoupt [9], many results on weighted estimates for max-

imal functions and singular integral operators have been obtained. In particular,

generalizations of (1.1) to weighted norms are known to hold for weights in the class

Ap (see for example [12]).

On the other hand, a priori estimates like (1.1) for solutions of the Dirichlet

problem

{
−∆u = f in Ω

u = 0 on ∂Ω
(1.2)

on smooth bounded domains Ω are also well known (see for example the classic

paper by Agmon, Douglis and Nirenberg [3] where a priori estimates for general

elliptic problems are proved).

Therefore, it is a natural question whether weighted a priori estimates are valid

also for the solution of the Dirichlet problem (1.2). In this paper we give a positive

answer to this question, namely, we prove that

‖u‖W 2,p
ω (Ω) ≤ C ‖f‖Lp

ω(Ω),

for ω ∈ Ap, where the constant C depends only on Ω and on the weight ω.

The main ideas for the proof of these estimates were explained to the first author

around twenty years ago by Professor Eugene B. Fabes, but several technical details

needed to be developed and this is the goal of this paper.

As an application we obtain a priori estimates for weights given by powers of

the distance to ∂Ω. Estimates of this type are of interest in the analysis of some

non-linear problems and were derived using different arguments (see [13]).
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Using our general results, together with some weighted Sobolev imbedding the-

orems, we are able to prove some of the estimates given in [13] as well as a new one

corresponding to a border case of the results of that paper.

2. Weighted a priori estimates

We consider the Dirichlet problem (1.2) in bounded domains Ω. From now on

we will assume that ∂Ω is of class C2. The solution of this problem is given by

(2.1) u(x) =

∫

Ω

G(x, y) f(y) dy

where G(x, y) is the Green function which can be written as

(2.2) G(x, y) = Γ(x − y) + h(x, y)

with h(x, y) satisfying, for each fixed y ∈ Ω,





∆xh(x, y) = 0 x ∈ Ω

h(x, y) = −Γ(x − y) x ∈ ∂Ω.

If P (y, Q) is the Poisson kernel h(x, y) is given by

(2.3) h(x, y) = −
1

(n − 2)wn

∫

∂Ω

1

|x − Q|n−2
P (y, Q) dS(Q)

where dS denotes the surface measure on ∂Ω.

In what follows the letter C will denote a generic constant not necessarily the

same at each occurrence. It is known that the Green function satisfies the following

estimates (see [14]),

(2.4) |G(x, y)| ≤





C log |x − y| ifn = 2

C|x − y|2−n ifn ≥ 3

and

(2.5) |Dxi
G(x, y)| ≤ C|x − y|1−n.
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Therefore,

(2.6) Dxi
u(x) =

∫

Ω

Dxi
G(x, y) f(y) dy

To obtain the second derivatives of u from the representation (2.1) we will use

the following Lemma. We denote with d(x) the distance to the boundary, namely,

d(x) = inf
Q∈∂Ω

|x − Q|.

Lemma 2.1. Given α ∈ ZZn
+ (|α| > 0 if n = 2) there exists a constant C depending

only on n and α such that

|Dαh(x, y)| ≤ C d(x)2−n−|α|(2.7)

Proof : To simplify notation we assume that n ≥ 3 (but the argument applies

also in the case n = 2). Using (2.3) and P (y, Q) ≥ 0, ∀Q ∈ ∂Ω we have

|Dαh(x, y)| =

∣∣∣∣
1

(n − 2)wn

∫

∂Ω

Dα|x − Q|2−n P (y, Q) dS(Q)

