
A posteriori error estimates for non conforming

approximation of eigenvalue problems

E. Daria, R. G. Duránb and C. Padra c,∗
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Abstract. We consider the approximation of eigenvalue problem for the laplacian
by the Crouzeix-Raviart non conforming finite elements in two and three dimen-
sions.

Extending known techniques for source problems, we introduce a posteriori
error estimators for eigenvectors and eigenvalues. We prove that the error estimator
is equivalent to the energy norm of the eigenvector error up to higher order terms.
Moreover, we prove that our estimator provides an upper bound for the error in
the approximation of the first eigenvalue, also up to higher order terms.

We present numerical examples of an adaptive procedure based on our error
estimator in two and three dimensions. These examples show that the error in the
adaptive procedure is optimal in terms of the number of degrees of freedom.

1 Introduction

A posteriori error estimates for non conforming Crouzeix-Raviart approximations
of second order elliptic problems [8], as well as for the closely related (see [5, 13])
Raviart-Thomas mixed method of lowest order [14], have been developed and ana-
lyzed in several papers. The first results proving the equivalence between the error
and a residual type estimator were based on the use of a Helmholtz type decompo-
sition of the error [9]. See also [3, 7, 11] where similar techniques were applied for
mixed finite element approximations.

A slightly different argument avoiding the use of the Helmholtz decomposition
was introduced in [12] and further developed in [2] to obtain upper estimators
without involving unknown constants. The goal of this paper is to extend this
approach to the case of eigenvalue problems. For simplicity we consider the Laplace
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operator although similar arguments can be applied to more general second order
elliptic problems.

For Ω ⊂ IRd, d = 2, 3, a polygonal or polyhedral domain, our model problem is
{ −∆u = λu in Ω,

u = 0 on ∂Ω. (1.1)

As it is well known, this problem has a sequence of eigenpairs (λj , uj), with positive
eigenvalues λj diverging to +∞.

Given a family {Th}, 0 < h < h0 of triangulations of Ω made of triangles or
tetrahedra, we define h = maxT∈Th

hT , where hT is the diameter of T . We assume
that we have a family of triangulations which is regular in the classic sense, i. e.,
hT /ρT ≤ σ, where ρT is the diameter of the largest ball contained in T and σ is
a positive constant. For a face (resp. edge in the 2d case) F of an element T we
denote with hF its diameter. Given T1 and T2 in Th such that T1 ∩ T2 = F and a
function v ∈ L2(T1 ∪ T2) such that v|Ti ∈ H1(Ti) we define [v]F as the jump of v
across F (with an arbitrary election of the sign). Moreover, for a face (resp. edge)
F contained in ∂Ω we set [v]F = 0. Finally, Fh denotes the set of all the faces
(resp. edges) of elements in Th.

Now, associated with a triangulation Th, the Crouzeix-Raviart non conforming
finite element space V NC

h is defined as

V NC
h =

{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and

∫

F

[v]F = 0 ∀F ∈ Fh

}

where we have used the standard notation P1(T ) for affine functions on T .
In our analysis we will also make use of the standard conforming P1-elements

associated with the triangulation Th. We denote this space by V C
h .

The Crouzeix-Raviart finite element approximation of problem (1.1) is given by
∫

Ω

∇huh · ∇hvh = λh

∫

Ω

uh vh ∀vh ∈ V NC
h (1.2)

where
∇huh|T := ∇(uh|T ).

The rest of the paper is as follows. In Section 2 we explain the ideas leading
to the definition of the estimator and state one of the main results concerning
the error estimation for the eigenvectors approximation. The proof of this result
is given in Section 3. Also in that section we introduced a locally computable
error estimator based on a postprocessing of the numerical solution and prove the
reliability of this estimator. In Section 4 we prove an a posteriori error estimate for
the approximation of the first eigenvalue. Section 5 deals with the efficiency of the
estimator. We conclude the paper giving some numerical examples in Section 6.

2 Motivation and definition of the error estimator

Let us give a heuristic idea for the definition of our error estimator in the case
of the first eigenvalue λ = λ1. We will use standard notations for Sobolev norms
and we will denote with ‖u‖ the L2-norm of u and analogously for vector fields.
The letter C will denote a generic constant which can change from line to line and
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may depend on the regularity of the meshes (i.e., on the constant σ defined in the
previous section).

