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Abstract. We present a new criterion for the weighted Lp−Lq boundedness

of multiplier operators for Laguerre and Hermite expansions that arise from

a Laplace-Stieltjes transform. As a special case, we recover known results on
weighted estimates for Laguerre and Hermite fractional integrals with a unified

and simpler approach.

1. Introduction

The aim of this paper is to obtain weighted estimates for multipliers of Laplace
transform type for Laguerre and Hermite orthogonal expansions. To explain our
results, consider the system of Laguerre functions, for fixed α > −1, given by

lαk (x) =
(

k!
Γ(k + α+ 1)

) 1
2

e−
x
2Lαk (x) , k ∈ N0

where Lαk (x) are the Laguerre polynomials. The lαk (x) are eigenfunctions with
eigenvalues λα,k = k + (α+ 1)/2 of the differential operator

(1.1) L = −
(
x
d2

dx2
+ (α+ 1)

d

dx
− x

4

)
and are an orthonormal basis in L2(R+, x

αdx). Therefore, for γ < p(α+ 1)− 1 we
can associate to any f ∈ Lp(R+, x

γ dx) its Laguerre series:

f(x) ∼
∞∑
k=0

aα,k(f)lαk (x), aα,k(f) =
∫ ∞

0

f(x)lαk (x)xαdx

and, given a bounded sequence {mk}, we can define a multiplier operator by

(1.2) Mα,mf(x) ∼
∞∑
k=0

aα,k(f)mkl
α
k (x).

The main example of the kind of multipliers we are interested in is the Laguerre
fractional integral, introduced by G. Gasper, K. Stempak and W. Trebels in [7] as
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an analogue in the Laguerre setting of the classical fractional integral of Fourier
analysis, and given by

Iσf(x) ∼
∞∑
k=0

(k + 1)−σaα,klαk (x).

In [7] the aforementioned authors obtained weighted estimates for this operator
that were later improved by G. Gasper and W. Trebels in [8] using a completely
different proof. In this work we recover some of the ideas of the original method of
[7], but simplifying the proof in many technical details and extending it to obtain
a better range of exponents that, in particular, give the same result of [8] for the
Laguerre fractional integral. Moreover, we show that our proof applies to a wide
class of multipliers, namely multipliers arising from a Laplace-Stieltjes transform,
which are of the form (1.2) with mk = m(k) given by the Laplace-Stieljtes transform
of some real-valued function Ψ(t), that is,

(1.3) m(s) = LΨ(s) :=
∫ ∞

0

e−stdΨ(t).

We will assume that Ψ is of bounded variation in R+, so that the Laplace trans-
form converges absolutely in the half plane Re(s) ≥ 0 (see [22, Chapter 2]) and the
definition of the operator Mα,m makes sense.

Multipliers of this kind are quite natural to consider and, indeed, a slightly
different definition is given by E. M. Stein in [16] and was previously used in the
unweighted setting by E. Sasso in [15]. More recently, B. Wróbel [23] has obtained
weighted Lp estimates for the both the kind of multipliers considered in [16] and the
ones considered here when α ∈ {− 1

2} ∪ [ 1
2 ,∞), by proving that they are Calderón-

Zygmund operators (see Section 4 below for a precise comparison of results). Also,
let us mention that T. Mart́ınez has considered multipliers of Laplace transform
type for ultraspherical expansions in [12].

Other kind of multipliers for Laguerre expansions have also been considered, see,
for instance, [7, 18, 20] where boundedness criteria are given in terms of difference
operators. In our case, we will only require minimal assumptions on the function
Ψ, which are more natural in our context, and easier to verify in the case of the
Laguerre fractional integral and in other examples that we will consider later. In-
deed, the main theorem we will prove for multipliers for Laguerre expansions reads
as follows:

Theorem 1.1. Assume that α > −1 and that Mα,m is a multiplier of Laplace
transform type for Laguerre expansions, given by (1.2) and (1.3), such that:

(H1) ∫ ∞
0

|dΨ|(t) < +∞;

(H2) there exist δ > 0, 0 < σ < α+ 1, and C > 0 such that

|Ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.
Then Mα,m can be extended to a bounded operator such that

‖Mα,mf‖Lq(R+,x(α−bq)) ≤ C‖f‖Lp(R+,x(α+ap))

provided that the following conditions hold:

1 < p ≤ q <∞ , a <
α+ 1
p′

, b <
α+ 1
q
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and (
1
q
− 1
p

)(
α+

1
2

)
≤ a+ b ≤

(
1
q
− 1
p

)
(α+ 1) + σ.

Besides the system {lαk }k≥0, other families of Laguerre functions have been con-
sidered in the literature, and using an idea due to I. Abu-Falah, R. A. Maćıas,
C. Segovia and J. L. Torrea [1] we will show that analogues of Theorem 1.1 hold
for those families with appropriate changes in the exponents (see Section 3 for the
precise statement of results).

Finally, the well-known connection between Laguerre and Hermite expansions
will allow us to extend the above result to an analogous result for Laplace type
multipliers for Hermite expansions. To make this precise, recall that, given f ∈
L2(R), we can consider its Hermite series expansion

f ∼
∞∑
k=0

ck(f)hk, ck(f) =
∫ ∞
−∞

f(x)hk(x)dx.

where hk are the Hermite functions given by

hk(x) =
(−1)k

(2kk!π1/2)1/2
Hk(x)e−

x2
2 ,

which are the normalized eigenfunctions of the Harmonic oscillator operator

H = − d2

dx2
+ |x|2.

As before, given a bounded sequence {mk} we can define a multiplier operator
by

(1.4) MH,mf ∼
∞∑
k=0

ck(f)mkhk

and we say that it is a Laplace transform type multiplier if equation (1.3) holds.
Then, we have the following analogue of Theorem 1.1, which, in the case of the
Hermite fractional integral (that is, for mk = (2k + 1)−σ), gives the same result of
[14, Theorem 2.5] in the one-dimensional case:

Theorem 1.2. Assume that MH,m is a multiplier of Laplace transform type for
Hermite expansions, given by (1.4) and (1.3), such that:
(H1h) ∫ ∞

0

|dΨ|(t) < +∞;

(H2h) there exist δ > 0, 0 < σ < 1
2 , and C > 0 such that

|Ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.