∣∣∣∣

≤ C

∫

∂Ω

|x − Q|2−n−|α| P (y, Q) dS(Q)

and then (2.7) follows by using that

∫

∂Ω

P (y, Q) dS(Q) = 1. �

It follows from this Lemma that for each x ∈ Ω, Dxixj
h(x, y) is bounded uni-

formly in a neighborhood of x and so

(2.8) Dxixj

∫

Ω

h(x, y) f(y) dy =

∫

Ω

Dxixj
h(x, y) f(y) dy

On the other hand, since |Dxj
Γ(x)| ≤ C|x|1−n we have

Dxj

∫

Ω

Γ(x − y) f(y) dy =

∫

Ω

Dxj
Γ(x − y) f(y) dy

However, Dxixj
Γ is not an integrable function and we can not interchange the

order between second derivatives and integration. A known standard argument
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shows that

(2.9) Dxi

∫

Ω

Dxj
Γ(x − y) f(y) dy = Kf(x) + c(x)f(x)

where c is a bounded function and

(2.10) Kf(x) = lim
ǫ→0

∫

|x−y|>ǫ

Dxixj
Γ(x − y) f(y) dy.

Here and in what follows we consider f defined in R
n extending the original f by

zero.

The operator K is a Calderón-Zygmund singular integral operator. Indeed, since

Dxj
Γ ∈ C∞(Rn \ {0}) and it is a homogeneous function of degree 1 − n it follows

that Dxixj
Γ(x− y) is homogeneous of degree −n and has vanishing average on the

unit sphere (see Lemma 11.1 in [2, page 152]). Then, it follows from the general

theory given in [5] that K is a bounded operator in Lp for 1 < p < ∞.

Moreover, the maximal operator

K̃f(x) = sup
ǫ>0

∣∣∣∣∣

∫

|x−y|>ǫ

Dxixj
Γ(x − y) f(y) dy

∣∣∣∣∣

is also bounded in Lp for 1 < p < ∞.

We will need the following estimate for the Green function. This estimate has

been proved by A. Dall’Acqua and G. Sweers in [6], however they assume that the

domain is more regular than C2. Therefore, we will give a different proof valid for

C2 domains following the arguments given in [14].

Lemma 2.2. Let Ω be a bounded C2 domain and G(x, y) be the Green function

of problem (1.2) in Ω. There exists a constant C depending only on n and Ω such

that for (x, y) ∈ Ω × Ω

(2.11) |Dxixj
G(x, y)| ≤ C

d(x)

|x − y|n+1

Since the proof of this Lemma is very technical it will be given in Appendix 1.

Our main result follows from the following Lemma.
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Lemma 2.3. There exists a constant C depending only on n and Ω such that, for

any x ∈ Ω,

|u(x)| + |Dxi
u(x)| ≤ C Mf(x)

|Dxixj
u(x)| ≤ C

{
K̃f(x) + Mf(x) + |f(x)|

}

where Mf(x) is the usual Hardy-Littlewood maximal function of f .

Proof : Calling δ the diameter of Ω and using (2.5) and (2.6) we have

|Dxi
u(x)| ≤ C

∫

|x−y|≤δ

|f(y)|

|x − y|n−1
dy =

∞∑

k=0

∫

{2−(k+1)δ≤|x−y|≤2−kδ}

|f(y)|

|x − y|n−1
dy

and then, it follows easily that

(2.12) |Dxi
u(x)| ≤ C Mf(x).

(see Lemma 2.8.3 in [16, page 85] for details).

Analogously we obtain

|u(x)| ≤ C Mf(x)

using now (2.1) and (2.4).

Therefore, the most interesting and difficult part of the Lemma is the estimate

of the second derivatives. Using the representation given by (2.1) and (2.2), (2.8),

(2.9) and (2.10) we have

Dxixj
u(x) = lim

ǫ→0

∫

ǫ<|x−y|≤d(x)

Dxixj
Γ(x−y) f(y) dy+

∫

|x−y|>d(x)

Dxixj
Γ(x−y) f(y) dy

+c(x)f(x) +

∫

|x−y|≤d(x)

Dxixj
h(x, y) f(y) dy +

∫

|x−y|>d(x)

Dxixj
h(x, y) f(y) dy

and then,

Dxixj
u(x) = lim

ǫ→0

∫

ǫ<|x−y|≤d(x)

