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Abstract. We show that, for certain non-smooth bounded domains Ω ⊂ Rn, the real

interpolation space (Lp(Ω),W 1,p(Ω))s,p is the subspace W̃ s,p(Ω) ⊂ Lp(Ω) induced by
the restricted fractional seminorm

|f |
W̃ s,p(Ω)

=
(∫

Ω

∫
|x−y|< d(x)

2

|f(x)− f(y)|p

|x− y|n+sp
dy dx

) 1
p

.

1. Introduction

The purpose of this article is to characterize the real interpolation space (Lp(Ω),W 1,p(Ω))s,p
(see Definition 2.1) for certain non-smooth bounded domains Ω ⊂ Rn.

To be precise, let us recall that the usual fractional Sobolev space W s,p(Ω) is the
subspace of Lp(Ω) induced by the seminorm

|f |W s,p(Ω) =
(∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dy dx

) 1
p
.

When Ω is a Lipschitz domain it is known that W s,p(Ω) coincides with the real in-
terpolation space (Lp(Ω),W 1,p(Ω))s,p (see the discussion below). However, it is also
known that this cannot be the case for arbitrary domains, since one has W 1,p(Ω) ⊂
(Lp(Ω),W 1,p(Ω))s,p ⊂ Lp(Ω), and it is easy to construct domains for which W 1,p(Ω) 6⊂
W s,p(Ω) for certain values of s, a typical example being a square minus a slit (see
Example 2.1).

Our main result is that, for a class of domains in Rn which we call admissible (see
Definition 3.1), which contains certain non-Lipschitz domains including simply con-

nected uniform domains in the plane, there holds (Lp(Ω),W 1,p(Ω))s,p = W̃ s,p(Ω), where

W̃ s,p(Ω) is the subspace of Lp(Ω) induced by the seminorm

|f |W̃ s,p(Ω) =
(∫

Ω

∫
|x−y|< d(x)

2

|f(x)− f(y)|p

|x− y|n+sp
dy dx

) 1
p
.

This larger fractional space has been previously introduced in the literature in connec-
tion with fractional Poincaré inequalities in irregular domains [4, 6, 7], and it is known

that W s,p(Ω) = W̃ s,p(Ω) when Ω ⊂ Rn is a Lipschitz domain [5, equation (13)].
The rest of the paper is organized as follows: in Section 2 we introduce some notations

and necessary preliminaries; in Section 3 we define the class of admissible domains and

prove that if Ω ⊂ Rn is admissible, then (Lp(Ω),W 1,p(Ω))s,p = W̃ s,p(Ω); finally, in
Section 4 we consider some concrete examples of admissible domains, which include,
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among others, polygonal domains with interior holes or fractures and simply connected
uniform domains in the plane.

2. Notation and preliminaries

Throughout the paper, 1 ≤ p <∞ and p′ is its conjugate exponent, 1
p

+ 1
p′

= 1 (with

p′ =∞ when p = 1), Ω ⊂ Rn (n ≥ 2) will be a bounded domain, and d(x) will denote
the distance of a point x ∈ Ω to the boundary of Ω. If Ω = ∪jΩj, the distance of a
point x ∈ Ωj to the boundary of Ωj will be denoted by dj(x). Finally, C will denote a
positive constant that may change even within a single string of inequalities.

Definition 2.1. For 0 < s < 1 and 1 ≤ p < ∞, the interpolation space obtained by
the real method (see, e.g. [1]) is given by

(2.1) (Lp(Ω),W 1,p(Ω))s,p = {f : f ∈ Lp(Ω) +W 1,p(Ω) s.t. |f |(Lp(Ω),W 1,p(Ω))s,p <∞},
where

(2.2) |f |(Lp(Ω),W 1,p(Ω))s,p =
{∫ ∞

0

(
`−sK(`, f)

)p d`
`

} 1
p

and the K-functional is given by

(2.3) K(`, f) = K(`, f ;Lp(Ω),W 1,p(Ω)) = inf{‖g‖Lp(Ω) + `‖h‖W 1,p(Ω) : f = g + h}

Remark 2.1. Observe that it is equivalent to consider the integral in (2.2) in the
interval (0, τ) for some sufficiently small τ > 0. Indeed, since K(`, f) ≤ ‖f‖Lp, we
always have ∫ ∞

τ

(
`−sK(`, f)

)p d`
`
≤ ‖f‖Lp

∫ ∞
τ

`−sp
d`

`
< +∞.

