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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider the approximation of Poisson type problems where the source is given
by a singular measure and the domain is a convex polygonal or polyhedral domain. First, we
prove the well-posedness of the Poisson problem when the source belongs to the dual of a weighted
Sobolev space where the weight belongs to the Muckenhoupt class. Second, we prove the stability in
weighted norms for standard finite element approximations under the quasi-uniformity assumption
on the family of meshes.
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1. Introduction. This paper is motivated by the analysis of numerical approxi-
mations of elliptic problems with singular sources. The standard finite element analy-
sis is based on the variational formulation in Sobolev spaces. For example, for the
classic Poisson problem in a bounded domain \Omega \in \BbbR n, it is known that the problem
is well posed in H1

0 (\Omega ) whenever the right-hand side is in the dual space H - 1(\Omega ).
However, the finite element method can be applied in many situations where the

right-hand side is not in H - 1(\Omega ), and consequently, the solution is not in H1
0 (\Omega ).

Interesting examples of this situation arise when the right-hand side is given by a
singular measure \mu .

Given a bounded domain \Omega \subset \BbbR n, n = 2 or n = 3, we consider the Poisson
problem

(1.1)

\Biggl\{ 
 - \Delta u = \mu in \Omega ,

u = 0 on \partial \Omega .

To perform a variational analysis, suitable in particular for finite element approx-
imations, it is natural to work with weighted Sobolev spaces. This approach has been
used in several papers (see, for example, [2, 3, 8, 9]).

Associated with a locally integrable function w \geq 0 we define the space Lp
w(\Omega ) as

the usual Lp(\Omega ) space with measure w(x)dx and Lp
w(\Omega ) = Lp

w(\Omega )
n. We will also work

with the Sobolev spaces W 1,p
w (\Omega ) = \{ v \in Lp

w(\Omega ) : \nabla v \in Lp
w(\Omega )\} , which is a Banach

space with the norm given by

\| v\| W 1,p
w (\Omega ) = \| v\| Lp

w(\Omega ) + \| \nabla v\| \bfL p
w(\Omega ),
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and W 1,p
w,0(\Omega ) = C\infty 

0 (\Omega ), where the closure is taken with respect to \| \cdot \| W 1,p
w (\Omega ). As it

is usual, we replace W 1,2
w (\Omega ) by H1

w(\Omega ).
Consider, for example, the simple situation where \mu is the Dirac \delta and 0 \in \Omega . In

this case,
| \nabla u(x)| \sim | x| 1 - n /\in L2(\Omega )

but
| \nabla u| \in L2

w(\Omega )

if w(x) = | x| \alpha with \alpha > n - 2. Therefore, to analyze this problem one can work with
a Sobolev space associated with w. More generally, in [9] the authors consider an
application which leads to a problem like (1.1) with a measure \mu supported in a curve
\Gamma contained in a three-dimensional \Omega . They propose to work with w(x) = dist(x,\Gamma )\alpha ,
0 < \alpha < 1, and prove the well-posedness of the problem in the associated weighted
Sobolev space when \alpha is small enough. Afterwards, in [8], the author gives a more
general stability result for the continuous as well as for the discrete problem obtained
by the standard finite element method. However, his proof is not correct. Indeed,
the argument given in that paper is based on a Helmholtz decomposition in weighted
spaces. The author introduces a saddle point formulation of the problem and tries to
prove the usual inf-sup conditions that imply the existence and uniqueness of solution.
The flaw lies on the fact that (using the notation of that paper) the inf-sup conditions
needed are

sup
\bfittau \not =0

a(\bfitsigma , \bfittau )

\| \bfittau \| \bfK 2

\geq \alpha 1\| \bfitsigma \| \bfK 1 , sup
\bfitsigma \not =0

a(\bfitsigma , \bfittau )

\| \bfitsigma \| \bfK 1

\geq \alpha 2\| \bfittau \| \bfK 2 ,

where Ki = \{ \bfitsigma : bi(w,\bfitsigma ) = 0\} and not those proved in [8] where these inequalities
are proved but with Ki replaced by Mi (see Lemma 2.1 in that paper).

Recall that to obtain a Helmholtz decomposition for a vector field q one has to
solve

(1.2)

\Biggl\{ 
 - \Delta u = divq in \Omega ,

u = 0 on \partial \Omega 

with a control of \nabla u in terms of q. For example, for q \in Lp
w(\Omega ), we want to have the

weighted a priori estimate

(1.3) \| \nabla u\| \bfL p
w(\Omega ) \leq C\| q\| \bfL p

w(\Omega ).

The first goal of our paper is to prove this estimate for convex polygonal or polyhedral
domains and for w \in Ap, 1 < p < \infty (see section 2 for the definition of the Muck-
enhoupt classes Ap). These kinds of domains are very important in finite element
applications. Analogous estimates have been proved in [5, Theorem 2.5] for the case
of C1-domains.

Although this part of the paper concerns the continuous problem, it is important
to remark that this a priori estimate plays an important role in the analysis of finite
element approximations. Indeed, (1.3) is the starting point for the analysis of a
posteriori error estimators (see [2]). On the other hand, we need this a priori estimate
for a duality argument used to prove the stability in weighted norms of the discrete
problem.

For nonsmooth domains the convexity assumption is necessary as it is shown by
the following example. Consider a polygonal domain with an interior angle \omega > \pi at
the origin. It is known (see [15]) that the solution u can have a singularity such that
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| \nabla u| \sim | x| s - 1, with s = \pi /\omega < 1, even if the right-hand side is very smooth. In such a
case | \nabla u| p| x| \alpha \sim | x| ps - p+\alpha , but | x| \alpha \in Ap for  - 2 < \alpha < 2(p - 1) (see, for example, the
remark after Theorem 7.7 in [11]) and | \nabla u| /\in Lp

| x| \alpha whenever  - 2 < \alpha \leq  - 2+p(1 - s).

On the other hand, assuming that the weight singularities are far from the boundary,
as it is the case of the model problem considered in [8], the weighted a priori estimates
can be generalized for nonconvex Lipschitz polytopes (see [25]).

As we mentioned at the beginning, our main motivation comes from the analysis
of finite element methods. Usually, singular problems require the use of appropriate
adapted meshes to obtain good numerical approximations efficiently. One way to
produce this kind of meshes is based on the use of a posteriori error estimators. As it
is known, efficient and reliable estimators can be derived by using the stability of the
continuous problem. Therefore, these kinds of results could be obtained using (1.3).
This was done for the case of \mu = \delta in [2].

Another way to produce adapted meshes in problems where the location of the
singularities is known a priori, like those considered here, is by using stability results
in order to bound the approximation error by an interpolation one and then designing
the meshes in such a way that this last error is of optimal order (see, for example, [3]
and [24]).