Dxixj
Γ(x − y) f(y) dy + c(x)f(x)

+

∫

|x−y|≤d(x)

Dxixj
h(x, y) f(y) dy +

∫

|x−y|>d(x)

Dxixj
G(x, y) f(y) dy

=: I + II + III + IV(2.13)



WEIGHTED A PRIORI ESTIMATES FOR POISSON EQUATION 7

Now we have

I = lim
ǫ→0

∫

ǫ<|x−y|

Dxixj
Γ(x − y) f(y) dy −

∫

|x−y|>d(x)

Dxixj
Γ(x − y) f(y) dy

but,

∣∣∣∣∣

∫

|x−y|>d(x)

Dxixj
Γ(x − y) f(y) dy

∣∣∣∣∣ ≤ sup
ǫ>0

∣∣∣∣∣

∫

|x−y|>ǫ

Dxixj
Γ(x − y) f(y) dy

∣∣∣∣∣ = K̃f(x)

and therefore

|I| ≤ |Kf(x)| + K̃f(x) ≤ 2K̃f(x).

Since c is a bounded function we have |II| ≤ C|f(x)|. Therefore, it only remains

to estimate the last two terms in (2.13).

By (2.7) we have

|III| =
C

d(x)n

∫

|x−y|≤d(x)

|f(y)| dy ≤ CMf(x).

Finally, from (2.11) we obtain

|IV | ≤ C

∫

|x−y|>d(x)

d(x)

|x − y|n+1
f(y) dy

and therefore, by the same arguments used to prove (2.12) we conclude that

|IV | ≤ CMf(x)

and the Lemma is proved. �

We can now state and prove our main result. First we recall the definition of

the Ap class for 1 < p < ∞. A non-negative locally integrable function ω belongs

to Ap if there exists a constant C such that

(
1

|Q|

∫

Q

ω(x) dx

) (
1

|Q|

∫

Q

ω(x)−1/(p−1) dx

)p−1

≤ C

for all cube Q ⊂ R
n.
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For any weight ω, Lp
ω(Ω) is the space of measurable functions f defined in Ω

such that

‖f‖Lp
ω(Ω) =

(∫

Ω

|f(x)|p ω(x) dx

)1/p

< ∞

and W k,p
ω (Ω) is the space of functions such that

‖f‖W k,p
ω (Ω) =




∑

|α|≤k

‖Dαf‖p
Lp

ω(Ω)




1/p

< ∞.

Theorem 2.4. Let Ω ⊂ R
n be a bounded C2 domain. If ω ∈ Ap, f ∈ Lp

ω(Ω) and u

is the solution of problem (1.2), then there exists a constant C depending only on

n, ω and Ω such that

(2.14) ‖u‖W 2,p
ω (Ω) ≤ C ‖f‖Lp

ω(Ω).

Proof : Since M and K̃ are bounded operators in Lp
ω (see [12, Chapter V]) (2.14)

follows immediately from Lemma 2.3. �

3. Application to weights of the form d(x)β

In this section we show how the weighted estimate proved in the previous section

can be used to obtain some of the a priori estimates given in [13]. Moreover, our

arguments allows us to prove a new estimate which was not contained in the results

in [13].

We will also make use of some imbedding Theorems for weighted Sobolev spaces

which, as we will show, can be proved in a simple way by using an argument of

Buckley and Koskela [4].

First of all we need to see which powers of the distance to the boundary belong

to the class Ap. For the particular case of Ω being a ball it was shown in [8] that

d(x)γ ∈ Ap for −1 < γ < p − 1. We were not able to find in the literature an
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analogous result for general smooth domains. In the following Theorem we give a

proof based on Whitney decomposition.

Theorem 3.1. Let Ω ⊂ R
n be a bounded C2 domain and d(x) the distance from x

to ∂Ω. Then, d(x)β ∈ Ap for −1 < β < p − 1.

