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Abstract. This paper deals with the numerical approximation of the bending of a plate modeled
by Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced
integration or mixed interpolation has to be used when solving these equations by finite element
methods. In particular, one of the most widely used procedures is based on the family of elements
called MITC (mixed interpolation of tensorial components). We consider two lowest-order methods
of this family on quadrilateral meshes.

Under mild assumptions we obtain optimal H1 and L2 error estimates for both methods. These
estimates are valid with constants independent of the plate thickness. We also obtain error estimates
for the approximation of the plate vibration problem. Finally, we report some numerical experiments
showing the very good behavior of the methods, even in some cases not covered by our theory.
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1. Introduction. Reissner-Mindlin model is the most widely used for the anal-
ysis of thin or moderately thick elastic plates. It is now very well understood that
standard finite element methods applied to this model produce very unsatisfactory
results due to the so-called locking phenomenon. Therefore, some special method
based on reduced integration or mixed interpolation has to be used. Among them,
the MITC methods introduced by Bathe and Dvorkin in [7] or variants of them are
very likely the most used in practice.

A great number of papers dealing with the mathematical analysis of this kind
of methods have been published (see for example [2, 6, 10, 12, 13, 18, 20, 23]). In
those papers, optimal order error estimates, valid uniformly on the plate thickness,
have been obtained for several methods. However, although one of the most commonly
used elements in engineering applications are the isoparametric quadrilaterals (indeed,
the original Bathe and Dvorkin’s paper deals with these elements), no available result
seems to exist for this case.

On the other hand, it has been recently noted that the extension to general
quadrilaterals of convergence results valid for rectangular elements is not straight-
forward and, even more, the order of convergence can deteriorate when non-standard
finite elements are used in distorted quadrilaterals, even if they satisfy the usual shape
regularity assumption (see [3, 4]).
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The aim of this paper is to analyze two low-order methods based on quadrilat-
eral meshes. One is the original MITC4 introduced in [7], while the other one is
an extension to the quadrilateral case of a method introduced in [12] for triangular
elements (from now on the latter will be called DL4). We are interested not only in
load problems but also in the determination of the free vibration modes of the plate.

For nested uniform meshes of rectangles, an optimal order error estimate in H1

norm has been proved in [6] for MITC4. However, the regularity assumptions on
the exact solution required in that paper are not optimal. These assumptions have
been weakened in [12], but they are still not optimal. Let us remark that to obtain
approximation results for the plate vibration spectral problem, it is important to
remove this extra regularity assumption.

On the other hand, for low-order elements as those considered here, an optimal
error estimate in L2 norm is difficult to obtain because of the consistency term arising
in the error equation. For triangular elements such estimate has been only recently
proved in [13]. However, the proof given in that paper can not be extended straight-
forwardly, even for the case of rectangular elements.

In this paper we prove optimal in order and regularity H1 and L2 error estimates
for both methods, MITC4 and DL4, under appropriate assumptions on the family of
meshes. As a consequence, following the arguments in [13], we obtain also optimal
error estimates for the approximation of the corresponding plate vibration spectral
problem.

In order to prove the H1 error estimate for MITC4 we require an additional
assumption on the meshes (which is satisfied, for instance, by uniform refinements of
any starting mesh). Instead, no assumption other than the usual shape regularity is
needed for DL4.

On the other hand, a further assumption on the meshes is made to prove the L2

error estimates: the meshes must be formed by higher order perturbations of parallel-
ograms. This restriction is related with approximation properties of the Raviart-
Thomas elements which are used in our arguments and do not hold for general
quadrilateral elements. However, this assumption is only needed for extremely re-
fined meshes. Indeed, the L2 estimate holds for any regular mesh as long as the
mesh-size is comparable with the plate thickness. Moreover, we believe that this
quasi-parallelogram assumption is of a technical character. In fact, the numerical
experiments reported here seem to show that it is not necessary.

The rest of the paper is organized as follows. In section 2 we recall Reissner-
Mindlin equations and introduce the two discrete methods. We prove optimal order
error estimates for both methods in H1 and L2 norms in sections 3 and 4, respectively.
In section 5 we prove error estimates for the spectral plate vibration problem. Finally,
in section 6, we report some numerical experiments.

Throughout the paper we denote by C a positive constant not necessarily the same
at each occurrence, but always independent of the mesh-size and the plate thickness.

2. Statement of the problem.

2.1. Reissner-Mindlin model. Let Ω× (− t
2
, t
2
) be the region occupied by an

undeformed elastic plate of thickness t, where Ω is a convex polygonal domain of R2.
In order to describe the deformation of the plate, we consider the Reissner-Mindlin
model, which is written in terms of the rotations β = (β1, β2) of the fibers initially
normal to the plate mid-surface and the transverse displacement w. The following
equations describe the plate response to conveniently scaled transversal and shear
loads f ∈ L2(Ω) and θ ∈ L2(Ω)2, respectively (see, for instance, [9, 13]):
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Problem 2.1. Find (β,w) ∈ H10(Ω)
2
×H10(Ω) such that:





a(β, η) + (γ,∇v − η) = (f, v) +
t2

12
(θ, η) ∀(η, v) ∈ H10(Ω)

2 ×H10(Ω),

γ =
κ

t2
(∇w − β).

(2.1)

In this expression, κ := Ek/2(1+ν) is the shear modulus, with E being the Young
modulus, ν the Poisson ratio, and k a correction factor. We have also introduced the
shear stress γ and denoted by (·, ·) the standard L2 inner product. Finally, a is the
H10(Ω)

2 elliptic bilinear form defined by

a(β, η) :=
E

12(1− ν2)

∫

Ω




2∑

i,j=1

(1− ν)εij(β)εij(η) + ν div β div η


 ,

with εij(β) =
1
2
(∂βi/∂xj+∂βj/∂xi) being the components of the linear strain tensor.

Let us remark that we have included in our formulation the shear load term
t2

12
(θ, η) since it arises naturally when considering the free vibration plate problem. In

fact, it is simple to see that the free vibration modes of the plate are determined by

t3a(β, η) + κt

∫

Ω

(∇w − β) · (∇v − η) = ω2
(
t

∫

Ω

ρwv +
t3

12

∫

Ω

ρ β · η

)

∀(η, v) ∈ H10(Ω)
2 ×H10(Ω),

where ω denotes the angular vibration frequency, β and w the rotation and transversal
displacement amplitudes, respectively, and ρ the plate density (see [13] for further
details). Thus, rescaling the problem with λ := ρω2/t2, we obtain the following,
which is the spectral problem associated to Problem 2.1:

Problem 2.2. Find λ ∈ R and 0 6= (β,w) ∈ H10(Ω)
2
×H10(Ω) such that:





a(β, η) + (γ,∇v − η) = λ

[
(w, v) +

t2

12
(β, η)

]
∀(η, v) ∈ H10(Ω)

2 ×H10(Ω),

γ =
κ

t2
(∇w − β).

