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Abstract. In this paper we analyze the approximation of a model convection-diffusion equation
by standard bilinear finite elements using the graded meshes introduced in [5].
Our main goal is to prove superconvergence results of the type known for standard elliptic problems,
namely, that the difference between the finite element solution and the Lagrange interpolation of
the exact solution, in the ε-weighted H1-norm, is of higher order than the error itself. The constant
in our estimate depends only weakly on the singular perturbation parameter.
As a consequence of the superconvergence result, we obtain optimal order error estimates in the
L2-norm. Also, we show how to obtain a higher order approximation by a local postprocessing of
the computed solution.
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1 Introduction

This paper deals with the approximation of a convection-diffusion problem by standard Q1 rect-
angular finite elements. For convection dominated problems it is well known that standard finite
elements produce poor approximations unless very fine or appropriate meshes are used.
In some cases, for example in the model problem considered here, one can use known behavior of
the exact solution to design a priori adapted meshes to approximate well the boundary layer. A
lot of work has been done in this direction. Probably the most well known approximations of this
kind are those based on the so called Shishkin meshes. In particular, optimal order of convergence
have been proved when Shishkin meshes are used in combination with standard finite elements or
some stream line artificial diffusion methods (see for example [10, 1, 12]).
More recently, in [4, 5], the use of graded meshes for reaction-diffusion and convection-diffusion
problems was analyzed and almost optimal error estimates were obtained.
On the other hand, superconvergence for elliptic problems with smooth solutions has been de-
veloped in a lot of papers since the work of Zlamal [19] (see for example the book [16]). For
convection-diffusion and reaction-diffusion problems, superconvergence results for approximations
based on the use of Shishkin meshes have been proved in [8, 14, 17, 18].
In this paper we analyze whether similar results than those obtained for Shishkin type meshes
are valid for graded meshes. This kind of meshes have been introduced as an alternative to the
Shishkin ones. Numerical experiments with both kind of meshes seems to show a similar behavior
of the error. As we are going to show, superconvergence results are valid also for graded meshes.
Our results are slightly weaker than those obtained previously for Shishkin meshes because of
logarithmic factors of ε involved in our estimates. However, the graded meshes have some desirable
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properties which the Shishkin meshes do not satisfy. Indeed, when one is approximating a singularly
perturbed problem with an a priori adapted mesh, it is natural to expect that a mesh designed for
some value of the perturbation parameter ε work well also for larger values of it. It was shown in
[4] that this is the case for the meshes introduced in that paper but not for the Shishkin meshes.
We will present some numerical results showing that the same is true for superconvergence. This
fact can be important in problems where the diffusion parameter is not constant or, also, to treat
systems of equations in which different equations have singular perturbations of different orders.
Let us mention that, for this kind of systems, Shishkin type meshes have been used in [9] (see also
[15] where a similar method is used for initial value problems). In that paper, the authors modify
the classic two part Shishkin meshes dividing the domain in several parts and dividing uniformly
each one of these parts. One can see that in this way one obtains something intermediate between
the usual Shishkin meshes and the graded ones.
We will prove superconvergence error estimates for the standard Q1 finite element approximation
of a model convection-diffusion problem when graded meshes are used. Precisely, if uh is the finite
element solution (where h is a parameter related with the definition of the meshes) and uI is
the Lagrange interpolation of the exact solution u, we prove that ‖uI − uh‖ε is of higher order
than ‖u − uh‖ε, where ‖.‖ε is the ε-weighted H1-norm associated with the symmetric part of
the differential equation. This result, combined with interpolation error estimates obtained in [5],
gives optimal order convergence in the L2 norm. Both superconvergence in the ‖.‖ε norm as well
as optimal order convergence in the L2 norm are almost optimal, in the sense that the constants
depend only on the logarithm of the singular perturbation parameter. Our arguments combine
ideas of [5, 18, 19].
As an application of our superconvergence error estimate, we show how to obtain a higher order
approximation by a simple local postprocessing of the computed solution. Let us mention that
postprocessing procedures for convection-diffusion equations using Shishkin type meshes have been
given in [11, 14].
We consider the model problem,

−ε∆u + b · ∇u + cu = f in Ω
u = 0 on ∂Ω

(1.1)

where ε is a small positive parameter, and Ω = [0, 1]2. We assume that b = (b1, b2), c and f are
smooth on Ω and that

bi < −γ, with γ > 0 for i = 1, 2.

Then, the solution will have a boundary layer of width O(ε log(1/ε)) at the outflow boundary
{(x, y) ∈ ∂Ω : x = 0 or y = 0} (see [12]). Moreover, we will make the usual assumption in order to
have coerciveness of the bilinear form associated with Problem 1.1, namely, there exists a constant
µ such that

c− 1
2
div(b) ≥ µ > 0. (1.2)

In our proofs we will need some weighted a priori estimates for the solution u. To prove these
estimates we will use that u is sufficiently smooth on Ω and its derivatives satisfy some bounds.
In order to have these results it is enough to assume that f ∈ C4(Ω) and satisfies the following
compatibility conditions,

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0,

∂i+jf

∂xi∂yj
(1, 1) = 0 for 0 ≤ i + j ≤ 3,

Indeed, under these conditions it can be proved that Problem 1.1 has a classical solution u ∈ C3(Ω),
and for all (x, y) ∈ Ω we have
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∣∣∣∣
∂i+ju

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C
(
1 + ε−ie−γx/ε + ε−je−γy/ε + ε−(i+j)e−γx/εe−γy/ε

)
(1.3)

for 0 ≤ i + j ≤ 3. We refer to [11, Section 2] and [10] for details.
Here, and in the rest of the paper, the letter C denotes a generic constant independent of ε and of
the discretization parameter h.
The rest of the paper is organized as follows. In Section 2 we present the graded meshes and
some preliminary results. Section 3 contains our main results concerning the superconvergence
error estimates. In Section 4 we show how a higher order approximation can be obtained from
the computed solution by a simple local postprocessing, and finally, in Section 5 we present some
numerical results.

2 Finite element approximation on graded meshes

In this section we recall the graded meshes used in [5] and prove some preliminary results for our
error analysis.
For a domain D we use the standard notation for Sobolev spaces, norms and seminorms, namely,

‖u‖m,D :=





∑

α≤m

‖Dαu‖2L2(Ω)





1/2

, |u|m,D :=

{ ∑
α=m

‖Dαu‖2L2(Ω)

}1/2

.