The first eigenvalue is given by

λ = inf
v∈H1

0 (Ω)

‖∇v‖2
‖v‖2 (2.3)

In many cases the Crouzeix-Raviart approximation provides lower bounds of the
eigenvalues. Indeed, it was proved in [4] that, for singular eigenfunctions, λh ≤ λ
for h small enough. Let us give here an argument which is simpler than that given
in [4]. With this goal we will make use of the edge average interpolant of u [8],
uI ∈ V NC

h given by ∫

F

uI =
∫

F

u ∀F ∈ Fh.

It is well known, and easy to check, that ∇huI is the L2-projection of ∇u onto the
piecewise constant vector fields, and therefore,

‖∇huI‖ ≤ ‖∇u‖ (2.4)

Take u as the positive eigenfunction associated with λ normalized such that ‖u‖ = 1.
Then, using (2.3) and (2.4) (which actually is a strict inequality because u is not
in the finite element space), we have

λh = inf
v∈V NC

h

‖∇hv‖2
‖v‖2 ≤ ‖∇huI‖2

‖uI‖2 <
‖∇u‖2
‖uI‖2 = λ

(
1− ‖uI‖2 − ‖u‖2

‖uI‖2
)

(2.5)

Now, it is known (see [10]) that, for any polygonal or polyhedral domain Ω, there
exists some p > 1 and a constant C depending only on Ω and p such that

‖u‖W 2,p ≤ Cλ‖u‖Lp

in particular,
‖u‖W 2,1 ≤ C

for a constant C which depends on λ, p and Ω. Therefore, standard arguments give

‖u− uI‖L1 ≤ Ch2

Now, recall that u ∈ L∞(Ω). Indeed, for d = 2, this follows from a Sobolev
imbedding theorem since u ∈ W 2,p(Ω), for some p > 1. On the other hand for
d = 3 the boundedness of u follows easily using that u ∈ L2(Ω) and the known
estimate for the Green function in Lipschitz domains G(x, y) ≤ C|x − y|2−d (see
for example [6]). Then,

∣∣‖uI‖2 − ‖u‖2
∣∣ =

∣∣∣∣
∫

Ω

(uI − u)(uI + u)
∣∣∣∣ ≤ C‖u‖L∞‖uI − u‖L1 ≤ Ch2

where we have used that ‖uI‖L∞ ≤ C‖u‖L∞ . Therefore, it follows from (2.5), using
also that ‖uI‖ → 1 when h → 0, that

λh < λ
(
1−O(h2)

)
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But, for the singular eigenfunctions u arising when the polygonal or polyhedral
domain is not convex, we have

|λ− λh| = O(h2r) r < 1

and then
λh ≤ λ

for h small enough.
On the other hand, upper bounds for the first eigenvalue are easy to find.

Indeed, taking any v ∈ H1
0 (Ω) such that ‖v‖ = 1, we obtain from (2.3) that

λ ≤ λ̃ := ‖∇v‖2 (2.6)

So, if λh ≤ λ, we would have the following explicit bound for the eigenvalue error,

0 ≤ λ− λh ≤ λ̃− λh = ‖∇v‖2 − ‖∇huh‖2

= ‖∇v −∇huh‖2 + 2
∫

Ω

∇huh∇h(v − uh)

In particular we can choose v ∈ V C
h . In this case, using (1.2) and that ‖v‖ =

‖uh‖ = 1, it is easy to see that

2
∫

Ω

∇huh∇h(v − uh) = −λh‖v − uh‖2

Then, using that λh ≥ 0, we obtain

0 ≤ λ− λh ≤ ‖∇v −∇huh‖2

and therefore, since v ∈ V C
h with ‖v‖ = 1 is arbitrary, we conclude that

0 ≤ λ− λh ≤ d(∇huh,∇V C
h,‖v‖=1)

2 (2.7)

where
∇V C

h = {G ∈ L2(Ω)d : G = ∇v , for some v ∈ V C
h }

and ∇V C
h,‖v‖=1 is the subset of ∇V C

h such that v can be taken with ‖v‖ = 1.
On the other hand, using analogous notations with V C

h replaced by H1
0 , we

have
d(∇huh,∇H1

0,‖v‖=1)
2 ≤ ‖∇u−∇huh‖2 ∼ |λ− λh|

where the last equivalence is known from a priori error estimates.
In conclusion, if d(∇huh,∇H1

0,‖v‖=1)
2 and d(∇huh,∇V C

h,‖v‖=1)
2 are of the same

order (we will show that this is the case!), any of them seem to be reasonable
estimators.