This paper deals with the finite element approximation of Problems 2.1 and 2.2.
It is well known that both are well-posed (see [9] and [13]). Furthermore, we will use
the following regularity result for the solution of equations (2.1) (see [2]):

‖β‖2,Ω + ‖w‖2,Ω + ‖γ‖0,Ω + t ‖γ‖1,Ω ≤ C
(
t2‖θ‖0,Ω + ‖f‖0,Ω

)
≤ C |(θ, f)|t ,(2.2)

where, for any open subset O of Ω and any integer k, ‖ · ‖k,O denotes the standard
norm of Hk(O) or Hk(O)2, as corresponds, and |(·, ·)|t is the norm in L2(Ω)2 × L2(Ω)
induced by the weighted inner product in the right hand side of the first equation in
(2.1) (see [13]).

2.2. Discrete problems. In what follows we consider two lowest-degree meth-
ods on isoparametric quadrilateral meshes for the approximation of Problem 2.1: the
so-called MITC4 (see [7]) and an extension to quadrilaterals of a method introduced
in [12] that we call DL4. Both methods are based on relaxing the shear terms in
equation (2.1) by introducing an interpolation operator, called reduction operator.
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Let {Th} be a family of decompositions of Ω into convex quadrilaterals, satisfying
the usual condition of regularity (see for instance [19]); i.e., there exist constants σ > 1
and 0 < % < 1 independent of h such that

hK ≤ σρK , |cosϑiK | ≤ %, i = 1, 2, 3, 4, ∀K ∈ Th,

where hK is the diameter of K, ρK the diameter of the largest circle contained in K,
and ϑiK , i = 1, 2, 3, 4, the four angles of K.

Let K̂ := [0, 1]2 be the reference element. We denote by Qi,j(K̂) the space of
polynomials of degree less than or equal to i in the first variable and to j in the
second one. Also, we set Qk(K̂) = Qk,k(K̂).

Let K ∈ Th. We denote by FK a bilinear mapping of K̂ onto K, with Jaco-
bian matrix and determinant denoted by DFK and JFK

, respectively. The regularity
assumptions above lead to

ch2K ≤ JFK
≤ Ch2K ,

with c and C only depending on σ and % (see [19]). In particular, JFK
> 0 and, hence,

FK is a one-to-one map. Let `i, i = 1, 2, 3, 4, be the edges of K; then `i = FK(̂̀i),
with ̂̀i being the edges of K̂. Let τ̂i be a unit vector tangent to ̂̀i on the reference
element; then τi := DFK τ̂i/‖DFK τ̂i‖ is a unit vector tangent to `i on K (see Figure
2.1).

1
1

1

22

44

3

3

F

τ

1

1

K

τ

τ

τ

y

x

τ
K

K

Fig. 2.1. Bilinear mapping onto an element K ∈ Th.

Let

N (K̂) :=
{
p̂ : p̂ ∈ Q0,1(K̂)×Q1,0(K̂)

}
,

and, from this space, we define through covariant transformation

N (K) :=
{
p : p ◦ FK = DF−tK p̂, p̂ ∈ N (K̂)

}
.
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Let us remark that the mapping betweenN (K) andN (K̂) is a kind of “Piola transfor-
mation” for the “rot” operator, rot p := ∂p1/∂x2−∂p2/∂x1 (the Piola transformation
is defined for the “div” operator in, for example, [9]). Then we have the following
results which are easily established (see [23, 24]):

∫

`i

p · τi =

∫

̂̀
i

p̂ · τ̂i, i = 1, 2, 3, 4,(2.3)

and

(rot p) ◦ FK = J−1FK
r̂ot p̂ in K̂.(2.4)

We define the lowest-order rotated Raviart-Thomas space (see [21, 24])

Γh := {ψ ∈ H0(rot,Ω) : ψ|K ∈ N (K) ∀K ∈ Th} ,

which will be used to approximate the shear stress γ. We remark that, since Γh ⊂
H0(rot,Ω), the tangential component of a function in Γh must be continuous along
inter-element boundaries and vanish on ∂Ω. In fact, the integrals (2.3) of these tan-
gential components are the degrees of freedom defining an element of Γh.

We consider the “interpolation” operator

R : H1(Ω)2 ∩H0(rot,Ω) −→ Γh,(2.5)

defined by (see [21])

∫

`

Rψ · τ` =

∫

`

ψ · τ` ∀ edge ` of Th,(2.6)

where, from now on, τ` denotes a unit vector tangent to `. Clearly, the operator R
satisfies ∀ψ ∈ H1(Ω)2,

∫

K

rot(ψ −Rψ) = 0 ∀K ∈ Th.(2.7)

Taking into account the rotation mentioned above, it is proved in Theorem III.4.4 of
[14] that

‖ rotRψ‖0,Ω ≤ C‖ψ‖1,Ω(2.8)

and

‖ψ −Rψ‖0,Ω ≤ Ch‖ψ‖1,Ω.(2.9)

To approximate the transverse displacements we will use the space of standard
bilinear isoparametric elements

Wh :=
{
v ∈ H10(Ω) : v|K ∈ Q(K) ∀K ∈ Th

}
,

where, ∀K ∈ Th, Q(K) :=
{
p ∈ L2(K) : p ◦ FK ∈ Q1(K̂)

}
.

The following lemma establishes some relations between the spaces Γh and Wh:
Lemma 2.1. The following properties hold:

∇Wh = {µ ∈ Γh : rotµ = 0}
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and

R(∇w) = ∇(wI) ∀w ∈ H2(Ω),

where wI is the Lagrange interpolant of w on Wh.
Proof. For µ ∈ Γh and K ∈ Th, let µ̂ ∈ N (K̂) be such that µ|K ◦ FK = DF−tK µ̂.

Then, according to (2.4), we have rotµ|K ◦ FK = J−1FK
r̂ot µ̂. Hence, since JFK

> 0,

rotµ = 0 if and only if r̂ot µ̂ = 0.
On the other hand, note that if µ̂ ∈ N (K̂), then µ̂ = (a+bŷ, c+dx̂), with a, b, c, d ∈

R, and r̂ot µ̂ = d − b. Therefore, r̂ot µ̂ = 0 if and only if µ̂ = (a + dŷ, c + dx̂) = ∇̂v̂,

for v̂ = ax̂+ cŷ + dx̂ŷ ∈ Q1(K̂).
Thus, rotµ|K = 0 if and only if µ|K = (DF−tK µ̂) ◦F−1K = ∇v, with v = v̂ ◦F−1K ∈

Q(K).
To prove the second property, since we have already proved that ∇wI ∈ Γh, it

is enough to show that the degrees of freedom defining R(∇w) and ∇wI coincide.
Indeed, consider an edge ` with end points A and B as in Figure 2.2. Then,

∫

`

R(∇w) · τ` =

∫

`

∇w · τ` = w(B)− w(A) = wI(B)− wI(A) =

∫

`

∇wI · τ`,

and we conclude the proof.

