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Abstract. The aim of this paper is to analyze a low order finite element method for a stiffened
plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams
equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it
decouples into two problems, one for the in-plane plate deformation and the other for the bending
of the plate. The analysis and discretization of the first one is straightforward. The second one
is shown to have a solution bounded above and below independently of the thickness of the plate. A
discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed.
Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate
and the stiffener. Numerical tests are reported in order to assess the performance of the method.
These numerical computations demonstrate that the error estimates are independent of the thickness,
providing a numerical evidence that the method is locking-free.
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.

Introduction

A stiffened plate is a plate reinforced with ribs to increase it capacity to resist loads. Such plates are used
typically in buildings, hulls of ships, aircraft and many other applications in the structural engineering.

Different models of stiffened plates have been used. See for instance [17] for a discussion of several simple
engineering models and further references. Another approach has been proposed in [20]. It consists of coupling
Kirchhoff-Love equations for the plate with Euler-Bernoulli equations for the stiffener. The constraint between
both structures is imposed by means of Lagrange multipliers. A particular finite element method is proposed.
Numerical experiments demonstrate the effectiveness of this approach although no analysis is given. The same
problem has been analyzed in [11] based in a model proposed in [18]. In this case C1−elements are proposed
for the plate combined with P2−P3 elements for the beam. A domain decomposition technique is proposed for
the solution of the resulting algebraic problem.

An alternative modeling approach consists of using Reissner-Mindlin equations for the plate and Timoshenko
beam equations for the stiffener. This model has been considered in [19], where an elementary finite element
method is proposed. However this method is shown to suffer from locking.

Locking consists in that very unsatisfactory results are obtained when the thickness is small with respect to
the other dimension of the structure. From the point of view of the numerical analysis, locking reveals itself in
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2 R. DURÁN, R. RODRÍGUEZ AND F. SANHUEZA

that the a priori estimates depends on the thickness of the structure in a such way that they degenerate when
this parameter become small.

Several finite elements have been proposed to avoid locking in Reissner-Mindlin equations (see [7] for a review
on this subject). A typical locking-free finite element method, MITC9, which was introduced in [5], is proposed
in [17] to discretize the stiffened plate equations. These elements are combined with standard quadratic element
for the stiffener. Once more, only numerical evidence of the performance of the method is reported.

In the present paper we use the same model, based on Reissner-Mindlin equations for the plate and Timo-
shenko equations for the stiffener. We introduce the constraint between both structures by means of Lagrange
multipliers. We prove existence and uniqueness of solution to the resulting problem.

A particular case of stiffened plates is when the mid-line of the stiffener lies on the mid-surface of the plate.
In this case the plate is known as concentrically stiffened and the problem decomposes into two simpler problems
as it happens for unstiffened plates: the in-plane and the bending plate problems. The analysis of the former is
quite simple since it leads to equations independent of the plate thickness. This is not the case with the bending
problem for the stiffened plate.

In this case we consider a family of problems parametrized by the plate thickness t. We show that the
mechanical coefficients of the stiffener must be taken proportional to 1/t to obtain a significant limit problem as
t goes to zero. We show that the solution of the stiffened plate bending problem is bounded above and below far
from zero, independently of t. We also prove additional regularity of the solution, although not independently
of t.

For the discretization of the in-plane stiffened plate we use standard linear elements, and the analysis is
straightforward. For the stiffened plate bending problem we use a low order plate finite element, DL3 [12],
combined with P2 − P1 elements for the stiffener. The choice of these hybrid elements for the rod allows us to
impose the constraint in an simpler way.

We prove optimal order error estimates depending on higher order norms of the solution. These higher order
norms are the same that appear in the case of uncoupled plates and rods. In such a case they are bounded
independently of t. For the stiffened plate bending problem we prove that these higher order norms are bounded,
although in principle these bounds could depend on t. We report a thorough numerical experimentation which
gives numerical evidence that this is not the case, allowing us to assess the locking-free character of the method.

The outline of the paper is as follows. In Section 1 we present the mathematical setting of the load problem
and prove existence and uniqueness. In Section 2 we analyze the concentrically stiffened plate and prove stability
results, independent of the plate thickness for the in-plane and bending plate problems. In Section 3 we present
the finite element discretizations of both problems, we obtain error estimates for the former and prove that
the latter is well posed. In Section 4 we focus on the stiffened loading plate problem for which we prove error
estimates. In Section 5 we report numerical results which allow us to assess the performance of the proposed
method. First, to validate our code, we apply it to a vibration problem which was also solved in [17]. Secondly
we apply the proposed method to a couple of problems whose limit behavior as the thickness becomes small
is known. Finally we apply it to a family of problems which allow us to demonstrate that the method is
locking-free.

1. The Problem of the Stiffened Plate

We consider a plate entirely crossed by a rod which act as a stiffener. We restrict our attention to plates
with constant thickness and rods with uniform cross section. If the mid-line of the rod lies on the mid-surface
of the plate we call it a concentrically stiffened plate. Otherwise it is called an eccentrically stiffened plate (see
Figure 1). Most of this paper is devoted to concentrically stiffened plates except for the present section which
is valid for eccentrically stiffened plates too.

We consider a coordinate system such that the plate occupies the domain Ω× (−t/2, t/2), where t > 0 is the
plate thickness and Ω is the mid-surface of the plate, which is assumed to be polygonal. Moreover we assume that
the coordinate system is such that the mid-line of the rod lies on the plane y = 0. We denote by r the distance
between the rod mid-line and the plate mid-surface (r = 0 for concentrically stiffened plates). The problem will
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Figure 1. Transverse sections of concentrically (left) and eccentrically (right) stiffened plates.

be posed in the two dimensional domain Ω. We denote Γ := {(x, y) ∈ Ω : y = 0}, Ω1 := {(x, y) ∈ Ω : y > 0}
and Ω2 := {(x, y) ∈ Ω : y < 0}. We illustrate these definitions in Figure 2.
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Figure 2. Geometry of a stiffened plate

We restrict our analysis to the case of a plate modeled by Reissner-Mindlin equations and completely clamped
by its lateral boundary ∂Ω. We denote by u = (u1, u2), w and β = (β1, β2) the mid-surface in-plane plate
displacements, the transverse displacements and the rotations, respectively. In its turn, us, vs, ws denote the
stiffener displacements in each coordinate direction and, θsx, θ

s
y and θsz the stiffener rotations with respect to

each axis.
To derive the equations of the stiffened plate we will obtain first an expression for its total energy. With

this aim, we add the corresponding energies of the plate and the stiffener. However, for the latter, the shear
and bending terms in the plane of the plate are typically neglected (see [17]). We consider a load acting on
the plate, and denote by f its in-plane component, and by g the transverse one. Therefore, the total energy
including the works of the loads reads

Et :=
t

2
a1 (u,u) +

t3

2
a2 (β,β) + t

∫

Ω

κµ (∇w − β)
2
+

∫

Γ

EsA

(

dus

dx

)2

+

∫

Γ

EsIyy

(

dθsy
dx

)2

+

∫

Γ

µsJ

(

dθsx
dx

)2

+

∫

Γ

κsµsA

(

dws

dx
+ θsy

)2

− t

∫

Ω

f · u−

∫

Ω

gw.

In the above equation

a1 (u,v) :=

∫

Ω

Eν

(1 + ν) (1− 2ν)
divu div v +

∫

Ω

E

1 + ν
ǫ (u) : ǫ (v)

and

a2 (β,η) :=
1

12

{
∫

Ω

Eν

1− ν2
divβ div η +

∫

Ω

E

1 + ν
ǫ (β) : ǫ (η)

}
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are the plane strain and plane stress bilinear forms, respectively. Above ǫ (v) := 1
2 (Dv +Dvt) denotes the

linearized strain tensor and the coefficients E and ν are the Young and Poisson moduli. Moreover µ := E
2(1+ν)

is the shear modulus of the plate. On the other hand, A is the area of the stiffener section, Iyy and Izz are the
second moments of area with respect to y- and z-axes, respectively, J := Iyy + Izz, E

s and νs the Young and

Poisson moduli of the stiffener and µs := Es

2(1+νs) the shear modulus. Finally κ and κs are the shear correction

factors for the plate and the rod, respectively . All the parameters are strictly positive constants. In the case
of the stiffener this corresponds to a rod of arbitrary uniform section. Notice that, since the bending and shear
energy of the stiffener have been neglected, the variables vs and θz do not appear in the expression for the total
energy.

The appropriate functional spaces for displacements and rotations are the following: u,β ∈ H1
0 (Ω)

2
; w ∈

H1
0 (Ω); u

s, ws, θsx, θ
s
y ∈ H1

0 (Γ). For the loads we consider f ∈ L2 (Ω)
2
and g ∈ L2 (Ω). The stiffened plate

problem is obtained by minimizing the total energy subject to the following kinematic constraints:

u1 = us − rβ1, (1.1)

w = ws, (1.2)

β2 = θsx, (1.3)

β1 = −θsy. (1.4)

Plate

Stiffener

z

−β1 = θy

θy

−β1

r

e

us

u1 x

O

Figure 3. Geometric illustration of (1.5)

The constraint (1.2) comes from the fact that the plate and the rod are joint monolithically. Moreover, the
rotations of the plate and the stiffener are the same in this model, which leads to (1.3) and (1.4). Finally (1.1)
can be easily deduced. In fact, using the notation from Figure 3, we have that

u1
r + e

=
us

e
.