Also, it suffices to consider, for a given decomposition,
∫ τ

0
`−sp(‖g‖Lp + `‖∇h‖Lp)p d`` .

This is because the remaining term satisfies∫ τ

0

(`1−s‖h‖Lp)p
d`

`
≤ C

{∫ τ

0

(`1−s‖f‖Lp)p
d`

`
+

∫ τ

0

(`1−s‖g‖Lp)p
d`

`

}
≤ C

{
‖f‖pLp

∫ τ

0

`p−sp
d`

`
+

∫ τ

0

(`−s‖g‖Lp)p
d`

`

}
and, therefore, it will be bounded provided the other terms are.

It is known that when Ω ⊂ Rn is a Lipschitz domain and 1 ≤ p <∞, (Lp(Ω),W 1,p(Ω))s,p =
Bs
p,p(Ω) (see [9]), where Bs

p,p is a Besov space, we refer the reader to [2] for its defi-
nition and properties. But, for Lipschitz domains one also has Bs

p,p(Ω) = W s,p(Ω)

(see [2, Theorem 6.7]) and, hence, (Lp(Ω),W 1,p(Ω))s,p = W s,p(Ω) as mentioned in the
introduction.

For 1 < p <∞, the identity (Lp(Ω),W 1,p(Ω))s,p = Bs
p,p(Ω) can also be found in [13,

§4.3.1, Theorem 2], where Bs
p,p(Ω) is initially defined by restriction from Rn, but it is

later proved that an intrinsic norm for Bs
p,p(Ω) is the one in W s,p(Ω) (see [13, §4.4.2,

Theorem 2(b)], and observe that |f |(3)
Bsp,p(Ω) = C|f |W s,p(Ω)).

In [14, Theorem 2.13] it is shown that the existence of a linear and continuous exten-
sion operator mapping the Triebel-Lizorkin space F 1

p,2(Ω) = W 1,p(Ω) into F 1
p,2(Rn) =

W 1,p(Rn) (1 < p <∞) gives (Lp(Ω), F 1
p,2(Ω))s,p = Bs

p,p(Ω), so the problem is to charac-
terize Bs

p,p(Ω). When Ω is a Lipschitz domain this is done in [3] (see also [15, Theorem
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1.118]) by means of the norm considered in [2], and one may use, as before, that
Bs
p,p(Ω) = W s,p(Ω) by [2, Theorem 6.7].
For more general domains, namely (ε, δ)-uniform domains, [12] proves the existence

of the required linear and continuous extension operator and characterizes the classes
F s
p,p(Ω) = Bs

p,p(Ω) by means of the intrinsic norm

‖f‖F s
p,p(Ω)

' ‖f‖Lp(Ω) +
∥∥∥(∫ d(x)/2

0

t−n
∫
|h|<t
|f(x+ h)− f(x)|p dh dt

t1+sp

)1/p∥∥∥
Lp(Ω)

(see [12, Corollary 1 and Theorem 3]), for which one clearly has |f |F s
p,p(Ω)

= C|f |W̃ s,p(Ω).

In combination with [14, Theorem 2.13], this result shows that (Lp(Ω),W 1,p(Ω))s,p =

W̃ s,p(Ω).

Whether W s,p(Ω) = W̃ s,p(Ω) holds for (ε, δ)-uniform domains (as is it the case for
Lipschitz domains) is, to the best of our knowledge, still an open question.

For the class of admissible domains we shall consider, the interpolation space can be
strictly larger than W s,p(Ω), as the next example shows.