A
B

K

τ

Fig. 2.2. Geometry of K.

The two methods that we analyze in this paper only differ in the space used to
approximate the rotations. Let us now specify them:
MITC4: The spaces Wh and Γh are the ones defined above, whereas the space of

standard isoparametric bilinear functions is used for the rotations; namely:

H1
h :=

{
η ∈ H10(Ω)

2 : η|K ∈ Q(K)2 ∀K ∈ Th
}
.

DL4: While for this methodWh and Γh are the same as forMITC4, the space for the
rotations is enriched by using a rotation of a space used for the approximation
of the Stokes problem in [14].

In fact, for each edge ̂̀i of K̂, i = 1, 2, 3, 4, let p̂i be cubic functions vanishing
on ̂̀j for j 6= i. Namely, p̂1 = x̂ŷ(1− ŷ), p̂2 = x̂ŷ(1− x̂), p̂3 = ŷ(1− x̂)(1− ŷ),
and p̂4 = x̂(1− x̂)(1− ŷ) (see Figure 2.1). Then we define pi := (p̂i ◦ F

−1
K )τi

and we set

H2
h :=

{
η ∈ H10(Ω)

2 : η|K ∈ Q(K)2 ⊕ 〈p1, p2, p3, p4〉 ∀K ∈ Th
}
.
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From now on we use Hh to denote any of the two spaces H1
h or H2

h. In both meth-
ods we use R defined by (2.5)-(2.6) as reduction operator. Then, the discretization of
Problem 2.1 can be written in both cases as follows:

Problem 2.3. Find (βh, wh) ∈ Hh ×Wh such that:





a(βh, η) + (γh,∇v −Rη) = (f, v) +
t2

12
(θ, η) ∀(η, v) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh).

(2.10)

On the other hand, the discretization of Problem 2.2 is as follows:
Problem 2.4. Find λh ∈ R and 0 6= (βh, wh) ∈ Hh ×Wh such that:





a(βh, η) + (γh,∇v −Rη) = λh

[
(wh, v) +

t2

12
(βh, η)

]
∀(η, v) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh).

Existence and uniqueness of solution for Problem 2.3 follow easily (see [12]).
Regarding Problem 2.4, it leads to a well posed generalized matrix eigenvalue problem,
since the bilinear form in the right hand side of the first equation is an inner product.

3. H1 error estimates. To prove optimal error estimates in H1 norm we will
use the abstract theory developed in [12]. In particular, sufficient conditions to obtain
such estimates have been settled in Theorem 3.1 of this reference. By virtue of Lemma
2.1 this theorem reads in our case:

Theorem 3.1. Let Hh, Wh, Γh, and the operator R be defined as above. Let
(β,w, γ) and (βh, wh, γh) be the solutions of equations (2.1) and (2.10), respectively.

If there exist β̃ ∈ Hh and an operator Π : H0(rot,Ω) ∩H1(Ω)2 −→ Γh satisfying

‖β − β̃‖1,Ω ≤ Ch‖β‖2,Ω,(3.1)

‖η −Πη‖0,Ω ≤ Ch‖η‖1,Ω ∀η ∈ H1(Ω)2 ∩H0(rot,Ω),(3.2)

and

rot

(
t2

κ
Πγ +Rβ̃

)
= 0,(3.3)

then, the following error estimate holds true:

‖β − βh‖1,Ω + t‖γ − γh‖0,Ω + ‖w − wh‖1,Ω ≤ Ch (‖β‖2,Ω + t‖γ‖1,Ω + ‖γ‖0,Ω) .

Then, our next step is to construct an approximation β̃ of β and an operator Π
satisfying the hypotheses of the previous theorem for each one of the methods, MITC4
and DL4.

3.1. MITC4. Several studies have been carried out for this method in, for ex-
ample, [6], [12], and [17]. Since the variational equations for plates have a certain
similitude with those of the Stokes problem, the main results are based on properties
already known for the latter. An order h of convergence is obtained in those refer-
ences only for uniform meshes of square elements. Moreover, more regularity of the
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solutions is also required. Although these results can be adapted for parallelogram
meshes, they cannot be extended to general quadrilateral ones.

In what follows we obtain error estimates optimal in order and regularity for
this method on somewhat more general meshes. We assume specifically the following
condition:

Assumption 3.1. The mesh Th is a refinement of a coarser partition T2h, ob-
tained by joining the midpoints of each opposite edge in each M ∈ T2h (called macro-
element). In addition, T2h is a similar refinement of a still coarser regular partition
T4h.

Let

Qh :=
{
qh ∈ L20(Ω) : qh|K = cK , cK ∈ R, ∀K ∈ Th

}
,

where L20(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. Note that, for parallelogram meshes, we

have Qh = rot Γh, but this does not hold for general quadrilateral meshes.
For each macro-element M ∈ T2h we introduce four functions qi, i = 1, 2, 3, 4,

taking the values 1 and −1 according to the pattern of Figure 3.1.

1

1 1

1

q
1

1 1

q

1

1

q

1

1

q

−1 −1 −1

−1

−1

−1

2 3 4

Fig. 3.1. Bases for the macro-elements.

Let

Qh4 := {qh ∈ Qh : qh|M = cMq4, cM ∈ R, ∀M ∈ T2h}

and Q̃h be its L2(Ω) orthogonal complement on Qh; then,

Q̃h := {qh ∈ Qh : qh|M ∈ 〈q1, q2, q3〉 ∀M ∈ T2h} .

We associate to these spaces the subspace of H1
h defined by

H̃1
h :=

{
ηh ∈ H

1
h :

∫

Ω

rot ηh qh = 0 ∀qh ∈ Qh4

}
.

The following lemma provides the approximation β̃ required by Theorem 3.1.
Moreover, this β̃ ∈ H̃1

h, and this fact will be used below to define the operator Π
required by the same theorem.

Lemma 3.2. Let β ∈ H10(Ω). Then, there exists β̃ ∈ H̃
1
h such that

∫

Ω

rot(β̃ − β)qh = 0 ∀qh ∈ Q̃h

and the estimate (3.1) holds true.
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Proof. It follows from the results in section VI.5.4 of [9] by changing “div” by “rot”
and rotating 90◦ the fields, which in its turn are based on the results for isoparametric
elements in [22] (see also [19]).