In particular ‖u‖0,D denotes the L2-norm of u. When D = Ω, and no confusion can arise, we will
write ‖u‖0 instead of ‖u‖0,Ω.
For a rectangle R, Pk(R) and Qk(R) denote the spaces of polynomials of total degree less than or
equal to k and of degree less than or equal to k in each variable respectively, over R.
The standard weak formulation of Problem 1.1 is given by

B(u, v) =
∫

Ω

f v dx ∀v ∈ H1
0 (Ω), (2.1)

where the bilinear form B is defined as

B(u, v) =
∫

Ω

(ε∇u · ∇v + b · ∇u v + cuv) dx. (2.2)

We will work with the ε-weighted H1-norm defined by

‖v‖2ε = ε ‖∇v‖20 + ‖v‖20 .

It is well known that, under the hypothesis (1.2), the bilinear form B is coercive in the ε-norm,
moreover, there exists β > 0, independent of ε, such that

β ‖v‖ε ≤ B(v, v) ∀v ∈ H1
0 (Ω). (2.3)

However, the continuity of B is not uniform in ε, and therefore, the standard theory based on Cea’s
lemma can not be applied to obtain error estimates valid uniformly in ε.
In [5] an analysis for the approximation of Problem (1.1) by standard bilinear finite elements, using
appropriate graded meshes, was developed. Almost optimal order of convergence independent of
ε was proved in that paper. Here we will prove superconvergence for the same approximation
considered in [5].
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First let us recall the graded meshes used in [5]. Given the discretization parameter h, that we
suppose 0 < h < 1, consider the partition {ξi}M

i=0 of the interval [0, 1] given by




ξ0 = 0
ξ1 = hε

ξi+1 = ξi + hξi for 1 ≤ i ≤ M − 2
ξM = 1

(2.4)

where M is such that ξM−1 < 1 and ξM−1 + hξM−1 ≥ 1. If 1− ξM−1 < ξM−1 − ξM−2 we modify
the definition of ξM−1 taking ξM−1 = (1 + ξM−2)/2. In this way we avoid the case in which the
last interval is smaller than the previous one.

Remark 2.1. In practice it is natural to take hi := ξi − ξi−1 to be monotonically increasing. To
have this property one can modify the partition by taking hi = h1 for i such that ξi−1 < ε and
starting with the graded mesh after that. It is not difficult to check that all our arguments can be
extended to this case.

We define Rij = [ξi−1, ξi]× [ξj−1, ξj ], and the graded meshes Th = {Rij}M
i,j=1 on Ω.

Associated with Th we introduce the standard piecewise bilinear finite element space

Vh =
{
v ∈ C(Ω) : v |Rij∈ Q1(Rij), 1 ≤ i, j ≤ M

}
,

and the finite element approximation uh ∈ Vh given by

B(uh, v) =
∫

Ω

fv dx ∀v ∈ Vh.

For the proof of our estimates, we will need to decompose Ω as Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1, Ω2

and Ω3 are the closed sets with disjoint interiors defined by

Ω1 =
⋃
{Rij : ξi−1 < c1ε log(1/ε)}

Ω2 =
⋃
{Rij : ξi−1 ≥ c1ε log(1/ε), ξj−1 < c1ε log(1/ε)}

Ω3 =
⋃
{Rij : ξi−1 ≥ c1ε log(1/ε), ξj−1 ≥ c1ε log(1/ε)}

where the constant c1 is such that
∣∣∣∣

∂i+ju

∂xi∂yj

∣∣∣∣ ≤ C for 0 ≤ i + j ≤ 3, if x, y > c1ε log(1/ε). (2.5)

Note that, in view of (1.3), it is enough to take c1 > 3/γ.
In the following lemma we give several weighted a priori estimates for the solution of Problem 1.1.
Some of these estimates were proved in [5] and all of them are consequences of (1.3).
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Lemma 2.2. There exists a constant C such that

εα

∥∥∥∥yβ ∂2u

∂y2

∥∥∥∥
0,Ω

, εα

∥∥∥∥xβ ∂2u

∂x2

∥∥∥∥
0,Ω

≤ C for α + β ≥ 3/2, α ≥ 0, β > −1/2 (2.6)

εα

∥∥∥∥yβ ∂2u

∂x∂y

∥∥∥∥
0,Ω

, εα

∥∥∥∥xβ ∂2u

∂x∂y

∥∥∥∥
0,Ω

≤ C for α + β ≥ 1, α ≥ 1/2, β > −1/2 (2.7)

εα

∥∥∥∥yβ ∂3u

∂y3

∥∥∥∥
0,Ω

, εα

∥∥∥∥xβ ∂3u

∂x3

∥∥∥∥
0,Ω

≤ C for α + β ≥ 5/2, α ≥ 0, β > −1/2 (2.8)

εα

∥∥∥∥yβ ∂3u

∂x∂y2

∥∥∥∥
0,Ω

, εα

∥∥∥∥xβ ∂3u

∂x2∂y

∥∥∥∥
0,Ω

≤ C for α + β ≥ 2, α ≥ 1/2, β > −1/2 (2.9)

εα

∥∥∥∥yβ ∂3u

∂x2∂y

∥∥∥∥
0,Ω

, εα

∥∥∥∥xβ ∂3u

∂x∂y2

∥∥∥∥
0,Ω

≤ C for α + β ≥ 2, α ≥ 3/2, β > −1/2 (2.10)

εα

∥∥∥∥xy
∂3u

∂x2∂y

∥∥∥∥
0,Ω

, εα

∥∥∥∥xy
∂3u

∂x∂y2

∥∥∥∥
0,Ω

≤ C for α ≥ 1/2 (2.11)

Proof. Let us prove for example one of the inequalities given in (2.8). The other inequalities can
be obtained in a similar way.
From (1.3) we have,

∫

Ω

x2β

∣∣∣∣
∂3u

∂x3

∣∣∣∣
2

dx dy ≤ C

∫ 1

0

∫ 1

0

x2β(1 + ε−6e−2γx/ε)dx dy

and so, integrating first in the variable y and making the change of variable z = x/ε, we obtain
∫

Ω

x2β

∣∣∣∣
∂3u

∂x3

∣∣∣∣
2

dx dy ≤ C

(
1 + ε2β−5

∫ ∞

0

z2βe−2γz dz

)

and therefore, (2.8) follows easily from the conditions on α and β.