To prove stability results in weighted norms for general meshes seems to be a
very difficult task. Indeed, the problem is closely related with stability in W 1,p norms
for 2 < p \leq \infty , a problem that has received great attention by people working in
the theory of finite element methods in the last forty years (see, for example, the
books [7, 4] and references therein). More precisely, as a consequence of a celebrated
Rubio de Francia's extrapolation theorem, stability in H1

w for all w \in A1, would imply
stability in W 1,p for 2 < p < \infty as well as almost stability (i.e., up to a logarithmic
factor) in W 1,\infty . As far as we know, this kind of results have not been proved for
general meshes (not even assuming regularity of the family of triangulations).

The second goal of our paper is to prove stability results in weighted norms
for standard finite element approximations under the assumption that the family
of meshes is quasi-uniform. Although this is a severe restriction for the problems
considered here, our result seems to be the first one on stability for a general family of
weights, including those given by appropriate powers of the distance to a closed subset
\Gamma \subset \=\Omega arising in the analysis of these problems. Further research is needed to improve
the results in order to allow more realistic meshes. Our proof of the stability results
make use of an estimate proved by Rannacher and Scott [26]. Roughly speaking,
their result says that, if uh denotes the finite element approximation to the solution
u of a regular problem then, for any z \in \Omega , the value | \nabla uh(z)| is bounded by a local
contribution given by the average of | \nabla u| in the element containing z plus a decay
estimate which is small away from z. It is interesting to remark that this is the only
part of our argument where the restriction on the meshes is needed. It is worth noting
that, since our arguments are based on estimates for the Green function, the same
techniques may be applied to more general equations provided those estimates hold
true.

The rest of the paper is organized as follows. In section 2 we recall the Mucken-
houpt classes and prove the well posedness of the Poisson problem in weighted Sobolev
spaces for convex polygonal or polyhedral domains. Section 3 deals with the stability
in weighted norms for finite element approximations.

2. The continuous case. In this section we prove the weighted a priori estimate
(1.3) for (1.2). We will follow the arguments given in [6] which are a generalization of
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techniques used to prove continuity of singular integral operators. The difference with
[6] is that now we are interested in bounding first derivatives when the right-hand side
is in a weaker space than those considered in that paper. Therefore, we need to use
different estimates for the Green function.

As mentioned in the introduction, our motivation comes from the analysis of
finite element approximations, and, therefore, it is important to consider polygonal or
polyhedral domains. In our proofs we will use estimates for the Green function which,
for these kinds of domains, have been proved only for the Poisson equation. On the
other hand, if the domain is smooth enough, the estimates for the Green function that
we are going to use are known to hold for general elliptic equations (see [20, Theorem
3.3]) and, therefore, our results apply in that case.

We will make also use of the Hardy--Littlewood maximal operator defined as

\scrM f(x) = sup
Q\ni x

1

| Q| 

\int 
Q

| f(y)| dy,

where the supremum is taken over all cubes containing x. A useful well-known bound
involving this operator that we will use is the following: if \beta , \delta > 0, then

(2.1)

\int 
| y - x| \geq \delta 

| f(y)| 
| x - y| n+\beta 

dy \leq C\delta  - \beta \scrM f(x)

(see [17, Lemma (b)]).
A weight is a non-negative measurable function w defined in \BbbR n. Let us recall

that, for 1 < p < \infty , the Muckenhoupt Ap class is defined by the condition

[w]Ap
:= sup

Q

\biggl( 
1

| Q| 

\int 
Q

w

\biggr) \biggl( 
1

| Q| 

\int 
Q

w - 1
p - 1

\biggr) p - 1

< \infty 

where the supremum is taken over all cubes Q. It is well known that \scrM is bounded in
Lp
w(\BbbR n), for 1 < p < \infty , if and only if w \in Ap (see, for example, [11, Theorem 7.3]).

In the next section we will also work with the A1 class. Recall that a weight is in
A1 if

(2.2) [w]A1
:= sup

x\in \BbbR n

\scrM w(x)

w(x)
< \infty .

In our proofs we will make use of the well-known property: if p > 1, then A1 \subset Ap

and [w]Ap
\leq [w]A1

(see [12, Theorem 2.1(ii)]).
We will also need the local sharp maximal operator, namely,

\scrM \#
\Omega f(x) = sup

\Omega \supset Q\ni x

1

| Q| 

\int 
Q

| f(y) - fQ| dy,

where now the supremum is taken over all cubes containing x and contained in \Omega ,
and fQ = 1

| Q| 
\int 
Q
f . It is easy to see that \scrM \#

\Omega is a sublinear operator and that

\scrM \#
\Omega | f | \leq \scrM \#

\Omega f . Moreover, to estimate \scrM \#
\Omega f one can replace the average fQ by any

constant a. Indeed,\int 
Q

| f(x) - fQ| dx \leq 
\int 
Q

| f(x) - a| dx+ | Q| | a - fQ| 

\leq 
\int 
Q

| f(x) - a| dx+ | Q| 1

| Q| 

\int 
Q

| a - f(x)| dx \leq 2

\int 
Q

| f(x) - a| dx.
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It is known that the solution of the Poisson problem (1.1) is given by

u(x) =

\int 
\Omega 

G(x, y) f(y) dy,

where G(x, y) is the Green function (for its existence see, for example, [28, Chapter
III, section 29]).

We need a H\"older-type estimate for the derivatives of G. We prove it in Lemma
2.1. This result is known for smooth domains (see point b. in the Corollary of
Theorem 3.3 in [20]), and it is also stated for polyhedral domains in [16, equation
(1.4)]. Hence, we only need to prove it for polygonal domains.

We begin stating some known estimates for the derivatives of G in polygonal
domains.

Let x(k), k = 1, . . . ,K be the vertices of \Omega . We denote \rho k(x) = dist(x, x(k)) and
\scrV k = B(x(k), \eta ) \cap \Omega a neighborhood of x(k) for some fixed \eta sufficiently small, to
guarantee that \scrV i \cap \scrV j = \emptyset whenever i \not = j. If \omega k is the interior angle on x(k), we
take \tau k = \pi 

\omega k
. Observe that the convexity of \Omega implies \tau k > 1 for every k. This fact

is crucial all along the proof.
We will make use of the following results:

(2.3) | D\alpha 
xD

\beta 
yG(x, y)| \leq C| x - y|  - | \alpha |  - | \beta | for | \alpha | = | \beta | = 1.

Moreover, for x, y \in \scrV k, we have that (2.3) holds for every \alpha and \beta such that | \alpha | +| \beta | >
0, provided that \rho k(y)/2 < \rho k(x) < 2\rho k(y). Also

(2.4) | D\alpha 
xD

\beta 
yG(x, y)| \leq C\rho k(x)

\tau k - | \alpha |  - \varepsilon \rho k(y)
 - \tau k - | \beta | +\varepsilon if \rho k(x) < \rho k(y)/2,

and

(2.5) | D\alpha 
xD

\beta 
yG(x, y)| \leq C\rho k(x)

 - \tau k - | \alpha | +\varepsilon \rho k(y)
\tau k - | \beta |  - \varepsilon if \rho k(x) > 2\rho k(y).