Our next step is to define the operator Π satisfying the requirements of Theorem
3.1. To do this, we will use a particular projector P̃ onto rot Γh.

We have already mentioned that, in general, Qh 6= rot Γh. In fact, it is simple to
show that

rot Γh =

{ ∑

K∈Th

cK
JFK

χK : cK ∈ R ∀K ∈ Th

}
∩ L20(Ω),(3.4)

where χK denotes the characteristic function of K.
For each macro-element M ∈ T2h, we consider the bilinear mapping FM as shown

in Figure 3.2. Therefore, for any ηh ∈ Γh we have

rot ηh|M =
1

JFM

4∑

i=1

ciχKi
,

where Ki are the four elements in M (see Figure 3.2).

F

3

12

4

2 1

3 4

M

1

1

K

K K

K
K K

K K

M

Fig. 3.2. Bilinear mapping on macro-elements.

We define P̃ : L20(Ω) −→ rot Γh as follows: given p ∈ L20(Ω),

∀M =

4⋃

i=1

Ki ∈ T2h, P̃ p|M =

4∑

i=1

ci
JFM

χKi
,

with ci chosen such that
∫

M

P̃ p qi =

∫

M

pqi, i = 1, 2, 3, and

∫

M

P̃ p q4 = 0.

Straightforward computations show that P̃ is well defined by the equations above,
and that they can be equivalently written

∫

Ω

P̃ p qh =

∫

Ω

pqh ∀qh ∈ Q̃h and

∫

Ω

P̃ p qh = 0 ∀qh ∈ Qh4.(3.5)
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The following properties of this operator will be used in the sequel:
Lemma 3.3. The following estimates hold ∀p ∈ L2(Ω):

‖p− P̃ p‖0,Ω ≤ C‖p‖0,Ω,(3.6)

‖p− P̃ p‖−1,Ω ≤ Ch‖p‖0,Ω.(3.7)

Proof. To verify (3.6) it is enough to prove that ‖P̃ p‖0,Ω ≤ C‖p‖0,Ω. From the

definition of P̃ we have

∫

M

(P̃ p)2 =

∫

M

P̃ p

(
4∑

i=1

ci
JFM

χKi

)
≤

1

min
M

JFM

∫

M

P̃ p

(
4∑

i=1

ciχKi

)
.

On the other hand, if we write
∑4

i=1 ciχKi
in terms of the basis functions qi, we obtain∑4

i=1 ciχKi
=
∑4

i=1 diqi, with di related to ci by




d1
d2
d3
d4


 =

1

2




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1







c1
c2
c3
c4


 .

Hence,

|di| ≤ 2 max
1≤j≤4

|cj |, i = 1, 2, 3, 4.

Therefore, from the definition of P̃ we have

∫

M

P̃ p

(
4∑

i=1

ciχKi

)
=

∫

M

P̃ p

(
4∑

i=1

diqi

)
=

3∑

i=1

di

(∫

M

pqi

)

≤ ‖p‖0,M

(
3∑

i=1

|di| ‖qi‖0,M

)
≤ C|M |1/2‖p‖0,M

(
max
1≤j≤4

|cj |

)

≤ Cmax
M

JFM
‖p‖0,M‖P̃ p‖0,M ,

where we have used that
∫

Kj

(P̃ p)2 = c2j

∫

Kj

1

J2FM

≥
|Kj |

max
M

J2FM

c2j

and that |M | ≤ C|Kj |, j = 1, 2, 3, 4, with C only depending on σ and %. Now, using
the inequalities above and noting that, for a quadrilateral regular mesh, maxM JFM

≤
CminM JFM

with a constant C independent of h, we obtain (3.6).

To verify (3.7), let P : L2(Ω) −→ Q̃h be the orthogonal projection onto Q̃h. Let
v ∈ H10(Ω) be such that ‖v‖1,Ω = 1. By the definition of P , (3.6), and the fact that

Q̃h contains the piecewise constants over T2h, we have

(p− P̃ p, v) = (p− P̃ p, v − Pv) ≤ ‖p− P̃ p‖0,Ω‖v − Pv‖0,Ω

≤ C‖p‖0,Ω‖v − Pv‖0,Ω ≤ Ch‖p‖0,Ω‖v‖1,Ω.
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Thus we conclude (3.7).
Now we are in order to define an operator Π as required in Theorem 3.1:
Lemma 3.4. Let (β,w, γ) be the solution of equations (2.1) and β̃ ∈ H̃1

h be as in
Lemma 3.2. Then, there exists an operator Π : H0(rot,Ω) ∩H1(Ω)2 −→ Γh such that
(3.2) and (3.3) hold true.

Proof. For η ∈ H0(rot,Ω) ∩ H1(Ω)2, let Πη := R(η − Lη), where Lη := curlφ :=
(−∂φ/∂x2, ∂φ/∂x1), with φ ∈ H1(Ω) being a solution of

−∆φ = rotRη − P̃ (rotRη) in Ω,

with homogeneous Neumann boundary conditions. Note that this problem is compat-
ible since its right hand side belongs to rot Γh ⊂ L20(Ω). Then, the standard estimates
for the Neumann problem yield

‖Lη‖m+1,Ω ≤ ‖ rotRη − P̃ (rotRη)‖m,Ω, m = −1, 0.(3.8)

Also note that

rotLη = −∆φ = rotRη − P̃ (rotRη).(3.9)

From the definition of the operator Π, we have

‖η −Πη‖0,Ω ≤ ‖η −Rη‖0,Ω + ‖RLη‖0,Ω.

The first term in the right hand side is bounded by (2.9), while for the second term
we use again (2.9), (3.8), Lemma 3.3, and (2.8), to obtain

‖RLη‖0,Ω ≤ ‖Lη −RLη‖0,Ω + ‖Lη‖0,Ω ≤ Ch‖Lη‖1,Ω + ‖Lη‖0,Ω

≤ Ch‖ rotRη − P̃ (rotRη)‖0,Ω + C‖ rotRη − P̃ (rotRη)‖−1,Ω

≤ Ch‖ rotRη‖0,Ω ≤ Ch‖η‖1,Ω.

Thus, we conclude (3.2).
To prove (3.3), note that (2.7) together with Lemma 3.2 yield

∫

Ω

rot
[
R(β̃ − β)

]
qh = 0 ∀qh ∈ Q̃h,

whereas, since β̃ ∈ H̃1
h, from (2.7) and the definition of H̃1

h we have

∫

Ω

rotRβ̃ qh =

∫

Ω

rot β̃ qh = 0 ∀qh ∈ Qh4.