Example 2.1. Let Ω = (−1, 1)2\((0, 1)×{0}) and let f ∈ W 1,p(Ω) such that f(x) = 1
for x ∈ (1

2
, 1) × (0, 1), and f(x) = 0 for x ∈ (1

2
, 1) × (−1, 0). Then f 6∈ W s,p(Ω) for

s > 1
p
. On the other hand, it follows from the definition of the interpolation space

that W 1,p(Ω) ⊂ (Lp(Ω),W 1,p(Ω))s,p, whence, (Lp(Ω),W 1,p(Ω))s,p 6= W s,p(Ω) for these
values of s.

For our proof we will require the existence of partitions of unity supported on John
domains. These domains were introduced by F. John in [8] and given that name in
[10], we recall their definition below:

Definition 2.2. A bounded domain Ω ⊂ Rn is a John domain if there exists x0 ∈ Ω,
a family of rectifiable curves given by γ(t, y), 0 ≤ t ≤ 1, y ∈ Ω, and positive constants
λ and k such that,

(1) γ(0, y) = y, γ(1, y) = x0

(2) d(γ(t, y)) ≥ λt for all t ∈ [0, 1]

(3) |γ̇(t, y))| ≤ k

3. Proof of our main result

Theorem 3.1. For any bounded domain Ω ⊂ Rn and 1 ≤ p < ∞, there holds

(Lp(Ω),W 1,p(Ω))s,p ⊂ W̃ s,p(Ω).

Proof. Given f ∈ (Lp(Ω),W 1,p(Ω))s,p, observe that, since Lp(Ω) + W 1,p(Ω) = Lp(Ω),
‖f‖Lp ≤ C|f |(Lp,W 1,p)s,p . Hence, it suffices to prove that

(3.4)

∫
Ω

∫
|x−y|< d(x)

2

|f(x)− f(y)|p

|x− y|n+sp
dy dx ≤ C

∫ ∞
0

(
`−sK(`, f)

)p d`
`

To this end, for each r ∈ R+ choose gr and hr such that f = gr + hr and ‖gr‖Lp +
r‖∇hr‖Lp ≤ 2K(f, r). By density, we may also assume that hr is smooth.

We clearly have that |f |W̃ s,p(Ω) ≤ C(|hr|W̃ s,p(Ω) + |gr|W̃ s,p(Ω)) for every r ∈ R+ and we

may bound both terms separately.
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Observe that x + tz ∈ Ω for all t ∈ [0, 1], x ∈ Ω and z ∈ Rn such that |z| < d(x)
2

.
Therefore, extending ∇h|z| by zero outside Ω, we have∫

Ω

∫
|z|≤ d(x)

2

|h|z|(z + x)− h|z|(x)|p

|z|n+sp
dz dx ≤

∫
Ω

∫
|z|≤ d(x)

2

1

|z|n+sp

∣∣∣ ∫ 1

0

∇h|z|(x+ tz) · z dt
∣∣∣p dx dz

≤
∫
Rn

|z|p

|z|n+sp

∫ 1

0

∫
Rn
|∇h|z|(x+ tz)|p dx dt dz

≤
∫
Rn

|z|p

|z|n+sp
‖∇h|z|‖pp dz

Similarly, extending g|z| by zero outside Ω, we have∫
Ω

∫
|z|≤ d(x)

2

|g|z|(z + x)− g|z|(x)|p

|z|n+sp
dz dx ≤ C

∫
Ω

∫
Ω

|g|z|(x)|p

|z|n+sp
dx dz +

∫
Ω

∫
|z|< d(x)

2

|g|z|(z + x)|p

|z|n+sp
dz dx

≤ C

∫
Rn

‖g|z|‖pp
|z|n+sp

dz +

∫
Rn

∫
Ω

|g|z|(w)|p

|z|n+sp
dw dz

≤ C

∫
Rn

‖g|z|‖pp
|z|n+sp

dz

Finally, setting r = |z| and using polar coordinates, we obtain

|f |p
W̃ s,p(Ω)

≤ C
(∫ ∞

0

1

rn+sp−p‖∇hr‖
p
p r

n−1 dr +

∫ ∞
0

‖gr‖pp
rn+sp

rn−1 dr
)

≤ C

∫ ∞
0

r−sp
(
r‖∇hr‖Lp + ‖gr‖Lp

)p dr
r

≤ C

∫ ∞
0

(
r−sK(r, f)

)p dr
r
.