3 Error estimates

In this section we prove that the finite element approximation defined in the previous section is
superconvergent in the ε-weighted H1-norm, i.e., the difference between the computed solution
and the Lagrange interpolation of the exact solution is of higher order than the error itself. In
particular, it follows from this result and previously known interpolation error estimates, that the
method is almost optimal convergent in the L2-norm.
Let xi = ξi and yj = ξj . With each element Rij = [xi−1, xi]× [yj−1, yj ] we associate the lengths of
its edges hi = ξi − ξi−1, hj = ξj − ξj−1, and we denote with (xi, yj) its barycenter, and with `i,j

k ,
for k = 1, 2, 3, 4, its edges, as indicated in Figure 1. For a continuous function u, uI ∈ Vh denotes
the standard piecewise Q1 Lagrange interpolation of u. We have dropped the dependence on h in
the notation uI to simplify notation.
We will use the following well known results. For w ∈ H2(Rij), the interpolation satisfies the error
estimate (see for example [13]),

∥∥∥∥
∂(w − wI)

∂x

∥∥∥∥
0,Rij

≤ C

{
hi

∥∥∥∥
∂2w

∂x2

∥∥∥∥
0,Rij

+ hj

∥∥∥∥
∂2w

∂x∂y

∥∥∥∥
0,Rij

}
. (3.1)

Given u ∈ H3(Rij), there exists p ∈ P2(Rij) such that
∥∥∥∥

∂2(u− p)
∂x2

∥∥∥∥
0,Rij

≤ C

{
hi

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

+ hj

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

}
(3.2)
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and ∥∥∥∥
∂2(u− p)

∂x∂y

∥∥∥∥
0,Rij

≤ C

{
hi

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

+ hj

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,Rij

}
, (3.3)

indeed, we can take p as an averaged Taylor polynomial of u (see for example [2, 3]).

Figure 1: General element

In the following lemma we bound the term corresponding to the diffusion part of the equation.
The proof uses an argument introduced by Zlamal in [19].

Lemma 3.1. Let u be the solution of (1.1). There exists a constant C such that, for any v ∈ Vh,
∣∣∣∣ε

∫

Ω

∇(u− uI) · ∇v dx dy

∣∣∣∣ ≤ Ch2 ‖v‖ε

Proof. Let us prove for example,
∣∣∣∣ε

∫

Ω

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣ ≤ Ch2 ‖v‖ε . (3.4)

Clearly, analogous arguments apply to estimate the term involving derivatives with respect to y.
The key observation made in [19] is that, for p ∈ P2(Rij) and v ∈ Q1(Rij),

∫

Rij

∂(p− pI)
∂x

∂v

∂x
dx dy = 0.

Indeed, this follows easily integrating by the midpoint rule and using that
∂(p− pI)

∂x
∈ P1(Rij),

vanishes over the segment joining the midpoints of `i,j
1 and `i,j

3 , and
∂v

∂x
= ay + b with a, b ∈ R.

Therefore, for all p ∈ P2(Rij) and v ∈ Q1(Rij), we have

∣∣∣∣∣
∫

Rij

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣∣ =

∣∣∣∣∣
∫

Rij

∂[(u− p)− (u− p)I ]
∂x

∂v

∂x
dx dy

∣∣∣∣∣

≤
∥∥∥∥

∂[(u− p)− (u− p)I ]
∂x

∥∥∥∥
0,Rij

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Rij

,

and using (3.1) for w = u− p, we obtain
∣∣∣∣∣
∫

Rij

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣∣ ≤ C

{
hi

∥∥∥∥
∂2(u− p)

∂x2

∥∥∥∥
0,Rij

+ hj

∥∥∥∥
∂2(u− p)

∂x∂y

∥∥∥∥
0,Rij

} ∥∥∥∥
∂v

∂x

∥∥∥∥
0,Rij

.
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Choosing now p ∈ P2(Rij) satisfying (3.2) and (3.3) we obtain,

∣∣∣∣∣
∫

Rij

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣∣

≤ C

{
h2

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

+ hihj

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

+ h2
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,Rij

} ∥∥∥∥
∂v

∂x

∥∥∥∥
0,Rij

. (3.5)

Let us now estimate the right hand side of (3.5) over each element according to its position.
Since h1 = εh, we have

∣∣∣∣ε
∫

R11

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣ ≤

≤ Ch2

{
ε5/2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,R11

+ ε5/2

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,R11

+ ε5/2

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,R11

}
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,R11

.

Now, for j ≥ 2 and any (x, y) ∈ R1j we have hj ≤ hy, which together with h1 = εh gives

∣∣∣∣∣ε
∫

R1j

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣∣ ≤

≤ Ch2

{
ε5/2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,R1j

+ ε3/2

∥∥∥∥y
∂3u

∂x2∂y

∥∥∥∥
0,R1j

+ ε1/2

∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
0,R1j

}
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,R1j

,

analogously, for i ≥ 2, we obtain

∣∣∣∣ε
∫

Ri1

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣ ≤

≤ Ch2

{
ε1/2

∥∥∥∥x2 ∂3u

∂x3

∥∥∥∥
0,Ri1

+ ε3/2

∥∥∥∥x
∂3u

∂x2∂y

∥∥∥∥
0,Ri1

+ ε5/2

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,Ri1

}
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ri1

.

Finally, for i, j ≥ 2, using that for any (x, y) ∈ Rij , hi ≤ hx and hj ≤ hy, we have

∣∣∣∣∣ε
∫

Rij

∂(u− uI)
∂x

∂v

∂x
dx dy

∣∣∣∣∣ ≤

≤ Ch2

{
ε1/2

∥∥∥∥x2 ∂3u

∂x3

∥∥∥∥
0,Rij

+ ε1/2

∥∥∥∥xy
∂3u

∂x2∂y

∥∥∥∥
0,Rij

+ ε1/2

∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
0,Rij

}
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Rij

, ∀i, j ≥ 2.

Therefore, summing over all indices i, j, and using the weighted inequalities (2.8), (2.11), and (2.9)
given in Lemma 2.2, we obtain (3.4).