Afterwards, in order to obtain a computable estimator one can bound this
distances by the distance to an appropriate function constructed by post-processing
the discrete solution uh (a procedure already used in [2, 12]).

Unfortunately, as far as we know, it is not known whether λh ≤ λ is always true
(this was only proved for singular eigenvectors and h small enough). Therefore, our
heuristic argument cannot be formalized.
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However, we are able to prove a slightly weaker result which shows that the
proposed estimator is correct if we add appropriate element interior residual terms.

We will use the following well known results. For w ∈ H1(T ),

‖w − wI‖L2(T ) ≤ C1hT ‖∇w‖L2(T ) (2.8)

and, for w ∈ H1
0 (Ω),

‖w‖L2(Ω) ≤ C2‖∇w‖L2(Ω) (2.9)

If λ is any eigenvalue of the continuous problem (1.1) with eigenfunction u and
λh and uh are the corresponding discrete approximations defined by (1.2) then, we
have

Theorem 2.1 If C1 and C2 are the constants in (2.8) and (2.9), then

‖∇he‖L2(Ω) ≤ d(∇huh,∇H1
0 ) + C1

{∑

T

h2
T ‖λhuh‖2L2(T )

} 1
2

+ h.o.t.

where
|h.o.t.| ≤ C2

{
(λ− λh) + (λλh)

1
2 ‖e‖L2(Ω)

}

The proof of this theorem will be given in the following section.

Remark 2.1 Observe that we have replaced d(∇huh,∇H1
0,‖v‖=1) by d(∇huh,∇H1

0 ),
which is better from a practical point of view.

Remark 2.2 According to known a priori estimates, the term h.o.t. given in The-
orem 2.1 is a higher order term.

Remark 2.3 It is known that C1 is independent of the element shape (see for
example [1]). Therefore, the constants in the a posteriori error estimate given in
the theorem depend only on Ω. In particular they are independent of the elements
shape.

Remark 2.4 The argument used in (2.6) cannot be applied for other eigenvalues
and this is why part of our analysis is restricted to the approximation of the first
one. It would be possible to obtain upper bounds for other eigenvalues using the
min-max characterization. However, this generalization is not straightforward and
it will be the subject of further research.

3 Error estimates for the eigenfunctions

Let u, ‖u‖ = 1, be an eigenfunction of the continuous problem (1.1) and uh, ‖uh‖ =
1, a corresponding solution of (1.2) (i. e., uh is an approximation of u). The goal
of this section is to estimate the error e := u− uh.

For an element T ∈ Th, FT denotes the set of faces (resp. edge in the 2d case)
of T ∈ Th which are not on ∂Ω . For F ∈ FT we introduce the jump of the normal
derivative of uh across F , Jn

F :=
[

∂uh

∂n

]
(where we have eliminated the dependence

on h to simplify notation).
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Let
P : L2(Ω)d → ∇H1

0 (Ω)

be the L2-orthogonal projection. Then, if P (∇he) = ∇ẽ with ẽ ∈ H1
0 (Ω), we have

‖∇he‖2L2(Ω) = ‖∇huh − P (∇huh)‖2L2(Ω) + ‖∇ẽ‖2L2(Ω) (3.10)

where we have used that P (∇u) = ∇u.
The main part of the error analysis is the estimate for ‖∇ẽ‖2L2(Ω) which is given

in the next lemma. We define the local and global error estimators as follows,

η2
T = h2

T ‖λhuh‖2L2(T ) , η2 =
∑

T

η2
T (3.11)

Lemma 3.1 If C1 and C2 are the constants in (2.8) and (2.9), then

‖∇ẽ‖L2(Ω) ≤ C1η + C2{(λ− λh) + (λλh)
1
2 ‖e‖L2(Ω)}

Proof. Using (1.1), (1.2) and integrating by parts element by element we obtain,
for any w ∈ H1

0 (Ω),

∫

Ω

P (∇he) · ∇w =
∫

Ω

∇he · ∇w =
∑

T

{∫

T

λuw +
1
2

∑

F∈FT

∫

F

Jn
F w

}
.