Then MH,m can be extended to a bounded operator such that

‖MH,mf‖Lq(R,x−bq) ≤ C‖f‖Lp(R,xap)

provided that the following conditions hold:

1 < p ≤ q <∞ , a <
1
p′

, b <
1
q
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and
0 ≤ a+ b ≤ 1

q
− 1
p

+ 2σ.

The remainder of this paper is organized as follows. In Section 2 we prove The-
orem 1.1. For the case α ≥ 0 the proof relies on the representation of the operator
as a twisted generalized convolution, already used in [7] for the Laguerre fractional
integral. However, instead of using the method of that paper to obtain weighted
bounds, we give a simpler proof based on the use of Young’s inequality in the mul-
tiplicative group (R+, ·), which allows us to obtain a wider range of exponents.
Moreover, we obtain an estimate for the convolution kernel which simplifies and
generalizes Lemma 2.1 from [7]. For the case −1 < α < 0 the result is obtained
from the previous case by means of a weighted transplantation theorem from [6].
A similar idea was used by Y. Kanjin and E. Sato in [10] to prove unweighted esti-
mates for the Laguerre fractional integral using a transplantation theorem from [9].
In Section 3 we obtain the analogues of Theorem 1.1 for other Laguerre systems
using an idea from [1]. In Section 4 we exploit the relation between Laguerre and
Hermite expansions to derive Theorem 1.2 from Theorem 1.1. Finally, in Section
5 we present some examples of operators covered by the two main theorems and
make some further comments.

2. Proof of the theorem in the Laguerre case

In this section we prove Theorem 1.1. We will divide the proof in three steps:
(1) We write the operator as a twisted generalized convolution and obtain the

estimate for the convolution kernel when α ≥ 0. This part of the proof
follows essentially the ideas of [7], but in the more general setting of multi-
pliers of Laplace transform type. In particular, we provide an easier proof
of the analogue of [7, Lemma 2.1] in this setting (see Lemma 2.1 below).

(2) We complete the proof of the theorem in the case α ≥ 0 by proving weighted
estimates for the generalized euclidean convolution.

(3) We extend the results to the case −1 < α < 0 using the case α ≥ 0 and a
weighted transplantation theorem from [6] (Lemma 2.4 below).

2.1. Step 1: representing the multiplier operator as a twisted generalized
convolution when α ≥ 0. Following [13, 2] we define the twisted generalized
convolution of F and G by

F ×G :=
∫ ∞

0

τxF (y)G(y) y2α+1 dy

where the twisted translation operator is defined by

τxF (y) =
Γ(α+ 1)

π1/2Γ(α+ 1/2)

∫ π

0

F ((x, y)θ)Jα−1/2(xy sin θ)(sin θ)2α dθ

with
Jβ(x) = Γ(β + 1)Jβ(x)/(x/2)β

Jβ(x) being the Bessel function of order β and

(x, y)θ = (x2 + y2 − 2xy cos θ)1/2.

Then, we have (formally) that

(2.1) Mα,mf(x2) = F ×G
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where
F (y) = f(y2) , G(y) = g(y2)

and

(2.2) g(x) ∼ 1
Γ(α+ 1)

∞∑
k=0

mkL
α
k (x)e−

x
2 .

Recalling that |Jβ(x)| ≤ Cβ if β ≥ − 1
2 , we have that:

(2.3) |F ×G| ≤ C(|F | ? |G|)
where ? denotes the generalized Euclidean convolution which is defined by

(2.4) F ? G(x) :=
∫ ∞

0

τEx F (y)G(y) y2α+1 dy

with

(2.5) τEx F (y) :=
Γ(α+ 1)

π1/2Γ(α+ 1/2)

∫ π

0

F ((x, y)θ)(sin θ)2α dθ.

As a consequence of (2.1) and (2.3), the operator Mα,m is pointwise bounded by
a generalized euclidean convolution with the kernel G (with respect to the measure
x2α+1 dx). Therefore, we need to obtain an appropriate estimate for G(x) = g(x2),
that essentially is:

|g(x)| ≤ Cxσ−α−1 for α ≥ 0 and 0 < σ < α+ 1

(see Lemma 2.1 below for a precise statement).
This generalizes the result given in [7, Lemma 2.1] but, while in that paper the

proof of the corresponding estimate is based on delicate pointwise estimates for the
Laguerre functions, our proof is based on the following generating function for the
Laguerre polynomials (see, for instance, [20]):

(2.6)
∞∑
k=0

Lαk (x)wk = (1− w)−α−1e−
xw

1−w := Zα,x(w) (|w| < 1).

To explain our ideas, we point out that if the series in (2.2) were convergent (this
need not be the case) we would have:

g(x) =
1

Γ(α+ 1)

∞∑
k=0

mkL
α
k (x)e−

x
2

=
1

Γ(α+ 1)

∞∑
k=0

(∫ ∞
0

e−ktdΨ(t)
)
Lαk (x)e−

x
2

=
1

Γ(α+ 1)
e−

x
2

∫ ∞
0

Zα,x(e−t) dΨ(t).

The main advantage of this formula is that it shields a rather explicit expression
for g in which, thanks to (2.6), the Laguerre polynomials do not appear.

However, in general it is not clear if the series in (2.2) is convergent (not even
in the special case of the Laguerre fractional integral m(t) = tσ−1). Moreover, the
integration of the series in Zα,x(w) is difficult to justify since it is not uniformly
convergent in the interval [0, 1] (because Zα,x(w) is not analytical for w = 1).

Nevertheless, we will see that the formal manipulations above can be given a
rigorous meaning if we agree in understanding the convergence of the series in
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(2.2) in the Abel sense. For this purpose, we introduce a regularization parameter
ρ ∈ (0, 1), we consider the regularized function

(2.7) gρ(x) =
1

Γ(α+ 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2

and recall that the series in (2.2) is summable in Abel sense to the limit g(x) if
there exists the limit

g(x) = lim
ρ→1

gρ(x).

With this definition in mind, we can give a rigorous meaning to the heuristic
idea described above. More precisely, we will prove the following:

Lemma 2.1. Let gρ be defined by (2.7). Then:
(1) For 0 < ρ < 1 the series (2.7) converges absolutely.
(2) The following representation formula holds:

(2.8) gρ(x) =
1

Γ(α+ 1)

∫ ∞
0

Zα,x(ρe−t) dΨ(t).

(3) If we define g(x) by setting ρ = 1 in this representation formula, g(x) is well
defined and the series (2.2) converges to g(x) in the Abel sense.