Our next goal is to give an estimate for the term corresponding to the convection. We want to apply
an argument similar to that used for the diffusion part. With this goal we define, for u ∈ H3(Rij)
and v ∈ Vh,

Kij(u, v) =
∫

Rij

∂(u− uI)
∂x

v dx dy − h2
i

12

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)
. (3.6)

In [7, 18] the authors give an explicit expression of Kij(u, v) (see [18], identity (4.28)) which, in
particular, implies the result of our next lemma. We will give a more direct proof without making
use of that expression.
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Lemma 3.2. For p ∈ P2(Rij) and v ∈ Q1(Rij) we have,

Kij(p, v) = 0

Proof. Take p ∈ P2(Rij) and v ∈ Q1(Rij), and define e = p − pI . Then, ∂e
∂xv is a polynomial of

degree two in x and of degree one in y which vanishes at the midpoints of `i,j
1 and `i,j

3 . To simplify
notation we will write, for any function f , fi,j = f(xi, yj).
Using the Simpson rule in x and the trapezoidal rule in y we obtain,

∫

Rij

∂e

∂x
v dx dy =

hihj

12

{(
∂e

∂x
v

)

i,j−1

+
(

∂e

∂x
v

)

i,j

+
(

∂e

∂x
v

)

i−1,j−1

+
(

∂e

∂x
v

)

i−1,j

}
.

But, using again that ∂e
∂x vanishes at the midpoints of `i,j

1 and `i,j
3 , we have

(
∂e

∂x

)

i,j−1

=
(

∂e

∂x

)

i,j

= −
(

∂e

∂x

)

i−1,j−1

= −
(

∂e

∂x

)

i−1,j

=
hi

2
∂2e

∂x2

and therefore,
∫

Rij

∂e

∂x
v dx dy =

h2
i

12
∂2e

∂x2

{
hj

2
(vi,j−1 + vi,j)− hj

2
(vi−1,j−1 + vi−1,j)

}

=
h2

i

12

(∫

`i,j
2

∂2p

∂x2
v dy −

∫

`i,j
4

∂2p

∂x2
v dy

)

as we wanted to show.

In the next lemma we will use a standard trace theorem. For w ∈ H1(Rij),

‖w‖0,`ij
r
≤ C

{
h
−1/2
i ‖w‖0,Rij + h

1/2
i

∥∥∥∥
∂w

∂x

∥∥∥∥
0,Rij

}
(3.7)

with r = 2, 4. When v ∈ Q1(Rij), the second term on the right hand side can be bounded by the
first one using an inverse inequality. Therefore, in that case we have,

‖v‖0,`ij
r
≤ C

{
h
−1/2
i ‖v‖0,Rij

}
(3.8)

Lemma 3.3. Let u be the solution of (1.1). There exists a constant C such that, for any v ∈ Vh,
∣∣∣∣
∫

Ω

b · ∇(u− uI)v dx dy

∣∣∣∣ ≤ Ch2 log3(1/ε) ‖v‖ε

Proof. Let Pb be the piecewise constant approximation of b defined by Pb|Rij := bi,j , where bi,j

denotes the value of b at the barycenter of Rij . We have
∫

Ω

b · ∇(u− uI)v dx dy =
∫

Ω

(b− Pb) · ∇(u− uI)v dx dy +
∫

Ω

Pb · ∇(u− uI)v dx dy (3.9)

Let us estimate each term on the right-hand side. Since the derivatives of b are bounded we have
‖b− Pb‖∞ ≤ Ch|b|1,∞ and so, for each element Rij ,

∣∣∣∣∣
∫

Rij

(b− Pb) · ∇(u− uI)v dx dy

∣∣∣∣∣ ≤ Ch ‖∇(u− uI)‖0,Rij
‖v‖0,Rij

.
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Therefore, summing over all indices i, j such that Rij ⊂ Ω1, it follows that
∣∣∣∣
∫

Ω1

(b− Pb) · ∇(u− uI)v dx dy

∣∣∣∣ ≤ Ch ‖∇(u− uI)‖0,Ω1
‖v‖0,Ω1

. (3.10)

On the other hand, since v vanishes at the boundary of Ω, it follows from Poincaré inequality that

‖v‖0,Ω1
≤ Cε log(1/ε)

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω1

(3.11)

and therefore, using the estimate

ε1/2 ‖∇(u− uI)‖0,Ω1
≤ Ch,

which was proved in [5, Theorem 2.1], we obtain from (3.10),
∣∣∣∣
∫

Ω1

(b− Pb) · ∇(u− uI)v dx dy

∣∣∣∣ ≤ Ch2 log(1/ε) ‖v‖ε .

Clearly, the same argument can be applied to obtain an analogous estimate over Ω2. Finally, for
Rij ∈ Ω3, we use (2.5) and a standard interpolation error estimate to obtain

∣∣∣∣
∫

Ω3

(b− Pb) · ∇(u− uI)v dx dy

∣∣∣∣ ≤ Ch2 ‖v‖0,Ω3
.

Summing up we conclude that
∣∣∣∣
∫

Ω

(b− Pb) · ∇(u− uI)v dx dy

∣∣∣∣ ≤ Ch2 log(1/ε) ‖v‖ε . (3.12)

Now we estimate the second term on the right hand side of (3.9). We have

∫

Ω

Pb · ∇(u− uI)v dx dy =
M∑

i,j=1

∫

Rij

bi,j
1

∂(u− uI)
∂x

v dx dy +
M∑

i,j=1

∫

Rij

bi,j
2

∂(u− uI)
∂y

v dx dy

and we will estimate the first term on the right hand side (clearly the second one can be handled
in an analogous way). From the definition of Kij (3.6) it follows that

M∑

i,j=1

∫

Rij

bi,j
1

∂(u− uI)
∂x

v dx dy

=
M∑

i,j=1

bi,j
1 Kij(u, v) +

M∑

i,j=1

bi,j
1 h2

i

12

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)
.

(3.13)

Then, it is enough to bound the right hand side of (3.13). For the first term we write,

Kij(u, v) = K1,ij(u, v)−K2,ij(u, v)

with

K1,ij(u, v) =
∫

Rij

∂(u− uI)
∂x

v dx dy

and

K2,ij(u, v) =
h2

i

12

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)
.
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From Lemma 3.2 we know that, for any p ∈ P2(Rij),

Kij(u, v) = Kij(u− p, v) = K1,ij(u− p, v)−K2,ij(u− p, v).