Then, taking w = ẽ and recalling that ∇ẽ = P (∇he), we have

‖∇ẽ‖2L2(Ω) =
∑

T

{∫

T

λuẽ +
1
2

∑

F∈FT

∫

F

Jn
F ẽ

}
.

On the other hand, integrating by parts on each element in (1.2) we obtain, for any
vh ∈ V NC

h ,
∑

T

{∫

T

λhuhvh +
1
2

∑

F∈FT

∫

F

Jn
F vh

}
= 0

and then,

‖∇ẽ‖2L2(Ω) =
∑

T

{∫

T

(λuẽ− λhuhvh) +
1
2

∑

F∈FT

∫

F

Jn
F (ẽ− vh)

}
.

Choosing vh = ẽI , the last term on the right hand side vanishes and therefore,

‖∇ẽ‖2L2(Ω) =
∑

T

∫

T

(λuẽ− λhuhẽI).

Consequently,

‖∇ẽ‖2L2(Ω) =
∫

Ω

(λu− λhuh)ẽ +
∫

Ω

λhuh(ẽ− ẽI)

and using (2.8) we obtain

‖∇ẽ‖2L2(Ω) ≤ ‖λu− λhuh‖L2(Ω)‖ẽ‖L2(Ω) + C1η‖∇ẽ‖L2(Ω).
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Then, using now (2.9) we conclude that

‖∇ẽ‖L2(Ω) ≤ C1η + C2‖λu− λhuh‖L2(Ω).

But,

‖λu− λhuh‖2L2(Ω) = λ2 + λ2
h − 2λλh

∫

Ω

uuh

and using 2
∫

uuh = 2− ‖e‖2L2(Ω) we obtain

‖λu− λhuh‖2L2(Ω) = (λ− λh)2 + λλh‖e‖2L2(Ω)

concluding the proof.
We can now give the proof of the theorem providing the upper bound of the

error.

Proof of Theorem 2.1. The result follows immediately from the previous lemma
and the decomposition (3.10), observing that

‖∇huh − P (∇huh)‖L2(Ω) = d(∇huh,∇H1
0 ).

Now, we want to introduce a computable error estimator for the eigenvector
approximation. In view of the previous theorem it is enough to find a good esti-
mate for the term d(∇huh,∇H1

0 ). Extending the ideas of [12, 2] we construct an
approximation ũh ∈ V C

h of u by postprocessing uh.
It is enough to define ũh at the vertices of the triangulation. A natural way to

define ũh is by averaging the values of uh. Namely, for each interior vertex P we
consider all the elements Ti, i = 1, . . . , N containing P (where N depends on P )
and define

ũh(P ) =
N∑

i=1

wiuh|Ti(P )

where the weights wi are such that
∑N

i=1 wi = 1. For example, we can take

wi =
1
N

or wi =
|Ti|
|ΩP |

with ΩP = ∪N
i=1Ti. If P is a boundary vertex we set ũh(P ) = 0. Define now

µ2
T = ‖∇ũh −∇uh‖2L2(T ) , µ2 =

∑

T

µ2
T (3.12)

Then, the following theorem is an immediate consequence of Theorem 2.1.

Theorem 3.2 If C1 and C2 are the constants in (2.8) and (2.9), then

‖∇he‖L2(Ω) ≤ µ + C1η + h.o.t.

with
|h.o.t.| ≤ C2

{
(λ− λh) + (λλh)

1
2 ‖e‖L2(Ω)

}
.
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4 Error estimates for the first eigenvalue

In this section we prove an a posteriori error estimate for the error |λh − λ| in the
case of the first eigenvalue.