(4) If α > 0, 0 < ρ0 < ρ ≤ 1 and 0 < σ < α+ 1, then

|gρ(x)| ≤ Cxσ−α−1,

with a constant C = C(α, σ) independent of ρ.

Proof. (1) Observe first that hypothesis (H1) implies that (mk) is a bounded se-
quence. Indeed,

|mk| ≤
∫ ∞

0

e−kt|dφ|(t) ≤
∫ ∞

0

|dφ|(t) = C < +∞.

Now recall that ([20, Lemma 1.5.3]), if ν = ν(k) = 4k + 2α+ 2,

|lαk (x)| ≤ C(xν)−
1
4 if

1
ν
≤ x ≤ ν

2
.

Therefore, if we fix x, for k ≥ k0, x is in the region where this estimate holds (since
ν → +∞ when k → +∞), and from Stirling’s formula we deduce that

k!
Γ(k + α+ 1)

=
Γ(k + 1)

Γ(k + α+ 1)
= O(k−α).

Then we have the following estimate for the terms of the series in (2.7)

|mkρ
kLαk (x)|e− x2 ≤ C(x)ρkk−σ for k ≥ k0,

and, since ρ < 1, this implies that the series converges absolutely.1

(2) First, observe that Zα,x(w) is continuous as a function of a real variable for
w ∈ [0, 1] (if we define Zα,x(1) = 0) and, therefore, it is bounded, say

|Zα,x(w)| ≤ C = C(α, x) for w ∈ [0, 1].

1K. Stempak has observed that this result can be also justified by observing that, for fixed x,

Lαk (x) has at most polynomial growth with k →∞ (see, for instance, (7.6.9) and (7.6.10) in [19]).

Hence, the polynomial growth of Lαk (x) versus the exponential decay of ρk, with mk disregarded

as a bounded sequence, produce an absolutely convergent series.
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Hence, using hypothesis (H1) we see that the integral in the representation
formula is convergent for any ρ ∈ [0, 1]. Moreover, from our assumptions we have
that, for ρ < 1,

gρ(x) =
1

Γ(α+ 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2

=
1

Γ(α+ 1)

∞∑
k=0

(∫ ∞
0

ρke−ktdΨ(t)
)
Lαk (x)e−

x
2

= lim
N→+∞

1
Γ(α+ 1)

N∑
k=0

(∫ ∞
0

ρke−ktdΨ(t)
)
Lαk (x)e−

x
2

= lim
N→+∞

1
Γ(α+ 1)

e−
x
2

∫ ∞
0

Z(N)
α,x (ρe−t) dΨ(t)(2.9)

where

Z(N)
α,x (w) =

N∑
k=0

Lαk (x)wk

denotes a partial sum of the series for Zα,x(w). Now, since ρ < 1, that series
converges uniformly in the interval [0, ρ], so that given ε > 0 there existsN0 = N0(ε)
such that

|Zα,x(w)− Z(N)
α,x (w)| < ε if N ≥ N0.

Using this estimate and hypothesis (H1), we obtain∣∣∣∣∫ ∞
0

Zα,x(ρe−t) dΨ(t)−
∫ ∞

0

Z(N)
α,x (ρe−t) dΨ(t)

∣∣∣∣
≤
∫ ∞

0

|Zα,x(ρe−t)− Z(N)
α,x (ρe−t)| |dΨ|(t)

≤ Cε

from which we conclude that

(2.10) lim
N→+∞

∫ ∞
0

Z(N)
α,x (ρe−t) dΨ(t) =

∫ ∞
0

Zα,x(ρe−t) dΨ(t)

and, replacing (2.10) into (2.9) we obtain (2.8).

(3) We have already observed that the integral in (2.8) is convergent for ρ = 1.
Moreover, the bound we have proved above for Zα,x, and (H1) imply that we can
apply the Lebesgue bounded convergence theorem to this integral (with a constant
majorant function, which is integrable with respect to |dΨ|(t) by (H1)), to conclude
that g(x) = limρ→1 gρ(x).
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(4) Let δ be as in (H2) and observe that

Γ(α+ 1)gρ(x) = e−
x
2

∫ ∞
0

Zα,x(ρe−t)dΨ(t)

= e−
x
2

∫ δ

0

Zα,x(ρe−t)dΨ(t) + e−
x
2

∫ ∞
δ

Zα,x(ρe−t)dΨ(t)

= e−
x
2

∫ δ

0

Z ′α,x(ρe−t)ρe−tΨ(t) dt︸ ︷︷ ︸
(i)

+ e−
x
2Zα,x(ρe−δ)Ψ(δ)︸ ︷︷ ︸

(ii)

− e− x2Zα,x(ρ)Ψ(0)︸ ︷︷ ︸
(iii)

+ e−
x
2

∫ ∞
δ

Zα,x(ρe−t)dΨ(t)︸ ︷︷ ︸
(iv)

Since |Zα,x(ρe−δ)| ≤ (1− ρe−δ)−α−1 ≤ Cδ, Ψ(0) = 0, and σ−α− 1 < 0, clearly
(ii) ≤ Cxσ−α−1 and (iii) vanishes.

To bound (iv), notice that if ω = ρe−t and t > δ, 0 ≤ Zα,x(ω) ≤Mδ. Therefore,
using (H1) and the fact that σ − α− 1 < 0 we obtain

(iv) ≤ e− x2Mδ

∫ ∞
δ

|dΨ|(t) ≤ Cxσ−α−1.

Now, observing that

Z ′α,x(ω) = (α+ 1)Zα+1,x(ω)− xZα+2,x(ω).

and using (H2), we obtain

(i) ≤ Ce− x2
∫ δ

0

Zα+1,x(ρe−t)ρe−ttσ dt

+ e−
x
2

∫ δ

0

xZα+2,x(ρe−t)ρe−ttσ dt

and the wanted estimates in this case follow by a direct application of the following
lemma. �

Lemma 2.2. In the conditions of Lemma 2.1(4), if

I(x) = e−
x
2

∫ δ

0

Zβ,x(ρe−t)ρe−ttσ dt,

and β = α+ 1 or β = α+ 2 then, |I(x)| ≤ Cxσ−β with C = C(β, σ, δ, ρ0).