Proof : We have to prove that

(
1

|Q|

∫

Q

d(x)β dx

) (
1

|Q|

∫

Q

d(x)−β/(p−1) dx

)p−1

≤ C(3.1)

for all cube Q ⊂ R
n.

We will consider the following cases:

(1) Q ∩ ∂Ω 6= ∅

(2) Q ∩ ∂Ω = ∅

1. Let ℓ be the side of Q. We consider first β ≥ 0.

It is easy to see that for x ∈ Q, d(x) ≤ diam(Q) and then

1

|Q|

∫

Q

d(x)β dx ≤
1

|Q|

∫

Q

diam(Q)β dx = nβ/2 ℓβ

In order to estimate the second integral in (3.1) we define D1 = Q ∩ Ω and

D2 = Q ∩ Ωc. We consider a Whitney decomposition of D1, i.e, a family {Qk
j } of

closed dyadic cubes, whose interiors are pairwise disjoint, and which satisfy

• D1 =
⋃∞

k=k0

⋃Nk

j=1 Qk
j

• diam(Qk
j ) ≤ dist(Qk

j , ∂D1) ≤ 4 diam(Qk
j )

• |Qk
j | = (ℓ 2−k)n
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If x ∈ Qk
j , we have that d(x) ≥ dist(x, ∂D1) ≥ dist(Qk

j , ∂D1) ≥ diam(Qk
j ).

Then

∫

D1

d(x)−β/(p−1) dx =

∞∑

k=k0

Nk∑

j=1

∫

Qk
j

d(x)−β/(p−1) dx

≤
∞∑

k=k0

Nk∑

j=1

(ℓ 2−k)−β/(p−1) |Qk
j |

≤
∞∑

k=k0

Nk∑

j=1

(ℓ 2−k)−β/(p−1) (ℓ 2−k)n

= ℓn−β/(p−1)
∞∑

k=k0

Nk 2kβ/(p−1) 2−kn

≤ C ℓn−β/(p−1)
∞∑

k=k0

2−k+kβ/(p−1)

where we have used that Nk ≤ C 2(n−1)k for k ≥ k0 since Ω is smooth enough

(indeed D1 is an n − 1-set and then we can apply the results given in [15]).

Applying an analogous argument for D2 we can see that

∫

D2

d(x)−β/(p−1) dx ≤ C ℓn−β/(p−1)
∞∑

k=k0

2−k+kβ/(p−1).

Therefore, for β ≥ 0 we have

{
1

|Q|

∫

Q

d(x)−β/(p−1) dx

}p−1

=

{
1

ℓn

(∫

D1

d(x)−β/(p−1) dx +

∫

D2

d(x)−β/(p−1) dx

)}p−1

≤ C

{
1

ℓn
ℓ−β/(p−1) ℓn

∞∑

k=k0

2−k+kβ/(p−1)

}p−1

= C ℓ−β

{
∞∑

k=k0

2−k+kβ/(p−1)

}p−1

and finally

(
1

|Q|

∫

Q

d(x)β dx

) (
1

|Q|

∫

Q

d(x)−β/(p−1) dx

)p−1

≤ C

{
∞∑

k=k0

2−k+kβ/(p−1)

}p−1
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which is finite whenever −k + kβ/(p − 1) < 0, i.e, 0 ≤ β < p − 1.

Now, we consider β < 0.

By the same arguments that in the case β ≥ 0, we have that

(
1

|Q|

∫

Q

d(x)β dx

) (
1

|Q|

∫

Q

d(x)−β/(p−1) dx

)p−1

≤ C

∞∑

k=k0

2−k(β+1)

that it is finite whenever −k(β + 1) < 0, i.e, −1 < β < 0.