Now, taking p ∈ P2(Rij) satisfying (3.2) and (3.3) and using the interpolation error estimate (3.1)
for w = u− p we obtain,

|K1,ij(u− p, v)| ≤ C

{
h2

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

+ hihj

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

+ h2
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,Rij

}
‖v‖0,Rij .

On the other hand, using now (3.7) for w = ∂2u
∂x2 , (3.8), and again (3.2), we get

|K2,ij(u− p, v)| ≤ C

{
h2

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

+ hihj

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

}
‖v‖0,Rij

.

In conclusion we have,

|Kij(u, v)| ≤ C

{
h2

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

+ hihj

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
0,Rij

+ h2
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
0,Rij

}
‖v‖0,Rij

. (3.14)

Now we are ready to estimate the first term on the right hand side of (3.13). Setting

Is :=
∑

i,j:Rij⊂Ωs

bi,j
1 Kij(u, v), s = 1, 2, 3,

we have
M∑

i,j=1

bi,j
1 Kij(u, v) = I1 + I2 + I3.

From (3.14), using the Cauchy-Schwarz inequality we obtain,

|I1| ≤ C





∑

i,j:Rij⊂Ω1

(
h4

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Rij

+ h2
i h

2
j

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Rij

+ h4
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Rij

)



1
2

‖v‖0,Ω1

and therefore, using now the Poincaré inequality (3.11),

|I1| ≤ C log(1/ε)





∑

i,j:Rij⊂Ω1

(
εh4

i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Rij

+ εh2
i h

2
j

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Rij

+ εh4
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Rij

)



1
2

ε
1
2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω1

.

Now, for Ri1 ⊂ Ω1 we have hi ≤ c1εh log(1/ε) and h1 = εh, then

εh4
i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Ri1

+ εh2
i h

2
1

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Ri1

+ εh4
1

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Ri1

≤ Ch4 log4(1/ε)

(
ε5

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Ri1

+ ε5

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Ri1

+ ε5

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Ri1

)
.

If Rij ⊂ Ω1, with j ≥ 2, we use that hi ≤ c1εh log(1/ε) and that hj ≤ hy for all (x, y) ∈ Rij ,
obtaining

εh4
i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Rij

+ εh2
i h

2
j

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Rij

+ εh4
j

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Rij

≤ Ch4 log4(1/ε)

(
ε5

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Rij

+ ε3

∥∥∥∥y
∂3u

∂x2∂y

∥∥∥∥
2

0,Rij

+ ε

∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
2

0,Rij

)
.

10



Therefore,

|I1| ≤ Ch2 log2(1/ε)

{
ε5

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

0,Ω1

+ ε5

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

0,Ω1

+ε5

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

0,Ω1

+ ε3

∥∥∥∥y
∂3u

∂x2∂y

∥∥∥∥
2

0,Ω1

+ ε

∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
2

0,Ω1

}1/2

ε
1
2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω1

,

and consequently, using the weighted estimates (2.8), (2.9), and (2.10), we obtain

|I1| ≤ Ch2 log3(1/ε) ‖v‖ε .

An analogous argument can be used to estimate I2. Finally, for I3, using (2.5) and (3.14), we
arrive at

|I3| ≤ Ch2 ‖v‖0,Ω3
.

Therefore, we conclude that
∣∣∣∣∣∣

M∑

i,j=1

bi,j
1 Kij(u, v)

∣∣∣∣∣∣
≤ Ch2 log3(1/ε) ‖v‖ε .

To finish the proof it remains only to estimate the second term in (3.13). Observe that, for
1 ≤ i ≤ M − 1, we have `i,j

2 = `i+1,j
4 and

∫
`1,j
4

∂2u
∂x2 v dy =

∫
`M,j
2

∂2u
∂x2 v dy = 0. Therefore,

M∑

i,j=1

bi,j
1 h2

i

12

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)

=
M∑

j=1

{
b1,j
1 h2

1

12

∫

`1,j
2

∂2u

∂x2
v dy +

M−1∑

i=2

bi,j
1 h2

i

12

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)
− bM,j

1 h2
M

12

∫

`M,j
4

∂2u

∂x2
v dy

}

=
M∑

j=1

M−1∑

i=1

(
bi,j
1 h2

i − bi+1,j
1 h2

i+1

12
)
∫

`i,j
2

∂2u

∂x2
v dy

(3.15)
From the definition of the mesh, we know that h1 > h2, so for i = 1 we have:

∣∣∣∣∣(b
1,j
1 h2

1 − b2,j
1 h2

2)
∫

`1,j
2

∂2u

∂x2
v dy

∣∣∣∣∣ ≤ Ch2
1

∣∣∣∣∣
∫

`1,j
2

∫ x

0

∂

∂x

(
∂2u

∂x2
v

)
(t, y)dt dy

∣∣∣∣∣

≤ Ch2
1

∫

R1j

∣∣∣∣
∂3u

∂x3
v +

∂2u

∂x2

∂v

∂x

∣∣∣∣ dx dy

≤ Ch2
1

(∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,R1j

‖v‖0,R1j
+

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,R1j

∥∥∥∥
∂v

∂x

∥∥∥∥
0,R1j

)

We call Ω̃1 =
⋃M

j=1 R1j . Since h1 = εh, we obtain

∣∣∣∣∣∣

M∑

j=1

(b1,j
1 h2

1 − b2,j
1 h2

2)
∫

`1,j
2

∂2u

∂x2
v dy

∣∣∣∣∣∣
≤ Ch2

1

M∑

j=1

(∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,R1j

‖v‖0,R1j
+

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,R1j

∥∥∥∥
∂v

∂x

∥∥∥∥
0,R1j

)

≤ Ch2

(
ε2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Ω̃1

‖v‖0,Ω̃1
+ ε3/2

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Ω̃1

ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω̃1

)
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Since v vanishes at the boundary of Ω, it follows from Poincaré inequality that