Hence, since rotRβ̃ ∈ rot Γh, from (3.5) we conclude that P̃ (rotRβ) = rotRβ̃. There-
fore,

rotRβ̃ = P̃ (rotRβ) = −
t2

κ
P̃ (rotRγ),(3.10)

because of the definition of γ in (2.1) and the fact that rotR(∇w) vanishes, as a
consequence of Lemma 2.1.

On the other hand, note that

rotRLγ = rotLγ.(3.11)
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Indeed, rotRLγ and rotLγ both belong to rot Γh (the latter because of (3.9)). Then,
from the characterization (3.4) of this space, it is enough to verify that

∫
K
rotRLγ =∫

K
rotLγ ∀K ∈ Th, which in its turn is a consequence of (2.7). Therefore, from the

definition of Π, (3.11), and (3.9), we obtain

rotΠγ = rotR(γ − Lγ) = rotRγ − rotLγ = P̃ (rotRγ),

which together with (3.10) allow us to conclude (3.2).

3.2. DL4. The convergence of this method follows immediately from that of
MITC4. However, we have an alternative proof valid for any regular mesh without
the need of Assumption 3.1.

In this case, to define the approximation β̃ of β and the operator Π satisfying the
hypotheses of Theorem 3.1, we use some known results for the Stokes problem (see
Girault and Raviart[14]).

Lemma 3.5. There exists β̃ ∈ H2
h such that (3.1) holds true. Furthermore,

Rβ̃ = Rβ.
Proof. By using results from [14] (section 3.1, chapter II) and taking into account

a rotation of the space H(div,Ω), it follows that for β ∈ H10(Ω)
2 there exists β̃ ∈ H2

h

such that
∫

`

(β̃ − β) · τ` = 0 ∀` ∈ Th,

and

|β̃ − β|m,Ω ≤ Chk−m|β|k,Ω, m = 0, 1, k = 1, 2.

Then R(β̃ − β) = 0 because of the definition of R, whereas (3.1) corresponds to the
inequality above for k = 2 and m = 1.

Lemma 3.6. There exists an operator Π : H0(rot,Ω) ∩ H1(Ω)2 −→ Γh such that
(3.3) and (3.2) hold.

Proof. Because of the previous lemma we have R(β̃−β) = 0. On the other hand,
rotR(∇w) = 0, because of Lemma 2.1. Then, it is enough to take Π = R to obtain
(3.3), whereas (3.2) follows from (2.9).

3.3. Main result in H1 norm. Now we are in position to establish the error
estimates. As above, in the case of MITC4, we consider meshes satisfying Assumption
3.1.

Theorem 3.7. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w) and (βh, wh) be the
solutions of Problems 2.1 and 2.3, respectively. Then, there exists a constant C,
independent of t and h, such that

‖β − βh‖1,Ω + ‖w − wh‖1,Ω ≤ Ch|(θ, f)|t.

Proof. It is a direct consequence of Lemmas 3.2, 3.4, 3.5, 3.6, Theorem 3.1, and
the a priori estimate (2.2).

4. L2 error estimates. Our next goal is to prove L2 error estimates optimal in
order and regularity. To do this, we follow the techniques in [13] where a triangular
element similar to DL4 is analyzed, although the arguments therein cannot be directly
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applied to our case. Let us remark that, in the case of MITC4, this result completes
the analysis carried out in [10, 18] for higher order methods.

Our proofs are based on a standard Nitsche’s duality argument. However, since
the methods are non-conforming, additional consistency terms also arise. Then, higher
order estimates must be proved for these terms too, which is the most delicate part
of the paper.

First, we introduce the dual problem corresponding to equations (2.1). Let
(ϕ, u) ∈ H10(Ω)

2 ×H10(Ω) be the solution of





a(η, ϕ) + (∇v − η, δ) = (v, w − wh) + (η, β − βh)
∀(η, v) ∈ H10(Ω)

2 ×H10(Ω),

δ =
κ

t2
(∇u− ϕ).

(4.1)

By taking η = 0 in (4.1), we have

div δ = wh − w.(4.2)

An a priori estimate analogous to (2.2) yields for this problem:

‖ϕ‖2,Ω + ‖u‖2,Ω + ‖δ‖0,Ω + t ‖δ‖1,Ω ≤ C (‖β − βh‖0,Ω + ‖w − wh‖0,Ω) .(4.3)

The arguments in the proof of Lemma 3.4 in [13] can be used in our case leading
to the following result:

Lemma 4.1. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w, γ) and (βh, wh, γh) be the
solutions of equations (2.1) and (2.10), respectively. Let (ϕ, u, δ) be the solution of
(4.1). Let ϕ̃ ∈ Hh be the vector field associated to ϕ by Lemmas 3.2 or 3.5, for MITC4
or DL4, respectively. Then, there exists a constant C, independent of t and h, such
that

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2|(θ, f)|t +
|(βh −Rβh, δ)|+ |(γ, ϕ̃−Rϕ̃)|

‖β − βh‖0,Ω + ‖w − wh‖0,Ω
.

Our next step is to prove that the last term in the inequality above is O(h2) too.
A similar result has been proved in [13] in the case of triangular meshes. That proof
relies on a technical result for the rotated Raviart-Thomas interpolant R (Lemma 3.3
of that reference). It is easy to check that the arguments given there do not apply
for quadrilateral elements. Therefore, we need to introduce new arguments and this
is the aim of the following lemma.

Lemma 4.2. Given ζ ∈ H(div,Ω) and ψ ∈ H10(Ω)
2, there holds

|(ζ, ψ −Rψ)| ≤ Ch2

(∑

K

|Rψ − ψ|21,K

)1/2
‖div ζ‖0,Ω + Ch‖ rot(Rψ − ψ)‖0,Ω ‖ζ‖0,Ω.

Proof. For K ∈ Th, let sK ∈ H1(K) be a solution of

−∆sK = rot(Rψ − ψ) in K,

with homogeneous Neumann boundary conditions. By virtue of (2.7) we know that
the above problem is compatible. Hence, sK satisfies

‖ curl sK‖m+1,K ≤ C‖ rot(Rψ − ψ)‖m,K , m = −1, 0.(4.4)
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The Laplace equation above can be equivalently written

rot [curl sK − (Rψ − ψ)] = 0

and, hence, there exists rK ∈ H1(K) (unique up to an additive constant) such that

∇rK = curl sK − (Rψ − ψ).(4.5)

Moreover, from the homogeneous Neumann boundary condition satisfied by sK , we
have ∇rK · τ` = −Rψ · τ` +ψ · τ` for each edge ` of K. Thus, if we define G ∈ L2(Ω)2

such that G|K = ∇rK , then G ∈ H0(rot,Ω) and rotG = 0.
Hence, there exists r ∈ H1(Ω)/R, such that G = ∇r in Ω. Furthermore, since

G ∈ H0(rot,Ω), r can be chosen in H10(Ω) and the additive constants defining rK on
each K ∈ Th can be fixed as to satisfy r|K = rK .