2. Let Q ⊂ R
n be a cube with side ℓ such that dist(Q, ∂Ω) > 0. If diam(Q) ≤

dist(Q, ∂Ω) we have, for x ∈ Q,

dist(Q, ∂Ω) ≤ d(x) ≤ diam(Q) + dist(Q, ∂Ω) ≤ 2 dist(Q, ∂Ω)

and then there exists a constant C not depending on Q such that

(
1

|Q|

∫

Q

d(x)β

) (
1

|Q|

∫

Q

d(x)−β/(p−1)

)p−1

≤ C

for any β.

On the other hand, if diam(Q) ≥ dist(Q, ∂Ω), we consider a Whitney decompo-

sition of Q given by {Qk
j }. Then for each x ∈ Qk

j we have

d(x) ≤ diam(Qk
j ) + dist(Qk

j , ∂Q) + dist(Q, ∂Ω) ≤ 6 diam(Q)



12 RICARDO G. DURÁN, MARCELA SANMARTINO, AND MARISA TOSCHI

Consequently, if β ≥ 0 we have

∫

Q

d(x)β dx =

∞∑

k=k0

Nk∑

j=1

∫

Qk
j

d(x)β dx

≤ C

∞∑

k=k0

Nk∑

j=1

∫

Qk
j

diam(Q)β dx

≤ C ℓβ
∞∑

k=k0

Nk |Q
k
j |

≤ C ℓβ ℓn
∞∑

k=k0

2−k.

Using now, that for x ∈ Qk
j ,

d(x) ≥ dist(Qk
j , ∂Q) ≥ diam(Qk

j )

we obtain

∫

Q

d(x)−β/(p−1) dx =
∞∑

k=k0

Nk∑

j=1

∫

Qk
j

d(x)−β/(p−1) dx

≤
∞∑

k=k0

Nk∑

j=1

∫

Qk
j

diam(Qk
j )−β/(p−1) dx

≤
∞∑

k=k0

Nk∑

j=1

∫

Qk
j

(ℓ 2−k)−β/(p−1) dx

≤ C ℓ−β/(p−1)
∞∑

k=k0

2−k+kβ/(p−1).

Therefore,

(
1

|Q|

∫

Q

d(x)β dx

) (
1

|Q|

∫

Q

d(x)−β/(p−1) dx

)p−1

≤ C

{
∞∑

k=k0

2−k+kβ/(p−1)

}p−1

which is finite whenever −k + kβ/(p − 1) < 0, i.e, 0 ≤ β < p − 1.

The result for the case −1 < β < 0 can be proved in an analogous way. Then

the Theorem is proved. �

The following theorem is an immediate consequence of Theorems 3.1 and 2.4.
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Theorem 3.2. Let Ω ⊂ R
n be a bounded C2 domain, f ∈ Lp

dγ (Ω) and u be the

solution of problem (1.2). If −1 < γ < p − 1, then there exists a constant C

depending only on γ, p, n and Ω such that

‖u‖W 2,p

dγ (Ω) ≤ C ‖f‖Ldγ (Ω).

Our next goal is to obtain some estimates of the type given in [13]. To do that

we prove first some weighted imbedding Theorems for weights being powers of the

distance to the boundary. We will use the following classical Theorem (see for

instance [10]) and arguments introduced in [4].

Theorem 3.3. Let D ⊂ R
n+k be a bounded Lipschitz domain and u ∈ W 2,p(D).

(1) If 1 ≤ p <
n + k

2
and

1

p
−

1

q
≤

2

n + k
there exists a constant C not depend-

ing on u such that

‖u‖Lq(D) ≤ C ‖u‖W 2,p(D).

(2) If p =
n + k

2
and 1 ≤ q < ∞ or p >

n + k

2
and 1 ≤ q ≤ ∞ there exists a

constant C not depending on u such that,

‖u‖Lq(D) ≤ C ‖u‖W 2,p(D).