Therefore approximating −β1 by us

e , straightforward computations lead to (1.1).
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For the analysis, we introduce these constraints by means of Lagrange multipliers as follows:

∫

Γ

λ1 (u1 − us + rβ1) = 0, (1.5)

∫

Γ

λ2 (w − ws) = 0, (1.6)

∫

Γ

λ3 (β2 − θsx) = 0, (1.7)

∫

Γ

λ4
(

β1 + θsy
)

= 0. (1.8)

In the expressions above and throughout the paper, to simplify the notation, we write

∫

Γ

λη := 〈λ, η〉
H−1/2(Γ)×H

1/2
00

(Γ)
,

where in this case H
1/2
00 (Γ) :=

{

v|Γ : v ∈ H1
0 (Ω)

}

endowed with the intrinsic norm of H1/2 (Γ) (see [15]) and

H−1/2 (Γ) := H
1/2
00 (Γ)

′
, with L2 (Γ) as pivot space.

Therefore, by minimizing Et subject to the constraints (1.1)–(1.4), we arrive at the following clamped stiffened
plate problem:

Find (U ,λ) ∈ H×Q such that

A (U ,V ) + B (V ,λ) =F (V ) ∀V ∈ H, (1.9)

B (U ,χ) =0 ∀χ ∈ Q, (1.10)

where

U :=
(

u,β, w, us, ws, θsx, θ
s
y

)

, V :=
(

v,η, z, zs, vs, ϕs
x, ϕ

s
y

)

∈ H := H1
0 (Ω)

2
×H1

0 (Ω)
2
×H1

0 (Ω)×H1
0 (Γ)

4

λ := (λ1, λ2, λ3, λ4) , χ := (χ1, χ2, χ3, χ4) ∈ Q := H−1/2 (Γ)
4
,

A (U ,V ) := ta1 (u,v) + t3a2 (β,η) + t

∫

Ω

κµ (∇w − β) · (∇z − η) +

∫

Γ

EsA
dus

dx

dvs

dx

+

∫

Γ

κsµsA

(

dws

dx
+ θsy

)(

dzs

dx
+ ϕs

y

)

+

∫

Γ

EsIyy
dθsy
dx

dϕs
y

dx
+

∫

Γ

µsJ
dθsx
dx

dϕs
x

dx
,

B (U ,λ) :=

∫

Γ

λ1 (u1 − us + rβ1) +

∫

Γ

λ2 (w − ws) +

∫

Γ

λ3 (β2 − θsx) +

∫

Γ

λ4
(

β1 + θsy
)

,

F (V ) := t

∫

Ω

f · v + t

∫

Ω

g z.

It is well known that the standard finite element methods applied to plates or rods are subject to “numerical
locking”. This means that they lead to unacceptable poor results for thin structures, unless the mesh size
is excessively small. The standard methodology to deal with locking-free methods is to consider a family of
problems depending on a small parameter: the plate thickness t. A method will be locking-free if the error
estimates do not deteriorate as the thickness becomes small. In our case, to avoid dealing with more than one
parameter, we restrict our attention to a stiffener such that

A = t2Ã, Iyy = t4Ĩyy and J = t4J̃ , (1.11)
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where Ã, Ĩyy and J̃ are constants. This corresponds to a rod with a section having width and height proportional
to t.

The stiffening effect of such a rod tends to disappear as t tends to zero. To avoid this and obtaining a proper
limit problem, we assume that the physical parameters of the rod increase as t tends to zero. More precisely
we assume that

Es =
Ẽs

t
, (1.12)

where Ẽs is a fixed constant. See [11] for a similar choice in the case of Kirchhoff stiffened plates. Correspondingly

we define µ̃s := Ẽs

1+νs so that µs = µ̃s. Scalings (1.11) and (1.12) ensure that if the loads are scaled as usual for

plates, then the solution of problem (1.9)–(1.10) attains a limit as t tends to zero and that, in the limit problem,
the rod remains as a stiffener. This will be clearly seen in the numerical examples of Section 5, where different
scalings of the physical parameters are considered. It is shown therein that (1.12) leads to a stiffened limit
problem (Test 4) whereas other scalings lead either to a vanishing or to a perfectly rigid stiffener (Section 5.2).
Using these scalings we write the bilinear form A as follows:

A (U ,V ) = ta1 (u,v) + t3a2 (β,η) + t

∫

Ω

κµ (∇w − β) · (∇z − η) + t

∫

Γ

ẼsÃ
dus

dx

dvs

dx

+ t

∫

Γ

κsµ̃sÃ

(

dws

dx
+ θsy

)(

dzs

dx
+ ϕs

y

)

+ t3
∫

Γ

ẼsĨyy
dθsy
dx

dϕs
y

dx
+ t3

∫

Γ

µ̃sJ̃
dθsx
dx

dϕs
x

dx
. (1.13)

We are interested in proving the existence and uniqueness of the solution to problem (1.9)–(1.10). For this
purpose we will show the ellipticity of A (·, ·) in the whole space H and the inf-sup condition for B (·, ·) in
appropriate spaces.

Throughout the paper C will denote a strictly positive constant, not necessarily the same at each occurrence,
but always independent of t and the mesh-size h, which will be introduced in the next section.

For the existence and uniqueness, we consider the continuous problem (1.9)–(1.10) with 0 < t ≤ 1 fixed. The
bilinear form A (·, ·) is elliptic in H, with an ellipticity constant depending of t:

A (V ,V ) ≥ C
{

t3
(

‖η‖
2
1,Ω + ‖z‖

2
1,Ω +

∥

∥ϕs
y

∥

∥

2

1,Ω
+ ‖zs‖

2
1,Ω + ‖ϕs

x‖
2
1,Γ

)

+ t
(

‖v‖
2
1,Ω + ‖vs‖

2
1,Γ

)}

.

In fact, the inequality above follows from

ta1 (v,v) ≥ Ct ‖v‖
2
1,Ω ∀v ∈ H1

0 (Ω)
2
, (1.14)

a2 (η,η) ≥ C ‖η‖
2
1,Ω ∀η ∈ H1

0 (Ω)
2
, (1.15)

t3a2 (η,η) + t

∫

Ω

κµ |∇z − η|
2
≥ Ct3

{

‖η‖
2
1,Ω + ‖z‖

2
1,Ω

}

∀η ∈ H1
0 (Ω)

2
, z ∈ H1

0 (Ω) ,

(1.16)

t

∫

Γ

ẼsÃ

(

dvs

dx

)2

≥ Ct ‖vs‖
2
1,Γ ∀ vs ∈ H1

0 (Γ) , (1.17)

t3
∫

Γ

µ̃sJ̃

(

dϕs
x

dx

)2

≥ Ct3 ‖ϕs
x‖

2
1,Γ ∀ϕs

x ∈ H1
0 (Γ) , (1.18)

t3
∫

Γ

ẼsĨyy

(

dϕs
y

dx

)2

+ t

∫

Γ

κsµ̃sÃ

∣

∣

∣

∣

dzs

dx
+ ϕs

y

∣

∣

∣

∣

2

≥ Ct3
{

‖zs‖
2
1,Γ +

∥

∥ϕs
y

∥

∥

2

1,Γ

}

∀ϕs
y, z

s ∈ H1
0 (Γ) . (1.19)

The inequalities (1.14) and (1.15) are consequences of Korn’s inequalities, whereas (1.16) is a classical result, (see
[6]). In its turn, (1.17)–(1.19) follow from the scalings (1.11)–(1.12), Poincaré inequality and a straightforward

computation for
∫

Γ

∣

∣

dzs

dx + ϕs
y

∣

∣

2
(see [1]).
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On the other hand, B (·, ·) satisfies an inf-sup condition: There exists C > 0, independent of t, such that,

S := sup
06=V ∈H

B (V ,χ)

‖V ‖
H

≥ C ‖χ‖Q ∀χ ∈ Q.

To prove this, we consider separately each component of χ. For the first one, we take v1 ∈ H1
0 (Ω) arbitrary

and the remaining components of V equal to zero, to write

S ≥ sup
0 6=v1∈H1

0
(Ω)

∫

Γ
χ1v1

‖v1‖1,Ω
≥ C1 sup

0 6=ψ∈H
1/2
00

(Γ)

∫

Γ
χ1ψ

‖ψ‖1/2,Γ
= C ‖χ1‖−1/2,Γ . (1.20)

For the second inequality, we have used the equivalence between the intrinsic norm of H
1/2
00 (Γ) and the norm

inf
{

‖v‖1,Ω , v ∈ H1
0 (Ω) : v|Γ = ψ

}

(see [15]). The same arguments allow us to prove that

S ≥ C ‖χ2‖−1/2,Γ and S ≥ C ‖χ3‖−1/2,Γ . (1.21)

Finally, taking η1 ∈ H1
0 (Ω) arbitrary and the remaining components of V equal to zero and using (1.20), we

have

‖χ4‖−1/2,Γ ≤ C
(

S + r ‖χ1‖−1/2,Γ

)

≤ C (1 + r)S,

which, since r is bounded above, leads to
S ≥ C ‖χ4‖−1/2,Γ .

The inequality above together with (1.21) and (1.20) allow us to prove the inf-sup condition for B. This
condition and the global ellipticity of A allow us to use the standard theory for mixed problems (see [6]) to
conclude the following theorem:

Theorem 1.1. For any t > 0 fixed, problem (1.9)–(1.10) has a unique solution (U ,λ) ∈ H×Q.

Remark 1.2. Solution to problem (1.9)–(1.10) is bounded in terms of ‖F‖H′ . However, in principle, this
bound is not necessarily uniform with respect to t, since the ellipticity and continuity constants of the bilinear
form A depend on different powers of the thickness (see [6, Prop. II.1.3]).

2. Concentrically stiffened plates

The analysis of the previous section is valid for concentrically as well as eccentrically stiffened plates. For
the latter, in-plane and transverse terms are fully coupled and each one involve different scales with respect to
the thickness. In this regard, this resembles what happens in the shell problem, for which the analysis is much
less mature than for plates.