Let A and B be as in Figure 2.2. Then, because of (2.6), we have

r(B) = r(A) +

∫

`

∇rK · τ` = r(A) +

∫

`

(−Rψ + ψ) · τ` = r(A).

Thus r vanishes at all nodes of Th, since r|∂Ω = 0. Hence, a standard scaling argument
on each element K yields ‖r‖0,K ≤ Ch2|rK |2,K (see for instance [11]) and, then, by
using (4.5) and (4.4), we have

‖r‖0,K ≤ Ch2 |∇rK |1,K ≤ Ch2
(
|curl sK |1,K + |Rψ − ψ|1,K

)
(4.6)

≤ Ch2
[
‖rot(Rψ − ψ)‖0,K + |Rψ − ψ|1,K

]
≤ Ch2 |Rψ − ψ|1,K .

On the other hand, let (·, ·)K be the usual inner product in L2(K) and P the
orthogonal projection onto the constant functions. Because of (2.7), we have ∀η ∈
H10(Ω),

(
rot(Rψ − ψ), η

)
K

‖η‖1,K
=

(
rot(Rψ − ψ), η − Pη

)
K

‖η‖1,K
≤
‖rot(Rψ − ψ)‖0,K ‖η − Pη‖0,K

‖η‖1,K
.

Hence,

‖rot(Rψ − ψ)‖−1,K ≤ Ch ‖rot(Rψ − ψ)‖0,K .

Now, let S ∈ L2(Ω)2 be such that S|K = curl sK . Therefore, because of (4.4) we have

‖S‖20,Ω =
∑

K∈Th

‖curl sK‖
2
0,K ≤

∑

K∈Th

‖rot(Rψ − ψ)‖2−1,K(4.7)

≤ Ch2
∑

K∈Th

‖rot(Rψ − ψ)‖20,K ≤ Ch2 ‖rot(Rψ − ψ)‖20,Ω .

Finally, from (4.5) we obtain

|(ζ, ψ −Rψ)| =

∣∣∣∣
∫

Ω

ζ · ∇r +

∫

Ω

ζ · S

∣∣∣∣ ≤ ‖div ζ‖0,Ω ‖r‖0,Ω + ‖ζ‖0,Ω ‖S‖0,Ω ,

and the lemma follows by using (4.6) and (4.7).
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To obtain a bound of the consistency term in Lemma 4.1, there only remains to
estimate the terms involving (Rψ − ψ) of the previous lemma. To this aim, we use
the analogue of Theorem 4.3 in [24] applied to our situation in the space H(rot,Ω),
which reads:

|ψ −Rψ|1,K ≤ C
(
|ψ|1,K + hK |rotψ|1,K

)
≤ ‖ψ‖2,K(4.8)

and

‖rot(ψ −Rψ)‖0,K ≤ C

(
δK
hK

|rotψ|0,K + hK |rotψ|1,K

)
,(4.9)

where δK is a measure of the deviation of the quadrilateral K from a parallelogram,
as defined in Figure 4.1.

vv

vδK
=K

v −v=

2 1

v12

Fig. 4.1. Geometrical definition of δK .

Note that for shape-regular meshes clearly δK/hK ≤ C ∀K ∈ Th. On the other
hand, {Th} is said to be a family of asymptotically parallelogram meshes when there
exists a constant C such that maxK∈Th

(δK/hK) ≤ Ch for all the meshes.
Now we are in position to estimate the consistency term in Lemma 4.1:
Lemma 4.3. Let βh, δ, γ and ϕ̃ be as in Lemma 4.1. Then, there holds

|(βh −Rβh, δ)|+ |(γ, ϕ̃−Rϕ̃)|

‖β − βh‖0,Ω + ‖w − wh‖0,Ω
≤ Ch

(
h+ t max

K∈Th

δK
hK

)
|(θ, f)|t.

Proof. First, we have

|(βh −Rβh, δ)| ≤
∣∣((βh − β)−R(βh − β), δ

)∣∣+ |(β −Rβ, δ)| .

By using (2.9), Theorem 3.7, and (4.3), we obtain

∣∣((βh − β)−R(βh − β), δ
)∣∣ ≤ Ch ‖βh − β‖1,Ω ‖δ‖0,Ω ≤ Ch2 |(θ, f)|t ‖δ‖0,Ω

≤ Ch2 |(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
.

On the other hand, by the definition of γ in (2.1) and the estimate (2.2), we have

|rotβ|0,K =
t2

κ
|rot γ|0,K ≤ Ct |(θ, f)|t .

Then, by using Lemma 4.2, (4.8), (4.9), the estimate above, (2.2), (4.2), and (4.3),
we have
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|(β −Rβ, δ)| ≤ Ch2

(∑

K

|Rβ − β|21,K

)1/2
‖div δ‖0,Ω + Ch ‖rot(Rβ − β)‖0,Ω ‖δ‖0,Ω

≤ Ch2 ‖β‖2,Ω ‖div δ‖0,Ω + Ch

(
max
K∈Th

δK
hK

|rotβ|0,Ω + h |rotβ|1,Ω

)
‖δ‖0,Ω

≤ Ch2 |(θ, f)|t ‖div δ‖0,Ω + Ch

(
h+ t max

K∈Th

δK
hK

)
|(θ, f)|t ‖δ‖0,Ω

≤ Ch

(
h+ t max

K∈Th

δK
hK

)
|(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
.

The term |(γ, ϕ̃ − Rϕ̃)| can be bounded almost identically, by using Lemma 3.2
for MITC4 or Lemma 3.5 for DL4 to estimate ‖ϕ̃− ϕ‖1,Ω and the fact that

−div γ = f in Ω,

which follows by taking η = 0 in the first equation of (2.1). Therefore, we obtain

|(γ, ϕ̃−Rϕ̃)| ≤ Ch

(
h+ t max

K∈Th

δK
hK

)
|(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
,

which allows us to conclude the proof.
Finally, we can establish an L2(Ω) error estimate. As above, in case of MITC4

elements, we consider meshes satisfying Assumption 3.1.
Theorem 4.4. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w) and (βh, wh) be the

solutions of Problems 2.1 and 2.3, respectively. Then, there exists a constant C,
independent of t and h, such that

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch

(
h+ t max

K∈Th

δK
hK

)
|(θ, f)|t .