‖v‖0,Ω̃1
≤ Chε

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω̃1

(3.16)

and then
∣∣∣∣∣∣

M∑

j=1

(b1,j
1 h2

1 − b2,j
1 h2

2)
∫

`1,j
2

∂2u

∂x2
v dy

∣∣∣∣∣∣
≤ Ch2

(
ε5/2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Ω̃1

+ ε3/2

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Ω̃1

)
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω̃1

≤ Ch2 ‖v‖ε

For i ≥ 2, it follows from the definition of the mesh (and the assumption h < 1) that h2
i+1 − h2

i =
h2hi(xi−1 + xi), hi+1 ≤ 2hi, and xi−1 + xi ≤ 3xi−1, then

∣∣∣bi,j
1 h2

i − bi+1,j
1 h2

i+1

∣∣∣ ≤ Ch2hixi−1,

and
∣∣∣∣∣∣

M∑

j=1

M−1∑

i=2

(
bi,j
1 h2

i − bi+1,j
1 h2

i+1

12
)
∫

`i,j
2

∂2u

∂x2
v dy

∣∣∣∣∣∣
≤ C

M∑

j=1

M−1∑

i=2

h2hixi−1

∣∣∣∣∣
∫

`i,j
2

∂2u

∂x2
v

∣∣∣∣∣ dy

≤ C

M∑

j=1

M−1∑

i=2

h2hixi−1

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,`i,j

2

‖v‖0,`i,j
2

Using the inequalities (3.7) and (3.8) we obtain,

∣∣∣∣∣∣

M∑

j=1

M−1∑

i=2

(
bi,j
1 h2

i − bi+1,j
1 h2

i+1

12
)
∫

`i,j
2

∂2u

∂x2
v dy

∣∣∣∣∣∣

≤ Ch2
M∑

j=1

M−1∑

i=2

hixi−1

(
h
−1/2
i

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ h
1/2
i

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)
h
−1/2
i ‖v‖0,Rij

≤ Ch2
M∑

j=1

M−1∑

i=2

xi−1

(∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ hi

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)
‖v‖0,Rij

.

Now, for Rij ⊂ Ω1\Ω̃1, using the Cauchy-Schwarz inequality, the Poincaré inequality (3.11) and
the weighted inequalities (2.6) and (2.8), we have
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∑

Rij⊂Ω1\Ω̃1

xi−1

(∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ hi

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)
‖v‖0,Rij

≤ C





∑

Rij⊂Ω1\Ω̃1

x2
i−1

(∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ hi

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)2




1/2

‖v‖0,Ω1

≤ C





∑

Rij⊂Ω1\Ω̃1

(c1ε log(1/ε))2
(∥∥∥∥

∂2u

∂x2

∥∥∥∥
0,Rij

+ ε log(1/ε)
∥∥∥∥

∂3u

∂x3

∥∥∥∥
0,Rij

)2




1/2

ε log(1/ε)
∥∥∥∥

∂v

∂x

∥∥∥∥
0,Ω1

≤ C log3(1/ε)





∑

Rij⊂Ω1\Ω̃1

(
ε3/2

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ ε5/2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)2




1/2

ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω1

≤ C log3(1/ε)

(
ε3/2

∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Ω1

+ ε5/2

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Ω1

)
ε1/2

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Ω1

≤ C log3(1/ε) ‖v‖ε .

For Ω2 ∪ Ω3, using (2.5) we have

∑

Rij⊂Ω2∪Ω3

xi−1

(∥∥∥∥
∂2u

∂x2

∥∥∥∥
0,Rij

+ hi

∥∥∥∥
∂3u

∂x3

∥∥∥∥
0,Rij

)
‖v‖0,Rij

≤ C ‖v‖ε .

Collecting all the estimates we obtain

M∑

i=1

M∑

j=1

bi,j
1 h2

i

(∫

`i,j
2

∂2u

∂x2
v dy −

∫

`i,j
4

∂2u

∂x2
v dy

)
≤ Ch2 log3(1/ε) ‖v‖ε

concluding the proof of the lemma.

In the next lemma we give an estimate for the reaction term of the equation. This estimate follows
immediately from results in [5].

Lemma 3.4. Let u be the solution of (1.1). There exists a constant C such that, for any v ∈ Vh,
∣∣∣∣
∫

Ω

c(u− uI)v dx dy

∣∣∣∣ ≤ Ch2 ‖v‖ε

Proof. From [5, Theorem 2.1] we know that ‖u− uI‖0,Ω ≤ Ch2, hence

∣∣∣∣
∫

Ω

c(u− uI)v dx dy

∣∣∣∣ ≤ C ‖u− uI‖0,Ω ‖v‖0,Ω

≤ Ch2 ‖v‖0,Ω ≤ Ch2 ‖v‖ε .

We can now state and prove our main result which says that, the ε-norm of the difference between
the interpolation of the exact solution uI and the finite element approximation uh, is of higher
order than the ε-norm of the error u− uh.

13



Theorem 3.5. Let u be the solution of (1.1), uh ∈ Vh its finite element approximation and uI ∈ Vh

its Lagrange interpolation. There exists a constant C such that,

‖uh − uI‖ε ≤ Ch2 log3(1/ε)

Proof. From (2.3) and the error equation B(u− uh, uh − uI) = 0, we have

β ‖uh − uI‖2ε ≤ B(uh − uI , uh − uI) = B(u− uI , uh − uI).

But, from Lemmas 3.1, 3.3 and 3.4, we have

B(u− uI , uh − uI) ≤ C log3(1/ε)h2 ‖uh − uI‖ε ,

and therefore the theorem is proved.

An immediate consequence of the theorem combined with the interpolation results proved in [5] is
the optimal order convergence in the L2-norm.

Corollary 3.6. Let u be the solution of (1.1) and uh ∈ Vh its finite element approximation. There
exists a constant C such that,

‖u− uh‖0,Ω ≤ C log3(1/ε)h2

Proof. The result follows immediately from the interpolation error estimate ‖u− uI‖0,Ω ≤ Ch2

proved in [5, Theorem 2.1] and the estimate given in Theorem 3.5.

We end this section giving error estimates in terms of the number of nodes.

Corollary 3.7. Let u be the solution of (1.1) and uh ∈ Vh its finite element approximation. If N
is the number of nodes in Th then, there exists a constant C such that,

‖uh − uI‖ε ≤ C
log5(1/ε)

N

and

‖u− uh‖0,Ω ≤ C
log5(1/ε)

N
.