This concludes the proof. �

Definition 3.1. We say that a bounded domain Ω ⊂ Rn is admissible provided that
there exists τ > 0 such that, for each 0 < ` < τ , there exist a partition Ω = ∪jΩ`,j, an
associated partition of unity {ψ`,j}j ∈ W 1,∞(Ω`,j) and C > 0 independent of ` and j
with the following properties:

(1)
∑

j χΩ`,j(x) ≤ C for all x ∈ Rn

(2) ‖ψ`,j‖∞ ≤ C, ‖∇ψ`,j‖∞ ≤ C`−1 for every j
(3) Each Ω`,j is a John domain with C−1` ≤ λ(Ω`,j), k(Ω`,j) ≤ C`, where k(Ω`,j)

and λ(Ω`,j) are the constants associated with Ω`,j in Definition 2.2
(4) C−1` ≤ diam(Ω`,j) ≤ C` for every j

The reader should remark that each one of these partitions is necessarily finite (de-
pending on `) because the Ω`,j’s are a covering of a bounded domain made of finitely
overlapping sets of essentially the same size.

Theorem 3.2. If Ω ⊂ Rn is an admissible domain as in Definition 3.1 and 1 ≤ p <∞,

then W̃ s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.
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Proof. Clearly, it suffices to prove that W̃ s,p(Ω) ⊂ (Lp(Ω),W 1,p(Ω))s,p, since the con-
verse is always true by Theorem 3.1.

Given f ∈ W̃ s,p(Ω), for each ` sufficiently small, we let h(y) =
∑

j fjψj(y), for certain
values fj that we will choose shortly, and ψj the partition of unity given by Definition
3.1. Here, fj = f`,j and ψj = ψ`,j, but we have chosen to simplify notation. The reader
should keep in mind that throughout this proof fj and ψj depend on `.

To define fj, recall that, by Definition 3.1, each Ωj is a John domain with a distin-
guished point, say xj, and constants of order `. Hence, there exists a John curve γj
such that γj(0, y) = y, γj(1, y) = xj, d(γj(t, y)) ≥ λ`t and |γ̇j| ≤ k`.

Observe that, if z ∈ B(xj,
λ`
4

) and we let γ̃j(t, y) = γj(t, y) + t(z − xj), there holds

γ̃j(0, y) = y and γ̃j(1, y) = z. Moreover, |γj − γ̃j| ≤ t|z − xj| ≤ tλ`
4

, which implies that
γ̃j ⊂ Ωj.

Now, choose a smooth function ϕ (also depending on `) such that supp(ϕ) ⊂ B(0, λ`
4

),

ϕ ≥ 0,
∫
ϕ = 1, ‖ϕ‖p ≤ C`

− n
p′ , ‖∇ϕ‖p ≤ C`

− n
p′−1

, and let u(x, t) = f ∗ ϕt(x) where
ϕt(x) = t−nϕ(x

t
). We define fj =

∫
u(z, 1)ϕ(z − xj) dz.

Recall we want to estimate the K-functional, so it suffices to prove we can bound

(3.5)

∫ τ

0

`−sp
(
‖g‖Lp(Ω) + `‖∇h‖Lp(Ω)

)pd`
`
≤ C|f |W̃ s,p(Ω)

for τ > 0 as in Definition 3.1 (see Remark 3.5).
By hypothesis, we have

(3.6) ‖g‖pLp(Ω) = ‖f − h‖pLp(Ω) ≤ C
∑
j

‖f − fj‖pLp(Ωj)
,

so, we begin by obtaining a pointwise bound for f − fj. This computation is similar
to the one used in [4, Proposition 3.1].