Proof. Making the change of variables w = ρe−t, and recalling the definition of
Zβ,x(w) given by (2.6), we see that

I(x) = e−
x
2

∫ ρ

ρe−δ
(1− w)−β−1e−

xw
1−w logσ

( ρ
w

)
dw
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Making a further change of variables u = 1
2 + w

1−w and setting cδ = e−δ this is

I(x) =
∫ 1

2 + ρ
1−ρ

1
2 +

cδρ

1−cδρ

(
u+

1
2

)β+1

e−ux
[
log
(
ρ
u+ 1

2

u− 1
2

)]σ
1(

u+ 1
2

)2 du
≤ C

∫ 1
2 + ρ

1−ρ

1
2 +

cδρ

1−cδρ

uβ−1e−ux
(
u− 1

2

)−σ [
u(ρ− 1) +

1
2

(ρ+ 1)
]σ

︸ ︷︷ ︸
:=ũ(ρ)

du(2.11)

where in (2.11) we have used that, since

ρ
u+ 1

2

u− 1
2

= 1 +
u(ρ− 1) + 1

2 (ρ+ 1)
u− 1

2

,

then

log
(
ρ
u+ 1

2

u− 1
2

)
≤
u(ρ− 1) + 1

2 (ρ+ 1)
u− 1

2

.

Since 1
2 < u ≤ 1

2 + ρ
1−ρ , it is immediate that

0 ≤ u(ρ− 1) +
1
2

(ρ+ 1) ≤ ρ,

which, using that σ ≥ 0, implies ũ(ρ) ≤ 1.
Also, since

u ≥ 1
2

+
cδρ0

1− cδρ0
>

1
2

we have that (
u− 1

2

)−σ
≤ Cu−σ

where the constant depends only on ρ0 and δ. Therefore,

I(x) ≤ C
∫ ∞

0

uβ−σ−1e−ux du

= Cx−β+σ

∫ ∞
0

vβ−σ−1e−v dv(2.12)

≤ Cx−β+σ(2.13)

where in (2.12) we have made the change of variables v = ux, and in (2.13) we have
used that β − σ − 1 > −1 because β = α+ 1 or β = α+ 2.

�

2.2. Step 2: weighted estimates for the generalized Euclidean convolu-
tion. Following the idea of the previous section, we define a regularized multiplier
operator Mα,m,ρ by:

(2.14) Mα,m,ρf(x) :=
∞∑
k=0

mkρ
kak,α(f)lαk (x)

In this section we will obtain the estimate

(2.15)
(∫ ∞

0

|Mα,m,ρ(f)|qxα−bq dx
) 1
q

≤ C
(∫ ∞

0

|f |pxα+ap dx

) 1
p

for f ∈ Lp(R+, x
α+ap) with a constant C independent of the regularization param-

eter ρ and appropriate a, b (see Theorem 2.1).
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Indeed, the operator can be expressed as before as a twisted generalized convolu-
tion with kernel Gρ(y) = gρ(y2) (in place of G), and by Lemma 2.1, if F (y) = f(y2),
we have the pointwise bound

|Mα,m,ρf(x2)| ≤ (|F | ? |Gρ|)(x) ≤ C(|F | ? |x2(σ−α−1)|)(x).

Therefore, (2.15) will follow from a weighted inequality for the generalized Euclidean
convolution with kernel Kσ := x2(σ−α−1) (Theorem 2.1).

Once we have (2.15), Theorem 1.1 will follow by a standard density argument.
Indeed, if we consider the space

E = {f(x) = p(x)e−
x
2 : 0 ≤ x, p(x) a polynomial},

any f ∈ E has only a finite number of non-vanishing Laguerre coefficients. In that
case, it is straightforward that Mα,mf(x) is well-defined and:

Mα,mf(x) = lim
ρ→1

Mα,m,ρf(x).

Then, by Fatou’s lemma,∫ ∞
0

|Mα,m(f)|qxα−bq dx ≤ lim
ρ→1

∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx

and, therefore, we obtain(∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
) 1
q

≤ C
(∫ ∞

0

|f |pxα+ap dx

) 1
p

∀f ∈ E.

Since E is dense in Lp(R+, x
α+ap), we deduce that Mα,m can be extended to a

bounded operator from Lp(R+, x
α+ap) to Lq(R+, x

α−bq). Moreover, the extended
operator satisfies:

Mα,mf = lim
ρ→1

Mα,m,ρf.

This means that the formula (1.2) is valid for f ∈ Lp(R+, x
α+ap) if the summa-

tion is interpreted in the Abel sense with convergence in Lq(R+, x
α−bq). Therefore,

to conclude the proof of Theorem 1.1 in the case α ≥ 0 it is enough to see that the
following result holds:

Theorem 2.1. Let α ≥ 0, 0 < σ < α+ 1 and Mα,m,ρ be given by (2.14) such that
it satisfies (H1) and (H2). Then, for all f ∈ Lp(R+, x

α+ap), the following estimate
holds

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ ‖f(x2)x2a‖Lp(R+,x2α+1)

provided that

a <
α+ 1
p′

, b <
α+ 1
q

and that (
1
q
− 1
p

)(
α+

1
2

)
≤ a+ b ≤

(
1
q
− 1
p

)
(α+ 1) + σ

Proof. First, notice that if condition (H2) holds for a certain 0 < σ0 < α+ 1, then
it also holds for any 0 < σ < σ0. Therefore, it suffices to prove the theorem in the
case a + b = (1

q −
1
p )(α + 1) + σ which in turn, by the conditions above, implies

σ ≥ − 1
2

(
1
q −

1
p

)
.
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Let Kσ(x) := x2(σ−α−1), F (y) = f(y2) and recall that

|Mα,m,ρf(x2)| ≤ C(|F | ? |Kσ|)(x)

where ? denotes the generalized euclidean convolution defined by (2.4).
We begin by computing the generalized Euclidean translation of Kσ given by

(2.5). Making the change of variables

t = cos θ ⇒ dt = − sin θ dθ = −
√

1− t2 dθ

we see that

τEx Kσ(y) = C(α)
∫ 1

−1

(x2 + y2 − 2xyt)σ−α−1(1− t2)α−
1
2 dt.