Lemma 4.1 For the case λ = λ1 we have

|λh − λ| ≤ 2‖∇he‖2L2(Ω) + 2d(∇huh,∇V C
h,‖v‖=1)

2

Proof. If λh ≤ λ we have already proved the stronger estimate (2.7).
So, it only remains to consider the case λ < λh. Take v ∈ V C

h,‖v‖=1. Since
V C

h ⊂ V NC
h we have λh ≤ ‖∇v‖2.

Then, using that ‖u‖L2(Ω) = 1, we have

λ + λh ≤ ‖∇u‖2 + ‖∇v‖2 ≤ ‖∇(u− v)‖2L2(Ω) + 2
∫

Ω

∇u · ∇v

and so, using (1.1), we obtain

λ + λh = ‖∇(u− v)‖2L2(Ω) + 2λ

∫

Ω

uv = ‖∇(u− v)‖2L2(Ω) − λ‖u− v‖2L2(Ω) + 2λ

and subtracting 2λ from both sides it follows that

λh − λ ≤ ‖∇(u− v)‖2L2(Ω)

Therefore,

λh − λ ≤ (‖∇h(u− uh)‖L2(Ω) + ‖∇h(uh − v)‖L2(Ω)

)2

and, since v ∈ V C
h,‖v‖=1 is arbitrary we conclude the proof.

The above lemma together with Theorem 2.1 gives the following estimate for
the error in the approximation of the first eigenvalue.

Theorem 4.2 For λ = λ1 there exists a constant C, which depends only on C1

defined in (2.8), such that

|λh − λ| ≤ C

{
d(∇huh,∇V C

h,‖v‖=1)
2 +

∑

T

h2
T ‖λhuh‖2L2(T )

}
+ h.o.t.

with
|h.o.t.| ≤ C

{
(λ− λh) + (λλh)

1
2 ‖e‖L2(Ω)

}2

.

Proof. The result follows immediately from Theorem 2.1, Lemma 4.1 and the
obvious inequality

d(∇huh,∇H1
0 ) ≤ d(∇huh,∇V C

h,‖v‖=1).
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5 Efficiency of the error estimator

For positive quantities A and B, A ∼ B will mean that the ratio between A and
B is bounded by above and below by positive constants. Let us recall that, since
we are assuming regularity of the family of meshes, we have hF ∼ hT for F a face
of T and also hT1 ∼ hT2 , whenever T1 and T2 are neighbor elements. We will use
these equivalences several times in what follows. Given a vertex P of a face F ∈ Fh

and a function v we denote with [v(P )]F the jump of v across F evaluated in P .
For an element T , vT and vh,T mean the restriction to T of v and vh respectively.
Analogous notation will be used for the restriction to a face F .

Lemma 5.1 Let v ∈ H1
0 (Ω) and vh ∈ V NC

h . If P is a vertex of a face F ∈ Fh,
where F = T1 ∩ T2, we have

|[vh(P )]F | ≤ C

h
d/2−1
F

‖∇h(vh − v)‖L2(T1∪T2). (5.13)

Analogously, if P ∈ ∂Ω and T is an element containing P ,

|vh,T (P )| ≤ C

h
d/2−1
T

‖∇h(vh − v)‖L2(T ) (5.14)

Where the constant C depends on the regularity of the elements.

Proof. We consider the case in which P is an interior point. The proof for the
other case is analogous. Since [vh]F is an affine function, we can see by standard
scaling arguments and using the equivalence of norms in finite dimensional spaces,
we have

[vh(P )]F ≤ C

h
(d−1)/2
F

‖[vh]F ‖L2(F ) . (5.15)

Since [v]F = 0, we have
[vh]F = [vh − v]F . (5.16)

Define now
mF =

1
|F |

∫

F

(vh,T1 − v) =
1
|F |

∫

F

(vh,T2 − v)

and write

[vh − v]F = (vh,T1 − v)F −mF − ((vh,T2 − v)F −mF ). (5.17)

Applying a standard trace theorem we have

‖vh,T1 − v −mF ‖L2(F ) ≤ C{h−1/2
T1

‖vh − v −mF ‖L2(T1) + h
1/2
T1
‖∇(vh − v)‖L2(T1)},

and by a Poincaré inequality for functions with vanishing mean value on F , we
obtain

‖vh,T1 − v −mF ‖L2(F ) ≤ Ch
1/2
T1
‖∇(vh − v)‖L2(T1).