Observe that ϕ(z − xj) is supported in B(xj,
λ`
4

) and has integral 1, hence, if we let
ηj(t) = u(γj(t, y) + t(z − xj), t), we have that ηj(0) = u(y, 0) = f(y), ηj(1) = u(z, 1),
and we may write

f(y)− fj =

∫
B(xj ,

λ`
4

)

(f(y)− u(z, 1))ϕ(z − xj) dz

= −
∫ 1

0

∫
B(xj ,

λ`
4

)

η′j(t)ϕ(z − xj) dz dt

= −
∫ 1

0

∫
B(xj ,

λ`
4

)

∇u(γj(t, y) + t(z − xj), t) · (γ̇j + z − xj)ϕ(z − xj) dz dt

−
∫ 1

0

∫
B(xj ,

λ`
4

)

∂u

∂t
(γj(t, y) + t(z − xj), t)ϕ(z − xj) dz dt

Making the change of variables x = γ̃j(t, y) = γj(t, y) + t(z − xj), we know that
x ∈ Ωj and dx = tndz, whence,
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f(y)− fj = −
∫ 1

0

∫
Ωj

∇u(x, t) ·
(
γ̇j +

x− γj
t

)
ϕ
(x− γj

t

) 1

tn
dx dt

−
∫ 1

0

∫
Ωj

∂u

∂t
(x, t)ϕ

(x− γj
t

) 1

tn
dx dt

Now, using that
∫
∇ϕ = 0 and that

∫
∂ϕt
∂t

(x)dx = 0, we have that

∇u(x, t) = f ∗ ∇ϕt(x) = −
∫
Rn

(f(x)− f(w))
1

tn+1
∇ϕ
(x− w

t

)
dw,

and
∂u

∂t
(x) = f ∗ ∂

∂t
ϕt(x) =

∫
Rn

(f(x)−f(w))
[
∇ϕ
(x− w

t

)
·
(x− w
tn+2

)
+ϕ
(x− w

t

) n

tn+1

]
dw.

Therefore, f − fj = I1 − I2 − I3 with

I1 =

∫ 1

0

∫
Ωj

∫
Rn

(f(x)− f(w))
1

tn+1
∇ϕ
(x− w

t

)
·
(
γ̇j +

x− γj
t

)
ϕ
(x− γj

t

) 1

tn
dw dx dt

I2 =

∫ 1

0

∫
Ωj

∫
Rn

(f(x)− f(w))
1

tn+1
∇ϕ
(x− w

t

)
·
(x− w

t

)
ϕ
(x− γj

t

) 1

tn
dw dx dt

I3 =

∫ 1

0

∫
Ωj

∫
Rn

(f(x)− f(w))
n

tn+1
ϕ
(x− w

t

)
ϕ
(x− γj

t

) 1

tn
dw dx dt

By hypothesis, |γ̇j| < C`, and using that supp(ϕ) ⊂ B(0, λ`
4

), we also have |x−γj| <
λ`t
4

and |x− w| ≤ λ`t
4

. Hence,

|f − fj| ≤ C

∫ 1

0

∫
Ωj

∫
Rn
|f(x)− f(w)| `

t2n+1

∣∣∣∇ϕ(x− w
t

)∣∣∣ ∣∣∣ϕ(x− γj
t

)∣∣∣ dw dx dt
+ C

∫ 1

0

∫
Ωj

∫
Rn
|f(x)− f(w)| 1

t2n+1

∣∣∣ϕ(x− w
t

)∣∣∣ ∣∣∣ϕ(x− γj
t

)∣∣∣ dw dx dt
Going back to (3.6), we have∫ τ

0

‖g‖pLp(Ω) `
−sp d`

`

≤ C

∫ τ

0

∑
j

‖f − fj‖pLp(Ωj)
`−sp

d`

`

≤ C

∫ τ

0

∑
j

∫
Ωj

(∫ 1

0

∫
Ωj

∫
Rn
|f(x)− f(w)| `

t2n+1

∣∣∣∇ϕ(x− w
t

)∣∣∣ ∣∣∣ϕ(x− γj
t

)∣∣∣ dw dx dt)pdy `−sp d`
`

+ C

∫ τ

0

∑
j

∫
Ωj

(∫ 1

0

∫
Ωj

∫
Rn
|f(x)− f(w)| 1

t2n+1

∣∣∣ϕ(x− w
t

)∣∣∣ ∣∣∣ϕ(x− γj
t

)∣∣∣ dw dx dt)pdy `−sp d`
`

= I + II
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We will begin by estimating the integral I. To this end, observe first that

dj(γj(t, y)) ≤ |γj(t, y)− x|+ dj(x) ≤ λ`t

4
+ dj(x) ≤ dj(γj(t, y))