Following the notation of our previous work [5], if we let

Iγ,k(r) :=
∫ 1

−1

(1− t2)k

(1− 2rt+ r2)
γ
2
dt,

then

τEx Kσ(y) = C(α)y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
and, therefore,

Kσ ? F (x) = C

∫ ∞
0

y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
F (y)y2α+1dy

= C

∫ ∞
0

y2σI2(1+α−σ),α− 1
2

(
x

y

)
F (y)

dy

y
(2.16)

Now,

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ C‖[Kσ ? F (x)]x−2b‖Lq(R+,x2α+1)

= C

(∫ ∞
0

|Kσ ? F (x)x−2b|qx2α+1 dx

) 1
q

= C

(∫ ∞
0

∣∣∣Kσ ? F (x)x
2α+2
q −2b

∣∣∣q dx

x

) 1
q

but, by (2.16),

[Kσ ? F (x)]x
2α+2
q −2b

= C

∫ ∞
0

y2σx
2α+2
q −2bI2(1+α−σ),α− 1

2

(
x

y

)
F (y)

dy

y

= C

∫ ∞
0

(y
x

)−[ 2α+2
q −2b]

I2(1−α−σ),α− 1
2

(
x

y

)
F (y)y2σ+ 2α+2

q −2b dy

y

= [y
2α+2
q −2bI2(1+α−σ),α− 1

2
(y) ∗ F (y)y2σ+ 2α+2

q −2b](x)

where ∗ denotes the convolution in R+ with respect to the Haar measure dx
x .

Then, by Young’s inequality:

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1)

≤ ‖F (x)x2σ+ 2α+2
q −2b‖Lp( dxx )‖x

2α+2
q −2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dxx )
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provided that:

(2.17)
1
p

+
1
s

= 1 +
1
q
.

Since we are assuming that a+ b =
(

1
q −

1
p

)
(α+ 1) + σ, we have that

‖F (x)x2σ+ 2α+2
q −2b‖Lp( dxx ) =

(∫ ∞
0

|F (x)x2σ+ 2α+2
q −2b|p dx

x

) 1
p

=
(∫ ∞

0

|F (x)x2a+ 2α+2
p |p dx

x

) 1
p

= ‖F (x)x2a‖Lp(R+,x2α+1)

= ‖f(x2)x2a‖Lp(R+,x2α+1)

whence, to conclude the proof of the theorem it suffices to see that

‖x
2α+2
q −2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dxx ) < +∞.

For this purpose, we shall use the following lemma, which is a generalization of
our previous result [5, Lemma 4.2]. The first part of the proof is the same as in
that lemma, but it is included here for the sake of completeness:

Lemma 2.3. Let

Iγ,k(r) =
∫ 1

−1

(1− t2)k

(1− 2rt+ r2)
γ
2
dt

Then, for r ∼ 1 and k > −1, we have that

|Iγ,k(r)| ≤


Cγ,k if γ < 2k + 2
Cγ,k log 1

|1−r| if γ = 2k + 2
Cγ,k|1− r|−γ+2k+2 if γ > 2k + 2

Proof. Assume first that k ∈ N0 and −γ2 + k > −1. Then,

Iγ,k(1) ∼
∫ 1

−1

(1− t2)k

(2− 2t)
γ
2
dt ∼ C

∫ 1

−1

(1− t)k

(1− t) γ2
dt.

Therefore, Iγ,k is bounded.
If −γ2 + k = −1, then

Iγ,k(r) ∼
∫ 1

−1

(1− t2)k
dk

dtk

{
(1− 2rt+ r2)−

γ
2 +k

}
dt.

Integrating by parts k times (the boundary terms vanish),

Iγ,k(r) ∼
∣∣∣∣∫ 1

−1

dk

dtk
{

(1− t2)k
}

(1− 2rt+ r2)−
γ
2 +k dt

∣∣∣∣ .
But dk

dtk

{
(1− t2)k

}
is a polynomial of degree k and therefore is bounded in [−1, 1]

(in fact, it is up to a constant the classical Legendre polynomial). Therefore,

Iγ,k(r) ∼ 1
2r

log
(

1 + r

1− r

)2

≤ C log
1

|1− r|
.
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Finally, if −γ2 + k < −1, then integrating by parts as before,

Iγ,k(r) ≤ Ck
∫ 1

−1

(1− 2rt+ r2)−
γ
2 +k dt.

Thus,

Iγ,k(r) ∼ (1− 2rt+ r2)−
γ
2 +k+1|t=1

t=−1 ≤ Ck,γ |1− r|−γ+2k+2.

This finishes the proof if k ∈ N0.
Consider now the case k = m+ ν with m ∈ N0 and 0 < ν < 1. Then,

Iγ,k(r) =
∫ 1

−1

(1− t2)ν(m+1)+(1−ν)m(1− 2rt+ r2)−
νγ
2 −

(1−ν)γ
2 dt

≤ Iνm+1,γ(r)I1−ν
m,γ (r),

where in the last line we have used Hölder’s inequality with exponent 1
ν .

If γ < 2m+ 2, by the previous calculation

|Iγ,k(r)| ≤ C.

If γ > 2(m+ 1) + 2, then, by the previous calculation

|Iγ,k(r)| ≤ C|1− r|ν(−γ+2(m+1)+2)|1− r|(1−ν)(−γ+2m+2)

= C|1− r|−γ+2k+2.

For the case 2m + 2 < γ < 2m + 4, notice that we can always assume r < 1,
since Iγ,k(r) = r−γIγ,k(r−1). Then, as before, we can prove that

I ′γ,k(r) ≤ γ(1− r)Iγ+2,k(r)

But now we are in the case γ + 2 > 2(m+ 1) + 2 and, thus,

|Iγ+2,k(r)| ≤ C|1− r|−γ+2k.

Therefore, if −γ + 2k + 1 6= −1

Iγ,k(r) =
∫ r

0

I ′γ,k(s) ds

≤ C
∫ r

0

(1− s)−γ+2k+1 ds

≤ C|1− r|−γ+2k+2,

and if −γ + 2k + 1 = −1

Iγ,k(r) ≤ C
∫ r

0

1
1− s

ds

= C log
1

|1− r|
.

It remains to check the case k ∈ (−1, 0). For this purpose, write

Iγ,k(r) =
∫ 0

−1

(1− t2)k

(1− 2rt+ r2)
γ
2
dt︸ ︷︷ ︸

(i)

+
∫ 1

0

(1− t2)k

(1− 2rt+ r2)
γ
2
dt︸ ︷︷ ︸

(ii)
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Since γ > 0 and k + 1 > 0,

(i) ≤
∫ 0

−1

(1 + t)k dt = C

(ii) ≤
∫ 1

0

(1− t)k

(1− 2rt+ r2)
γ
2
dt

= − 1
k + 1

∫ 1

0

d
dt [(1− t)

k+1]
(1− 2rt+ r2)

γ
2
dt

=
2r
k + 1

∫ 1

0

(1− t)k+1

(1− 2rt+ r2)
γ
2 +1

dt

≤ CIγ+2,k+1(r).

and, since now k + 1 > 0, Iγ,k can be bounded as before. This concludes the proof
of the lemma. �

Now we are ready to conclude the proof Theorem 2.1. Remember that we need
to see that

(2.18) ‖x
2α+2
q −2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dxx ) < +∞.