Analogously,

‖vh,T2 − v −mF ‖L2(F ) ≤ Ch
1/2
T2
‖∇(vh − v)‖L2(T2),
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and therefore, the statement follows from (5.15), (5.16), and (5.17).
In the next two theorems we prove the so called efficiency of the error estimator.

Namely, we prove that both parts of the estimator, defined in (3.11) and (3.12),
are bounded by a constant times the error (plus a higher order term in the case of
η). Given an element T ∈ Th we denote with T ∗ the union of all the elements in
Th sharing a vertex with T .

Theorem 5.2 For all v ∈ H1
0 (Ω) we have

µT ≤ C‖∇v −∇huh‖L2(T∗)

where the constant C depends only on the regularity of the elements. In particular,

µT ≤ C‖∇he‖L2(T∗)

Proof. Given T ∈ Th, let Ni be the standard conforming Lagrange basis of P1(T ).
calling Pi the vertices of T we have, in T ,

∇(ũh − uh) =
d+1∑

i=1

(ũh(Pi)− uh,T (Pi))∇Ni

and, since ‖∇Ni‖L2(T ) ≤ Ch
d/2−1
T , we obtain

‖∇(ũh − uh)‖L2(T ) ≤ Ch
d/2−1
T

d+1∑

i=1

|ũh(Pi)− uh,T (Pi)|. (5.18)

Therefore, it is enough to estimate |ũh(Pi)− uh,T (Pi)|.
If Pi ∈ ∂Ω we have, by definition, that ũh(Pi) = 0, and therefore, using (5.14)

we obtain

|ũh(P )− uh,T (P )| = |uh,T (P )| ≤ C

h
d/2−1
T

‖∇h(uh − v)‖L2(T ), (5.19)

Consider now a vertex P of T such that P /∈ ∂Ω. Recall that ΩP denotes
the union of all the elements containing P . We can numerate these elements, Ti,
i = 0, 1, 2, · · · ,M , in such a way that T0 = T , Ti and Ti+1 have a common face for
all i, and TM shares a face with T . Observe that, in the three dimensional case,
the Ti are not necessarily all different. However, we can choose the numeration in
such a way that M is bounded by a constant which depends only on the regularity
of the meshes. We also define T0 = TM+1 = T .

Then, we have

ũh(P )− uh,T (P ) =
M∑

i=0

wi(uh,Ti(P )− uh,T (P )),

and therefore,

|ũh(P )− uh,T (P )| ≤
M∑

i=0

wi|uh,Ti(P )− uh,T (P )|.
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Defining F1 = T ∩ T1 and using (5.13), we have, for all v ∈ H1
0 (Ω),

|uh,T1(P )− uh,T (P )| = |[uh(P )]F1 | ≤
C

h
d/2−1
F1

‖∇h(uh − v)‖L2(T∪T1).

Analogously, calling now Fi = Ti−1 ∩ Ti, we obtain

|uh,T2(P )− uh,T (P )| ≤ |uh,T2(P )− uh,T1(P )|+ |uh,T1(P )− uh,T (P )|

= |[uh(P )]F2 |+ |[uh(P )]F1 | ≤
C

h
d/2−1
F2

‖∇h(uh − v)‖L2(T∪T1∪T2),

and in general,

|uh,Ti
(P )− uh,T (P )| ≤

i∑

j=1

|[uh(P )]Fj
| ≤ C

h
d/2−1
Fi

‖∇h(uh − v)‖L2(∪i
j=0Tj).

Consequently,

|ũh(P )− uh,T (P )| ≤ C

h
d/2−1
T

‖∇h(uh − v)‖L2(ΩP ),

and therefore, using this estimate for all the vertices of T together with (5.18) and
(5.19) we conclude the proof.

Remark 5.1 Since ũh ∈ H1
0 (Ω), we have

d(∇huh,∇H1
0 (Ω)) ≤ ‖∇ũh −∇huh‖L2(Ω) = µ

and so, the result of the previous theorem says that

µ ∼ d(∇huh,∇H1
0 (Ω)).