4
+ dj(x)

and, therefore, using again the support of ϕ,

|x− w| ≤ λ`t

4
≤ dj(γj(t, y))

4
≤ dj(x)

3
≤ d(x)

3
<
d(x)

2
,

and

|x− y| ≤ |x− γj|+ |γj − y| ≤
λ`t

4
+ k`t.

Using these estimates and Hölder’s inequality (in dx dt),

I ≤ C

∫ τ

0

∑
j

∫
Ωj

∫ 1

0

∫
|x−y|<C`t

(∫
|x−w|< d(x)

2

|f(x)− f(w)| 1

t
n+1
p

+n+ ε
p′

∣∣∣∇ϕ(x− w
t

)∣∣∣ dw)p dx dt
·
(∫ 1

0

∫
Rn

1

tn+1−ε

∣∣∣ϕ(x− γj
t

)∣∣∣p′ dx dt) p
p′
dy `−sp+p

d`

`

In the integrals above, ε > 0 is a sufficiently small exponent that will be chosen later.
It allows us to compute separately(∫ 1

0

∫
Rn

1

tn+1−ε

∣∣∣ϕ(x− γj
t

)∣∣∣p′ dx dt) p
p′

=
(∫ 1

0

1

t1−ε
‖ϕ‖p

′

p′ dt
) p
p′

≤ C

(∫ 1

0

1

t1−ε
`−

np′
p dt

) p
p′

= C`−n

Using this bound and Hölder’s inequality again (in dw), we have

I ≤ C

∫ τ

0

∑
j

∫
Ωj

∫ 1

0

∫
|x−y|<C`t

(∫
|x−w|< d(x)

2

|f(x)− f(w)| 1

t
n+1
p

+n+ ε
p′

∣∣∣∇ϕ(x− w
t

)∣∣∣ dw)p
dx dt dy `−n−sp+p

d`

`

≤ C

∫ τ

0

∑
j

∫
Ωj

∫ 1

0

∫
|x−y|<C`t

(∫
|x−w|< d(x)

2

|f(x)− f(w)|pχ|x−w|<λ`t
4
dw
)

·
(∫

Rn

1

tn

∣∣∣∇ϕ(x− w
t

)∣∣∣p′ dw) p
p′ 1

t2n+1+ε(p−1)
dx dt dy `−n−sp+p

d`

`

≤ C

∫ τ

0

∑
j

∫
Ωj

∫ 1

0

∫
|x−y|<C`t

∫
|x−w|< d(x)

2

|f(x)− f(w)|pχ|x−w|<λ`t
4
dw

`−2n−sp

t2n+1+ε(p−1)
dx dt dy

d`

`

where in the last step we have used that ‖∇ϕ‖Lp′ (Rn) ≤ C`−
n
p
−1.

Hence, using the bounded overlap of the Ωj’s, we arrive at

I ≤ C

∫ τ

0

∫
Ω

∫ 1

0

∫
|x−y|<C`t

∫
|x−w|< d(x)

2

|f(x)−f(w)|pχ|x−w|<λ`t
4
dw

`−2n−sp

t2n+1+ε(p−1)
dx dt dy

d`

`

Notice that the above bound is independent of the partitions given by Definition 3.1
at each scale `, so now we may interchange the order of integration and compute the
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integrals in the variables y, ` and t, and we obtain

I ≤ C

∫
Ω

∫ 1

0

∫
|x−w|< d(x)

2

|f(x)− f(w)|p
∫ ∞

4|x−w|
λt

`−2n−sp−1

t2n+1+ε(p−1)