If x \in \scrV k and y \in \scrV \ell for \ell \not = k

(2.6) | D\alpha 
xD

\beta 
yG(x, y)| \leq C\rho k(x)

\tau k - | \alpha |  - \varepsilon \rho \ell (y)
\tau \ell  - | \beta |  - \varepsilon ,

and, finally, if x \in \scrV k and y is far from all vertices,

(2.7) | D\alpha 
xD

\beta 
yG(x, y)| \leq C\rho k(x)

\tau k - | \alpha |  - \varepsilon .

In [14, Proposition 1] the reader can find the proof of (2.3) for every convex
domain. If x, y \in \scrV k and \rho k(x) and \rho k(y) are similar to each other, (2.3) is also stated
for derivatives of higher order in [22, page 286]. Estimates (2.4) and (2.5) can be
found there, too. All these estimates are also stated in [23, Theorem 3 (c)], with the
addition of (2.6). Estimate (2.7) is not explicitly stated in [22, 23], but it can be easily
derived using the same arguments. Let us remark that it can also be obtained using
the conformal transformation of the unit disk onto a convex polygon and how it acts
on the Green function associated to the Laplacian (see [27, section 3]). Observe that
in both [22, 23], general elliptic operators of order 2m are considered; in our case, set
m = 1. The parameters \tau k are described in [22, 23] in a very general sense: certain
pencil operators \scrA k associated with the elliptic problem near the vertices x(k) are
considered, and it is proved that the line Im(\lambda ) = 0 (for \lambda \in \BbbC ) is free of eigenvalues
of \scrA k. \tau k is then defined as the greater positive number such that | Im(\lambda )| < \tau k is free
of eigenvalues of \scrA k. However, in [19, section 2.1] it is shown that, for the case of an
angle \omega k in a two-dimensional domain, the eigenvalues of \scrA k are exactly \lambda j = \pm j\pi 

\omega k

for j \in \BbbN . Hence we can take \tau k = \pi 
\omega k

.
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Lemma 2.1. If \Omega is a convex polygonal or polyhedral domain, there exist positive
constants C and \gamma , depending on the geometry of \Omega such that

(2.8) | \partial xi
\partial yj

G(x, y) - \partial xi
\partial yj

G(\=x, y)| \leq C| x - \=x| \gamma (| x - y|  - n - \gamma + | \=x - y|  - n - \gamma ).

Proof. As we mentioned above, we only need to consider the case in which \Omega is
a convex polygon, since the three-dimensional case is proved in [16, equation (1.4)].
The proof is rather technical, and it is based on Lemmas 3.1 to 3.3 in [16].

We fix \varepsilon > 0 such that \tau k  - 1 - \varepsilon > 0 for every k, and take \gamma such that 0 < \gamma <
\tau k  - 1 - \varepsilon for every k.

Observe that, since the singularities lie on the corners of the domain, it is enough
to prove the result for x \in B(x(k), \eta 

2 ) \cap \Omega \subset \scrV k. Here, B(x(k), \eta 
2 ) denotes the ball of

radius \eta 
2 centered at x(k). We take M > 0 a fixed constant satisfying some restrictions

that we shall state later.
In what follows, set I := | \partial xi

\partial yj
G(x, y) - \partial xi

\partial yj
G(\=x, y)| . We consider three main

cases, depending on the relationship between x, \=x, and y, that will be also branched
in several subcases.
Case 1: | x - y| \leq M | x - \=x| .

Applying the triangle inequality and (2.3) we obtain:

I \leq | \partial xi
\partial yj

G(x, y)| + | \partial xi
\partial yj

G(\=x, y)| 
\leq C

\bigl( 
| x - y|  - 2 + | \=x - y|  - 2

\bigr) 
\leq C| x - \=x| \gamma 

\bigl\{ 
| x - y|  - 2| x - \=x|  - \gamma + | \=x - y|  - 2| x - \=x|  - \gamma 

\bigr\} 
.

Then, (2.8) follows by observing that | x - y| \leq M | x - \=x| , | \=x - y| \leq (M+1)| x - \=x| 
and \gamma > 0.

Case 2: | x - y| > M | x - \=x| > \rho k(x).
Observe that, in this case,

\rho k(\=x) \leq | x - \=x| + \rho k(x) \leq M - 1| x - y| + \eta /2 \leq M - 1diam(\Omega ) + \eta /2,

hence, taking M sufficiently large, we may assume that \=x \in \scrV k.
Now, we have to distinguish two different situations, according to whether or
not y \in \scrV k:
If y \in \scrV \ell for some \ell \not = k we may use that \rho \ell (y) \leq diam(\Omega ), the triangle
inequality, and (2.6) to obtain

I \leq C\rho \ell (y)
\tau \ell  - 1 - \varepsilon 

\bigl( 
\rho k(x)

\tau k - 1 - \varepsilon + \rho k(\=x)
\tau k - 1 - \varepsilon 

\bigr) 
\leq C| x - \=x| \tau k - 1 - \varepsilon 

\leq C| x - \=x| \gamma ,

where we have used that \tau \ell  - 1 - \varepsilon > 0, that | x - \=x| < 1, and that \tau k - 1 - \varepsilon > \gamma .
The estimate follows by observing that | x - y| \leq diam(\Omega ), so

I \leq C| x - \=x| \gamma | x - y|  - 2 - \gamma | x - y| 2+\gamma 

\leq C| x - \=x| \gamma | x - y|  - 2 - \gamma .

If y is far from all corners, it is immediate that the same estimate holds using
(2.7) instead of (2.6).
If y \in \scrV k a more complex analysis is needed. We consider three subcases,
according to the relation between \rho k(x) and \rho k(y):
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\bullet If \rho k(x) < \rho k(y)/4, we can apply (2.4) to (x, y). However, we need
to show that this can be done for (\=x, y) too. Indeed, we have that
| x  - y| < \rho k(x) + \rho k(y) < 5

4\rho k(y) and that \rho k(\=x) \leq | x  - \=x| + \rho k(x) \leq 
M - 1| x  - y| + \rho k(x) \leq 

\bigl( 
5

4M + 1
4 )\rho k(y). If we take M > 5, we obtain

\rho k(\=x) < \rho k(y)/2 and, therefore, (2.4) holds for (\=x, y).
Finally, observe that | x  - \=x| \leq \rho k(x) + \rho k(\=x) \leq 3

4\rho k(y) and recall that
\rho k(x), \rho k(\=x) \leq C| x - \=x| . Then, applying (2.4) we obtain

I \leq C\rho k(y)
 - \tau k - 1+\varepsilon 

\bigl( 
\rho k(x)

\tau k - 1 - \varepsilon + \rho k(\=x)
\tau k - 1 - \varepsilon )