Using the previous lemma, it is clear that when x→ 1 and 2(α+1−σ) ≤ 2(α− 1
2 )

the norm in (2.18) is bounded.
In the case 2(α+ 1− σ) > 2(α− 1

2 ) (that is, σ < 3), the integrability condition
is

−s
[
2(α+ 1− σ)− 2

(
α− 1

2

)
− 2
]
≥ −1.

But, using (2.17), we see that this is equivalent to σ ≥ − 1
2

(
1
q −

1
p

)
, which holds

by our assumption on a+ b.
When x = 0, the integrability condition is

2α+ 2
q

− 2b > 0

which holds because b < α+1
q .

Finally, when x → ∞, since Iα− 1
2 ,2(α+1−σ)(x) ∼ x−2(α+1−σ), the condition we

need to fulfill is
2α+ 2
q

− 2b− 2(α+ 1− σ) < 0

which, by our assumption on a+ b is equivalent to a < α+1
p′ . �

2.3. Extension to the case −1 < α < 0 and end of proof of Theorem 1.1.
As before, we may assume that a+ b =

(
1
q −

1
p

)
(α+ 1) +σ. In this case, to extend

our result to the case −1 < α < 0 let us consider −1 < α < β, where β ≥ 0, and
use a transplantation result from [6], that we recall here as a lemma for the sake of
completeness:

Lemma 2.4 ([6], Corollary 6.19 (ii)). Let 1 < q <∞. Given α, β > −1, we define
the transplantation operator

Tαβf =
∞∑
k=0

(∫ ∞
0

f(y)lαk (y)yα dy
)
lβk .
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Then, if σ0 ∈ R and σ1 = σ0+(α−β)( 1
p−

1
2 ), Tαβ : Lqσ0

(R+, x
α dx)→ Lqσ1

(R+, x
β dx)

and Tβα : Lqσ1
(R+, x

β dx)→ Lqσ0
(R+, x

α dx) are bounded operators if and only if

−1 + α

q
< σ0 <

1 + α

q′
.

Using this lemma, we can write

‖Mα,mf |x|−b‖Lq(R+,xα dx) = ‖Tβα(Mβ,m(Tαβf))|x|−b‖Lq(R+,xα dx)

≤ C‖Mα,m,β(Tαβf)|x|−b̃‖Lq(R+,xβ dx)

provided that

(2.19) −1 < α < β

(2.20) −b̃ = −b+ (α− β)
(

1
q
− 1

2

)
,

and

(2.21) −1 + α

q
< −b < 1 + α

q′
,

and, using Theorem 2.1 for Mβ,m with β ≥ 0,

‖Mα,m,β(Tαβf)|x|−b̃‖Lq(R+,xβ dx) ≤ C‖Tαβf |x|ã‖Lp(R+,xβ dx)

provided that

0 < σ < β + 1 , ã <
β + 1
p′

, b̃ <
β + 1
q

,

(2.22)
(

1
q
− 1
p

)(
β +

1
2

)
≤ ã+ b̃

and that

(2.23) ã+ b̃ =
(

1
q
− 1
p

)
(β + 1) + σ.

Finally, using Lemma 2.4 again, we obtain

(2.24) ‖Mα,mf |x|−b‖Lq(R+,xα dx) ≤ C‖f |x|a‖Lp(R+,xα dx)

provided that

(2.25) ã = a+ (α− β)
(

1
p
− 1

2

)
and that

(2.26) −1 + α

p
< a <

1 + α

p′
.

Now, replacing (2.20) and (2.25) into (2.22) and (2.23) we obtain(
1
q
− 1
p

)(
α+

1
2

)
≤ a+ b

and

(2.27) a+ b =
(

1
q
− 1
p

)
(α+ 1) + σ.
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To conclude the proof of the theorem we need to see that the restrictions a > − 1+α
p

in (2.26) and b > − 1+α
q′ in (2.21) are redundant. Indeed, the first one follows from

(2.27) and b < α+1
q , while the second one follows from (2.27) and a < α+1

p′ .

3. Multipliers for related Laguerre systems

In this section we show how the results for multipliers for expansions in the
Laguerre system {lαk }k≥0 can be extended to other related systems, using a trans-
ference result from I. Abu-Falah, R. A. Maćıas, C. Segovia and J. L. Torrea [1]. To
this end, for fixed α > −1, we consider the orthonormal systems:

(1) {Lαk (y) := y
α
2 lαk (y)}k≥0 in L2(R+)

(2) {ϕαk (y) :=
√

2yα+ 1
2 lαk (y2)}k≥0 in L2(R+)

(3) {ψαk (y) :=
√

2lαk (y2)}k≥0 in L2(R+, y
2α+1 dy)

which are eigenvectors of certain modifications of the Laguerre differential operator
(1.1).

Then, following the notations in [1], if we let Wα, V, and Zα be the operators
defined by

Wαf(y) = y−
α
2 f(y), V f(y) = (2y)

1
2 f(y2), and Zαf(y) =

√
2y−αf(y2)

it is immediate that WαLαk = lαk , V Lαk = ϕαk , and ZαLαk = ψαk . Moreover, for f a
measurable function with domain in R+, the following result holds:

Lemma 3.1 ([1], Lemma 3.22). Let α > −1.
(1) Let δ = ρ− α(p2 − 1), then ‖Wαf‖Lp(R+,yρ+α) = ‖f‖Lp(R+,yδ)

(2) Let 2δ = γ + p
2 − 1, then ‖V f‖Lp(R+,yγ) = 2

1
2−

1
p ‖f‖Lp(R+,yδ)

(3) Let δ = η
2 − α(p2 − 1), then ‖Zαf‖Lp(R+,yη+2α+1) = 2

1
2−

1
p ‖f‖Lp(R+,yδ)