∫
|x−y|<C`t

dy d` dw dt dx

≤ C

∫
Ω

∫ 1

0

∫
|x−w|< d(x)

2

|f(x)− f(w)|p
∫ ∞

4|x−w|
λt

`−n−sp−1 d` dw
1

tn+1+ε(p−1)
dt dx

≤ C

∫
Ω

∫ 1

0

∫
|x−w|< d(x)

2

|f(x)− f(w)|p

|x− w|n+sp
dw tsp−1−ε(p−1) dt dx

≤ C

∫
Ω

∫
|x−w|< d(x)

2

|f(x)− f(w)|p

|x− w|n+sp
dw dx

≤ C|f |W̃ s,p(Ω)

where, to integrate in t, we have used that sp − 1 − ε(p − 1) > −1, which holds for
sufficiently small ε > 0.

It remains to bound the integral II, but the estimates are analogous if we observe
that, instead of using ‖∇ϕ‖Lp′ (Rn) ≤ C`−

n
p
−1 we now have to use ‖ϕ‖Lp′ (Rn) = `−

n
p ,

which compensates for the missing ` in the numerator. This proves∫ τ

0

‖g‖pLp(Ω) `
−sp d`

`
≤ C|f |W̃ s,p(Ω).

We proceed now to bound ∫ τ

0

‖∇h‖pp `p(1−s)
d`

`
.

Recall that, by definition of h,

|∇h(y)| =
∣∣∣∑

j

fj∇ψj(y)
∣∣∣ ≤∑

j

|fj − f(y)||∇ψj(y)| ≤
∑
j

|fj − f(y)|1
`

Hence, ∫ τ

0

‖∇h‖pLp(Ω) `
p(1−s)d`

`
≤ C

∫ τ

0

∑
j

‖fj − f‖pLp(Ωj)
`−sp

d`

`
≤ C|f |W̃ s,p(Ω)

as above. Therefore, putting both estimates together, we obtain (3.5). �

4. Examples

In this section we show how one can prove that certain domains in R2 are admissible
in the sense of Definition 3.1.

Our first example includes the domain in Remark 2.1 (a typical example of John
domain) for which the interpolation space was previously uncharacterized.

We then turn to the case of simply connected uniform domains in the plane, and
show that they are admissible. The proof relies on the fact that every domain in this
class is bi-Lipschitz equivalent to a member of a specific family of snowflake domains.

Proposition 4.1. If Ω is a connected open polygon in R2, possibly with interior holes

or fractures (see Figure 1) and 1 ≤ p <∞, then (Lp(Ω),W 1,p(Ω))s,p = W̃ s,p(Ω).
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Proof. To check that Ω is an admissible domain in the sense of Definition 3.1 observe
that, for each ` sufficiently small, Ω admits a triangulation T` such that the radii of all
inscribed circles and all circumcircles are comparable to `.

We number all vertices of T` with the convention that each vertex shared by triangles
separated by the boundary of the domain has to be considered as two separate vertices.
Associated to the set of vertices {vi}Ni=1 (here N = N(`)), we can define sets Ωi as the
interior of the union of all triangles of T` containing vi, and the Lagrange basis {ψi}Ni=1

as the set of piecewise linear functions such that each ψi is supported on Ω̄i, ψi(vi) = 1,
and ψi(vj) = 0 for all j 6= i. It is easy to check that this construction satisfies all the
required hypotheses. �

Figure 1. Examples of admissible non-Lipschitz domains in R2

For our next example we need to recall some necessary definitions

Definition 4.1. We say that a bounded domain Ω ⊂ Rn is uniform if there exist
constants a and b such that each x, y ∈ Ω can be joined by an arc γ in Ω with

(1) l(γ) ≤ a|x− y|
(2) minj=1,2 l(γj) ≤ bd(z)

for z ∈ γ, where γ1, γ2 are the components of γ \ {z}.

Remark 4.1. Clearly, any uniform domain is a John domain, but the converse is not
true, as can be seen in the case of the domain in Example 2.1.