\leq C\rho k(y)
 - 2 - \gamma \rho k(y)

\gamma  - (\tau k - 1 - \varepsilon )| x - \=x| \tau k - 1 - \varepsilon 

\leq C| x - y|  - 2 - \gamma | x - \=x| \gamma  - (\tau k - 1 - \varepsilon )| x - \=x| \tau k - 1 - \varepsilon 

= C| x - y|  - 2 - \gamma | x - \=x| \gamma ,

where we have used that \gamma  - (\tau k  - 1 - \varepsilon ) < 0.
\bullet If \rho k(x) > 4\rho k(y), we can apply (2.5) to (x, y). As in the previous sub-

case, we need to prove that the same can be done for (\=x, y). Indeed,
we have that | x  - y| \leq \rho k(x) + \rho k(y) \leq 5

4\rho k(x) and that \rho k(x) \leq | x  - 
\=x| + \rho k(\=x) \leq M - 1| x - y| + \rho k(\=x) \leq 5

4M
 - 1\rho k(x) + \rho k(\=x). Now we recall

that we assumed M \geq 5, which allows us to kick back the \rho k(x) term,
obtaining \rho k(x) \leq 4M

4M - 5\rho k(\=x), and, consequently,

\rho k(y) \leq 
M

4M  - 5
\rho k(\=x) \leq 

1

2
\rho k(\=x),

which implies that (2.5) holds for \=x.
Hence, using that \rho k(y) \leq C\rho k(x), that | x  - y| \leq C\rho k(x), and that
\rho k(x) \leq C| x - \=x| we have

I \leq C\rho k(y)
\tau k - 1 - \varepsilon 

\bigl( 
\rho k(x)

 - \tau k - 1+\varepsilon + \rho k(\=x)
 - \tau k - 1+\varepsilon 

\bigr) 
\leq C\rho k(x)

 - 2

\leq C\rho k(x)
 - 2 - \gamma \rho k(x)

\gamma 

\leq C| x - y|  - 2 - \gamma | x - \=x| \gamma .

\bullet If \rho k(y)/4 \leq \rho k(x) \leq 4\rho k(y) we only need (2.3). We have that | x - y| \leq 
\rho k(x) + \rho k(y) \leq 5\rho k(x) \leq 5M | x - \=x| . Applying (2.3),

I \leq C
\bigl( 
| x - y|  - 2 + | \=x - y|  - 2

\bigr) 
\leq C| x - y|  - 2 - \gamma | x - y| \gamma 

\leq C| x - y|  - 2 - \gamma | x - \=x| \gamma ,

where we have eliminated the term | \=x - y| thanks to the fact that | x - y| \leq 
| x - \=x| +| \=x - y| \leq M - 1| x - y| +| \=x - y| , which implies that | x - y| \leq C| \=x - y| .

Case 3: | x - y| > M | x - \=x| and \rho k(x) > M | x - \=x| .
We use a mean value argument, obtaining

(2.9) I \leq | x - \=x| | \nabla x\partial xi\partial yjG(z, y)| 

for z = x+ s(\=x - x), 0 \leq s \leq 1. Moreover, we have that

| x - \=x| \leq M - 1\rho k(x) \leq M - 1(\rho k(z) + | z  - x| ) \leq M - 1(\rho k(z) + | x - \=x| ),
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and, consequently, | x - \=x| \leq 1
M - 1\rho k(z).

As in Case 2, if y /\in \scrV k, consider first y \in \scrV \ell for some \ell \not = k. In this case,
(2.6) applied to (2.9) gives (assuming \gamma \leq 1)

I \leq C| x - \=x| \rho k(z)\tau k - 2 - \varepsilon \rho \ell (y)
\tau \ell  - 1 - \varepsilon 

\leq C| x - \=x| \gamma \rho k(z)\tau k - 2 - \varepsilon +1 - \gamma 

\leq C| x - \=x| \gamma 

\leq C| x - \=x| \gamma | x - y|  - 2 - \gamma | x - y| 2+\gamma 

\leq C| x - \=x| \gamma | x - y|  - 2 - \gamma ,

where we have used that \rho \ell (y), \rho k(z), | x - y| \leq diam(\Omega ).
The same estimate can be obtained when y is far from all vertices using (2.7)
instead of (2.6).
If y \in \scrV k, we can easily check that \rho k(z) \leq | x - \=x| +\rho k(x) \leq (1+M - 1)\rho k(x) \leq 
(1+M - 1)\eta /2, so that z \in \scrV k. Once again, we split the proof in three subcases:

\bullet If \rho k(z) < \rho k(y)/4, applying (2.4) to the right-hand side (RHS) of (2.9)
and recalling that | x - \=x| \leq C\rho k(z) we obtain

I \leq C| x - \=x| \rho k(z)\tau k - 2 - \varepsilon \rho k(y)
 - \tau k - 1+\varepsilon 

\leq C| x - \=x| \gamma \rho k(z)\tau k - 1 - \varepsilon  - \gamma \rho k(y)
 - \tau k - 1+\varepsilon 

\leq C| x - \=x| \gamma \rho k(y) - 2 - \gamma 

\leq C| x - \=x| \gamma | x - y|  - 2 - \gamma ,

where in the last step we have used the estimate | x  - y| < | x  - z| +
\rho k(z) + \rho k(y) \leq C\rho k(z) + \rho k(y) \leq C\rho k(y).

\bullet If \rho k(z) > 4\rho k(y), observe that we have | x - y| \leq | x - z| +\rho k(z)+\rho k(y) \leq 
C\rho k(z). Applying (2.5) to the RHS of (2.9) we obtain

I \leq C| x - \=x| \rho k(z) - \tau k - 2+\varepsilon \rho k(y)
\tau k - 1 - \varepsilon 

\leq C| x - \=x| \gamma \rho k(z) - \tau k - 1+\varepsilon  - \gamma \rho k(y)
\tau k - 1 - \varepsilon 

\leq C| x - \=x| \gamma \rho k(z) - 1 - \gamma \leq C| x - \=x| \gamma | x - y|  - 1 - \gamma 

\leq C| x - \=x| \gamma | x - y|  - 2 - \gamma ,

where we have used again | x - y| \leq diam(\Omega ).
\bullet If \rho k(y)/4 \leq \rho k(z) \leq 4\rho k(y), as in the last step of Case 2, we only need
(2.3) (but now | \alpha | + | \beta | > 2). We have that | x - y| \leq | x - z| + | z  - y| \leq 
M - 1| x  - y| + | z  - y| , which leads to | x  - y| \leq M

M - 1 | z  - y| . Therefore,
applying (2.3) to the RHS of (2.9)

I \leq C| x - \=x| | z  - y|  - 3

\leq C| x - \=x| \gamma | z  - y|  - 2 - \gamma 

and the result follows.