Therefore, ũh is a reasonable election to define a computable estimator for d(∇huh,∇H1
0 (Ω))

Theorem 5.3 There exists a constant C, depending only on the regularity of the
elements, such that

ηT ≤ C‖∇he‖L2(T ) + h.o.t.,

where
|h.o.t.| ≤ ChT ‖λu− λhuh‖L2(T )

Proof. Let bT ∈ H1
0 (T ) ∩ Pd+1 be a bubble function which is equal to one at the

barycenter of T . By standard arguments we can prove that

‖uhbT ‖L2(T ) ≤ ‖uh‖L2(T ) ≤ C

(∫

T

|uh|2bT

)1/2

(5.20)

and
‖∇(uhbT )‖L2(T ) ≤

C

hT
‖uh‖L2(T ). (5.21)

Take v = uhbT . Using (1.1) and that
∫

T
∇uh∇v = 0, we obtain

λh

∫

T

uhv =
∫

T

∇e · ∇v −
∫

T

(λu− λhuh)v.

Therefore, applying the Schwarz inequality and using (5.20) and (5.21) we conclude
the proof.
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6 Numerical examples

Now we present the results obtained with adaptive methods based on the H1 error
estimator defined by

ξ2 =
∑

T∈Tk

ξ2
T ,

where ξ2
T = η2

T + µ2
T . We have used the following standard adaptive procedure:

start with an initial quasi uniform mesh T0 and compute the approximate solution
u0. Then, given a solution uk corresponding to a mesh Tk, the following mesh is
obtained by refining those elements T such that the error indicator ξT satisfies

ξT ≥ γ ξmax , with ξmax = max
T∈Tk

ξT

for some fixed constant γ (we have taken γ=0.7).
In the two dimensional case we use the refinement propagation method given

by Rivara [15] which guarantee that, at every step, the minimum angle is always
greater than or equal 0.5 times the minimum angle of the starting mesh. In 3-
d, the mesh Tk+1 is obtained from the Tk using a recursive largest edge partition
procedure that limits the propagation of the refinement [16].

6.1 Two dimensional example

We start solving the problem (1.1) in the classical L-shaped domain, namely,

Ω = [−1, 1]× [−1, 1] \ [0, 1]× [−1, 0].

The first eigenvalue is λ1 ' 9.64 as computed numerically using a very refined
mesh. In figure 1 the domain with the initial mesh and the mesh obtained after 8
steps are presented.

Figure 1: Domain, inital mesh, mesh after 8 adaption steps, and zoom (10x)

Figure 2 shows the eigenvalues obtained in each mesh of the adaptive procedure,
together with the Rayleigh quotient for the function ũh defined in Section 3, plotted
against the number of unknowns N . We can see that these approximations provide
suitable upper and lower bounds for the extrapolated eigenvalue.

12



In figure 3 we show the convergence of the adaptive procedure by showing the
squared global estimator ξ2 and the error λ− λh against the number of unknowns.
It is also shown that the two parts η2 and µ2 achieve the same optimal order of
convergence N−1 as the total estimator ξ2.

Computed

Eigenvalue

Rayleigh quotient

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 100 1000 N

Figure 2: Sucessive approximations of the eigenvalue

Error

Estimator (squared)

η2

O(        )N
−1

µ 2

 0.01

 0.1

 1

 10

 100  1000 N

Figure 3: Convergence of the computed eigenvalue

6.2 Three dimensional example

We also considered the eigenvalue problem (1.1) in the three dimensional domain:

Ω = {|xj | < 1, j = 1, 2, 3} − {0 ≤ xj ≤ 1 , j = 1, 2, 3}
Starting with a uniform mesh we performed 8 adaptive steps and obtained the

mesh shown in Figure 4.
The numerical approximation of the eigenvalue, and the Rayleigh quotient are

shown in figure 5, where the monotonic convergence of these values can be observed.
Finally, figure 6 shows the total estimated error and the eigenvalue error (in this
case, the exact value is obtained by extrapolation of the numerical approximations).

13



Figure 4: Mesh after 8 adaptive steps.
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