In analogy to what we have done for the system {lαk }k≥0, we can also define
multipliers of Laplace transform type for the orthonormal systems listed above.
For instance, in the case of the system {Lαk}k≥0, if

f(x) ∼
∞∑
k=0

bα,k(f)Lαk (x), bα,k(f) =
∫ ∞

0

f(x)Lαk (x)dx

given a bounded sequence {mk}k≥0 we may define the multiplier

MLα,mf(x) ∼
∞∑
k=0

bα,k(f)mkLαk (x),

and we say that MLα,m is a multiplier of Laplace transform type if mk = m(k) is
given by (1.3) for some real-valued function Ψ(t). Similar definitions can be given
for the systems {ϕαk}k≥0 and {ψαk }k≥0; we will denote the corresponding multipliers
by Mϕ

α,m and Mψ
α,m. Then, the following analogue of Theorem 1.1 holds:

Theorem 3.1. Assume that α > −1.
(1) If MLα,m is a multiplier of Laplace transform type for the system {Lαk}k≥0

such that (H1) and (H2) hold, then

‖MLα,mf‖Lq(R+,x−Bq) ≤ C‖f‖Lp(R+,xAp)
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provided that

1 < p ≤ q <∞ , A <
α

2
+

1
p′

, B <
α

2
+

1
q
,

and that (
1
q
− 1
p

)
(α+ 1) < A+B ≤ σ

(
1
q
− 1
p

)
.

(2) If Mϕ
α,m is a multiplier of Laplace transform type for the system {ϕαk}k≥0

such that (H1) and (H2) hold, then

‖Mϕ
α,mf‖Lq(R+,x−Dq) ≤ C‖f‖Lp(R+,xCp)

provided that

1 < p ≤ q <∞ , C < α+
1
p′

+
1
2

, D < α+
1
q

+
1
2

and that(
1
q
− 1
p

)
(2α+ 1) < C +D ≤ (2σ − 1)

(
1
q
− 1
p

)
.

(3) If Mψ
α,m is a multiplier of Laplace transform type for the system {ψαk }k≥0

such that (H1) and (H2) hold, then

‖Mψ
α,mf‖Lq(R+,x−Fq) ≤ C‖f‖Lp(R+,xEp)

provided that

1 < p ≤ q <∞ , E < 2α+ 1 +
1
p′

, F <
1
q

and that(
1
q
− 1
p

)
(2α+ 1) < E + F ≤ (2σ − 1)

(
1
q
− 1
p

)
.

Proof. We explain how to prove (1), since the other cases are analogous. From the
fact that WαLαk = lαk and by Lemma 3.1(1), we have the following diagram

Lp(R+, x
ap+α)

Mα,m−→ Lq(R+, x
−bq+α)

(Wα)−1
y xWα

Lp(R+, x
Ap)

MLα,m−→ Lq(R+, x
−Bq)

provided that

(3.1) Ap = ap− α
(p

2
− 1
)

and −Bq = −bq − α
(q

2
− 1
)
.

and Mα,m = WαMLα,m(Wα)−1. Therefore, the identities (3.1) together with the
conditions on a, b given by Theorem 1.1 imply the desired result. �
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4. Proof of Theorem 1.2

In this section we exploit the well-known relation between Hermite and Laguerre
poynomials to obtain an analogous result to that of Section 2 in the Hermite case.
Indeed, recalling that

H2k(x) = (−1)k22kk!L−
1
2

k (x2)

H2k+1(x) = (−1)k22kk!xL
1
2
k (x2)

it is immediate that

h2k(x) = l
− 1

2
k (x2)

h2k+1(x) = xl
1
2
k (x2)

It is then natural to decompose f = f0 + f1 where

f0(x) =
f(x) + f(−x)

2
, f1(x) =

f(x)− f(−x)
2

and, clearly, when k = 2j, if we let g0(y) = f0(
√
y) we obtain:

ck(f) = 〈f0, hk〉 = 2
∫ ∞

0

f0(x)l−
1
2

j (x2) dx = a− 1
2 ,j

(g0)

while if k = 2j + 1, and we let g1(y) = 1√
yf1(
√
y) we have:

ck(f) = 〈f1, hk〉 = 2
∫ ∞

0

f1(x)xl
1
2
j (x2) dx = a 1

2 ,j
(g1)

Then,

MH,mf(x) =
∞∑
j=0

m2ja− 1
2 ,j

(g0)l−
1
2

j (x2) +
∞∑
j=0

m2j+1a 1
2 ,j

(g1)xl
1
2
j (x2)

= M− 1
2 ,m0

g0(x2) + xM 1
2 ,m1

g1(x2)

where (m0)k = m2k and (m1)k = m2k+1.
To apply Theorem 1.1 to this decomposition, we need to check first that m0 and

m1 are Laplace-Stiltjes functions of certain functions Ψ0 and Ψ1. Indeed, notice
that m2k = LΨ0(k) where

Ψ0(u) =
1
2

Ψ(
u

2
)

and m2k+1 = LΨ1(k) where

Ψ1(u) =
1
2

∫ u
2

0

e−τdΨ(τ).

It is also easy to see that Ψ0 satisfies the hypotheses of Theorem 1.1 for α = − 1
2

whereas Ψ1 satisfies the hypotheses for α = 1
2 (in this case condition (H2) follows

after an integration by parts).
Then,

‖MH,mf |x|−b‖Lq(R) =
(∫

R
|MH,mf(x)|q|x|−bq dx

) 1
q

= C

(∫
R

∣∣∣M− 1
2 ,m0

g0(x2) + xM 1
2 ,m1

g1(x2)
∣∣∣q |x|−bq dx) 1

q

(4.1)
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Using Minkowski’s inequality and making the change of variables y = x2, dx =
1
2y
− 1

2 dy, we see that

(4.1) ∼
(∫ ∣∣∣M− 1

2 ,m0
g0(y)

∣∣∣q |y|− bq2 − 1
2 dy

) 1
q

+
(∫ ∣∣∣M 1

2 ,m1
g1(y)

∣∣∣q |y| (−b+1)q
2 − 1

2 dy

) 1
q

= ‖M− 1
2 ,m0

g0(y)|y|− b2 ‖
Lq(R,x−

1
2 dx)

+ ‖M 1
2 ,m1

g1(y)|y|
−b+1

2 − 1
q ‖
Lq(R,x

1
2 dx)

≤ C‖g0(y)|y|ã‖
Lp(R,x−

1
2 dx)

+ C‖g1(y)|y|â‖
Lp(R,x

1
2 dx)

where the last inequality follows from Theorem 1.1 provided that:

ã <
1

2p′
, b <

1
q

(4.2) 0 ≤ ã+
b

2
≤ 1

2

(
1
q
− 1
p

)
+ σ

â <
3

2p′

and

(4.3)
(

1
q
− 1
p

)
≤ â+

1
q
− 1− b

2
≤ 3

2

(
1
q
− 1
p

)
+ σ.