This is the reason why, from now on, we restrict our attention to concentrically stiffened plates (i.e, r = 0, see
Figure 2). In this case, the plate problem decomposes into two uncoupled ones: the in-plane and the bending
stiffened plate problems, as it happens for non stiffened plates. In fact, the in-plane displacements u and us

relate with the remaining variables only through equation (1.5) which is part of (1.10) and this happen only if
r 6= 0. For r = 0 we are led to the following two uncoupled problems, the first one for the in-plane terms and
the second one for the bending terms:

Find (u, us) ∈ H1
0 (Ω)

2
×H1

0 (Γ) and λ1 ∈ H−1/2 (Γ) such that

ta1 (u,v) + t

∫

Γ

ẼsÃ
dus

dx

dvs

dx
+

∫

Γ

λ1 (v1 − vs) = t

∫

Ω

f · v ∀ (v, vs) ∈ H1
0 (Ω)

2
×H1

0 (Γ) , (2.1)

∫

Γ

χ1 (u1 − us) = 0 ∀χ1 ∈ H−1/2 (Γ) . (2.2)
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Find
(

β, w, ws, θsx, θ
s
y

)

∈ H1
0 (Ω)

2
×H1

0 (Ω)×H1
0 (Γ)

3
and (λ2, λ3, λ4) ∈ H−1/2 (Γ)

3
such that

t3a2 (β,η) + t

∫

Ω

κµ (∇w − β) · (∇z − η) + t3
∫

Γ

ẼsĨyy
dθsy
dx

dϕs
y

dx
+ t3

∫

Γ

µ̃sJ̃
dθsx
dx

dϕs
x

dx

+ t

∫

Γ

κsµ̃sÃ

(

dws

dx
+ θsy

)(

dzs

dx
+ ϕs

y

)

+

∫

Γ

λ2 (z − zs) +

∫

Γ

λ3 (η2 − ϕs
x) +

∫

Γ

λ4
(

η1 + ϕs
y

)

= t

∫

Ω

gz

∀
(

η, z, zs, ϕs
x, ϕ

s
y

)

∈ H1
0 (Ω)

2
×H1

0 (Ω)×H1
0 (Γ)

3
, (2.3)

∫

Γ

χ2 (w − ws) +

∫

Γ

χ3 (β2 − θsx) +

∫

Γ

χ4

(

β1 + θsy
)

= 0 ∀ (χ2, χ3, χ4) ∈ H−1/2 (Γ)
3
. (2.4)

From now on, to simplify a bit the notation, we set all the following constants equal to one: Ã, Ĩyy, J̃ , κ, κs,

Ẽs, µ̃s, as well as E (which appears in the definition of a1 and a2). Moreover, we consider values of t ranging
in (0, 1]. Since these constants have been assumed to be independent of t, this does not affect any subsequent
asymptotic analysis. Moreover to obtain a family of problems uniformly stable with respect to t, we consider a
transverse load proportional to t2, namely

g = g̃t2 (2.5)

with g̃ independent of t. Finally, it is also convenient for the analysis to rescale the Lagrange multipliers
according to the scales of the different problems in which they appear:

λ1 = λ̃1t and λi = λ̃it
3, i = 2, 3, 4. (2.6)

In what follows we analyze the resulting rescaled problems.

2.1. Stiffened in-plane plate problem

Using the scaling (2.6) in (2.1)–(2.2) and setting the constants equal to one, we obtain the following rescaled

problem, in which we omit the tildes in λ̃1 to simplify the notation:
Find (u, us) ∈ H1

0 (Ω)
2
×H1

0 (Γ) and λ1 ∈ H−1/2 (Γ) such that

a1 (u,v) +

∫

Γ

dus

dx

dvs

dx
+

∫

Γ

λ1 (v1 − vs) =

∫

Ω

f · v ∀ (v, vs) ∈ H1
0 (Ω)

2
×H1

0 (Γ) , (2.7)

∫

Γ

χ1 (u1 − us) = 0 ∀χ1 ∈ H−1/2 (Γ) . (2.8)

This is a well posed problem completely independent of the thickness t. In fact, all the bilinear forms in this
problem are continuous and the following ellipticity result holds:

a1 (v,v) +

∫

Γ

(

dvs

dx

)2

≥ C
{

‖v‖
2
1,Ω + ‖vs‖

2
1,Γ

}

∀ (v, vs) ∈ H1
0 (Γ)×H1

0 (Ω)
2
. (2.9)

Moreover, the arguments leading to (1.20) show that there exists C > 0, independent of t, such that

sup
0 6=(v,vs)∈H1

0
(Ω)2×H1

0
(Γ)

∫

Γ
χ1 (v1 − vs)

‖v‖1,Ω + ‖vs‖1,Γ
≥ C ‖χ1‖−1/2,Γ ∀χ1 ∈ H−1/2 (Γ) .

Thus, using Babuška-Brezzi theory (see [6]), we have the a-priori estimate

‖u‖1,Ω + ‖us‖1,Γ + ‖λ1‖−1/2,Γ ≤ C ‖f‖0,Ω .
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2.2. Stiffened bending plate problem

In this case we use the scalings (2.5) and (2.6) in (2.3)–(2.4). Thus if we denote

H := H1
0 (Ω)

2
×H1

0 (Ω)×H1
0 (Γ)

3
and Q := H−1/2 (Γ)

3
,

and set the constants equal to one again, then we arrive at the following rescaled problem, in which we omit
the tildes in λ̃i, i = 2, 3, 4, and g̃:

Find
(

β, w, ws, θsx, θ
s
y

)

∈ H and (λ2, λ3, λ4) ∈ Q such that

a2 (β,η) +
1

t2

∫

Ω

(∇w − β) · (∇z − η) +

∫

Γ

dθsx
dx

dϕs
x

dx
+

∫

Γ

dθsy
dx

dϕs
y

dx
+

1

t2

∫

Γ

(

dws

dx
+ θsy

)(

dzs

dx
+ ϕs

y

)

+

∫

Γ

λ2 (z − zs) +

∫

Γ

λ3 (η2 − ϕs
x) +

∫

Γ

λ4
(

η1 + ϕs
y

)

=

∫

Ω

gz ∀
(

η, z, zs, ϕs
x, ϕ

s
y

)

∈ H, (2.10)

∫

Γ

χ2 (w − ws) +

∫

Γ

χ3 (β2 − θsx) +

∫

Γ

χ4

(

β1 + θsy
)

= 0 ∀ (χ2, χ3, χ4) ∈ Q. (2.11)

This problem has a unique solution. In fact, this is a consequence of Theorem 1.1 and the equivalence of problem
(1.9)–(1.10) with (2.7)–(2.8) and (2.10)–(2.11) in the case r = 0. However, this theorem does not imply that
the solution is bounded independently of t (cf. Remark 1.2). Our next goal is to prove that, for a non vanishing
g, the solution of problem (2.10)–(2.11) is bounded above and below far from zero, both uniformly with respect
to t. More precisely, we will prove that for g 6= 0, there exist strictly positive constants C1 and C2 such that
the solution of this problem satisfies

C1 ≤ ‖β‖1,Ω + ‖w‖1,Ω + ‖ws‖1,Γ + ‖θsx‖1,Γ +
∥

∥θsy
∥

∥

1,Γ
≤ C2, (2.12)

for all t ∈ (0, 1].
With this aim we consider the space

W :=

{

(η, z) ∈ H1
0 (Ω)

2
×H1

0 (Ω) :
dη1
dx

,
dη2
dx

,
dz

dx
∈ L2 (Γ)

}

,

endowed with the norm

‖(η, z)‖
2
W := ‖η‖

2
1,Ω + ‖z‖

2
1,Ω + ‖η1‖

2
1,Γ + ‖η2‖

2
1,Γ + ‖z‖

2
1,Γ , (η, z) ∈ W .

Equation (2.11) is equivalent to.

ws = w, θsx = β2 and θsy = −β1 on Γ, (2.13)

which in its turn implies that (β, w) ∈ W . Using this and testing (2.10) with functions satisfying the same
constraints, we arrive at

a2 (β,η) +
1

t2

∫

Ω

(∇w − β) · (∇z − η) +

∫

Γ

∂β1
∂x

∂η1
∂x

+

∫

Γ

∂β2
∂x

∂η2
∂x

+
1

t2

∫

Γ

(

∂w

∂x
− β1

)(

∂z

∂x
− η1

)

=

∫

Ω

gz

∀ (η, z) ∈ W . (2.14)

Testing the above problem with (η, z) = (β, w) we obtain

a2 (β,β) +
1

t2

∫

Ω

(∇w − β)
2
+

∫

Γ

(

∂β1
∂x

)2

+

∫

Γ

(

∂β1
∂x

)2

+
1

t2

∫

Γ

(

∂w

∂x
− β1

)2

=

∫

Ω

gw. (2.15)
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On the other hand, from (1.16) we have that

‖β‖
2
1,Ω + ‖w‖

2
1,Ω ≤ C

{

1

t2
‖∇w − β‖

2
0,Ω + a2 (β,β)

}

, (2.16)

whereas from (1.17) and (1.19) we have

‖w‖
2
1,Γ + ‖β1‖

2
1,Γ + ‖β2‖

2
1,Γ ≤ C

{

1

t2

∥

∥

∥

∥

∂w

∂x
− β1

∥

∥

∥

∥

2

0,Γ

+

∫

Γ

(

∂β1
∂x

)2

+

∫

Γ

(

∂β2
∂x

)2
}

. (2.17)

Therefore, adding (2.16) and (2.17) and using (2.15), we obtain

‖β‖
2
1,Ω + ‖w‖

2
1,Ω + ‖w‖

2
1,Γ + ‖β1‖

2
1,Γ + ‖β2‖

2
1,Γ ≤ C

∫

Ω

gw,

from which it follows that

‖β‖1,Ω + ‖w‖1,Ω + ‖w‖1,Γ + ‖β1‖1,Γ + ‖β2‖1,Γ ≤ C2, (2.18)

with C2 only depending on g and the domain Ω.
To prove the other estimate in (2.12), we observe that the solution (β, w) ∈ W to problem (2.14) is the

minimum in W of the energy functional Et (η, z) defined by

Et (η, z) :=
1

2

{

a2 (η,η) +
1

t2

∫

Ω

(∇z − η)
2
+

∫

Γ

(

∂η1
∂x

)2

+

∫

Γ

(

∂η2
∂x

)2

+
1

t2

∫

Γ

(

∂z

∂x
− η1

)2
}

−

∫

Ω

gz. (2.19)

Consider the following closed subspace of W :

W 0 := {(η, z) ∈ W : ∇z = η} =

{

(∇z, z) , z ∈ H2
0 (Ω) :

∂2z

∂x∂y
,
∂2z

∂x2
∈ L2 (Γ)

}

.