Proof. It is a direct consequence of Lemmas 4.1 and 4.3.
Corollary 4.5. The following error estimate holds for any family of asymptot-

ically parallelogram meshes:

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2 |(θ, f)|t .

Remark 4.1. The asymptotically parallelogram assumption on the meshes is not
necessary as long as h > αt, for α fixed. Indeed, according to Theorem 4.4, for general
regular meshes with h > αt, we have

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Cαh
2|(θ, f)|t.

Note that the condition h > αt is fulfilled in practice for reasonably large values of α.

5. The spectral problem. The aim of this section is to study how the eigen-
values and eigenfunctions of Problem 2.4 approximate those of Problem 2.2. We do
this in the framework of the abstract spectral approximation theory as stated, for in-
stance, in the monograph by Babuška and Osborn[5]. In order to use this theory, we
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define operators T and Th associated to the continuous and discrete spectral problems,
respectively.

We consider the operator

T : L2(Ω)2 × L2(Ω) −→ L2(Ω)2 × L2(Ω),

defined by T (θ, f) := (β,w), where (β,w) ∈ H10(Ω)
2×H10(Ω) is the solution of Problem

2.1. Note that T is compact, as a consequence of estimate (2.2). Since the operator is
clearly self-adjoint with respect to (·, ·)t, then, apart from µ = 0, its spectrum consists
of a sequence of finite multiplicity real eigenvalues converging to zero. Note that λ is
an eigenvalue of Problem 2.2 if and only if µ := 1/λ is an eigenvalue of T , with the
same multiplicity and corresponding eigenfunctions.

As shown in [13], each eigenvalue µ of Problem 2.1 converges to some limit µ0,
when the thickness t→ 0. Indeed, µ0 is an eigenvalue of the operator associated with
the Kirchhoff model of the same plate (see Lemma 2.1 in [13]). From now on, for
simplicity, we assume that µ = 1/λ is an eigenvalue of T which converges to a simple
eigenvalue µ0, as t goes to zero (see section 2 in [13] for further discussions).

Now, analogously to the continuous case, we introduce the operator

Th : L2(Ω)2 × L2(Ω) −→ L2(Ω)2 × L2(Ω),

defined by Th(θ, f) := (βh, wh), where (βh, wh) ∈ Hh×Wh is the solution of Problem
2.3. The operator Th is also self-adjoint with respect to (·, ·)t. Clearly, the eigenvalues
of Th are given by µh := 1/λh, with λh being the strictly positive eigenvalues of
Problem 2.4, and the corresponding eigenfunctions coincide.

As a consequence of Theorem 3.7, for each simple eigenvalue µ of T , there is
exactly one eigenvalue µh of Th converging to µ as h goes to zero (see for instance
[16]). The following theorem shows optimal t-independent error estimates. Let us
remark that the results of this theorem are valid for both methods, MITC4 and DL4,
although, for the former, under Assumption 3.1 on the meshes as in the previous
section.

Theorem 5.1. Let λ and λh be simple eigenvalues of Problems 2.2 and 2.4,
respectively, such that λh → λ as h → 0. Let (β,w) and (βh, wh) be corresponding
eigenfunctions normalized in the same manner. Then, under the assumptions stated
above, there exists C > 0 such that, for t and h small enough, there holds

‖β − βh‖1,Ω + ‖w − wh‖1,Ω ≤ Ch.

Furthermore, for any family of asymptotically parallelogram meshes, there hold

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2

and

|λ− λh| ≤ Ch2.

Proof. The proof, which relies on Theorem 3.7 and Corollary 4.5, are essentially
the same as those of Theorem 2.1, 2.2, and 2.3 in [13].

6. Numerical experiments. In this section we report some numerical experi-
ments carried out with both methods applied to the spectral problem 2.2.
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First, we have tested the two methods by using different meshes, not necessar-
ily satisfying the assumptions in the theorems above. We have considered a square
clamped moderately thick plate of side-length L and thickness-to-span ratio t/L = 0.1.
We report the results obtained with both types of elements using the following three
families of meshes:

T Uh : It consists of uniform subdivisions of the domain into N × N sub-squares, for
N = 4, 8, 16, . . . (see Figure 6.1). Clearly, these are parallelogram meshes
satisfying Assumption 3.1.

T Ah : It consists of “uniform” refinements of a non-uniform mesh obtained by split-
ting the square into four quadrilaterals. Each refinement step is obtained by
subdividing each quadrilateral into other four, by connecting the midpoints
of the opposite edges. Thus we obtain a family of N × N asymptotically
parallelogram shape regular meshes as shown in Figure 6.2. Furthermore, for
N = 4, 8, 16, . . ., these meshes satisfy Assumption 3.1.

T Th : It consists of partitions of the domain into N × N congruent trapezoids, all
similar to the trapezoid with vertices (0, 0), (1/2, 0), (1/2, 2/3) and (0, 1/3),
as shown in Figure 6.3. Clearly, these are not asymptotically parallelogram
meshes and they do not satisfy Assumption 3.1.

N=4 N=8 N=16

Fig. 6.1. Uniform square meshes T U
h .

N=4 N=8 N=16

Fig. 6.2. Asymptotically parallelogram meshes T A
h
.

N=4 N=8 N=16

Fig. 6.3. Trapezoidal meshes T T
h .
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Let us remark that the third family was used in [3, 4] to show that the order of
convergence of some finite elements deteriorate on these meshes, in spite of the fact
that they are shape regular.

We have computed approximations of the free vibration angular frequencies ω =
t
√
λ/ρ corresponding to the lowest-frequency vibration modes of the plate. In order

to compare the obtained results with those in [1] we present the computed frequencies
ωhmn in the following non-dimensional form:

ω̂mn := ωhmnL

[
2(1 + ν)ρ

E

]1/2
,

m and n being the numbers of half-waves occurring in the mode shapes in the x and
y directions, respectively.

Tables 6.1 and 6.2 show the four lowest vibration frequencies computed by our
method with successively refined meshes of each type, T Uh , T Ah , and T Th . Each table
includes also the values of the vibration frequencies obtained by extrapolating the
computed ones as well as the estimated order of convergence. Finally, it also includes
in the last column the results reported in [1]. In every case we have used a Poisson
ratio ν = 0.3 and a correction factor k = 0.8601. The reported non-dimensional
frequencies are independent of the remaining geometrical and physical parameters,
except for the thickness-to-span ratio.