Theorem 3.4. Let Ω ⊂ R
n be a bounded Lipschitz domain. Suppose u ∈ W 2,p

dγ (Ω)

with γ = kβ, where k ∈ N and 0 ≤ β ≤ 1. Then,

(1) If 1 ≤ p <
n + k

2
and

1

p
−

1

q
≤

2

n + k
there exists a constant C not depend-

ing on u such that

‖u‖Lq

dγ (Ω) ≤ C ‖u‖W 2,p

dγ (Ω)
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(2) If p =
n + k

2
and 1 ≤ q < ∞ or p >

n + k

2
and 1 ≤ q ≤ ∞, there exists a

constant C not depending on u such that

‖u‖Lq

dγ (Ω) ≤ C ‖u‖W 2,p

dγ (Ω).

Proof : 1. As in [4], we introduce the domains

Ωk,β = {(x, y) ∈ Ω × R
k such that |y| < d(x)β}

It can be proved that if Ω is a Lipschitz domain, Ωk,β is also a Lipschitz domain

(see [1]).

For any v ∈ Lp
dγ (Ω) let V : Ωk,β −→ R given by V (x, y) = v(x). Then

(3.2)
∫

Ωk,β

|V (x, y)|p dx dy =

∫

Ω

∫

{|y|<d(x)β}

|v(x)|p dy dx = ck

∫

Ω

|v(x)|p d(x)kβ dx

where ck denotes the measure of the unit ball in R
k. Therefore, since u ∈ W 2,p

dk β (Ω),

the function U(x, y) := u(x) belongs to W 2,p(Ωk,β). Then, by 1 of Theorem 3.3 we

have

‖U‖Lq(Ωk,β) ≤ C ‖U‖W 2,p(Ωk,β).

Therefore, applying again (3.2) we conclude the proof of the first part of the The-

orem.

The proof of 2 is analogous using, now 2 of Theroem 3.3. �

We can now give the main result of this section.

Theorem 3.5. Let Ω ⊂ R
n be a bounded C2 domain, f ∈ Lp

dγ (Ω), with γ = kβ,

where k ∈ N and 0 ≤ β ≤ 1. If u be the solution of problem (1.2), 0 ≤ γ < p − 1

and
1

p
−

1

q
≤

2

n + k
( with q < ∞ when 2p = n + k), then there exists a constant

C depending only on γ , p, q, n and Ω such that
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(3.3) ‖u‖Lq

dγ (Ω) ≤ C ‖f‖Lp

dγ (Ω)

Proof : The result follows immediately from Theorems 3.2 and 3.4. �

Remark 3.6. A particular case of the Theorem given above is

‖u‖Lq

d
(Ω) ≤ C ‖f‖Lp

d
(Ω)

for p > 2 and
1

p
−

1

q
≤

2

n + 1
( with q < ∞ when 2p = n + 1). This result is

proved in [13] using different arguments for the case
1

p
−

1

q
<

2

n + 1
. In that paper

the author also shows that the estimate does not hold for
1

p
−

1

q
>

2

n + 1
. Our

results shows that, at least in the case p > 2, the estimate remains valid when

1

p
−

1

q
=

2

n + 1
.

4. Appendix

Proof of Lemma 2.2 If |x− y| < 2d(x) the estimate (2.11) follows easily from

|Dxixj
Γ(x − y)| ≤ C|x − y|−n

and (2.7).

Therefore, the difficult part is to prove the estimate for

y ∈ Ω2 := {y ∈ Ω : |x − y| ≥ 2d(x)}

First of all, we write Ω × Ω2 = D1 ∪ D2, where

D1 = {(x, y) ∈ Ω × Ω2 : d(y) ≤ 2d(x)} and D2 = {(x, y) ∈ Ω × Ω2 : d(y) > 2d(x)}.

For (x, y) ∈ D1 we will prove later that

(4.1)
∣∣Dxixj

G(x, y)
∣∣ ≤ C |x − y|−n
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(4.2)
∣∣Dxi xj

G(x, y)
∣∣ −→ 0 as d(y) → 0

where C is a constant depending only on n and Ω.