For (η, z) ∈ W 0, the associated energy reads

Et (η, z) :=
1

2

{

a2 (∇z,∇z) +

∫

Γ

(

∂2z

∂x2

)2

+

∫

Γ

(

∂2z

∂x∂y

)2
}

−

∫

Ω

gz. (2.20)

We note that
min
W

Et ≤ min
W 0

Et < 0.

In fact, the first inequality is clear, whereas for the second one we observe that the minimum of Et in W 0 is
attained at (η, z) = (∇z0, z0) ∈ W 0 with z0 satisfying

a2 (∇z0,∇z) +

∫

Γ

∂2z0
∂x2

∂2z

∂x2
+

∫

Γ

∂2z0
∂x∂y

∂2z

∂x∂y
=

∫

Ω

gz ∀ (∇z, z) ∈ W 0. (2.21)

The bilinear form on the left hand side is bounded and elliptic in W 0, the latter because of (1.15). Hence, from
the Lax-Milgram Lemma, there exists a unique solution of (2.21) (∇z0, z0) ∈ W 0 and it satisfies ‖(∇z0, z0)‖W ≤
C ‖g‖0,Ω. Therefore, for g 6= 0, replacing (2.21) in (2.20), we have

min
(η,z)∈W

Et (η, z) ≤ min
(η,z)∈W 0

Et (η, z) = −
1

2

{

a2 (∇z0,∇z0) +

∫

Γ

(

∂2z0
∂x2

)2

+

∫

Γ

(

∂2z0
∂x∂y

)2
}

=: −C0 < 0.

(2.22)
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Since minW Et (η, z) is attained in the solution (β, w) of problem (2.14), we use this equation in (2.19) and
(2.22) to write

a2 (β,β) +
1

t2

∫

Ω

(∇w − β)
2
+

∫

Γ

(

∂β1
∂x

)2

+

∫

Γ

(

∂β2
∂x

)2

+
1

t2

∫

Γ

(

∂w

∂x
− β1

)2

≥ 2C0. (2.23)

On the other hand, testing (2.14) with (η, z) = (β,w), we have

1

t2

∫

Ω

(∇w − β)
2
+

1

t2

∫

Γ

(

∂w

∂x
− β1

)2

=

∫

Ω

gw − a2 (β,β)−

∫

Γ

(

∂β1
∂x

)2

−

∫

Γ

(

∂β2
∂x

)2

≤

∫

Ω

gw ≤
ǫ

2
‖g‖

2
0,Ω +

1

2ǫ
‖w‖

2
0,Ω ∀ǫ > 0. (2.24)

Substituting (2.24) in (2.23), choosing an adequate value of ǫ and using the boundedness of a2 (·, ·), we arrive
at

‖β‖1,Ω + ‖w‖1,Ω + ‖w‖1,Γ + ‖β1‖1,Γ + ‖β2‖1,Γ ≥ C1. (2.25)

Therefore, recalling (2.13), we obtain the following result as a consequence of (2.18) and (2.25)

Proposition 2.1. Given a non vanishing g ∈ L2 (Ω), let
(

β, w, ws, θsx, θ
s
y

)

∈ H be the solution of (2.10)–(2.11).
Then, there exists strictly positive constants C1, C2 independent of t ∈ (0, 1] such that

C1 ≤ ‖β‖1,Ω + ‖w‖1,Ω + ‖ws‖1,Γ + ‖θsx‖1,Γ +
∥

∥θsy
∥

∥

1,Γ
≤ C2.

In what follows we present some regularity results associated to the stiffened bending plate problem. First,
we define the shear terms in the plate and the stiffener as follows:

γ :=
1

t2
(∇w − β) , (2.26)

α :=
1

t2

(

dws

dx
+ θsy

)

. (2.27)

Proposition 2.2. The solution of (2.10)–(2.11) satisfies β|Ωi
∈ H2 (Ωi)

2
, w|Ωi

∈ H2 (Ωi)
2
, i = 1, 2, and θsx,

θsy, w
s ∈ H5/2 (Γ). Moreover, γ|Ωi

∈ H1 (Ωi)
2
, i = 1, 2, and α ∈ H3/2 (Γ).

Proof. Testing (2.10) with ϕs
x ∈ H1

0 (Γ) and setting to zero all the other test functions, we have

−
d2θsx
dx2

= λ3 ∈ H−1/2 (Γ) (2.28)

and hence θsx ∈ H3/2 (Γ). In a similar way, testing (2.10) with zs 6= 0 and ϕs
y 6= 0, we obtain that α ∈ H1/2 (Γ)

and θsy ∈ H3/2 (Γ), respectively. Consequently, (2.27) yields ws ∈ H3/2 (Γ). Next we extend ws to the whole

domain Ω in such a way that the extension belongs to H2 of each subdomain Ωi. More precisely, let w0 ∈ H1
0 (Ω)

be such that w0|Ωi
∈ H2 (Ωi), i = 1, 2, (see [16, Theorem 1.5.2.8]) and

w0|Γ = ws.

Analogously, let β0 ∈ H1
0 (Ω)

2
: β0|Ωi

∈ H2 (Ωi), i = 1, 2, and

β0|Γ =
(

−θsy, θ
s
x

)

.
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Let β̃ ∈ H1
0 (Ω)

2
and w̃ ∈ H1

0 (Ω) be defined by

β = β̃ + β0 and w = w̃ + w0. (2.29)

Since β|Γ = β0|Γ and w|Γ = w0|Γ, we have that β̃|Ωi
∈ H1

0 (Ωi)
2
and w̃|Ωi

∈ H1
0 (Ωi), i = 1, 2. Our next goal

is to show that (β̃|Ωi
, w̃|Ωi

) is the solution of a plate problem for which an additional regularity result holds.

With this aim, we take η ∈ H1
0 (Ωi)

2
and z ∈ H1

0 (Ωi) and extend them by zero to Ω. These extensions, that

we also denote η and z, clearly satisfy η ∈ H1
0 (Ω)

2
and z ∈ H1

0 (Ω). If we take such η and z with vanishing zs,
ϕs
x and ϕs

y in (2.10), we obtain that

ai2 (β,η) +
1

t2

∫

Ωi

(∇w − β) · (∇z − η) =

∫

Ωi

gz ∀ (η, z) ∈ H1
0 (Ωi)

2
×H1

0 (Ωi) , (2.30)

where

ai2 (β,η) :=
1

12

{
∫

Ωi

Eν

1− ν2
divβ div η +

∫

Ωi

E

1 + ν
ǫ (β) : ǫ (η)

}

.

Therefore, using (2.29), we have that β̃|Ωi
∈ H1

0 (Ωi)
2
and w̃|Ωi

∈ H1
0 (Ωi) solve the following problem:

ai2

(

β̃,η
)

+
1

t2

∫

Ωi

(

∇w̃ − β̃
)

· (∇z − η) = −ai2 (β0,η)−
1

t2

∫

Ωi

(∇w0 − β0) · (∇z − η) +

∫

Ωi

gz

=:

∫

Ωi

F · η +

∫

Ωi

Gz ∀ (η, z) ∈ H1
0 (Ωi)

2
×H1

0 (Ωi) .

Notice that F ∈ L2 (Ω)
2
and G ∈ L2 (Ω), because β0|Ωi

∈ H2 (Ωi)
2
and w0|Ωi

∈ H2 (Ωi). Hence, using the

regularity results of [2, Theorem 2.1], we have that (β̃, w̃) ∈ H2 (Ωi)
2
×H2 (Ωi), which using (2.29) yields the

regularity for β.
The next step is to prove additional regularity for γ and α. With this aim, we observe first that by using the

definition of γ in (2.26) and the regularity of β and w we have that γ|Ωi
∈ H1 (Ωi)

2
, i = 1, 2.

On the other hand, testing problem (2.30) with z ∈ H1
0 (Ωi) and η = 0, we obtain that

− div γ = g in Ωi.