Proof. The results follow from Theorem 3.5, Corollary 3.6 and the estimate

h ≤ C
log(1/ε)√

N
.

which was proved in [5, Corollary 2.3].

4 A higher order approximation by postprocessing

As it is known, superconvergence results of the type of Theorem 3.5 can be used to improve the
numerical approximation by some local postprocessing. In this section we construct a higher order
approximation u∗h of the solution of (1.1), obtained from the computed finite element approximation
uh ∈ Vh by a simple local procedure. We follow the approach given in [6].
For simplicity we consider now the meshes defined as indicated in Remark 2.1. In this way the
lengths in each direction of neighbor elements are comparable and this simplifies the analysis.
We define the postprocessed solution u∗h as in [6, 14]. We repeat the construction given in those
papers for the sake of completeness. Assume that the mesh Th is a refinement of a coarser mesh
formed by elements Sij which are as in Figure 2 (note that we assume that Th contains an even
number of elements). We define u∗h = I2uh, where I2uh is the biquadratic interpolation of uh on
Sij , over the nine nodes indicated in Figure 2, i.e., the vertices of the elements of the original mesh.
We want to show that u∗h is a higher order approximation in the ε-norm. We will need the following
estimates for the biquadratic interpolation.
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Figure 2: Reference element for the Q2-interpolation and region Sij

Lemma 4.1. Let u be the solution of (1.1) and I2u the piecewise biquadratic interpolation of u
on the mesh made with the elements Sij and using the nodes corresponding to the vertices of the
original mesh (as indicated in Figure 2). There exists a constant C such that

‖u− I2u‖ε ≤ Ch2 (4.1)

Proof. The inequality is an easy consequence of the a priori estimates given in Lemma 2.2 and the
following error estimates for the interpolation operator I2. Let Hi and Hj be the lengths of the
element Sij along the directions of the x and y axis respectively. Then, for v ∈ H3(Sij), we have

‖v − I2v‖L2(Sij) ≤ C

{
H3

i

∥∥∥∥
∂3v

∂x3

∥∥∥∥
L2(Sij)

+ H3
j

∥∥∥∥
∂3v

∂y3

∥∥∥∥
L2(Sij)

}
, (4.2)

∥∥∥∥
∂(v − I2v)

∂x

∥∥∥∥
L2(Sij)

≤ C

{
H2

i

∥∥∥∥
∂3v

∂x3

∥∥∥∥
L2(Sij)

+ H2
j

∥∥∥∥
∂3v

∂x∂y2

∥∥∥∥
L2(Sij)

}
, (4.3)

and ∥∥∥∥
∂(v − I2v)

∂y

∥∥∥∥
L2(Sij)

≤ C

{
H2

i

∥∥∥∥
∂3v

∂x2∂y

∥∥∥∥
L2(Sij)

+ H2
j

∥∥∥∥
∂3v

∂y3

∥∥∥∥
L2(Sij)

}
(4.4)

where the constant C is independent of the element Sij and v. For the standard biquadratic
interpolation, these inequalities are proved in [1, Theorem 2.7]. The only difference between our
case and that considered in [1], is that we are not using the usual interpolation nodes. Indeed, our
interpolation nodes on Sij are (ξk, ξl), with k = i − 2, i − 1, i and l = j − 2, j − 1, j, i.e., we have
moved a little bit the nodes usually located at edge mid-points and barycenter of the elements.
However, it follows from the definition of the meshes Th that the ratios (ξi − ξi−1)/(ξi−1 − ξi−2)
are uniformly bounded from below and above. Using this fact, it is not difficult to see that the
arguments used in [1] can be adapted to our case.
Let us now prove (4.1). Since H1 ≤ Chε, using (4.3) for the element S11 we obtain

∥∥∥∥
∂(u− I2u)

∂x

∥∥∥∥
2

L2(S11)

≤ Ch4

{
ε4

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

L2(S11)

+ ε4

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

L2(S11)

}
.

Now, for Si1, i > 1, using now H1 ≤ Chε and Hi ≤ Chx for all (x, y) ∈ Si1, we have

∥∥∥∥
∂(u− I2u)

∂x

∥∥∥∥
2

L2(Si1)

≤ Ch4

{∥∥∥∥x2 ∂3u

∂x3

∥∥∥∥
2

L2(Si1)

+ ε4

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

L2(Si1)

}
.

Analogously, for S1j , j > 1, we use that H1 ≤ Chε and Kj ≤ Chy for all (x, y) ∈ S1j to obtain

∥∥∥∥
∂(u− I2u)

∂x

∥∥∥∥
2

L2(S1j)

≤ Ch4

{
ε4

∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

L2(S1j)

+
∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
2

L2(S1j)

}
.
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Figure 3: Interpolation points for Q12 on Sij

Finally, for i, j > 1, we have Hi ≤ Chx and Hj ≤ Chy for all (x, y) ∈ Sij , and so,
∥∥∥∥

∂(u− I2u)
∂x

∥∥∥∥
2

L2(Sij)

≤ Ch4

{∥∥∥∥x2 ∂3u

∂x3

∥∥∥∥
2

L2(Sij)

+
∥∥∥∥y2 ∂3u

∂x∂y2

∥∥∥∥
2

L2(Sij)

}
.

Therefore, multiplying by ε, summing up, and using the a priori estimates (2.8) and (2.9), we
obtain

ε
1
2

∥∥∥∥
∂(u− I2u)

∂x

∥∥∥∥
L2(Ω)

≤ Ch2.

In a similar way, using now (4.4) and (4.2), we can prove

ε
1
2

∥∥∥∥
∂(u− I2u)

∂y

∥∥∥∥
L2(Ω)

≤ Ch2 and ‖v − I2v‖L2(Ω) ≤ Ch2.

Therefore, (4.1) holds.

Lemma 4.2. There exists a constant C such that, for any v ∈ Vh,

‖I2v‖ε ≤ C‖v‖ε (4.5)

Proof. It is easy to see that the Lagrange basis functions corresponding to I2 are bounded inde-
pendently of h. Indeed, this follows from the fact that the ratios hi/hi−1 are uniformly bounded.
Consequently we have

‖I2v‖L∞(Sij) ≤ C‖v‖L∞(Sij).