Therefore,

‖MH,mf |x|−b‖Lq(R) ≤ C
(∫
|g0(x)|p|x|ãp− 1

2 dx

) 1
p

+ C

(∫
|g1(x)|p|x|âp+ 1

2 dx

) 1
p

= C

(∫
|f0(
√
x)|p|x|ãp− 1

2 dx

) 1
p

+ C

(∫
|f1(
√
x)|p|x|âp+ 1

2−
p
2 dx

) 1
p

= C

(∫
|f0(x)|p|x|2ãp dx

) 1
p

+ C

(∫
|f1(x)|p|x|2âp+2−p dx

) 1
p

≤ C‖f(x)|x|a‖Lp(R)

provided that

(4.4) a = 2ã = 2â+
2
p
− 1.

Therefore, by (4.4) and the conditions on ã, â, there must hold

a <
1
p′

while, by (4.4), (4.2) and (4.3) are equivalent to

0 ≤ a+ b ≤ 1
q
− 1
p

+ 2σ.

Remark 4.1. It follows from the proof of Theorem 1.2 that a better result holds if
the function f is odd.
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5. Examples and further remarks

First, we should point out that it is clear that, since a Stieltjes integral of a
continuous function with respect to a function of bounded variation can be thought
as an integral with respect to the corresponding Lebesgue-Stieltjes measure, we
could equivalently have formulated all our results in terms of integrals with respect
to signed Borel measures in R+. However, we have found convenient to use the
framework of Stieltjes integrals since many of the classical references on Laplace
transforms are written in that framework (for instance [22]), and leave the details
of a possible restatement of the theorems in the case of regular Borel measure to
the reader.

We also recall that the Laplace-Stieltjes transform contains as particular cases
both the ordinary Laplace transform of (locally integrable) functions (when Ψ(t) is
absolutely continuous), and Dirichlet series (see below). In particular, if Ψ is ab-
solutely continuous and φ(t) = Ψ′(t) (defined almost everywhere), the assumptions
(H1) and (H2) of Theorem 1.1 can be replaced by:
(H1ac) ∫ ∞

0

|φ(x)| dx < +∞ i.e. φ ∈ L1(R+)

(H2ac) there exist δ > 0, 0 < σ < α+ 1, and C > 0 such that∣∣∣∣∫ t

0

φ(x) dx
∣∣∣∣ ≤ Ctσ for 0 < t ≤ δ.

In particular, assumption (H2ac) holds if φ(t) = O(tσ−1) when t→ 0.
As we have already mentioned in the introduction, B. Wróbel [23, Corollary

2.7] has recently proved that Laplace type multipliers for the system {ϕαk}k≥0 are
bounded on Lp(Rd, ω), 1 < p <∞, for all ω ∈ Ap and α ∈ ({− 1

2}∪ [ 1
2 ,∞))d. In the

case of power weights in one dimension this means that ω(x) = |x|β must satisfy
−1 < β < p − 1, while taking p = q and letting the weight be |x|β on both sides,
Theorem 3.1(2) can easily be seen to imply −1−p

(
α+ 1

2

)
< β < p−1+p

(
α+ 1

2

)
.

Also, weighted estimates had been obtained before for the case of some particular
operators for the system {lαk }k≥0. Indeed, recall that one of the main examples
of the kind of multipliers we are considering is the Laguerre fractional integral
introduced in [7], which corresponds to the choice mk = (k + 1)−σ.

In [14, Theorem 4.2], A. Nowak and K. Stempak considered multi-dimensional
Laguerre expansions and used a slightly different definition of the fractional integral
operator, given by the negative powers of the differential operator (1.1).

As they point out, their theorem contains as a special case the result of [7] (in
the one dimensional case). To see that both operators are indeed equivalent, they
rely on a deep multiplier theorem [18, Theorem 1.1].

Instead, we can see that Theorem 1.1 is applicable to both definitions by choos-
ing:

mk = (k + c)−σ, φ(t) =
1

Γ(σ)
tσ−1e−ct (c > 0)

The case c = 1 corresponds to the definition in [7], whereas the choice c = α+1
2 cor-

responds to the definition in [14]. Therefore, Theorem 1.1 applied to these choices,
coincides in the first case with the result of [8, Theorem 1] (which is an improvement
of [7, Theorem 3.1]) and improves in the second case the one-dimensional result of
[14, Theorem 4.2].
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The same choice of mk and φ in Theorem 1.2 gives a two-weight estimate for
the Hermite fractional integral, which corresponds to the one-dimensional version
of [14, Theorem 2.5].

Another interesting example is the operator (L2 + I)−
α
2 , where L is given by

(1.1). In this case, Theorem 1.1 with hypotheses (H1ac) and (H2ac) instead of
(H1) and (H2) applies with α = σ and

φ(t) =
1
Cα

e−
α+1

2 tJα−1
2

(t)t
α−1

2

since, by [21, formula 5, p. 386],∫ ∞
0

e−stJα−1
2

(t)t
α−1

2 dt = Cα(s2 + 1)−
α
2

and, when t→ 0, Jα−1
2

(t)t
α−1

2 ∼ tα−1.
A further example is obtained by choosing Ψ(t) = e−s0tH(t− τ) with s0 = α+1

2 ,
where H is the Heaviside unit step function:

H(t) =
{

1 if t ≥ 0
0 if t < 0

and we see that Theorem 1.1 is applicable to the Heat diffusion semigroup (consid-
ered for instance in [17] and [11])

Mτ = e−τL

associated to the operator L for any σ > 0. More generally, the same conclusion
holds for

Ψ(t) =
∞∑
n=1

ane
−s0tH(t− τn)

provided that the Dirichlet series

F (s) =
∞∑
n=1

ane
−τns, 0 < τ1 < τ2 < . . .

conveges absolutely for s = s0 (which corresponds to hypothesis (H1)).
As a final comment, we remark that finding a function Ψ of bounded varia-

tion such that mk = LΨ(k) holds (see (1.3)) is equivalent to solving the clasical
Hausdorff moment problem (see [22, Chapter III]).
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