Table 6.1

Scaled vibration frequencies ω̂mn computed with MITC4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order [1]
ω̂11 1.6055 1.5946 1.5919 1.5910 2.01 1.591

T U
h ω̂21 3.1042 3.0550 3.0429 3.0389 2.03 3.039

ω̂12 3.1042 3.0550 3.0429 3.0389 2.03 3.039
ω̂22 4.3534 4.2850 4.2681 4.2625 2.02 4.263
ω̂11 1.6073 1.5951 1.5921 1.5911 2.01 1.591

T A
h ω̂21 3.1094 3.0563 3.0433 3.0390 2.02 3.039

ω̂12 3.1190 3.0586 3.0438 3.0390 2.03 3.039
ω̂22 4.3711 4.2894 4.2692 4.2626 2.02 4.263
ω̂11 1.6112 1.5961 1.5923 1.5910 1.99 1.591

T T
h ω̂21 3.1129 3.0575 3.0436 3.0388 1.99 3.039

ω̂12 3.1306 3.0618 3.0446 3.0388 2.00 3.039
ω̂22 4.3916 4.2955 4.2708 4.2622 1.96 4.263

Table 6.2

Scaled vibration frequencies ω̂mn computed with DL4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order [1]
ω̂11 1.5956 1.5922 1.5913 1.5910 1.98 1.591

T U
h ω̂21 3.0711 3.0470 3.0409 3.0388 1.99 3.039

ω̂12 3.0711 3.0470 3.0409 3.0388 1.99 3.039
ω̂22 4.3136 4.2754 4.2657 4.2624 1.98 4.263
ω̂11 1.5929 1.5915 1.5912 1.5910 1.94 1.591

T A
h ω̂21 3.0592 3.0441 3.0402 3.0388 1.96 3.039

ω̂12 3.0732 3.0476 3.0411 3.0389 1.98 3.039
ω̂22 4.3136 4.2756 4.2658 4.2624 1.96 4.263
ω̂11 1.5927 1.5914 1.5911 1.5910 2.21 1.591

T T
h ω̂21 3.0606 3.0445 3.0403 3.0388 1.94 3.039

ω̂12 3.0654 3.0453 3.0405 3.0390 2.05 3.039
ω̂22 4.3131 4.2754 4.2657 4.2623 1.96 4.263
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It can be clearly seen that both methods converge for the three types of meshes
with an optimal O(h2) order. Hence, none of the two particular assumptions on the
meshes (Assumption 3.1 and to be asymptotically parallelogram) seem to be actually
necessary.

As a second test, we have made a numerical experiment to assess the stability of
the methods as the thickness t goes to zero. We have used a sequence of clamped plates
with decreasing values of the thickness-to-span ratios: t/L = 0.1, 0.01, 0.001, 0.0001.
All the other geometrical and physical parameters have been taken as in the previous
test.

We have computed again approximations of the free vibration angular frequencies
ω = t

√
λ/ρ. The quotients ω/t are known to converge to the corresponding vibration

frequencies of an identical Kirchhoff plate (i.e., to the frequencies obtained from the
Kirchhoff model for the deflection of a similar zero-thickness ideal plate; see Lemma
2.1 from [13]). Because of this, we present now the computed frequencies ωhmn scaled
in the following manner:

ω̃mn := ωhmn
L

t

[
2(1 + ν)ρ

E

]1/2
.

The obtained results have been qualitatively similar for both methods. We only
report those obtained with DL4, since the performance of MITC4 has been assessed
in many other papers (see for instance [8], as well as [15] for the vibration problem).

We present in Table 6.3 the results for the lowest-frequency vibration mode, with
the same meshes as in the previous test. In each case, for each thickness-to-span
ratio t/L, we have computed again an extrapolated more accurate value of the scaled
vibration frequency and the estimated order of convergence. Finally we have also
estimated by extrapolation the limit values of the scaled frequencies ω̃mn as t goes to
zero.

Table 6.3

Scaled vibration frequency ω̃11 computed with DL4 for different thickness-to-span ratios t/L.

Mesh t/L N = 16 N = 32 N = 64 Extrap. Order
0.1 15.9561 15.9220 15.9133 15.9104 1.98
0.01 17.5778 17.5485 17.5412 17.5387 1.99

T U
h 0.001 17.5975 17.5685 17.5612 17.5588 2.00

0.0001 17.5976 17.5687 17.5614 17.5590 2.00
0 (extrap.) 17.5977 17.5687 17.5614 17.5590 2.00

0.1 15.9286 15.9151 15.9116 15.9104 1.94
0.01 17.5368 17.5382 17.5385 17.5387 1.87

T A
h 0.001 17.5563 17.5580 17.5586 17.5588 1.74

0.0001 17.5565 17.5582 17.5588 17.5590 1.74
0 (extrap.) 17.5565 17.5582 17.5588 17.5590 1.76

0.1 15.9272 15.9141 15.9113 15.9105 2.21
0.01 17.5681 17.5450 17.5395 17.5377 2.05

T T
h 0.001 17.5901 17.5671 17.5608 17.5585 1.89

0.0001 17.5903 17.5673 17.5611 17.5588 1.89
0 (extrap.) 17.5903 17.5674 17.5611 17.5588 1.89

Note that the extrapolated values for each thickness-to-span ratio are almost
identical for the three meshes. Moreover, although the estimated orders of convergence
seem to deteriorate a bit as t/L goes to zero for the non-uniform meshes, the values
obtained with these meshes are better than those computed with the uniform mesh
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(i.e. closer to the extrapolated ones), even for the coarser meshes. Therefore, this
test suggests that the method is locking-free for any kind of regular meshes.

Finally, we report in Table 6.4 the corresponding extrapolated values as t/L goes
to zero for the four lowest scaled vibration frequencies. It can be seen from this table
that the results are essentially the same as for ω̃11. Furthermore, the computed orders
of convergence are even closer to 2.

Table 6.4

Extrapolated values as (t/L) → 0 of the scaled vibration frequencies ω̃mn computed with DL4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order
ω̂11 17.5977 17.5687 17.5614 17.5590 2.00

T U
h ω̂21 36.2064 35.9115 35.8374 35.8125 1.99

ω̂12 36.2064 35.9115 35.8374 35.8126 1.99
ω̂22 53.4123 52.9570 52.8428 52.8045 1.99
ω̂11 17.5565 17.5583 17.5588 17.5590 1.76

T A
h ω̂21 35.9947 35.8590 35.8243 35.8123 1.97

ω̂12 36.2003 35.9102 35.8371 35.8124 1.99
ω̂22 53.3174 52.9353 52.8374 52.8037 1.97
ω̂11 17.5904 17.5673 17.5611 17.5588 1.89

T T
h ω̂21 36.0770 35.8823 35.8303 35.8113 1.90

ω̂12 36.2500 35.9259 35.8412 35.8112 1.94
ω̂22 53.5074 52.9936 52.8526 52.7993 1.87

Further experiments with MITC4 have been reported in [15], including other
boundary condition and the extension of this method to compute the vibration modes
of Naghdi shells.
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