Given w \in Ap we consider (1.2) with q \in Lp
w(\Omega ). Recalling that G(x, y) = 0, for

y \in \partial \Omega , we have

(2.10) u(x) =

\int 
\Omega 

G(x, y) divq(y) dy =  - 
\int 
\Omega 

\nabla yG(x, y) \cdot q(y) dy.

We will use the following known unweighted a priori estimate.
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Lemma 2.2. Let \Omega be a convex domain and u be the solution of (1.2). Then, for
1 < p < \infty , we have

(2.11) \| \nabla u\| \bfL p(\Omega ) \leq C\| q\| \bfL p(\Omega ).

Proof. In [14], it is stated that for 1 < p < \infty , \Omega a bounded convex domain and

f \in W - 1,p(\Omega ) = (W 1,p\prime 

0 (\Omega ))\prime , there is a unique solution u \in W 1,p
0 (\Omega ) of the problem

\Delta u = f , and that \| \nabla u\| Lp(\Omega ) \leq C\| f\| W - 1,p(\Omega ) (see [14, Corollary 1], taking s = 1).

Now, take f = divq. To estimate \| f\| W - 1,p(\Omega ), take g \in W 1,p\prime 

0 (\Omega ):

f(g) =

\int 
\Omega 

fg =

\int 
\Omega 

divq g =

\int 
\Omega 

q \cdot \nabla g \leq \| q\| \bfL p(\Omega )\| g\| W 1,p\prime 
0 (\Omega )

.

Hence, \| f\| W - 1,p(\Omega ) \leq \| q\| \bfL p(\Omega ), and the result follows.

The argument given in [6] makes use of the following inequality proved in [10,
Theorem 5.23].

Lemma 2.3. For f \in L1
loc(\Omega ), w \in Ap and f\Omega the mean value of f over \Omega , we

have

\| f  - f\Omega \| Lp
w(\Omega ) \leq C\| \scrM \#

\Omega f\| Lp
w(\Omega ).

In what follows we make use of the fact that C\infty 
0 (\Omega ) is dense in Lp

w(\Omega ) (see [18,
Corollary 1.7]) and, therefore, we can assume that q is smooth. Hence, pointwise
values of the derivatives of u are well defined.

Lemma 2.4. Let \Omega be a convex polygonal or polyhedral domain and u be the so-
lution of (1.2). Then, for any s > 1, we have

\scrM \#
\Omega (| \nabla u| )(\=x) \leq C(\scrM | q| s) 1

s (\=x)

for all \=x \in \Omega .

Proof. We extend q by zero outside \Omega . Given \=x \in \Omega , let Q \subset \Omega be a cube such
that \=x \in Q and let Q\ast be an expansion of Q by a factor 2. We decompose q = q1+q2,
where q1 = \chi Q\ast q, where \chi Q\ast denotes the characteristic function of Q\ast , and call ui

the solution of (1.2) with RHS given by divqi.

By sublinearity it is enough to bound \scrM \#
\Omega (\partial xi

u(\=x)) for any i. Also, as mentioned

after the definition of \scrM \#
\Omega , we may replace the average by any constant. We take

a = \partial xi
u2(\=x) to obtain

1

| Q| 

\int 
Q

| \partial xi
u(x) - \partial xi

u2(\=x)| dx

\leq 1

2

1

| Q| 

\int 
Q

| \partial xi
u1(x)| dx+

1

| Q| 

\int 
Q

| \partial xi
u2(x) - \partial xi

u2(\=x)| dx =: (i) + (ii).

Given s > 1, using H\"older's inequality, the unweighted estimate (2.11) in Ls, and
recalling that q1 vanishes outside \Omega \cap Q\ast , we have

(i) \leq 
\biggl( 

1

| Q| 

\int 
Q

| \partial xi
u1(x)| s dx

\biggr) 1
s

\leq C

\biggl( 
1

| Q| 

\int 
Q\ast 

| q1(x)| s dx
\biggr) 1

s

\leq C(\scrM | q| s) 1
s (\=x).
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To bound (ii), since x and \=x are outside the support of q2, we can take the
derivative inside the integral in the expression for u2 given by (2.10), and using (2.8),
we obtain

(ii) \leq 1

| Q| 

\int 
Q

\int 
\Omega \cap (Q\ast )c

| \partial xi
\nabla yG(x, y) - \partial xi

\nabla yG(\=x, y)| | q2(y)| dy dx

\leq C

| Q| 

\int 
Q

\int 
(Q\ast )c

| x - \=x| \gamma (| x - y|  - n - \gamma + | \=x - y|  - n - \gamma )| q(y)| dy dx.

Now, since x, \=x \in Q, and y \in (Q\ast )c, we have | x  - y| \sim | \=x  - y| \geq \ell (Q)
2 , where \ell (Q)

denotes the length of the edges of Q, and therefore,

(ii) \leq C
\ell (Q)\gamma 

| Q| 

\int 
Q

\int 
(Q\ast )c

| q(y)| 
| \=x - y| n+\gamma 

dy dx

\leq C

\int 
\ell (Q)/2<| \=x - y| 

\ell (Q)\gamma | q(y)| 
| \=x - y| n+\gamma 

dy \leq C\scrM | q| (\=x),

where the last inequality follows from (2.1).

But, by H\"older's inequality, \scrM | q| (\=x) \leq (\scrM | q| s) 1
s (\=x) and so the lemma is proved.

Now, we are able to prove our main result, namely, the weighted estimate for \nabla u.

Theorem 2.5. Let \Omega be a convex polygonal or polyhedral domain. Given 1 < p <
\infty and w \in Ap, if q \in Lp

w(\Omega ) and u is the solution of (1.2), there exists a constant
C depending on p, \Omega , and w such that

\| \nabla u\| \bfL p
w(\Omega ) \leq C\| q\| \bfL p

w(\Omega ).

Proof. Let (\nabla u)\Omega := 1
| \Omega | 
\int 
\Omega 
| \nabla u(x)| dx. We have

\| \nabla u\| \bfL p
w(\Omega ) \leq \| \nabla u - (\nabla u)\Omega \| \bfL p

w(\Omega ) + \| (\nabla u)\Omega \| \bfL p
w(\Omega ) =: I + II.

Now, it is known that if w \in Ap, then w \in A p
s
for some s such that 1 < s < p (see,

for example, [11, Corollary 7.6]). Then, using Lemmas 2.3 and 2.4, and that \scrM is

bounded on L
p
s
w ([11, Theorem 7.3]), we obtain

I \leq C\| \scrM \#
\Omega (| \nabla u| )\| Lp

w(\Omega ) \leq C\| (\scrM | q| s) 1
s \| Lp

w(\Omega ) \leq C\| q\| \bfL p
w(\Omega ).