Therefore, testing (2.10) with z ∈ H1
0 (Ω) and all the other variables set to zero, integrating by parts in each

subdomain Ωi and using the equation above, we have that

∫

Γ

[[γ · n]] z +

∫

Γ

λ2z = 0

where [[·]] denotes the jump across Γ. Consequently, from the regularity of γ, we obtain λ2 ∈ H1/2 (Γ). Therefore,
testing (2.10) with zs ∈ H1

0 (Γ) and all the other variables set to zero, we have that α′ = λ2 and hence

α ∈ H3/2 (Γ). Moreover, testing (2.30) with η ∈ H1
0 (Ωi)

2
and z = 0, we obtain

− div (σ (β)) = γ in Ωi,

where σ (β) := 1
12

{

E
1+ν ǫ (β) +

E
1−ν2 divβ

}

is the plane-strain stress tensor. Thus, testing (2.10) with η ∈

H1
0 (Ω)

2
and all the other test functions set to zero, integrating by parts in each subdomain Ωi and using the

above equation, we arrive at
∫

Γ

[[σ (β)n]]Γ · η +

∫

Γ

(λ3η2 + λ4η1) = 0.
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Consequently, since β|Ωi
∈ H2 (Ωi), i = 1, 2, we obtain that λ3, λ4 ∈ H1/2 (Γ). Therefore, from (2.28) and the

analogous expression for θsy, we obtain that θsx and θsy are in H5/2 (Γ). Finally from these regularity results,

(2.27) and the additional regularity of α, we obtain ws ∈ H5/2 (Γ) and conclude the proof. �

Remark 2.3. According to Proposition 2.2, the solution of problem (2.10)–(2.11) satisfies additional regularity.
However, we have not proved that the corresponding norms are bounded independently of t. Indeed, we have
used that λ2, λ3 and λ4 belong to H−1/2 (Γ), which is true but we do not have bounds of ‖λ2‖−1/2,Γ, ‖λ3‖−1/2,Γ

and ‖λ4‖−1/2,Γ independent of t (cf. Remark 1.2). In spite of this, the numerical results in Section 5 seem to

suggest that such bounds should hold true.

3. The discrete problems

We consider separately the discretization of the stiffened in-plane and bending problems. Let {Th} be a
regular family of triangulations consistent with Γ, in the sense that, for all meshes, Γ is a union of edges of
Th. Let T Γ

h be the partition induced by Th in Γ. We assume that the family {Th} is such that
{

T Γ
h

}

is quasi
uniform.

3.1. Stiffened in-plane plate problem

We define:

Xh :=
{

zh ∈ H1
0 (Ω) : zh|T ∈ P1 ∀T ∈ Th

}

,

Pkh :=
{

vh ∈ H1
0 (Γ) : vh|ℓ ∈ Pk ∀ℓ ∈ T Γ

h

}

, k ∈ N,

where Pk denotes the polynomials of degree at most k. Let Xh := Xh×Xh. The discrete analogue to problem
(2.7)–(2.8) reads:

Find (uh, u
s
h) ∈ Xh × P1h and λ1h ∈ P1h such that

a1 (uh,vh) +

∫

Γ

dush
dx

dvsh
dx

+

∫

Γ

λ1h (v1h − vsh) =

∫

Ω

f · vh ∀ (vh, v
s
h) ∈ Xh × P1h, (3.1)

∫

Γ

χ1h (u1h − ush) = 0 ∀χ1h ∈ P1h. (3.2)

Since Xh ⊂ H1
0 (Ω)

2
and P1h ⊂ H1

0 (Γ), by virtue of (2.9) we only need to prove the following inf-sup condition
to be able to apply the classical Babuška-Brezzi theory:

sup
0 6=(vh,vsh)∈Xh×P1h

∫

Γ
χh (v1h − vsh)

‖vh‖1,Ω + ‖vsh‖1,Γ
≥ C ‖χh‖−1/2,Γ ∀χh ∈ P1h.

To prove this, we will define a Fortin operator Π̄. With this aim we define several auxiliary operators.
First let π̂ : L2 (Γ) → P1h be the L2-projection. Clearly we have that

‖π̂v‖0,Γ ≤ C ‖v‖0,Γ ∀v ∈ L2 (Γ) .

Moreover, it is a classical result (see [14, Lemma 1.131]) that

‖π̂v‖1,Γ ≤ C ‖v‖1,Γ ∀v ∈ H1
0 (Γ) , (3.3)

provided
{

T Γ
h

}

is a quasi-uniform family of meshes. Consequently, using interpolation of Banach Spaces we
arrive at

‖π̂v‖1/2,Γ ≤ C ‖v‖1/2,Γ . (3.4)
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Next, let ISZ : H1
0 (Ω) → Xh be a Scott-Zhang interpolation operator (see [22]) such that if v ∈ H1

0 (Ω) and
v|Γ ∈ P1h, then (ISZv)|Γ = v|Γ.

On the other hand, let E : H
1/2
00 (Γ) → H1

0 (Ω) be a continuous right-inverse of the trace operator on Γ.
Notice that

ISZ (Evh) = vh ∀ vh ∈ P1h. (3.5)

Now we are in the a position to define the Fortin operator

Π̄ (v, vs) := ((ISZ (E (π̂ (v1|Γ))) , ISZv2) , π̂v
s) .

As a consequence of (3.3), (3.4) and the boundedness of the operators E and ISZ, we have

∥

∥Π̄ (v, vs)
∥

∥

H1

0
(Ω)2×H1

0
(Γ)

≤ C
{

‖v‖1,Ω + ‖vs‖1,Γ

}

∀ (v, vs) ∈ H1
0 (Ω)

2
×H1

0 (Γ) .

Moreover Π̄ satisfies the commuting diagram property. In fact, because of (3.5),

∫

Γ

(v1 − ISZ (E (π̂ (v1|Γ))))χh = 0 ∀χh ∈ P1h.

Therefore Π̄ satisfies the assumptions of the Fortin lemma [14]. Consequently the Babuška-Brezzi theory (see
for instance [6]) allows us to prove the next theorem.

Theorem 3.1. Problem (3.1)–(3.2) has a unique solution (uh, u
s
h, λ1h) ∈ Xh × P1h × P1h and there exists a

positive constant C such that, if (u, us) is the solution to problem (2.7)–(2.8), then

‖u− uh‖1,Ω + ‖us − ush‖1,Γ + ‖λ1 − λ1h‖−1/2,Γ

≤ C

{

inf
vh∈Xh

‖u− vh‖1,Ω + inf
vsh∈P1h

‖us − vsh‖1,Γ + inf
χ1h∈P1h

‖λ1 − χ1h‖−1/2,Γ

}

.

The error estimate above depends as usual on additional regularity of the solution to the continuous problem
(2.7)–(2.8). In what follows we derive a simpler form of this problem. By testing (2.7) with vs ∈ H1

0 (Γ) and
setting the other variables to zero we have

−
d2us

dx2
= λ1 ∈ H−1/2 (Γ)

and hence, us ∈ H3/2 (Γ). Moreover, from (2.8), u1 = us on Γ. On the other hand, using different test functions
in (2.7) it can be shown that

[[σ (u)n]]Γ =

[

λ1
0

]

(3.6)

where σ (u) := E
1+ν ǫ (u) +

Eν
(1+ν)(1−2ν) (divu)I is the plane-stress stress tensor. Therefore, u ∈ H1

0 (Ω)
2
is the

solution to the following problem:

− div (σ (u)) = f ∈ L2 (Ωi) , i = 1, 2,

u1 = us ∈ H
1/2
00 (Γ) ∩H3/2 (Γ) ,

[[

∂u2
∂n

]]

= 0 on Γ.
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This can be seen as the coupling of two elliptic problems, one in each subdomain Ωi, i = 1, 2, with a Dirichlet
boundary condition for the component u1 and a transmission condition for u2. It seems reasonable to expect

additional regularity for the solution to this problem. In such a case, λ1 = E
2(1+ν)

[[

∂u1

∂y + ∂u2

∂x

]]

would be more

regular, too.

3.2. The stiffened bending plate problem

To discretize this problem we consider the DL3 element introduced in [12]. For each T ∈ Th, let µ1, µ2, µ3

be its barycentric coordinates. We denote by τi a unit tangent vector to the edge µi = 0 and define

p1 = µ2µ3τ1, p2 = µ1µ3τ2, p3 = µ1µ2τ3. (3.7)

Let

Y h :=
{

η ∈ H1
0 (Ω)

2
: η|T ∈ P1 ⊕ 〈p1,p2,p3〉 ∀T ∈ Th

}

,

Wh :=
{

v ∈ H1
0 (Ω) : v|T ∈ P1 ∀T ∈ Th

}

,

P0h :=
{

ϕ ∈ L2 (Γ) : ϕ|ℓ ∈ P0 ∀ ℓ ∈ T Γ
h

}

,

Γh :=

{

ηh ∈ H0 (rot,Ω) : ηh|T ∈ P2
0 ⊕ P0

(

−x2
x1

)

∀T ∈ Th

}

,

the latter being the rotated Raviart-Thomas space (see [21]). Let Π be the rotated Raviart-Thomas interpolant

on this space (see [21] again). This operator is well defined in H1 (Ω)
2
. Moreover for η ∈ H1 (Ω)

2
∩H0 (rot,Ω),

Πη ∈ Γh and there holds

‖η −Πη‖0,Ω ≤ Ch ‖η‖1,Ω . (3.8)

Let π : L2 (Γ) → P0h be the orthogonal projection onto P0h. It is well known that

‖v − πv‖0,Γ ≤ Ch ‖v‖1,Γ ∀v ∈ H1 (Γ) . (3.9)

Let π̃ : L2 (Γ) → P2h be the orthogonal projection onto P2h.
Finally, let

Hh := Y h ×Wh × P1h × P1h × P2h and Qh := P1h × P1h × P2h

The discrete problem is defined as follows:

Find
(

βh, wh, w
s
h, θ

s
xh, θ

s
yh

)

∈ Hh and (λ2h, λ3h, λ4h) ∈ Qh such that

a2 (βh,ηh) +
1

t2

∫

Ω

(∇wh −Πβh) · (∇zh −Πηh) +

∫

Γ

∂θsxh
∂x

∂ϕs
xh

∂x
+

∫

Γ

∂θsyh
∂x

,
∂ϕs

yh

∂x

+
1

t2

∫

Γ

(

∂zsh
∂x

+ πθsyh

)(

∂zsh
∂x

+ πϕs
yh

)