Definition 4.2. We say that a homeomorphism f : R2 → R2 is quasiconformal if
f ∈ W 1,2

loc and there exists K ≥ 1 such that |Df(x)|2 ≤ KJf(x) almost everywhere,
where Jf is the Jacobian.

Definition 4.3. A quasicircle is the image of a circle under a quasiconformal map of
the plane, and a quasidisk is the interior domain of a quasicircle.

Proposition 4.2. If Ω ⊂ R2 is a simply connected uniform domain and 1 ≤ p < ∞,

then (Lp(Ω),W 1,p(Ω))s,p = W̃ s,p(Ω).

Proof. It is known that a simply connected planar domain Ω is a quasidisk if and only
if it is a uniform domain [10, Theorem 2.24], and that all quasidisks are essentially
snowflake domains, up to applying a bi-Lipschitz map of the plane [11, Theorem 1.1].

Let us sketch this equivalence: the author of [11] constructs a family S of snowflake-
type curves inductively, resembling the construction of the van Koch snowflake, but
with two replacement options instead of one. Namely, he begins with the unit square
and a fixed parameter p, 1

4
< p < 1

2
, and at each step he replaces every line segment

(say of length L) in the nth generation polygon by either

(1) four disjoint subintervals of length L
4

or
(2) a polygonal arc with four segments of length pL.
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Then he proves that every closed quasicircle in the plane is the bi-Lipschitz image of
some element in S.

If D is the bounded domain whose boundary is one of the snowflakes in S obtained
by the above process, we can equivalently think of the construction of D as starting
with the unit square and choosing at each step whether to add or not rotated rescaled
triangles. Therefore, every time we replace a line segment of the boundary by a polyg-
onal arc, we may refer to the triangle delimited by the original boundary as a “parent”,
and those added to its sides as its “children”. The “children” of any subsequent step
of a given triangle are its “descendants”.

To prove that a simply connected uniform domain Ω is admissible in the sense of
Definition 3.1, assume that Ω = f(D) where ∂D ∈ S and f : R2 → R2 is bi-Lipschitz
with constant K, i.e. K−1|x− y| ≤ |f(x)− f(y)| ≤ K|x− y| for all x, y ∈ R2.

For a given ` let N be such that pN ∼ `
K

, where p is the parameter used to construct
D. If we stop at the N -th step in the construction of D, we obtain a polygon DN ⊆ D,
which, as in the proof of Proposition 4.1 admits a covering by finitely overlapping
unions of triangles of size `/K, say {Oi}, and an associated partition of unity {φi} of
piecewise linear functions supported on those Oi’s. Now, if we define Õi as the union
of the triangles of Oi and all their descendants, we have that D = ∪iÕi, that the Õi’s
are finitely overlapping, and that their diameters are of order pN ∼ `

K
. Moreover, it is

easy to see that each Õi is a John domain (actually, it is uniform) with constants of
order `.

To construct a partition of unity on D, if φi vanishes on the boundary of DN , we
define φ̃i = φi on Oi and zero otherwise. If φi does not vanish on the boundary of DN ,
observe that, since it is is piecewise linear, it has a natural extension φ̃i (given by the
same formula) to Õi and can be extended by zero otherwise.

Notice that ‖φ̃i‖∞ ≤ C, ‖∇φ̃i‖∞ ≤ C`−1, and
∑

i φ̃i = 1 on DN , but the latter may

not be the case on D \DN , so we define ψ̃i = φ̃i∑
j φ̃j

which clearly satisfies
∑

i ψ̃i = 1,

and also, using that
∑

j φ̃j ≥ 1, ‖ψ̃i‖∞ ≤ C and ‖∇ψ̃i‖ ≤ C`−1.

Finally, the required partition in Ω is given by Ωi = f(Õi) and the associated par-

tition of unity is given by ψi = ψ̃i ◦ f−1. Since f is bi-Lipschitz, each Ωi is a John
domain with has size and constants of order ` (see [10, section 2.14]) and it is easy to
check that the remaining conditions of Definition 3.1 are satisfied. �
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