Then, to finish the proof it is enough to bound | (\nabla u)\Omega | . Using H\"older's inequality,
with exponent s in the first inequality and with exponent p/s in the third one, and
the a priori estimate (2.11) for the second inequality, we obtain

| (\nabla u)\Omega | \leq 
\biggl( 

1

| \Omega | 

\int 
\Omega 

| \nabla u(x)| s dx
\biggr) 1

s

\leq C

\biggl( 
1

| \Omega | 

\int 
\Omega 

| q(x)| s dx
\biggr) 1

s

\leq C

\biggl( 
1

| \Omega | 

\int 
\Omega 

| q(x)| pw(x) dx
\biggr) 1

p
\biggl( 

1

| \Omega | 

\int 
\Omega 

w(x) - 
s

p - s dx

\biggr) p - s
ps

,

and the last integral is finite since w \in A p
s
.

Now we can prove the well-posedness of (1.1). This result follows from Theo-
rem 2.5 by standard functional analysis arguments. We give it here for the sake of
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completeness. In the proof we will use the following weighted Poincar\'e inequality (see
[21, Chapter 2 section 15]): if w \in Ap, then there exists a constant C such that

(2.12) \| v\| Lp
w(\Omega ) \leq C\| \nabla v\| \bfL p

w(\Omega ) \forall v \in W 1,p
w,0(\Omega ).

Given w \in Ap we introduce its dual weight w\prime := w - 1/(p - 1). It is known that w\prime \in Ap\prime 

(see, for example, [12, Theorem 2.1(i)]) and that Lp
w(\Omega )

\prime = Lp\prime 

w\prime (\Omega ).

Remark 2.6. The proof of Theorem 2.5 also applies to any second order elliptic
operator for which one has estimate (2.8) for the corresponding Green function and
Lemma 2.2.

Corollary 2.7. If \Omega is a convex polygonal or polyhedral domain, 1 < p < \infty 
and w \in Ap, then, given \mu \in (W 1,p\prime 

w\prime ,0(\Omega ))
\prime , there exists a unique solution of problem

(1.1) satisfying,

(2.13) \| u\| W 1,p
w (\Omega ) \leq C\| \mu \| 

(W 1,p\prime 
w\prime ,0(\Omega ))\prime 

.

Proof. We define \scrL (\nabla v) :=  - \langle \mu , v\rangle which is a linear functional over the subspace

of Lp\prime 

w\prime (\Omega ) given by gradient fields of W 1,p\prime 
(\Omega ). Using the Poincar\'e inequality (2.12)

we have

| \scrL (\nabla v)| \leq \| \mu \| 
(W 1,p\prime 

w\prime ,0(\Omega ))\prime 
\| v\| Lp\prime (\Omega ) \leq C\| \mu \| 

(W 1,p\prime 
w\prime ,0(\Omega ))\prime 

\| \nabla v\| 
\bfL p\prime 

w\prime (\Omega )
.

Therefore, \scrL defines a continuous linear functional on the gradient fields of functions

in W 1,p\prime 

w\prime ,0(\Omega ) and so, by the Hahn--Banach theorem, it can be extended to all Lp\prime 

w\prime (\Omega ).
Therefore, there exists q \in Lp

w(\Omega ) such that \| q\| \bfL p
w(\Omega ) = \| \mu \| 

(W 1,p\prime 
w\prime ,0(\Omega ))\prime 

and \langle q,\nabla v\rangle =
 - \langle \mu , v\rangle . Then divq = \mu , and therefore, the existence of u and the estimate (2.13) are
immediate consequences of Theorem 2.5 and (2.12).

The results obtained above can be applied to the problem considered in [8]. In that
paper the author considers a problem like (1.1) with \mu supported in a curve contained
in a three-dimensional domain. He works with a weighted space where the weight is
a power of the distance to the curve. More generally one can consider \Gamma \subset \Omega \subset \BbbR n

where \Gamma is a compact set. We will assume that \Gamma is a k-regular set for some 0 \leq k < n,
namely, there exist constants C1, C2 > 0 such that C1r

k \leq \scrH k(B(x, r) \cap \Gamma ) \leq C2r
k

for every x \in \Gamma and 0 < r \leq diam(\Gamma ), where \scrH k denotes the k-dimensional Hausdorff
measure. Let us remark that k is not necessarily an integer. However, if \Gamma is smooth,
then k is the usual dimension.

To simplify notation we introduce w\lambda := dist(x,\Gamma )\lambda . It is known that, if \Gamma is a
k-regular set, then, for 1 \leq p < \infty ,

(2.14)  - (n - k) < \lambda < (n - k)(p - 1) =\Rightarrow w\lambda \in Ap

(see [13, Lemma 2.3,vi] or [1, Appendix B]).

Theorem 2.8. If \Omega is a convex polygonal or polyhedral domain, \Gamma \subset \Omega is a
k-regular set and 1 < p < \infty , then, for  - (n  - k) < \lambda < (n  - k)(p  - 1), given

\mu \in (W 1,p\prime 

w - \lambda /(p - 1),0
(\Omega ))\prime there exists a unique solution u \in W 1,p

w\lambda 
(\Omega ) of (1.1) satisfying,

\| u\| W 1,p
w\lambda 

(\Omega ) \leq C\| \mu \| \biggl( 
W 1,p\prime 

w - \lambda /(p - 1),0
(\Omega )

\biggr) \prime .
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Proof. In view of (2.14) the result is an immediate consequence of Corollary 2.7.

In particular, taking n = 3, k = 1, and p = 2 we obtain the result stated in [8,
Corollary 2.2].

3. The discrete case. The goal of this section is to prove weighted stability
estimates for finite element approximations of the Poisson equation.

Given a convex polygonal or polyhedral domain \Omega and a family of triangulations
\scrT h, where as usual h > 0 denotes the maximum of the diameters of the elements, let
V k
h be the space of continuous piecewise polynomial functions of degree k \geq 1. The

finite element approximation uk
h \in V k

h of u is given by\int 
\Omega 

\nabla uk
h \cdot \nabla v =

\int 
\Omega 

\nabla u \cdot \nabla v \forall v \in V k
h .

Observe that uk
h is well defined for any u \in W 1,1(\Omega ), in particular, for any u \in L1(\Omega )

such that \nabla u \in Lp
w(\Omega ) for some w \in Ap.

Since k will be fixed, we will drop it from now on and will write simply Vh and
uh.

Lemma 3.1. Let \Omega be a convex polygonal or polyhedral domain and assume that
the family of partitions \scrT h is quasi-uniform. Then, for u \in C\infty 

0 (\Omega ), there exist positive
constants C and \sigma such that, if Tz is an element containing z, then

| \nabla uh(z)| 2 \leq C

\Biggl\{ \biggl( 
1

hn

\int 
Tz

| \nabla u(x)| dx
\biggr) 2

+

\int 
\Omega 

h\sigma 

(| x - z| 2 + h2)
n+\sigma 

2

| \nabla u(x)| 2 dx

\Biggr\} 
.