+

∫

Γ

λ2h (zh − zsh) +

∫

Γ

λ3h (η2h − ϕs
xh)

+

∫

Γ

λ4h
(

η1h − ϕs
yh

)

=

∫

Ω

gzh ∀
(

ηh, zh, z
s, ϕs

xh, ϕ
s
yh

)

∈ Hh, (3.10)

∫

Γ

χ2h (wh − ws
h) +

∫

Γ

χ3h (β2h − θsxh) +

∫

Γ

χ4h

(

β1h + θsyh
)

= 0 ∀ (χ2h, χ3h, χ4h) ∈ Qh. (3.11)



16 R. DURÁN, R. RODRÍGUEZ AND F. SANHUEZA

The existence and uniqueness of the solution to (3.10)–(3.11) is obtained using the Babuška-Brezzi theory.
The ellipticity condition

a2 (ηh,ηh) +
1

t2

∫

Ω

|∇zh −Πηh|
2
+

1

t2

∫

Γ

(

∂zsh
∂x

+ πϕs
yh

)2

+

∫

Γ

∣

∣

∣

∣

∂ϕs
xh

∂x

∣

∣

∣

∣

2

+

∫

Γ

∣

∣

∣

∣

∂ϕs
yh

∂x

∣

∣

∣

∣

2

≥ C
{

‖ηh‖
2
1,Ω + ‖zh‖

2
1,Ω + ‖zsh‖

2
1,Γ + ‖ϕs

xh‖
2
1,Γ +

∥

∥ϕs
yh

∥

∥

2

1,Γ

}

∀
(

ηh, zh, z
s, ϕs

xh, ϕ
s
yh

)

∈ Hh,

is obtained from the ellipticity of the discrete unstiffened plate problem (see for instance [12]), the ellipticity of
the discrete beam problem (see for instance [1]) and Poincaré inequality in H1

0 (Γ).
On the other hand, it is simple to show that the discrete inf-sup condition holds true (with a positive constant

in principle depending of h) if and only if

sup
0 6=(η,zh,zsh,ϕs

xh,ϕ
s

yh)∈Hh

∫

Γ

χ2h (zh − zsh) + χ3h (η2h − ϕs
xh) + χ4h

(

η1h + ϕs
yh

)

> 0 ∀ (χ2h, χ3h, χ4h) ∈ Qh.

The latter can be proved by taking χ2h = zh|Γ − zsh, χ3h = η2h|Γ −ϕs
xh and χ4h = η1h|Γ +ϕs

yh. Thus we arrive
at the following lemma.

Lemma 3.2. Problem (3.10)–(3.11) has a unique solution.

4. Error estimate

Let us introduce the discrete shear terms approximating (2.26) and (2.27):

γh :=
1

t2
(∇wh −Πβh) , (4.1)

αh :=
1

t2

(

∂zsh
∂x

+ πθsyh

)

. (4.2)

The first step to obtain error estimates is to write an error equation.
With this aim, we test the continuous problem (2.10)–(2.11) and the discrete problem (3.10)–(3.11) with

(

ηh, zh, z
s
h, ϕ

s
xh, ϕ

s
yh

)

∈ Hh to obtain

a2 (β − βh,ηh) +

∫

Ω

(γ − γh) · (∇ zh −Πηh) +

∫

Γ

(α− αh)

(

∂zs

∂x
+ πϕs

y

)

+

∫

Γ

(

∂θsy
∂x

−
∂θsyh
∂x

)

∂ϕs
y

∂x
+

∫

Γ

(

∂θsx
∂x

−
∂θsxh
∂x

)

∂ϕs
x

∂x
+

∫

Γ

(λ2 − λ2h) (z − zs)

+

∫

Γ

(λ3 − λ3h) (η2 − ϕs
x) +

∫

Γ

(λ4 − λ4h)
(

η1 − ϕs
y

)

=

∫

Ω

γ · (ηh −Πηh) +

∫

Γ

α
(

πϕs
yh − ϕs

yh

)

∀
(

ηh, zh, z
s
h, ϕ

s
xh, ϕ

s
yh

)

∈ Hh, (4.3)

∫

Γ

χ2h (w − wh − (ws − ws
h)) +

∫

Γ

χ3h (β2 − β2h − (θsx − θsxh))

+

∫

Γ

χ4h

(

β1 − β1h + θsy − θsyh
)

= 0 ∀ (χ2h, χ3h, χ4h) ∈ Qh. (4.4)

The following lemma well be used to prove the error estimates.
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Lemma 4.1. Given β̂ ∈ Y h, ŵ ∈ Wh, let γ̂ := t−2
(

∇ŵ −Πβ̂
)

∈ Γh, θ̂
s
x := β̂2

∣

∣

∣

Γ
∈ P1h, θ̂

s
y := −β̂1

∣

∣

∣

Γ
∈ P2h,

ŵs := ŵ|Γ ∈ P1h and α̂ := t−2
(

dŵs

dx + πθ̂sy

)

∈ P0h. Then,

∥

∥

∥
β̂ − βh

∥

∥

∥

1,Ω
+ t ‖γ̂ − γh‖0,Ω + t ‖α̂− αh‖0,Γ +

∥

∥

∥
θ̂sx − θsxh

∥

∥

∥

1,Γ
+
∥

∥

∥
θ̂sy − θsyh

∥

∥

∥

1,Γ

≤ C

{

∥

∥

∥
β̂ − β

∥

∥

∥

1,Ω
+ t ‖γ̂ − γ‖0,Ω + t ‖α̂− α‖0,Γ +

∥

∥

∥
θ̂sx − θsx

∥

∥

∥

1,Γ
+
∥

∥

∥
θ̂sy − θsy

∥

∥

∥

1,Γ
+ h ‖γ‖0,Ω + h ‖α‖0,Γ

}

.

(4.5)

Proof. Let R̂ : H−1/2 (Γ) → P1h and R̃ : H−1/2 (Γ) → P2h be the projectors respectively defined for any
λ ∈ H−1/2 (Γ) by

∫

Γ

(

λ− R̂λ
)

χh = 0 ∀χh ∈ P1h and

∫

Γ

(

λ− R̃λ
)

χh = 0 ∀χh ∈ P2h.

Using this in the error equation (4.3) we have

a2

(

β̂ − βh,ηh

)

+

∫

Ω

(γ̂ − γh) · (∇zh −Πηh) +

∫

Γ

(α̂− αh)

(

∂zsh
∂x

+ πϕs
yh

)

+

∫

Γ

(

∂θ̂sx
∂x

−
∂θsxh
∂x

)

∂ϕs
xh

∂x
+

∫

Γ

(

∂θ̂sy
∂x

−
∂θsyh
∂x

)

∂ϕs
yh

∂x

= −

∫

Γ

(

R̂λ2 − λ2h

)

(zh − zsh)−

∫

Γ

(

R̂λ3 − λ3h

)

(

η1h − ϕs
yh

)

−

∫

Γ

(

R̃λ4 − λ4h

)

(η2h + ϕs
xh) + a2

(

β̂ − β,ηh

)

+

∫

Ω

(γ̂ − γ) · (∇zh −Πηh) +

∫

Γ

(α̂− α)

(

∂zsh
∂x

− πϕs
yh

)

+

∫

Γ

(

∂θ̂sx
∂x

−
dθsx
dx

)

∂ϕs
xh

∂x
+

∫

Γ

(

∂θ̂sy
∂x

−
dθsy
dx

)

∂ϕs
yh

∂x

+

∫

Ω

γ · (ηh −Πηh) +

∫

Γ

α
(

πϕs
yh − ϕs

yh

)

.

Now, take ηh = β̂−βh, zh = ŵ−wh, z
s = ŵs−ws

h, ϕ
s
xh = θ̂sx− θ

s
xh and ϕs

yh = θ̂sy− θ
s
yh and use that ŵs = ŵ|Γ,

θ̂sx = β̂1

∣

∣

∣

Γ
, θ̂sy = − β̂2

∣

∣

∣

Γ
and (4.4), to obtain

∫

Γ

(

R̂λ2 − λ2h

)

(ŵ − wh − (ŵs − ws
h)) +

∫

Γ

(

R̂λ3 − λ3h

)(

β̂1 − β1h −
(

θ̂sx − θsxh

))

+

∫

Γ

(

R̃λ4 − λ4h

)(

β̂2 − β2h + θ̂sy − θsyh

)

= 0.
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Hence, using the ellipticity of a2 (cf. (1.15)), the definition of γ̂ and α̂, (4.1), (4.2) and a little of algebra, we
obtain

∥

∥

∥
β̂ − βh

∥

∥

∥

2

1,Ω
+ t2 ‖γ̂ − γh‖

2
0,Ω + t2 ‖α̂− αh‖

2
0,Γ +

∥

∥

∥
θ̂sy − θsyh

∥

∥

∥

2

1,Γ
+
∥

∥

∥
θ̂sx − θsxh

∥

∥

∥

2

1,Γ

≤ C

{

∥

∥

∥
β̂ − β

∥

∥

∥

2

1,Ω
+ t2 ‖γ̂ − γ‖

2
0,Ω + t2 ‖α̂− α‖

2
0,Γ + C2

∥

∥

∥
θ̂sy − θsy

∥

∥

∥

2

1,Γ
+
∥

∥

∥
θ̂sx − θsx

∥

∥

∥

2

1,Γ

}

+ ‖γ‖0,Ω

∥

∥

∥

(

β̂ − βh

)

−Π
(

β̂ − βh

)∥

∥

∥

0,Ω
+ ‖α‖0,Γ

∥

∥

∥

(

θ̂sy − θsyh

)

− π
(

θ̂sy − θsyh

)∥

∥

∥

0,Γ
.

where we have used (3.8) and (3.9) to obtain the last two terms. Thus we conclude the lemma. �

Next step consists in defining β̂ and ŵ so that appropriate error estimates hold for the right hand side of
(4.5). With this aim we will use the Lagrange interpolant IL of different functions β1, β2, w, θ

s
x, etc. This

interpolant is well defined because of the additional regularity proved in Proposition 2.2. Moreover, for each
edge ℓ of the triangulation, let tℓ be a unit tangent vector and bℓ the piecewise quadratic bubble associated to
ℓ, so that bℓtℓ is a tangential bubble as defined in (3.7).