Therefore, using the Schwarz inequality and the inverse inequality

‖v‖L∞(Sij) ≤
C

|Sij | 12
‖v‖0,Sij ,

we obtain
‖I2v‖0,Sij ≤ C‖v‖0,Sij .

On the other hand, for v ∈ Vh, ∂(I2v)
∂x can be seen as a Lagrange type interpolation of ∂v

∂x . Indeed,
∂(I2v)

∂x is the unique polynomial in Q12 (the space of polynomials of degree one in the x variable
and two in the y variable) such that

∂v

∂x
(αj) =

∂(I2v)
∂x

(αj), j = 1, · · · , 6

where the points αj are those indicated in Figure 3. Then, using again that hi/hi−1 are uniformly
bounded and an inverse inequality, we obtain

∥∥∥∥
∂(I2v)

∂x

∥∥∥∥
0,Sij

≤ C

∥∥∥∥
∂v

∂x

∥∥∥∥
0,Sij

.
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Analogously, we can prove ∥∥∥∥
∂(I2v)

∂y

∥∥∥∥
0,Sij

≤ C

∥∥∥∥
∂v

∂y

∥∥∥∥
0,Sij

and so, the lemma is proved.

We can now give the main result of this section.

Theorem 4.3. Let u be the solution of (1.1), uh ∈ Vh its finite element approximation and
u∗h = I2uh. There exists a constant C such that,

‖u− u∗h‖ε ≤ C log3(1/ε)h2.

Proof. Since I2uI = I2u, we have

‖u− u∗h‖ε ≤ ‖u− I2u‖ε + ‖I2(uI − uh)‖ε

and therefore, using (4.1), (4.5) and Theorem 3.5, we conclude the proof.

5 Numerical Experiments

We end the paper with some numerical results. We consider problem (1.1) with

b = (1− 2ε)(−1,−1) , c = 2(1− ε),

and the right hand side given by

f(x, y) = −
[
x−

(
1− e−

x
ε

1− e−
1
ε

)
+ y −

(
1− e−

y
ε

1− e−
1
ε

)]
ex+y.

In this case the exact solution is

u(x, y) =
[(

x− 1− e−
x
ε

1− e−
1
ε

)(
y − 1− e−

y
ε

1− e−
1
ε

)]
ex+y,

In Tables 1 and 2 we present the results for ε = 10−3 and ε = 10−6 respectively. Recall that N
denotes the number of nodes.

N h ‖u− uh‖L2 ‖u− uh‖ε ‖uI − uh‖ε ‖u− u∗h‖ε

625 0.375000 0.011851 0.142881 0.020495 0.040664
841 0.320000 0.007778 0.121252 0.012387 0.027535
1089 0.275000 0.006511 0.104864 0.009772 0.021133
1681 0.215000 0.004717 0.082466 0.006485 0.013545
2601 0.170000 0.002924 0.065163 0.003068 0.007807
3969 0.135000 0.002113 0.051935 0.002022 0.005047
5929 0.110000 0.001349 0.042269 0.001863 0.003686
16129 0.065000 0.000538 0.025071 0.000995 0.001581
22201 0.055000 0.000400 0.021228 0.000661 0.001089

Table 1: ε = 10−3
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N h ‖u− uh‖L2 ‖u− uh‖ε ‖uI − uh‖ε ‖u− u∗h‖ε

2025 0.390000 0.013595 0.148975 0.023704 0.045450
2601 0.340000 0.009248 0.128921 0.015445 0.032214
3249 0.300000 0.006961 0.113833 0.010700 0.024212
5625 0.220000 0.004565 0.084096 0.006050 0.013562
10201 0.160000 0.002444 0.061215 0.002998 0.007048
16129 0.125000 0.001728 0.047970 0.002055 0.004523
20449 0.110000 0.001407 0.042271 0.001372 0.003378
29929 0.090000 0.001031 0.034640 0.001019 0.002348
37249 0.080000 0.000903 0.030837 0.000694 0.001795

Table 2: ε = 10−6.

With these numerical results we have computed the order of the different errors in terms of N .
The computed orders, for the case ε = 10−3, are shown in Figure 4. The picture in the left shows
the order of the errors ‖u− uh‖L2 and ‖u− uh‖ε, and that in the right the different errors in the
ε-norm.
Observe that, the order of ‖u− uh‖L2 is -0.9104, which essentially agrees with that predicted by
the theory which is −1. Similarly, the orders shown in the second picture agree with the theoretical
ones.

Figure 4: Numerical orders, ε = 10−3.

Next we show analogous pictures for the case ε = 10−6 in Figure 5. Again, the estimated orders
agree with those given by the theory.
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Figure 5: Numerical orders, ε = 10−6.

As mentioned in the introduction, an advantage of the graded meshes over the Shishkin type
meshes is that, for the first ones, the meshes generated for some value of ε work well also for larger
values. This fact was observed in [5], where numerical results comparing the errors with both kind
of meshes were presented. Our numerical experiments show that a similar behavior is observed for
superconvergence. In Table 3 we give the values of ‖uI − uh‖ε for several values of ε using both
kind of meshes with the same number of nodes (11236 elements) generated for the case ε = 10−6.

ε Graded mesh Shishkin mesh
10−1 0.003109 0.002021
10−2 0.002438 0.194888
10−3 0.002107 1.010498
10−4 0.002049 0.972038
10−5 0.002042 0.390427
10−6 0.002254 0.002250

Table 3: ‖uI − uh‖ε for both kind of meshes.

Finally, using a sequence of graded meshes designed for ε = 10−6, with different number of nodes,
we have computed the order in terms of 1/N of the different errors for the computed solutions and
its postprocessed ones, for several values of ε ≥ 10−6. The results are shown in Table 4. As it is
seen, the superconvergence order for ‖uI − uh‖ε ans ‖u− u∗h‖ε is obtained for all the values of ε
considered.
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ε ‖u− uh‖ε ‖uI − uh‖ε ‖u− u∗h‖ε

10−1 0.50683 0.99225 1.0294
10−2 0.51433 0.89524 1.0021
10−3 0.51409 0.96446 1.0294
10−4 0.51397 0.99008 1.039
10−5 0.51426 0.9934 1.0403
10−6 0.54049 1.0694 1.0724

Table 4: Errors for different values of ε with meshes generated for ε = 10−6.
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