Once we have proved (4.1) and (4.2), the proof of estimate (2.11) for (x, y) ∈ D1

follows in the same way that the proof of Theorem 2.3 i) in [14].

On the other hand, for (x, y) ∈ D2, we have d(y) > 2 d(x). Then it is easy to

check that d(y) < 2 |x − y|. Therefore, we can prove, using the same arguments as

for D1 that

∣∣Dyi yj
G(x, y)

∣∣ ≤ C
d(y)

|x − y|n+1
(4.3)

and so, using the symmetry of G(x, y) it is easy to conclude that,

∣∣Dxi xj
G(x, y)

∣∣ ≤ C
d(x)

|x − y|n+1
(4.4)

for (x, y) ∈ D2.

Proof of (4.1)

For (x0, y) ∈ D1 let v given by

(4.5)





−∆v = 0 in B(x0,
1
2 d(x0))

v = G(·, y) on ∂B(x0,
1
2 d(x0))

Using the representation formula

v(x) =

∫

|z−x0|=r

r2 − |x − x0|
2

r n wn

v(z)

|x − z|n
dS(z)(4.6)

with r = 1
2 d(x0), we have
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∣∣Dxixj
v(x0)

∣∣ ≤
(n + 2)

wn

∫

|z−x0|=r

r−n−1 |v(z)| dS(z)

=
(n + 2)

wn
r−n−1

∫

|z−x0|=r

|G(z, y)| dS(z).

From Theorem 3.3 iii) in [7] we know that |G(z, y)| ≤
d(y) d(z)

|z − y|n
and then

∣∣Dxixj
v(x0)

∣∣ ≤
(n + 2)

wn
r−n−1 d(y)

∫

|z−x0|=r

d(z)

|z − y|n
dS(z).(4.7)

Now, taking into account that for (x0, y) ∈ D1 and z ∈ ∂B(x0,
1
2 d(x0)), we have

that d(y) ≤ 4r, d(z) ≤ 3r and |z − y| ≥ 3
4 |x0 − y|, therefore

∣∣Dxixj
v(x0)

∣∣ ≤
(n + 2)

wn
4 r−n

∫

|z−x0|=r

d(z)

|z − y|n
dS(z)

≤
4n+1 (n + 2)

3n−1 wn
r−n+1 |x0 − y|−n

∫

|z−x0|=r

dS(z)

≤
4n+1 (n + 2)

3n−1
|x0 − y|−n.

Thus, (4.1) follows observing that v(x) = G(x, y) ∀x ∈ B(x0,
1
2 d(x0)).

Proof of (4.2)

For fixed x ∈ Ω, and y such that |x − y| = ρ, we have G(x, y) ≥ C |x − y|2−n if ρ

is small enough (see [7]). Now, let h ∈ IR with |h| ≤ 1
2 ρ and such that, for all ξ in
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the segment [x, x + h ej]

d(ξ) < c1 |ξ − y| and d(y) < c2 d(ξ)

where c1 and c2 are constants.

Then, in the same way that we proved (4.1), we obtain

∣∣Dxixj
G(ξ, y)

∣∣ ≤ C |ξ − y|−n.

Therefore,

1

|h|

∣∣Dxj
G(x + h ei, y) − Dxj

G(x, y)
∣∣ ≤

∣∣Dxixj
G(ξ, y)

∣∣ ≤ C |ξ − y|−n

(4.8)

≤ C |x − y|−n ≤ C ρ−2 G(x, y).

On the other hand, if y ∈ ∂Ω, estimate (4.8) holds since G(x, y) = 0 on ∂Ω.

Then, by the maximum principle for harmonic functions we have (4.8) ∀y with

ρ ≤ |x − y|.

Finally, taking h → 0 we obtain

∣∣Dxixj
G(x, y)

∣∣ ≤ C ρ−2 G(x, y) −→ 0 as d(y) → 0

as we wanted to show. �
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