To define β̂ we use the Lagrange interpolant of β enriched with quadratic tangential bubbles so that, for all
edges ℓ,

∫

ℓ

β̂ · tℓ =

∫

ℓ

β · tℓ. (4.6)

Namely

β̂ := IL (β) +
∑

ℓ

cℓbℓtℓ, (4.7)

with

cℓ :=
6

|ℓ|

∫

ℓ

(β − ILβ) · tℓ. (4.8)

Based on results from [15], it was shown in [12] that

∥

∥

∥
β − β̂

∥

∥

∥

1,Ωi

≤ Ch ‖β‖2,Ωi
, i = 1, 2. (4.9)

On the other hand, we use the standard Lagrange interpolant of w to define ŵ:

ŵ := ILw. (4.10)

Our next goal is to estimate ‖γ̂ − γ‖0,Ω. Notice that, in spite of the fact that γ /∈ H1 (Ω)
2
, its rotated Raviart-

Thomas interpolant is well defined because γ|Ωi
∈ H1 (Ωi)

2
and the tangential components of γ|Ω1

and γ|Ω2

coincide on Γ (see [21]). Moreover, an error estimate similar to (3.8) also holds in this case; namely,

‖γ −Πγ‖0,Ω ≤ Ch
(

‖γ‖1,Ω1
+ ‖γ‖1,Ω2

)

. (4.11)

On the other hand another well known property of the rotated Raviart-Thomas interpolant is that Π (∇w) =
∇ (ILw) := ∇ŵ (see [21] again). Therefore,

γ̂ :=
1

t2
(∇ŵ −Πβ) =

1

t2
Π(∇w − β) = Πγ.

Next, for θ̂sx, since θ
s
x = β2 (cf. 2.13), we have that

θ̂sx := β̂2

∣

∣

∣

Γ
= (ILβ2)|Γ = ILθ

s
x
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and hence
∥

∥

∥
θsx − θ̂sx

∥

∥

∥

1,Γ
≤ Ch ‖θsx‖2,Γ . (4.12)

Analogously, for θ̂sy we have

θ̂sy := − β̂1

∣

∣

∣

Γ
= − (ILβ1)|Γ −

∑

ℓ∈T Γ

h

cℓ bℓ.

Since θsy = −β1|Γ (cf. (2.13)), there holds

∥

∥

∥
θsy − θ̂sy

∥

∥

∥

1,Γ
≤
∥

∥θsy − ILθ
s
y

∥

∥

1,Γ
+

∥

∥

∥

∥

∥

∥

∑

l∈T Γ

h

cl bl

∥

∥

∥

∥

∥

∥

1,Γ

.

The first term on the right hand side above is bounded by means of the standard estimates for the Lagrange
interpolant. For the second one we write

∥

∥

∥

∥

∥

∥

∑

ℓ∈T Γ

h

cℓ bℓ

∥

∥

∥

∥

∥

∥

2

1,Γ

=
∑

ℓ∈T Γ

h

|cℓ|
2
‖bℓ‖

2
1,ℓ .

Straightforward computations show that ‖bℓ‖
2
1,ℓ ≤

C
|ℓ| . On the other hand, for the coefficients cℓ we use that

β · tℓ = β1 = −θsy on ℓ. Consequently, ILβ · tℓ = −ILθ
s
y, and we have from (4.8)

|cℓ|
2
≤

36

|ℓ|

∥

∥θsy − ILθ
s
y

∥

∥

2

0,ℓ
≤ C |ℓ|

3 ∥
∥θsy
∥

∥

2

2,ℓ
. (4.13)

Altogether, we obtain
∥

∥

∥
θsy − θ̂sy

∥

∥

∥

1,Γ
≤ Ch

∥

∥θsy
∥

∥

2,Γ
. (4.14)

It remains to estimate the term ‖α̂− α‖0,Γ in (4.5). With this aim we will show that α̂ = πα. First, it is
simple to show that

π
dws

dx
=

d

dx
(ILw

s) . (4.15)

Hence, from (2.13), (4.10) and the definition of ŵs given in Lemma 4.1, we obtain

π
dws

dx
=
dŵs

dx
.

Secondly we will show that

πθsy = πθ̂sy. (4.16)

To prove this it is enough to show that
∫

ℓ
θsy =

∫

ℓ
θ̂sy for all ℓ ∈ T Γ

h , which follows from (2.13), (4.6) and the

definition of θ̂sy in Lemma 4.1:
∫

ℓ

θsy = −

∫

ℓ

β1 = −

∫

ℓ

β̂1 =

∫

ℓ

θ̂sy.

Therefore, (4.16) and (4.15) lead to

α̂ =
1

t2

(

dŵs

dx
+ πθ̂sy

)

=
1

t2
π

(

dws

dx
+ θsy

)

= πα.

Consequently, from (3.9) we have
‖α̂− α‖0,Γ ≤ Ch ‖α‖1,Γ . (4.17)

Now, we are in a position to prove the following theorem.
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Theorem 4.2. Let
(

β, w, ws, θsx, θ
s
y

)

and
(

βh, wh, w
s
h, θ

s
xh, θ

s
yh

)

be the solutions of problems (2.10)–(2.11) and

(3.10)–(3.11), respectively. Let γ, α, γh and αh be as defined in (2.26), (2.27), (4.1) and (4.2), respectively.
Then

‖β − βh‖1,Ω + ‖θsx − θsxh‖1,Γ +
∥

∥θsy − θsyh
∥

∥

1,Γ
+ t ‖γ − γh‖0,Ω + t ‖α− αh‖0,Γ

≤ Ch
{

‖β‖2,Ω1
+ ‖β‖2,Ω2

+ t ‖γ‖1,Ω1
+ t ‖γ‖1,Ω2

+ ‖γ‖0,Ω + ‖θsx‖2,Γ +
∥

∥θsy
∥

∥

2,Γ
+ t ‖α‖1,Γ + ‖α‖0,Γ

}

. (4.18)

Proof. Let β̂ and ŵ be as defined in (4.7) and (4.6), respectively. Let γ̂, θ̂sx, θ̂
s
y and α̂ as in Lemma 4.1. Adding

and subtracting these terms on the left hand side of (4.18), using triangular inequality, Lemma 4.1 and estimates
(4.9), (4.11), (4.12), (4.14) and (4.17), we conclude the proof. �

Corollary 4.3. Under the same assumptions as in Theorem 4.2, there holds

‖w − wh‖1,Ω + ‖ws − ws
h‖1,Γ

≤ Ch
{

‖β‖2,Ω1
+ ‖β‖2,Ω2

+ t ‖γ‖1,Ω1
+ t ‖γ‖1,Ω2

+ ‖γ‖0,Ω + ‖θsx‖2,Γ +
∥

∥θsy
∥

∥

2,Γ
+ t ‖α‖1,Γ + ‖α‖0,Γ

}

. (4.19)

Proof. From (2.26) and (4.1) we have

∇w −∇wh = t2 (γ − γh) + β −Πβh.

Hence,

|w − wh|1,Ω ≤ t2 ‖γ − γh‖0,Ω + ‖β −Πβ‖0,Ω + ‖Π(β − βh)‖0,Ω

≤ t2 ‖γ − γh‖0,Ω + ‖β −Πβ‖0,Ω + C ‖β − βh‖1,Ω ,

the latter because of (3.8). Analogously, from (2.27) and (4.2) we have

dws

dx
−
dws

h

dx
= t2 (α− αh) + θsy − πθsyh

and hence

|ws − ws
h|1,Γ ≤ t2 ‖α− αh‖0,Γ +

∥

∥θsy − πθsy
∥

∥

0,Γ
+
∥

∥π
(

θsy − θsyh
)∥

∥

0,Γ

≤ t2 ‖α− αh‖0,Γ +
∥

∥θsy − πθsy
∥

∥

0,Γ
+
∥

∥θsy − θsyh
∥

∥

0,Γ
.

Therefore, the corollary follows from these estimates, (3.8), (3.9) and Theorem 4.2. �

5. Numerical Experiments

In this section we report some numerical results obtained with a code which implements the method proposed
above. The aim of the numerical experimentation is to assess the performance of the method. The error
estimate from Theorem 4.2 involves higher order norms of quantities which are known to be bounded (cf.
Proposition 2.2). These bound are independent of the thickness t for uncoupled plates [2] and rods [3]. However
analogous thickness-independent bounds have not been proved for a stiffened plate. Therefore, one of the goals
of the reported numerical experimentation is to test whether the method is actually locking-free. To solve
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Figure 4. Square plate. Finite element mesh (N = 4).

problem (3.10)–(3.11), first we eliminate the Lagrange multipliers and impose the constraints by writing the
variables corresponding to the stiffener in terms of those of the plate. In fact, (3.11) implies that

ws
h = wh, θsxh = β2h, θsyh = −β1h on Γ.