Proof. Following [4, section 8.2] we introduce a regularized delta function \delta z \in 
C\infty 

0 (Tz) satisfying \int 
\Omega 

\delta z(x)P (x) dx = P (z) \forall P \in \scrP k

and

(3.1) \| Dk\delta z\| L\infty (\Omega ) \leq Ch - n - k, k = 0, 1, . . .

Since z is arbitrary but fixed, we drop the z and write simply \delta .
An immediate consequence of [4, Corollary 8.2.8] is that there exist positive con-

stants C and \sigma such that\bigm| \bigm| \bigm| \bigm| \partial uh

\partial xj
(z)

\bigm| \bigm| \bigm| \bigm| \leq C

\left\{   
\int 
Tz

\bigm| \bigm| \bigm| \bigm| \partial u\partial xj
(x)

\bigm| \bigm| \bigm| \bigm| \delta dx+

\Biggl( \int 
\Omega 

h\sigma 

(| x - z| 2 + (Kh)2)
n+\sigma 

2

| \nabla u(x)| 2 dx

\Biggr) 1
2

\right\}   
where K > 1 is a constant. Using the support of \delta and (3.1), we obtain the desired
result.

However, the proof of [4, Corollary 8.2.8] requires a more restrictive condition
on the angles in the three-dimensional case. But, by a slight modification of the
arguments in [16] it was shown by the third author in [24] that the result is still true
for general convex polyhedral domains. We include the proof here for the sake of
completeness.

We define g \in H1
0 (\Omega ) as the solution of  - \Delta g = \partial \delta 

\partial xj
and gh \in Vh as its Galerkin

projection. Then, it is easy to see that
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\partial uh

\partial xj
(z) =

\int 
\Omega 

\partial uh

\partial xj
\delta dx

=

\int 
\Omega 

\partial u

\partial xj
\delta dx - 

\int 
\Omega 

\partial (u - uh)

\partial xj
\delta dx

=

\int 
\Omega 

\partial u

\partial xj
\delta dx+

\int 
\Omega 

(u - uh)
\partial \delta 

\partial xj
dx

=

\int 
\Omega 

\partial u

\partial xj
\delta dx+

\int 
\Omega 

\nabla (u - uh) \cdot \nabla g dx

=

\int 
\Omega 

\partial u

\partial xj
\delta dx+

\int 
\Omega 

\nabla u \cdot \nabla (g  - gh) dx.

Therefore,

| \nabla uh(z)| \leq C

\biggl\{ 
1

hn

\int 
Tz

| \nabla u(x)| dx+

\int 
\Omega 

| \nabla u(x).\nabla (g  - gh)(x)| dx
\biggr\} 
,

and, for any K > 0,\int 
\Omega 

| \nabla u(x) \cdot \nabla (g  - gh)(x)| dx \leq 

\Biggl( \int 
\Omega 

h\sigma 

(| x - z| 2 + (Kh)2)
3+\sigma 
2

| \nabla u(x)| 2 dx

\Biggr) 1
2

\cdot 

\Biggl( \int 
\Omega 

(| x - z| 2 + (Kh)2)
3+\sigma 
2

h\sigma 
| \nabla (g  - gh)(x)| 2 dx

\Biggr) 1
2

.

Hence, it suffices to see that, for convex polyhedral \Omega \subset \BbbR 3 and for sufficiently large
K to be chosen below,

(3.2)

\int 
\Omega 

(| x - z| 2 + (Kh)2)
3+\sigma 
2 | \nabla (g  - gh)(x)| 2 dx \leq Ch\sigma .

To see this, observe first that we may assume by rescaling that diam(\Omega ) = 1. Following
the proof of [16, Theorem 2], we set dj := 2 - j and split \Omega into the subdomains

\Omega \ast := \{ x \in \Omega : | x - z| \leq Kh\} 

and
\Omega j := \{ x \in \Omega : dj+1 < | x - z| \leq dj\} (j = 1, . . . , J)

where J is such that 2 - J \leq Kh \leq 2 - J+1. Then, we have\int 
\Omega 

(| x - z| 2 + (Kh)2)
3+\sigma 
2 | \nabla (g  - gh)(x)| 2 dx \leq 

\left(  \int 
\Omega \ast 

+

J\sum 
j=0

\int 
\Omega j

\right)  . . . dx = I + II.

I can be bounded as follows:

I \leq (Kh)3+\sigma \| \nabla (g  - gh)\| 2L2(\Omega )

\leq C(Kh)3+\sigma h2\| D2g\| 2L2(\Omega )

\leq C(Kh)3+\sigma h2\| \nabla \delta \| 2L2(\Omega )

\leq C(Kh)3+\sigma h2\| \nabla \delta \| 2L\infty (\Omega )h
3

\leq CK3+\sigma h\sigma ,
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where in the third step we have used a well-known a priori estimate valid for convex
domains.

Before we bound II, as in [16, Theorem 2, Step 1], we define Mj = d
3
2
j \| \nabla (g  - 

gh)\| L2(\Omega j). By the last inequality of [16, Step 3] and [16, equation (4.6)], there holds

Mj \leq C

\biggl( 
h

dj

\biggr) \sigma 

+ Chd
1
2
j \| \nabla (g  - gh)\| L2(\Omega 

\prime \prime 
j ),

where \Omega 
\prime \prime 

j = \{ x \in \Omega : dj+3 \leq | x - z| \leq dj - 2\} . Therefore, observing that in each \Omega j ,
| x - z| +Kh \sim dj , we have

II \leq C

J\sum 
j=0

d3+\sigma 
j \| \nabla (g  - gh)\| 2L2(\Omega j)

= C

J\sum 
j=0

d\sigma jM
2
j

\leq C

J\sum 
j=0

d\sigma j

\biggl( 
h

dj

\biggr) 2\sigma 

+ C

J\sum 
j=0

h2d1+\sigma 
j \| \nabla (g  - gh)\| 2L2(\Omega 

\prime \prime 
j )

\leq C

J\sum 
j=0

d\sigma j

\biggl( 
h

dj

\biggr) 2\sigma 

+ C

J\sum 
j=0

\biggl( 
h

dj

\biggr) 2

d3+\sigma 
j \| \nabla (g  - gh)\| 2L2(\Omega 

\prime \prime 
j )

\leq C

J\sum 
j=0

d\sigma j

\biggl( 
h

dj

\biggr) 2\sigma 

+ C

J\sum 
j=0

1

K2
d3+\sigma 
j \| \nabla (g  - gh)\| 2L2(\Omega 

\prime \prime 
j )
.

Since the last term on the right is a multiple of II, for sufficiently large K we
may kick-back the last term on the RHS to obtain

II \leq C

J\sum 
j=0

d\sigma j

\biggl( 
h

dj

\biggr) 2\sigma 

\leq Ch2\sigma 
J\sum 

j=0

d - \sigma 
j \leq Ch2\sigma 2J\sigma \leq C

h\sigma 

K\sigma 

which finishes the proof of (3.2).