Thus, problem (3.10)–(3.11) turns out to be equivalent to the following one, in which we included again the
physical constants that have been set to 1 for the analysis:

t3a2 (βh,ηh) + t

∫

Ω

κµ (∇wh −Πβh) · (∇zh −Πηh) +

∫

Γ

EsIyy
∂β1h
∂x

∂η1h
∂x

+

∫

Γ

κsµsA

(

∂zh
∂x

− πβ1h

)(

∂zh
∂x

− πη1h

)

+

∫

Γ

µsJ
∂β2h
∂x

∂η2h
∂x

= t

∫

Ω

gzh, ∀ (zh,ηh) ∈Wh × Y h. (5.1)

Let us remark that the stiffness matrix of the problem can be easily obtained by static condensation from
the separate corresponding stiffness matrices of the plate and the rod. In all tests, we considered a square plate
of side length 60 cm. The stiffener crosses the plate joining the mid-points of two opposite edges.

We use uniform meshes obtained by refining the coarse one shown in Figure 4. The parameter N represents
the number of elements on each side of the plate. We took κ = κs = 1 as correction factors in the plate and the
stiffener, respectively, for all the tests.

5.1. Test 1: A free vibration problem for a clamped stiffened plate

Since no analytical solution for the load problem of the stiffened plate is available to compare with, we used
a vibration problem solved in [17] by means of MITC9 elements.

For the vibration problem, we have to consider the mass terms of the plate and the stiffener instead of the
load terms. Thus, the vibration problem consists in finding ωh > 0 and (wh,βh) ∈Wh × Y h such that

t3a2 (βh,ηh) + t

∫

Ω

κµ (∇wh −Πβh) · (∇zh −Πηh) +

∫

Γ

EsIyy
∂β1h
∂x

∂η1h
∂x

+

∫

Γ

κsµsA

(

∂zh
∂x

− πβ1h

)(

∂zh
∂x

− πη1h

)

+

∫

Γ

µsJ
∂β2h
∂x

∂η2h
∂x

= ω2
h

(

t

∫

Ω

ρwhzh +
t3

12

∫

Ω

ρβh · ηh +

∫

Γ

ρsAwhzh +

∫

Γ

ρsIyyβ1hη1h

+

∫

Γ

ρsJβ2hη2h

)

∀ (zh,ηh) ∈Wh × Y h,

where ωh is the unknown vibration frequency and ρ and ρs are the densities of the plate and the stiffener,
respectively. We applied the method to a square clamped stiffened plate with the same physical and geometrical
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parameters as in [17]:

t = 1 mm,
E = Es = 68.85× 109 Pa,
ν = νs = 0.34,
ρ = ρs = 2780 kg/m3,
A = 67 mm2,
Iyy = 2290 mm4,
J = 22.33 mm4.

Table 1 shows the six lowest vibration frequencies computed with the method on four successively refined
meshes. The table includes extrapolated frequencies and the order of convergence in powers of h estimated by
means of a least squares fitting. It also includes the frequencies computed in [17] with MITC9 elements.

Table 1. Test 1: Lowest vibration frequencies of a square clamped stiffened plate.

Mode N = 16 N = 32 N = 48 N = 64 order extrapolated [17]

ω1 50.919 50.527 50.452 50.426 1.97 50.392 50.36
ω2 64.266 63.810 63.719 63.687 1.89 63.641 63.65
ω3 76.221 75.298 75.124 75.063 1.97 74.982 74.95
ω4 86.656 85.694 85.510 85.445 1.95 85.358 85.36
ω5 116.762 114.468 114.022 113.865 1.93 113.650 113.63
ω6 123.714 121.363 120.895 120.729 1.89 120.493 120.52

We observe a very good agreement between the values computed with both methods. On the other hand,
a quadratic order of convergence can be clearly appreciated. Since typically the order of convergence of the
eigenvalues doubles that of the load problem, this corresponds to O(h) for the latter, which is the optimal one
for the elements we have used.

5.2. Test 2: Robustness with respect to the stiffener properties

The aim of this test is to assess the robustness of the method with respect to the physical parameters of the
stiffener.

We considered two asymptotics with respect to the thickness t. In the first one, the stiffener rigidity increases
as t becomes smaller. As discussed above, the proper scaling for attaining a limit as t goes to zero is to take Es

proportional to 1/t (cf. (1.12)). Instead we used Es := E/t2 for this experiment, so that, in the limit as t goes
to zero, this problem corresponds to that of a clamped plate also clamped along its mid-line Γ.

The material and the stiffener cross-sectional properties were taken as follows:

A = t2,
Iyy = t4/12,
J = t4/6,
E = 68.85× 109 Pa,
ν = νs = 0.34.

The load was taken as constant on the whole plate:

g = 106 N/m4 t2.

We took various decreasing values of the thickness ranging from 10 to 0.01 mm. We compared the transverse
displacement wh and the rotation βh computed with the present method with those corresponding to the plate
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clamped along Γ, which were computed by DL3 elements [12]. We denote the latter by wc
h and βc

h. We measure
the deviation between both models by means of the relative differences

|wh − wc
h|1,Ω

|wc
h|1,Ω

and
|βh − βc

h|1,Ω
|βc
h|1,Ω

computed on the mesh corresponding to N = 64. It can be clearly seen that the relative differences decreases
linearly with the thickness t. Moreover, this experiment shows that the stiffened plate behaves as expected in
this limit case.

Table 2. Test 2: Comparison of stiffened plates with an almost rigid and a perfectly rigid stiffener.

Thickness (m)
|wh−wc

h|1,Ω
|wc

h|1,Ω

|βh−βc

h|1,Ω
|βc

h|1,Ω
10−2 2.6914× 10−2 1.6122× 10−2

10−3 2.8980× 10−3 1.6167× 10−3

10−4 2.9001× 10−4 1.6178× 10−4

10−5 2.9351× 10−5 1.6279× 10−5

As a second experiment we took Es = E and the same values as above for A, Iyy, J , E and ν. In this case,
as t becomes smaller, the effect of the stiffener tends to disappear. In fact, A = t2 corresponds to a rod section
with width and height proportional to t. In the limit as t goes to zero this problem correspond to that of an
unstiffened plate. Once more we took values of t ranging from 10 to 0.01mm and we compared the transverse
displacements and the rotations computed with the present method with those of the unstiffened plate computed
by DL3 elements. We denote the latter by wf

h and βf
h. We report in Table 3 the relative differences between

both models computed again on the mesh corresponding to N = 64.

Table 3. Test 2: Comparison of a stiffened plate with a very soft stiffener and a plate without a stiffener.

Thickness (m)
|wh−wf

h|1,Ω
|wf

h|1,Ω

|βh−βf

h|1,Ω
|βf

h|1,Ω
10−2 1.4452× 10−2 1.5399× 10−2

10−3 1.4624× 10−3 1.5650× 10−3

10−4 1.4643× 10−4 1.5687× 10−4

10−5 1.5688× 10−5 1.6183× 10−5

Once more, it can be clearly observed a linear dependence with respect to t. Once more, the behavior of this
softly stiffened plates agrees with what is expected.

On the other hand, Tables 2 and 3 show that the method is thoroughly robust with respect to the physical
parameters of the stiffener. Moreover, in both cases the results do not deteriorate as t becomes smaller, which
suggests that the method is locking-free.

5.3. Test 3: Testing the locking-free character of the method

The main goal of this test is to confirm experimentally that the method is locking-free. In this case we took
the scaling Es := E/t, which allows us to achieve a well posed limit problem. We computed a very accurate
approximation of the solution with the mesh corresponding to N = 64 and we took it as an ‘exact’ solution.
We denote by we the corresponding transverse displacement. We estimated the error of the numerical solutions
computed on coarse meshes (N = 8, 12, 16) by means of |we − wh|1,Ω.

We report in Table 4 the values of |we − wh|1,Ω for different meshes and decreasing values of the thickness.
We also include the orders of convergence estimated by means of a least squares fitting and, in the last row, the
extrapolated limit values corresponding to t = 0.
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Table 4. Test 3: Testing the locking-free character of the method. Computed error
|we − wh|1,Ω × 108 for different plate thickness and meshes.

Thickness (m) N = 8 N = 12 N = 16 N = 20 order

10−2 0.48539537 0.32111497 0.26220361 0.17661659 1.05
10−3 0.48461630 0.32097671 0.26194608 0.17665166 1.05
10−4 0.48460920 0.32097551 0.26194343 0.17665175 1.05
10−5 0.48460877 0.32097521 0.26194321 0.17665155 1.05

t = 0 (extr.) 0.48460875 0.32097512 0.26194319 0.17665121 1.05

O 

X 

Y 

Z 

Figure 5. Test 4: Transverse displacement field computed with the proposed method (N = 16)

We observe that the method is perfectly locking-free and that an order of convergence close to one is attained
even for extremely small values of the thickness. Thus, this experiment provides a solid numerical evidence of
the locking-free character of the method.

Figure 5 shows the transverse displacement field of the stiffened plate reported in Table 4 for t = 0.001 m
and N = 16. In this case the relation Es/E = 104. The effect of the stiffener can be clearly appreciated.

6. Conclusions

We analyzed the load problem of the clamped stiffened plate modeled by Reissner-Mindlin equations. We
restricted our analysis to the case of concentrically stiffened plates, in which the mid-line of the stiffener lies on
the mid-surface of the plate. In such a case, the problem decouples into two well posed problems: a stiffened
in-plate plate problem and a stiffened bending plate problem.

We propose a finite element method based on a standard linear triangular elements for the in-plane problem
and DL3 elements for the bending problem. The analysis of the former is straightforward, since it turns out a
standard elliptic problem not depending on the plate thickness.

The analysis of the bending problem is more involved. We proved optimal order error estimates for all the
quantities in terms of higher order norms of these quantities. We proved that these higher order norms are
bounded with bounds in principle depending on the plate thickness.

Because of this, the main goal of the numerical experimentation was to assess the locking-free character of
the method. The numerical tests also confirmed the optimal order of convergence and showed the robustness
of the method with respect to the physical parameters of the stiffener.
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