Theorem 3.2. Let \Omega be a convex polygonal or polyhedral domain and assume that
the family of partitions \scrT h is quasi-uniform. If w \in A1 and u \in H1

w,0(\Omega ), then there
exists a constant C, depending only on [w]A1

, such that

\| \nabla uh\| \bfL 2
w(\Omega ) \leq C\| \nabla u\| \bfL 2

w(\Omega ).

Proof. Assume first that u \in C\infty 
0 (\Omega ). Using Lemma 3.1 we obtain

| \nabla uh(z)| 2 \leq C

\Biggl\{ 
\scrM (| \nabla u(z)| )2 +

\int 
\Omega 

h\sigma 

(| x - z| 2 + h2)
n+\sigma 

2

| \nabla u(x)| 2 dx

\Biggr\} 
.

Then, multiplying by w(z) an integrating we obtain

(3.3)

\int 
\Omega 

| \nabla uh(z)| 2w(z) dz \leq C

\biggl\{ \int 
\Omega 

\scrM (| \nabla u(z)| )2w(z) dz

+

\int 
\Omega 

\int 
\Omega 

h\sigma | \nabla u(x)| 2w(z)
(| x - z| 2 + h2)

n+\sigma 
2

dx dz

\Biggr\} 
.
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But \int 
\Omega 

h\sigma w(z)

(| x - z| 2 + h2)
n+\sigma 

2

dz \leq 1

hn

\int 
| x - z| \leq h

w(z) dz +

\int 
| x - z| >h

h\sigma w(z)

| x - z| n+\sigma 
dz.

Using the definiton of \scrM to bound the first term and (2.1) to bound the second one,
we have \int 

\Omega 

h\sigma w(z)

(| x - z| 2 + h2)
n+\sigma 

2

dz \leq C\scrM w(x),

and, therefore, interchanging the order of integration in (3.3),\int 
\Omega 

| \nabla uh(z)| 2w(z) dz \leq C

\biggl\{ \int 
\Omega 

\scrM (| \nabla u(z)| )2w(z) dz +
\int 
\Omega 

| \nabla u(x)| 2\scrM w(x) dx

\biggr\} 
.

In particular, if w \in A1, using (2.2) and recalling that A1 \subset A2 and so the maximal
operator is bounded in L2

w(\Omega ), we conclude that

\| \nabla uh\| \bfL 2
w(\Omega ) \leq C\| \nabla u\| \bfL 2

w(\Omega )

for u \in C\infty 
0 (\Omega ).

The following density argument finishes the proof: let (uj)j\in \BbbN be a sequence of
functions in C\infty 

0 (\Omega ) such that uj \rightarrow u in H1
w(\Omega ). By the above inequality

\| \nabla (uj,h  - uk,h)\| \bfL 2
w(\Omega ) \leq C\| \nabla (uj  - uk)\| \bfL 2

w(\Omega ),

whence (\nabla uj,h)j\in \BbbN is a Cauchy sequence in L2
w(\Omega ) for each h. By Poincar\'e's inequality

(2.12), it follows that (uj,h)j\in \BbbN is a Cauchy sequence in H1
w,0(\Omega ) and, therefore, it

exists \~uh := limj\rightarrow \infty uj,h, \~uh \in Vh. It remains to see that \~uh = uh, but, since for all
v \in Vh, \int 

\Omega 

\nabla uj,h(x) \cdot \nabla v(x) dx =

\int 
\Omega 

\nabla uj(x) \cdot \nabla v(x) dx,

we obtain \int 
\Omega 

\nabla \~uh(x) \cdot \nabla v(x) dx =

\int 
\Omega 

\nabla u(x) \cdot \nabla v(x) dx

for all v \in Vh, which implies that \~uh = uh, as we wanted to see.

From a known extrapolation theorem we obtain the following result.

Corollary 3.3. Under the hypotheses of the previous theorem, for 2 < p < \infty 
there exists a constant C depending only on p and [w]A1 , such that,

\| \nabla uh\| \bfL p
w(\Omega ) \leq C\| \nabla u\| \bfL p

w(\Omega ).

Proof. By the previous theorem, we know that

\| \nabla uh\| \bfL 2
w(\Omega ) \leq C\| \nabla u\| \bfL 2

w(\Omega )

for every w \in A1, where C depends on [w]A1
only. Therefore, it follows from [12,

Corollary 3.5] (choosing s0 = 1 and p0 = 2) that

\| \nabla uh\| \bfL p
w(\Omega ) \leq C\| \nabla u\| \bfL p

w(\Omega )

for any p > 2 and every w \in A p
2
, where C depends on [w]A p

2

. Since A1 \subset A p
2
and

[w]A p
2

\leq [w]A1
, the result follows.
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Next, using a standard duality argument combined with the weighted a priori
estimates given in the previous section, we extend the stability result for weights with
inverse in A1.

Corollary 3.4. Under the hypotheses of the previous theorem, if w - 1 \in A1,
then

\| \nabla uh\| \bfL 2
w(\Omega ) \leq C\| \nabla u\| \bfL 2

w(\Omega ).

Proof. Take q = w\nabla uh, and let v be the solution of  - \Delta v = divq vanishing on
\partial \Omega . From Theorems 3.2 and 2.5 we know that

\| \nabla vh\| \bfL 2
w - 1 (\Omega ) \leq C\| \nabla v\| \bfL 2

w - 1 (\Omega ) \leq C\| q\| \bfL 2
w - 1 (\Omega ).

Then

\| \nabla uh\| 2\bfL 2
w(\Omega ) =

\int 
\Omega 

\nabla uh \cdot q =

\int 
\Omega 

\nabla uh \cdot \nabla v =

\int 
\Omega 

\nabla u \cdot \nabla vh

\leq C\| \nabla u\| \bfL 2
w(\Omega )\| \nabla vh\| \bfL 2

w - 1 (\Omega )

\leq C\| \nabla u\| \bfL 2
w(\Omega )\| q\| \bfL 2

w - 1 (\Omega )

= C\| \nabla u\| \bfL 2
w(\Omega )\| \nabla uh\| \bfL 2

w(\Omega ).

As we have done in the continuous case we can apply these results to the problem
considered in [8] as well as to the generalization introduced at the end of the previous
section. With the notation used there we have the following.

Theorem 3.5. Under the hypotheses of Theorem 3.2, if \Gamma \subset \Omega is a k-regular set,
then, for  - (n - k) < \lambda < n - k,

\| \nabla uh\| \bfL 2
w\lambda 

(\Omega ) \leq C\| \nabla u\| \bfL 2
w\lambda 

(\Omega ).

Proof. It is an immediate consequence of Theorem 3.2 and Corollary 3.4 because
either w\lambda \in A1 or w - \lambda \in A1 by (2.14).
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